PROTOKÓL IPv6 Zmiany w porównaniu z wersja 4:

Wielkość: px
Rozpocząć pokaz od strony:

Download "PROTOKÓL IPv6 Zmiany w porównaniu z wersja 4:"

Transkrypt

1 PROTOKÓL IPv6 Zmiany w porównaniu z wersja 4: zwiekszenie wielkosci pola adresu IP z 32 do 128 bitów; dzieki temu otrzymuje sie mozliwosc polepszenia hierarchii adresowej, zwiekszenia liczby adresów dla wezlów sieci i uproszczenie auto-konfiguracji adresów, dodanie pola scope do adresów multicastowych, wprowadzenie adresu anycast dla wysylania pakietów do jednego z czlonków grupy wezlów, uproszczenie formatu naglówka zwiekszenie obszaru przeznaczonego na adresy czterokrotnie spowodowalo zwiekszenie rozmiaru naglówka tylko dwukrotnie, wprowadzenie zmian w sposobie kodowania opcji w naglówku; uzyskuje sie dzieki nim bardziej efektywny forwarding, zmniejszenie wymagan na wielkosc opcji i wieksze mozliwosci wprowadzania nowych opcji w przyszlosci, wprowadzenie mozliwosci oznaczania pakietów nalezacych do danego strumienia flaga QoS; nadawca moze zazyczyc sobie w ten sposób specjalnego traktowania (np. real-time service), wprowadzenie definicji rozszerzen, które zapewniaja mozliwosci authentication i privacy. 1

2 Protokól IPv6 sklada sie z dwóch czesci:?? zwyklego naglówka IPv6?? naglówków rozszerzajacych (extension headers). Format naglówka: Version Prior Flow Label Payload Length Next Header Hop Limit Source Address Destination Address Ver 4-bitowy numer IP = 6 Prio 4-bitowa wartosc priorytetu Flow Label pole 24-bitowe Payload Length 16-bitowe pole unsigned int. Dlugosc reszty pakietu za naglówkiem IPv6, w oktetach. Zero oznacza, ze dlugosc pakiety znajduje sie w opcji Jumbo Payload Next Hdr 8-bitowy selektor typu naglówka znajdujacego sie zaraz za naglówkiem IPv6. Wartosci takie same jak w IPv4 Hop Limit 8-bitowy unsigned int. Zmniejszane o jeden przez kazdy wezel na drodze od zródla do przeznaczenia. Pakiet jest odrzucany, gdy Hop Limit zrobi sie 0 Source Address 128-bitowy adres nadawcy pakietu Destination Address 128-bitowy adres odbiorcy (jezeli jest naglówek Routing Header, to nie jest to odbiorca ostateczny) 2

3 Naglówki rozszerzajace Opcje IPv6 umieszczane sa w osobnych naglówkach rozszerzajacych (extension headers) pomiedzy naglówkiem IPv6 i naglówkiem warstwy transportowej. Wiekszosc naglówków rozszerzajacych nie jest czytana przez routery posredniczace w przekazywaniu pakietu do odbiorcy. W wersji 4 wszystkie opcje musialy byc czytane przez wszystkie routery. Wielkosc naglówków rozszerzajacych nie jest niczym ograniczona; dlugosc wszystkich opcji w pakiecie nie jest ograniczona do 40 bajtów. Wszystkie opcje maja dlugosc bedaca wielokrotnoscia osmiu oktetów. Do tej pory zdefiniowano nastepujace rozszerzenia: Routing Fragmentation Authentication Encapsulation Hop-by-Hop Option Destination Options 3

4 Adresacja Adresy IPv6 sa liczbami 128-bitowymi i stanowia identyfikatory dla poszczególnych interfejsów lub zestawów interfejsów. Adresy sa przydzielane do interfejsów, a nie do wezlów sieci. Istnieja trzy typy adresów IPv6:?? unicast,?? anycast?? multicast. Adres unicast identyfikuje pojedynczy interfejs. Adres anycast identyfikuje grupe interfejsów tak, ze pakiet wyslany na adres anycastowy trafi do jednego z interfejsów z grupy. Adres multicast identyfikuje grupe interfejsów tak, ze pakiet wyslany na adres multicastowy trafi do wszystkich czlonków grupy. W IPv6 nie ma adresów broadcastowych. 128-bitowe pole adresowe powinno na jakis czas wystarczyc: na jeden metr kwadratowy powierzchni Ziemi wypada po adresów. W praktyce wprowadza sie tzw. hierarchie adresowe, które troche zmniejszaja stopien wykorzystania przestrzeni adresowej. W najbardziej pesymistycznym przypadku daje to jednak adresy na metr kwadratowy. 4

5 Konwencje tekstowego reprezentowania adresów IPv6: 1) Preferowana forma x:x:x:x:x:x:x:x, gdzie x jest jedna z osmiu liczb 16-bitowych zapisanych w postaci szesnastkowej, np. FEDC:BA98:7654:3201:FEDC:BA98:7654: :0:0:0:8:800:200C:417A (nie jest konieczne zapisywanie zer na poczatku kazdej z liczb szesnastkowych; na kazdej pozycji natomiast musi byc co najmniej jedna cyfra). 2) Skrócona forma dla uproszczenia zapisywania adresów zawierajacych dlugie lancuchy zer wprowadzono skrót: ::, oznaczajacy pojawienie sie kilku, nastepujacych po sobie 16-bitowych zer. Znak :: moze wystapic tylko raz w zapisie adresu; mozna go uzywac zarówno na poczatku, jak i na koncu zapisu, np. 1080:0:0:0:8:800:200C:417A adres unicastowy FF01:0:0:0:0:0:0:43 adres multicastowy 0:0:0:0:0:0:0:1 adres loopback 0:0:0:0:0:0:0:0 adres unspecified mozna zapisac jako: 1080::8:800:200C:417A FF01::43 ::1 :: 3) W srodowiskach, w których operuje sie adresami obu typów (IPv6 i IPv4) mozna stosowac forme x:x:x:x:x:x:d.d.d.d, gdzie x oznacza 16-bitowa liczbe w zapisie szesnastkowym, a d zapis dziesietny jednej z czterech 8-bitowych, najmniej znaczacych liczb w adresie (standardowy zapis IPv4), np. 0:0:0:0:0:0: ::FFFF:

6 Typ adresu. Jest on determinowany przez poczatkowe bity. Pole (o zmiennej dlugosci) nazywa sie Format Prefix (FP). Zarezerwowane prefiksy: Allocation Prefix(binary) Fraction of Address Space Reserved /256 Unassigned /256 Reserved for NSAP Allocation /128 Reserved for IPX Allocation /128 Unassigned /128 Unassigned /32 Unassigned /16 Unassigned 001 1/8 Provider-Based Unicast Address 010 1/8 Unassigned 011 1/8 Reserved for Neutral-Interconnect-Based Unicast Addresses 100 1/8 Unassigned 101 1/8 Unassigned 110 1/8 Unassigned /16 Unassigned /32 Unassigned /64 Unassigned /128 Unassigned /512 Link Local Use Addresses /1024 Site Local Use Addresses /1024 Multicast Addresses /256 6

7 Klasy adresów unicastowych Unspecified Address adres 0:0:0:0:0:0:0:0 nie moze byc przydzielony zadnemu wezlowi. Oznacza brak adresu (np. moze byc uzyty w polu Source Address datagramu IPv6 przez hosta, który jeszcze nie zna swojego adresu IP) Loopback Address adres 0:0:0:0:0:0:0:1 moze byc uzyty przez wezel do przesylania datagramów do samego siebie. Provider Based Unicast Addresses uzywane w komunikacji globalnej. 3 n bits m bits o bits p bits o-p bits REGISTRY ID PROVIDER ID SUBSCRI,BER ID SUBNET ID INTF. ID Local-Use Addresses ten adres jest widziany tylko wewnatrz podsieci badz sieci subskrybenta. Moga byc unikalne globalnie (gdy subskrybent spodziewa sie przylaczenia do Internetu) lub lokalnie. Wyróznia sie dwa rodzaje adresów Local-Use: Link-Local-Use (adresacja w obrebie jednej sieci single link) 10 bits n bits 118-n bits INTERFACE ID oraz adresy Site-Local-Use: 10 bits n bits m bits 118-n-m bits SUBNET ID INTERFACE ID

8 IPv6 Addresses with Embedded IPv4 Addresses w celu stopniowego przejscia na nowa wersje systemu potrzebna jest mozliwosc przenoszenia adresów IPv6 przez infrastrukture oparta na IPv4 (technika tunnelingu ). Wezlom przydziela sie specjalne adresy IPv6 w 32 najmniej znaczacych bitach (IPv4-compatible IPv6 address) o formacie: 80 bits bits IPV4 ADDRESS Drugi rodzaj adresu z tej serii to taki, który zawiera adres IPv4 jako adres IPv6 (IPv4-mapped IPv6 address) o formacie: 80 bits bits FFFF IPV4 ADDRESS

9 Adresy anycastowe?? przypisany wiecej niz jednemu interfejsowi w sieci?? moze korzystac ze wszystkich formatów zdefiniowanych dla adresów unicastowych?? nie moze byc uzyty jako adres zródla w pakiecie IPv6; nie moze byc równiez przydzielony hostowi jedynie routerowi. 9

10 Adresy multicastowe Identyfikator grupy wezlów. Format adresu: bits flgs scop group ID na poczatku oznaczaja, ze adres jest adresem multicastowym.?? flgs jest zestawem czterech flag : T. Trzy najstarsze bity sa zarezerwowane, bit T=0 oznacza, ze adres jest nadany przez globalna internetowa organizacje przydzielajaca numery i jest staly ( well known ); T=1 oznacza adres niestaly ( transient ).?? scop jest 4-bitowym polem sluzacym do ograniczenia zasiegu grupy multicastowej. Wartosci: 0 zarezerwowane 1 node-local scope 2 link-local scope 3 (unassigned) 4 (unassigned) 5 site-local scope 6 (unassigned) 7 (unassigned) 8 organization-local scope 9 (unassigned) A (unassigned) B (unassigned) C (unassigned) D (unassigned) E global scope F reserved?? group ID identyfikuje grupe multicastowa w danym zasiegu. 10

11 ICMPv6 Format komunikatów Komunikaty ICMPv6:?? komunikaty o bledach?? komunikaty informacyjne (kontrolne). Ogólny format komunikatu ICMPv6: Type Code Checksum + Message Body + 11

12 Komunikaty o bledach Komunikat Destination Unreachable Type Code Checksum Unused As much of invoking packet + as will fit without the ICMPv6 packet + exceeding 576 octets Komunikat Packet Too Big Type Code Checksum MTU As much of invoking packet + as will fit without the ICMPv6 packet + exceeding 576 octets Komunikat Time Exceed Type Code Checksum Unused As much of invoking packet + as will fit without the ICMPv6 packet + exceeding 576 octets Komunikat Parametr Problem Type Code Checksum Pointer As much of invoking packet + as will fit without the ICMPv6 packet + exceeding 576 octets 12

13 Komunikaty informacyjne (kontrolne) Komunikat Echo Request Type Code Checksum Identifier Sequence Number + Data + Komunikat Echo Reply Type Code Checksum Identifier Sequence Number + Data + Komunikat Group Membership Type Code Checksum Maximum Response Delay Unused + Multicast Address + 13

14 Rozszerzenia systemu IPv6 DNS Nowe definicje rekordów i domen?? Typ rekordu AAAA? Rekord ten jest specyficzny dla klasy Internet przechowujacy pojedynczy adres IPv6.??? Format danych AAAA? 128-bitowy adres jest przedstawiany w postaci bajtowej.??? Zapytanie AAAA? W odpowiedzi na zapytanie okreslajace nazwe domeny podawane sa wszystkie konieczne rekordy.??? Tekstowy format rekordu AAAA? Tekstowy format rekordu to tekstowa reprezentacja adresu IPv6.??? Domena IP6.INT? Adres IPv6 jest reprezentowany w domenie IP6.INT jako sekwencja nibbli (czwórki bitów) oddzielonych kropkami z sufiksem IP6.INT. Sekwencja ta jest zapisywana w odwrotnym porzadku niz adres IPv6? Modyfikacje istniejacych typów zapytan Wszystkie istniejace typy zapytan obslugujace typ A musza Byc przedefiniowane tak by byla mozliwa obsluga zapytan typu A i AAAA. 14

15 Postac adresów IPv6 Obecne formaty adresu?? [AddrSpec] okresla jedna z preferowanych postaci adresu IPv6 tekstowa.??? Postac x:x:x:x:x:x:x:x, gdzie x oznacza szesnastkowa liczbe.??? Postac adresu laczy w sobie wersje IPv6 oraz IPv4 i jest pomocna przy wlaczaniu adresu IPv4 do IPv6. Ten format moze byc dluzszy niz normalna reprezentacja adresu IPv6. Nowy format ADRES = 128-bitowa liczba calkowita. Kodowanie przy podstawie 85 i kodowanie za pomoca 85 znaków ASCII. Dlaczego 85? 2^128 jest 3, e+38, a 85^20 jest 3, e+38. Zatem 20 cyfr o podstawie 85 w pelni reprezentuje wszystkie adresy IPv6. Zbiór znaków Ponizsze znaki (w porzadku rosnacym) sluza do zakodowania 85 liczb o podstawie 85: 0.. 9, A..Z, a..z,!, #, $, %, &, (, ), *, +, -, ;, <, =, ^, _, `, {,, }, ~ 15

16 Przeksztalcenie adresu IPv6 do podstawy 85. Przyklad: 1080:0:0:0:8:800:200C:417A W postaci dziesietnej mamy 128-bitowa liczbe: Jesli podzielimy przez 85 otrzymamy nastepujace reszty: 51, 34, 65, 57, 58, 0, 75, 53, 37, 4, 19, 61, 31, 63, 12, 66, 46, 70, 68, 4 W ten sposób otrzymujemy adres: A po zakodowaniu: 4)+k&C#VzJ4br>0wv%Yp Dodatkowe korzysci. Zapis adresu IPv6 w postaci tekstowej redukuje jego dlugosc, ale powyzsza postac adresu daje korzysc w postaci jego stalej dlugosci. W ten sposób omija sie niepozadana zmiennosc dlugosci adresu Zagadnienia implementacyjne Wiele obecnych procesorów nie operuje arytmetyka 128-bitowa, ale nie jest to powazna wada. Bezpieczenstwo Poprzez zapis adresu w tej formie jest malo prawdopodobne by zwykly obserwator byl w stanie stwierdzic binarna postac adresu. 16

17 Mechanizm zamiany dla hostów i routerów IPv6 Pojecia Typy wezlów: IPv4-only IPv6/IPv4 IPv6-only Typy adresów IPv6 IPv4-compatible IPv6-only Techniki uzywane do zamiany adresów tunelowanie IPv6-over-IPv4 enkapsulacja IPv6-in-IPv4 tunelowanie konfigurowane tunelowanie automatyczne 17

18 Adresacja Automatyczne tunelowanie Specjalny typu adresów IPv6 IPv4-compatible. Adres taki jest identyfikowany poprzez 96 zer na poczatku 96-bitów 32-bity :0:0:0:0:0 adres IPv4 i jest przypisany do wezla IPv6\IPv4, który obsluguje automatyczne tunelowanie. Wezly moga uzywac adresy IPv6 oraz IPv4. Podwójna warstwa IP Wezel IPv6/IPv4 i jego konfiguracje: wezel IPv6/IPv4 nie obsluguje tunelowania, wezel IPv6/IPv4 z tunelowaniem konfigurowanym wezel IPv6/IPv4 z tunelowaniem konfigurowanym i automatycznym Konfiguracja Adresowa Mechanizm: Dynamic Host Configuration Protocol DHCP, Bootstrap Protocol BOOTP, Reverse Address Resolution Protocol RARP reczna konfiguracja Petle adresowe IPv4 Implementacje IPv6/Ipv4 moga traktowac adres IPv4-compatible (np. :: ) jako adres petli. DNS DNS jest uzywany w IPv4 i IPv6 do przetwarzania nazw hostów na adresy. 18

19 Obsluga rekordów adresów IPv4 Jezeli analizator DNS stwierdzi, ze istnieja odpowiadajace sobie adresy IPv4 oraz IPv4-compatible to istnieja 3 mozliwosci: podawany jest adres IPv6, podawany jest adres IPv4, podawane sa oba adresy. Wybór mozliwosci zalezy od generowanego ruchu IP. Tunneling IPv6 poprzez IPv4 (IPv6-over-IPv4) Tunelowanie (enkapsulacja datagramów IPv6 w pakietach IPv4): router-to-router, host-to-router, host-to-host, router-to-host. Podstawowe techniki tunelowania:?? automatyczna?? konfigurowana Mechanizm tunelowania: wezel na poczatku tunelu tworzy pakiet za pomoca enkapsulacji dodajac naglówek IPv4, wezel koncowy po otrzymaniu pakietu usuwa z niego naglówek IPv4 (dekappsulacja) i przetwarza otrzymany pakiet IPv6, wezel poczatkowy musi posiadac informacje o parametrach tunelu np. MTU 19

20 Zwykly mechanizm tunelowania Enkapsulacja datagramu IPv6 do IPv4: IPv4 Header IPv6 Header IPv6 Header Transport Transport Layer = Layer Header Header Data Data Wezel realizuje funkcje: dodawanie naglówka IPv4 fragmentacja albo wysylanie komunikatu ICMP Packet Too Big, odzwierciedlanie bledów IPv4 ICMP od Routera poprzez tunel do zródla jako bledy IPv6 ICMP. Hop Limit Hop Limit jest zmniejszany o jeden po przejsciu pakietu przez tunel. Obsluga bledów IPv4 ICMP 20

21 Postac naglówka IPv4 (po enkapsulacji pakietu IPv6 do datagramu IPv4): Version = 4 IP Hdr Lenght = 5 Typ uslugi = 0 Maksymalna dlugosc = 60 Identification generowane przez system; unikalne dla kazdego pakietu Flags - ustawione DF i MF Protokól = 41 Header Checksum - obliczane na podstawie naglówka IPv4 Source Address - adres interfejsu wezla Destination Address - adres koncowy tunelu. Decapsulacja IPv6 zawartego w pakietach IPv IPv4 Header IPv6 Header IPv6 Header Transport = Transport Layer Layer Header Header Data Data Skonfigurowany tunneling Typowa konfiguracja tunelu Automatyczny Tunneling 21

22 Algorytm przesylania Algorytm jest uzywany do okreslenia jaki rodzaj pakietu wysylac (IPv4 czy IPv6), jaki tunel zastosowac. Podstawowe wlasnosci algorytmu: wysylanie pakietów IPv4 do wezla IPv4, wysylanie pakietów IPv6 do wezla IPv6, przesylanie pakietów IPv6 enkapsulowanych w IPv4 poprzez automatyczny tunel, Tresc algorytmu: 1) Wezel posiada adres IPv4 to:?? jesli odbiorca jest na tym samym laczu wtedy wysyla sie pakiet IPv4 do wezla przeznaczenia.?? jesli odbiorca nie jest przylaczony do tego lacza to:??gdy dolaczony jest router IPv4 wysyla sie pakiet IPv4. Adres przeznaczenia to adres IPv4.??odbiorca jest nieosiagalny gdy nie ma routera.? 2) Wezel posiada adres IPv6 typu IPv4-compatible to:?? jesli odbiorca jest na tym samym laczu wtedy wysyla sie pakiet IPv6 do wezla przeznaczenia.?? jesli odbiorca nie jest przylaczony do tego lacza to:??gdy dolaczony jest router IPv4 wysyla sie pakiet IPv6 enkapsulowany w IPv4. Adres Przeznaczenia jest adresem IPv6??jesli dolaczony jest router IPv6 to wysyla sie pakiet IPv6,?? odbiorca jest nieosiagalny gdy nie ma routera.? 3) Wezel posiada adres IPv6-only to?? jesli odbiorca jest na tym samym laczu wtedy wysyla sie pakiet IPv6 do wezla przeznaczenia.?? jesli odbiorca nie jest przylaczony do tego lacza to:??gdy dolaczony jest router IPv6 wysyla sie pakiet IPv6 enkapsulowany w IPv6. Adres przeznaczenia jest adresem IPv6.??jesli odbiorca jest osiagalny poprzez tunel oraz dolaczony jest router IPv4 to wysyla sie pakiet IPv6 enkapsulowany w IPv4. Adres przeznaczenia IPv6 jest adresem wezla koncowego, natomiast adres przeznaczenia IPv4 jest koncowym tunelu.?? odbiorca jest nieosiagalny gdy nie ma routera IPv6. 22

23 Zasady przedstawia tabela: End End IPv4 IPv6 Packet Node Node Router Router Format IPv6 IPv4 DLink Address On On On To Dest Dest Dest Type Link? Link? Link? Send Addr Addr Addr IPv4 Yes N/A N/A IPv4 N/A E4 EL IPv4 No Yes N/A IPv4 N/A E4 RL IPv4 No No N/A UNRCH N/A N/A N/A IPv4-compa Yes N/A N/A IPv6 E6 N/A EL IPv4-compa No Yes N/A IPv6/4 E6 E4 RL IPv4-compa No No Yes IPv6 E6 N/A RL IPv4-compa No No No UNRCH N/A N/A N/A IPv6-only Yes N/A N/A IPv6 E6 N/A EL IPv6-only No N/A Yes IPv6 E6 N/A RL IPv6-only No Yes No IPv6/4 E6 T4 RL IPv6-only No No No UNRCH N/A N/A N/A N/A - nie ma zastosowania w tym przypadku, E6 - adres IPv6 wezla koncowego, E4 - adres IPv4 wezla koncowego, EL - adres wezla koncowego lacza danych, T4 - adres IPv4 koncowy tunelu, R6 - adres IPv6 routera, R4 - adres IPv4 routera, RL - adres routera lacza danych, IPv4 - pakiet IPv4, IPv6 - pakiet IPv6, IPv6/4 - pakiet enkasulowany UNRCH - odbiorca nie osiagalny. 23

NAGŁÓWEKI ROZSZERZONE IPv6

NAGŁÓWEKI ROZSZERZONE IPv6 NAGŁÓWEKI ROZSZERZONE IPv6 Pole Next Header w każdym poprzedzającym nagówku identyfikuje typ następnego nagłówka rozszerzonego. Typowo, ostatni nagłówek rozszerzony wskazuje na protokół transportowy Hop-by-Hop

Bardziej szczegółowo

Adresy IP v.6 IP version 4 IP version 6 byte 0 byte 1 byte 2 byte 3 byte 0 byte 1 byte 2 byte 3

Adresy IP v.6 IP version 4 IP version 6 byte 0 byte 1 byte 2 byte 3 byte 0 byte 1 byte 2 byte 3 Historia - 1/2 Historia - 2/2 1984.1 RFC 932 - propozycja subnettingu 1985.8 RFC 95 - subnetting 199.1 ostrzeżenia o wyczerpywaniu się przestrzeni adresowej 1991.12 RFC 1287 - kierunki działań 1992.5 RFC

Bardziej szczegółowo

Internet Protocol v6 - w czym tkwi problem?

Internet Protocol v6 - w czym tkwi problem? NAUKOWA I AKADEMICKA SIEĆ KOMPUTEROWA Internet Protocol v6 - w czym tkwi problem? dr inż. Adam Kozakiewicz, adiunkt Zespół Metod Bezpieczeństwa Sieci i Informacji IPv6 bo adresów było za mało IPv6 co to

Bardziej szczegółowo

Dlaczego? Mało adresów IPv4. Wprowadzenie ulepszeń względem IPv4 NAT CIDR

Dlaczego? Mało adresów IPv4. Wprowadzenie ulepszeń względem IPv4 NAT CIDR IPv6 Dlaczego? Mało adresów IPv4 NAT CIDR Wprowadzenie ulepszeń względem IPv4 Większa pula adresów Lepszy routing Autokonfiguracja Bezpieczeństwo Lepsza organizacja nagłówków Przywrócenie end-to-end connectivity

Bardziej szczegółowo

Sieci komputerowe - Wstęp do intersieci, protokół IPv4

Sieci komputerowe - Wstęp do intersieci, protokół IPv4 Piotr Kowalski KAiTI Internet a internet - Wstęp do intersieci, protokół IPv Plan wykładu Informacje ogólne 1. Ogólne informacje na temat sieci Internet i protokołu IP (ang. Internet Protocol) w wersji.

Bardziej szczegółowo

Plan i problematyka wykładu. Sieci komputerowe IPv6. Rozwój sieci Internet. Dlaczego IPv6? Przykład zatykania dziur w funkcjonalności IPv4 - NAT

Plan i problematyka wykładu. Sieci komputerowe IPv6. Rozwój sieci Internet. Dlaczego IPv6? Przykład zatykania dziur w funkcjonalności IPv4 - NAT IPv6 dr inż. Piotr Kowalski Katedra Automatyki i Technik Informacyjnych Plan i problematyka wykładu 1. Uzasadnienie dla rozwoju protokołu IPv6 i próby ratowania idei IPv6 2. Główne aspekty funkcjonowania

Bardziej szczegółowo

Warstwa sieciowa. Model OSI Model TCP/IP. Aplikacji. Aplikacji. Prezentacji. Sesji. Transportowa. Transportowa

Warstwa sieciowa. Model OSI Model TCP/IP. Aplikacji. Aplikacji. Prezentacji. Sesji. Transportowa. Transportowa Warstwa sieciowa Model OSI Model TCP/IP Aplikacji Prezentacji Aplikacji podjęcie decyzji o trasowaniu (rutingu) na podstawie znanej, lokalnej topologii sieci ; - podział danych na pakiety Sesji Transportowa

Bardziej szczegółowo

Sieci komputerowe - administracja

Sieci komputerowe - administracja Sieci komputerowe - administracja warstwa sieciowa Andrzej Stroiński andrzej.stroinski@cs.put.edu.pl http://www.cs.put.poznan.pl/astroinski/ warstwa sieciowa 2 zapewnia adresowanie w sieci ustala trasę

Bardziej szczegółowo

Sieci Komputerowe. Protokół ICMP - Internet Control Message Protocol Protokół ICMP version 6. dr Zbigniew Lipiński

Sieci Komputerowe. Protokół ICMP - Internet Control Message Protocol Protokół ICMP version 6. dr Zbigniew Lipiński Sieci Komputerowe Protokół ICMP - Internet Control Message Protocol Protokół ICMP version 6 dr Zbigniew Lipiński Instytut Matematyki i Informatyki ul. Oleska 48 50-204 Opole zlipinski@math.uni.opole.pl

Bardziej szczegółowo

DR INŻ. ROBERT WÓJCIK DR INŻ. JERZY DOMŻAŁ

DR INŻ. ROBERT WÓJCIK DR INŻ. JERZY DOMŻAŁ DR INŻ. ROBERT WÓJCIK DR INŻ. JERZY DOMŻAŁ INTERNET PROTOCOL (IP) INTERNET CONTROL MESSAGE PROTOCOL (ICMP) WSTĘP DO SIECI INTERNET Kraków, dn. 7 listopada 2016 r. PLAN IPv4: schemat nagłówka ICMP: informacje

Bardziej szczegółowo

Sieci komputerowe - adresacja internetowa

Sieci komputerowe - adresacja internetowa Sieci komputerowe - adresacja internetowa mgr inż. Rafał Watza Katedra Telekomunikacji AGH 1 Wprowadzenie Co to jest adresacja? Przedmioty adresacji Sposoby adresacji Układ domenowy, a układ numeryczny

Bardziej szczegółowo

IPv6 Protokół następnej generacji

IPv6 Protokół następnej generacji IPv6 Protokół następnej generacji Bartłomiej Świercz Katedra Mikroelektroniki i Technik Informatycznych Łódź,13maja2008 Wstęp Protokół IPv6 często nazywany również IPNG(Internet Protocol Next Generation)

Bardziej szczegółowo

ADRESY PRYWATNE W IPv4

ADRESY PRYWATNE W IPv4 ADRESY PRYWATNE W IPv4 Zgodnie z RFC 1918 zaleca się by organizacje dla hostów wymagających połączenia z siecią korporacyjną a nie wymagających połączenia zewnętrznego z Internetem wykorzystywały tzw.

Bardziej szczegółowo

Charakterystyka grupy protokołów TCP/IP

Charakterystyka grupy protokołów TCP/IP Charakterystyka grupy protokołów TCP/IP Janusz Kleban Architektura TCP/IP - protokoły SMTP FTP Telnet HTTP NFS RTP/RTCP SNMP TCP UDP IP ICMP Protokoły routingu ARP RARP Bazowa technologia sieciowa J. Kleban

Bardziej szczegółowo

Podstawy Transmisji Danych. Wykład IV. Protokół IPV4. Sieci WAN to połączenia pomiędzy sieciami LAN

Podstawy Transmisji Danych. Wykład IV. Protokół IPV4. Sieci WAN to połączenia pomiędzy sieciami LAN Podstawy Transmisji Danych Wykład IV Protokół IPV4 Sieci WAN to połączenia pomiędzy sieciami LAN 1 IPv4/IPv6 TCP (Transmission Control Protocol) IP (Internet Protocol) ICMP (Internet Control Message Protocol)

Bardziej szczegółowo

Protokół IPX (Internetwork Packet Exchange)

Protokół IPX (Internetwork Packet Exchange) Protokół IPX (Internetwork Packet Exchange) Adres hosta = 32 bity 48 bitów Adres sieci + Adres MAC C4AA01EF. 0BBF.105C.D013 4A01.OBCF.120C.E023 4A01.OBDF.D056.6611 4A01.OBBF.105C.D013 2003.BBDF.10EC.FA23

Bardziej szczegółowo

WYŻSZA SZKOŁA ZARZĄDZANIA I MARKETINGU BIAŁYSTOK, ul. Ciepła 40 filia w EŁKU, ul. Grunwaldzka

WYŻSZA SZKOŁA ZARZĄDZANIA I MARKETINGU BIAŁYSTOK, ul. Ciepła 40 filia w EŁKU, ul. Grunwaldzka 14 Protokół IP WYŻSZA SZKOŁA ZARZĄDZANIA I MARKETINGU BIAŁYSTOK, ul. Ciepła 40 Podstawowy, otwarty protokół w LAN / WAN (i w internecie) Lata 70 XX w. DARPA Defence Advanced Research Project Agency 1971

Bardziej szczegółowo

Internet Control Message Protocol (ICMP) Łukasz Trzciałkowski

Internet Control Message Protocol (ICMP) Łukasz Trzciałkowski Internet Control Message Protocol (ICMP) Łukasz Trzciałkowski Czym jest ICMP? Protokół ICMP jest protokołem działającym w warstwie sieciowej i stanowi integralną część protokołu internetowego IP, a raczej

Bardziej szczegółowo

MODEL OSI A INTERNET

MODEL OSI A INTERNET MODEL OSI A INTERNET W Internecie przyjęto bardziej uproszczony model sieci. W modelu tym nacisk kładzie się na warstwy sieciową i transportową. Pozostałe warstwy łączone są w dwie warstwy - warstwę dostępu

Bardziej szczegółowo

Sieci komputerowe. Wykład 3: Protokół IP. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski. Sieci komputerowe (II UWr) Wykład 3 1 / 25

Sieci komputerowe. Wykład 3: Protokół IP. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski. Sieci komputerowe (II UWr) Wykład 3 1 / 25 Sieci komputerowe Wykład 3: Protokół IP Marcin Bieńkowski Instytut Informatyki Uniwersytet Wrocławski Sieci komputerowe (II UWr) Wykład 3 1 / 25 W poprzednim odcinku Podstawy warstwy pierwszej (fizycznej)

Bardziej szczegółowo

Sieci Komputerowe. Protokół IPv4 - Internet Protocol ver.4 Protokół IP ver.6. dr Zbigniew Lipiński

Sieci Komputerowe. Protokół IPv4 - Internet Protocol ver.4 Protokół IP ver.6. dr Zbigniew Lipiński Sieci Komputerowe Protokół IPv4 - Internet Protocol ver.4 Protokół IP ver.6 dr Zbigniew Lipiński Instytut Matematyki i Informatyki ul. Oleska 48 50-204 Opole zlipinski@math.uni.opole.pl Protokół IPv4.

Bardziej szczegółowo

Podstawy IPv6, część 1

Podstawy IPv6, część 1 Podstawy IPv6, część 1 Tomasz Mrugalski 1 Informacje wstępne: Rodzina protokołów IPv6 W niniejszym punkcie przedstawione zostały zagadnienia związane z rodziną protokołów IPv6. 1.1 Adresowanie

Bardziej szczegółowo

Przyczyny zastąpienia IPv4. MoŜe częściej stosować NAT? Przestrzeń adresowa. PROTOKÓŁ IPv6 SIECI KOMPUTEROWE

Przyczyny zastąpienia IPv4. MoŜe częściej stosować NAT? Przestrzeń adresowa. PROTOKÓŁ IPv6 SIECI KOMPUTEROWE Sieci komputerowe Informatyka studia zaoczne 2006/2007 1 Sieci komputerowe Informatyka studia zaoczne 2006/2007 2 Przyczyny zastąpienia IPv4 SIECI KOMPUTEROWE PROTOKÓŁ IPv6 Przestrzeń adresowa na wyczerpaniu

Bardziej szczegółowo

Sieć komputerowa Adresy sprzętowe Adresy logiczne System adresacji IP (wersja IPv4)

Sieć komputerowa Adresy sprzętowe Adresy logiczne System adresacji IP (wersja IPv4) Sieć komputerowa Siecią komputerową nazywamy system (tele)informatyczny łączący dwa lub więcej komputerów w celu wymiany danych między nimi. Sieć może być zbudowana z wykorzystaniem urządzeń takich jak

Bardziej szczegółowo

Warstwa sieciowa w Internecie

Warstwa sieciowa w Internecie Warstwa sieciowa Usługi dla warstwy transportowej Niezależne od sieci podkładowych Oddzielenie warstwy transportu od parametrów sieci (numeracja,topologia, etc.) Adresy sieciowe dostępne dla warstwy transportowej

Bardziej szczegółowo

Plan wykładu. Warstwa sieci. Po co adresacja w warstwie sieci? Warstwa sieci

Plan wykładu. Warstwa sieci. Po co adresacja w warstwie sieci? Warstwa sieci Sieci komputerowe 1 Sieci komputerowe 2 Plan wykładu Warstwa sieci Miejsce w modelu OSI/ISO unkcje warstwy sieciowej Adresacja w warstwie sieciowej Protokół IP Protokół ARP Protokoły RARP, BOOTP, DHCP

Bardziej szczegółowo

DR INŻ. ROBERT WÓJCIK DR INŻ. JERZY DOMŻAŁ ADRESACJA W SIECIACH IP. WSTĘP DO SIECI INTERNET Kraków, dn. 24 października 2016r.

DR INŻ. ROBERT WÓJCIK DR INŻ. JERZY DOMŻAŁ ADRESACJA W SIECIACH IP. WSTĘP DO SIECI INTERNET Kraków, dn. 24 października 2016r. DR INŻ. ROBERT WÓJCIK DR INŻ. JERZY DOMŻAŁ ADRESACJA W SIECIACH IP WSTĘP DO SIECI INTERNET Kraków, dn. 24 października 2016r. PLAN Reprezentacja liczb w systemach cyfrowych Protokół IPv4 Adresacja w sieciach

Bardziej szczegółowo

Komunikacja w sieciach komputerowych

Komunikacja w sieciach komputerowych Komunikacja w sieciach komputerowych Dariusz CHAŁADYNIAK 2 Plan prezentacji Wstęp do adresowania IP Adresowanie klasowe Adresowanie bezklasowe - maski podsieci Podział na podsieci Translacja NAT i PAT

Bardziej szczegółowo

Plan wykładu. Warstwa sieci. Po co adresacja w warstwie sieci? Warstwa sieci

Plan wykładu. Warstwa sieci. Po co adresacja w warstwie sieci? Warstwa sieci Sieci komputerowe 1 Sieci komputerowe 2 Plan wykładu Warstwa sieci Miejsce w modelu OSI/ISO Funkcje warstwy sieciowej Adresacja w warstwie sieciowej Protokół IP Protokół ARP Protokoły RARP, BOOTP, DHCP

Bardziej szczegółowo

Sieci komputerowe. Wykład 3: Protokół IP. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski. Sieci komputerowe (II UWr) Wykład 3 1 / 24

Sieci komputerowe. Wykład 3: Protokół IP. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski. Sieci komputerowe (II UWr) Wykład 3 1 / 24 Sieci komputerowe Wykład 3: Protokół IP Marcin Bieńkowski Instytut Informatyki Uniwersytet Wrocławski Sieci komputerowe (II UWr) Wykład 3 1 / 24 Przypomnienie W poprzednim odcinku Podstawy warstwy pierwszej

Bardziej szczegółowo

Protokół IP wersja 4. Wprowadzenie. Piotr Jankowski

Protokół IP wersja 4. Wprowadzenie. Piotr Jankowski Protokół IP wersja 6 Piotr Jankowski Opisano budowę protokołu IPv6, a zwłaszcza nagłówek IPv6 i nagłówki rozszerzające. Ponadto wskazano sposób podziału adresów IP na podsieci. Internet, protokół IPv6,

Bardziej szczegółowo

Połączenie sieci w intersieci ( internet ) Intersieci oparte o IP Internet

Połączenie sieci w intersieci ( internet ) Intersieci oparte o IP Internet Warstwa sieciowa Usługi dla warstwy transportowej Niezależne od sieci podkładowych Oddzielenie warstwy transportu od parametrów sieci (numeracja,topologia, etc.) Adresy sieciowe dostępne dla warstwy transportowej

Bardziej szczegółowo

DLACZEGO QoS ROUTING

DLACZEGO QoS ROUTING DLACZEGO QoS ROUTING Reakcja na powstawanie usług multimedialnych: VoIP (Voice over IP) Wideo na żądanie Telekonferencja Potrzeba zapewnienia gwarancji transmisji przy zachowaniu odpowiedniego poziomu

Bardziej szczegółowo

Aby lepiej zrozumieć działanie adresów przedstawmy uproszczony schemat pakietów IP podróżujących w sieci.

Aby lepiej zrozumieć działanie adresów przedstawmy uproszczony schemat pakietów IP podróżujących w sieci. Struktura komunikatów sieciowych Każdy pakiet posiada nagłówki kolejnych protokołów oraz dane w których mogą być zagnieżdżone nagłówki oraz dane protokołów wyższego poziomu. Każdy protokół ma inne zadanie

Bardziej szczegółowo

Sieci komputerowe. Protokoły warstwy sieciowej modelu OSI-ISO. dr inż. Andrzej Opaliński andrzej.opalinski@agh.edu.pl

Sieci komputerowe. Protokoły warstwy sieciowej modelu OSI-ISO. dr inż. Andrzej Opaliński andrzej.opalinski@agh.edu.pl Sieci komputerowe Protokoły warstwy sieciowej modelu OSI-ISO dr inż. Andrzej Opaliński andrzej.opalinski@agh.edu.pl Plan wykładu Wprowadzenie Opis warstw Protokoły IPX AppleTalk (DDP) Routing IPsec IP

Bardziej szczegółowo

Architektura INTERNET

Architektura INTERNET Internet, /IP Architektura INTERNET OST INTERNET OST OST BRAMA (ang. gateway) RUTER (ang. router) - lokalna sieć komputerowa (ang. Local Area Network) Bramy (ang. gateway) wg ISO ruter (ang. router) separuje

Bardziej szczegółowo

IPv6 protokół internetowy następnej generacji

IPv6 protokół internetowy następnej generacji IPv6 protokół internetowy następnej generacji Grzegorz Olszanowski email: golszanowski@pwsz.chelm.pl Państwowa Wyższa Szkoła Zawodowa w Chełmie Streszczenie Publikacja ta ma na celu przybliżenie mechanizmu

Bardziej szczegółowo

Laboratorium Identyfikacja adresów IPv6

Laboratorium Identyfikacja adresów IPv6 Laboratorium Identyfikacja adresów IPv6 Topologia Cele Część 1: Identyfikacja różnych typów adresów IPv6 Przegląd różnych typów adresów IPv6. Dopasowanie adresu IPv6 do odpowiedniego typu. Część 2: Sprawdzanie

Bardziej szczegółowo

IPv6. Nowa wersja Protokołu Internetowego. Tomasz Luchowski <zuntum@netbsd.org> www.luchowski.com

IPv6. Nowa wersja Protokołu Internetowego. Tomasz Luchowski <zuntum@netbsd.org> www.luchowski.com IPv6 Nowa wersja Protokołu Internetowego Tomasz Luchowski www.luchowski.com 25 kwietnia 2003 Spis treści 1. Dlaczego potrzebna jest nowa wersja protokołu IP?...3 2. IPv6 następca obecnie

Bardziej szczegółowo

Warstwa sieciowa. mgr inż. Krzysztof Szałajko

Warstwa sieciowa. mgr inż. Krzysztof Szałajko Warstwa sieciowa mgr inż. Krzysztof Szałajko Modele odniesienia 7 Aplikacji 6 Prezentacji 5 Sesji 4 Transportowa 3 Sieciowa 2 Łącza danych 1 Fizyczna Aplikacji Transportowa Internetowa Dostępu do sieci

Bardziej szczegółowo

Akademickie Centrum Informatyki PS. Wydział Informatyki PS

Akademickie Centrum Informatyki PS. Wydział Informatyki PS Akademickie Centrum Informatyki PS Wydział Informatyki PS Wydział Informatyki Sieci komputerowe i Telekomunikacyjne Datagram w Intersieci (IP) Krzysztof Bogusławski tel. 449 41 82 kbogu@man.szczecin.pl

Bardziej szczegółowo

Konfiguracja sieci, podstawy protokołów IP, TCP, UDP, rodzaje transmisji w sieciach teleinformatycznych

Konfiguracja sieci, podstawy protokołów IP, TCP, UDP, rodzaje transmisji w sieciach teleinformatycznych Konfiguracja sieci, podstawy protokołów IP, TCP, UDP, rodzaje transmisji w sieciach teleinformatycznych dr inż. Jerzy Domżał Akademia Górniczo-Hutnicza w Krakowie, Katedra Telekomunikacji 10 października

Bardziej szczegółowo

OBSŁUGA I KONFIGURACJA SIECI W WINDOWS

OBSŁUGA I KONFIGURACJA SIECI W WINDOWS OBSŁUGA I KONFIGURACJA SIECI W WINDOWS Jak skonfigurować komputer pracujący pod kontrolą systemu operacyjnego Windows 7, tak aby uzyskać dostęp do internetu? Zakładamy, że komputer pracuje w małej domowej

Bardziej szczegółowo

SIECI KOMPUTEROWE Adresowanie IP

SIECI KOMPUTEROWE  Adresowanie IP Adresowanie IP Podstawowa funkcja protokołu IP (Internet Protocol) polega na dodawaniu informacji o adresie do pakietu danych i przesyłaniu ich poprzez sieć do właściwych miejsc docelowych. Aby umożliwić

Bardziej szczegółowo

Internet Control Messaging Protocol

Internet Control Messaging Protocol Protokoły sieciowe ICMP Internet Control Messaging Protocol Protokół komunikacyjny sterowania siecią Internet. Działa na warstwie IP (bezpośrednio zaimplementowany w IP) Zastosowanie: Diagnozowanie problemów

Bardziej szczegółowo

Laboratorium - Przeglądanie tablic routingu hosta

Laboratorium - Przeglądanie tablic routingu hosta Topologia Cele Część 1: Dostęp do tablicy routingu hosta Część 2: Badanie wpisów tablicy routingu IPv4 hosta Część 3: Badanie wpisów tablicy routingu IPv6 hosta Scenariusz Aby uzyskać dostęp do zasobów

Bardziej szczegółowo

OSI Network Layer. Network Fundamentals Chapter 5. ITE PC v4.0 Chapter Cisco Systems, Inc. All rights reserved.

OSI Network Layer. Network Fundamentals Chapter 5. ITE PC v4.0 Chapter Cisco Systems, Inc. All rights reserved. OSI Network Layer Network Fundamentals Chapter 5 1 Network Layer Identify the role of the Network Layer, as it describes communication from one end device to another end device Examine the most common

Bardziej szczegółowo

Protokół DHCP. DHCP Dynamic Host Configuration Protocol

Protokół DHCP. DHCP Dynamic Host Configuration Protocol Protokół DHCP Patryk Czarnik Bezpieczeństwo sieci komputerowych MSUI 2010/11 DHCP Dynamic Host Configuration Protocol Zastosowanie Pobranie przez stację w sieci lokalnej danych konfiguracyjnych z serwera

Bardziej szczegółowo

ZASADY PODZIAŁU SIECI NA PODSIECI, OBLICZANIA ADRESÓW PODSIECI, ADRESÓW HOSTÓW I ADRESU ROZGŁOSZENIOWEGO

ZASADY PODZIAŁU SIECI NA PODSIECI, OBLICZANIA ADRESÓW PODSIECI, ADRESÓW HOSTÓW I ADRESU ROZGŁOSZENIOWEGO ZASADY PODZIAŁU SIECI NA PODSIECI, OBLICZANIA ADRESÓW PODSIECI, ADRESÓW HOSTÓW I ADRESU ROZGŁOSZENIOWEGO Wybór schematu adresowania podsieci jest równoznaczny z wyborem podziału lokalnej części adresu

Bardziej szczegółowo

IPv6. Wprowadzenie. IPv6 w systemie Linux. Zadania Pytania. budowa i zapis adresu, typy adresów tunelowanie IPv6 w IPv4

IPv6. Wprowadzenie. IPv6 w systemie Linux. Zadania Pytania. budowa i zapis adresu, typy adresów tunelowanie IPv6 w IPv4 Wprowadzenie budowa i zapis adresu, typy adresów tunelowanie w IPv4 w systemie Linux polecenie ip, system plików /proc Zadania Pytania Historia Cel rozwiązanie problemu wyczerpania przestrzeni adresowej

Bardziej szczegółowo

ARP Address Resolution Protocol (RFC 826)

ARP Address Resolution Protocol (RFC 826) 1 ARP Address Resolution Protocol (RFC 826) aby wysyłać dane tak po sieci lokalnej, jak i pomiędzy różnymi sieciami lokalnymi konieczny jest komplet czterech adresów: adres IP nadawcy i odbiorcy oraz adres

Bardziej szczegółowo

pasja-informatyki.pl

pasja-informatyki.pl Protokół DHCP 2017 pasja-informatyki.pl Sieci komputerowe Windows Server #4 DHCP & Routing (NAT) Damian Stelmach Protokół DHCP 2018 Spis treści Protokół DHCP... 3 Polecenia konsoli Windows do wyświetlania

Bardziej szczegółowo

Porównanie protokołów IPv4 i IPv6

Porównanie protokołów IPv4 i IPv6 Politechnika Śląska Instytut Informatyki Porównanie protokołów IPv4 i IPv6 mgr Magdalena Michniewicz Praca napisana pod kierunkiem mgr inż. Piotra Kasprzyka Spis treści Wstęp...2 1. Model TCP/IP a model

Bardziej szczegółowo

Enkapsulacja RARP DANE TYP PREAMBUŁA SFD ADRES DOCELOWY ADRES ŹRÓDŁOWY TYP SUMA KONTROLNA 2 B 2 B 1 B 1 B 2 B N B N B N B N B Typ: 0x0835 Ramka RARP T

Enkapsulacja RARP DANE TYP PREAMBUŁA SFD ADRES DOCELOWY ADRES ŹRÓDŁOWY TYP SUMA KONTROLNA 2 B 2 B 1 B 1 B 2 B N B N B N B N B Typ: 0x0835 Ramka RARP T Skąd dostać adres? Metody uzyskiwania adresów IP Część sieciowa Jeśli nie jesteśmy dołączeni do Internetu wyssany z palca. W przeciwnym przypadku numer sieci dostajemy od NIC organizacji międzynarodowej

Bardziej szczegółowo

Plan wykładu. Wyznaczanie tras. Podsieci liczba urządzeń w klasie C. Funkcje warstwy sieciowej

Plan wykładu. Wyznaczanie tras. Podsieci liczba urządzeń w klasie C. Funkcje warstwy sieciowej Wyznaczanie tras (routing) 1 Wyznaczanie tras (routing) 2 Wyznaczanie tras VLSM Algorytmy rutingu Tablica rutingu CIDR Ruting statyczny Plan wykładu Wyznaczanie tras (routing) 3 Funkcje warstwy sieciowej

Bardziej szczegółowo

Protokół DHCP. Patryk Czarnik. Bezpieczeństwo sieci komputerowych MSUI 2010/11. Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski

Protokół DHCP. Patryk Czarnik. Bezpieczeństwo sieci komputerowych MSUI 2010/11. Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Protokół DHCP Patryk Czarnik Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Bezpieczeństwo sieci komputerowych MSUI 2010/11 Patryk Czarnik (MIMUW) 10 DHCP BSK 2010/11 1 / 18 DHCP ogólnie

Bardziej szczegółowo

polega na opakowaniu danych - w każdej warstwie modelu OSI, kolejno idąc z góry na dół - w konieczne nagłówki/stopki odpowiednich protokołów

polega na opakowaniu danych - w każdej warstwie modelu OSI, kolejno idąc z góry na dół - w konieczne nagłówki/stopki odpowiednich protokołów 1 HERMETYZACJA DANYCH polega na opakowaniu danych - w każdej warstwie modelu OSI, kolejno idąc z góry na dół - w konieczne nagłówki/stopki odpowiednich protokołów hermetyzacja danych kroki: 1. pojawienie

Bardziej szczegółowo

Akademia Górniczo-Hutnicza im. Stanisława Staszica

Akademia Górniczo-Hutnicza im. Stanisława Staszica Akademia Górniczo-Hutnicza im. Stanisława Staszica WYDZIAŁ INŻYNIERII MECHANICZNEJ I ROBOTYKI Sieci komputerowe i bazy danych Lab 2 Sprawozdanie wykonał: Łukasz Wełna (285832) Inżynieria Mechatroniczna

Bardziej szczegółowo

KOMUNIKACJA SIECIOWA Z WYKORZYSTANIEM PROTOKOŁU IPV6

KOMUNIKACJA SIECIOWA Z WYKORZYSTANIEM PROTOKOŁU IPV6 KOMUNIKACJA SIECIOWA Z WYKORZYSTANIEM PROTOKOŁU IPV6 Instytut Fizyki Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytet Mikołaja Kopernika w Toruniu Mariusz.Piwinski@fizyka.umk.pl Abstract.

Bardziej szczegółowo

Formaty zapisu zapis kropkowo-dziesiętny 172.29.32.66 zapis szesnastkowy Oxacld2042

Formaty zapisu zapis kropkowo-dziesiętny 172.29.32.66 zapis szesnastkowy Oxacld2042 Protokół IP Adresy IP mają długość 32 bitów. Rozpatruje się je jako sekwencję czterech bajtów lub, stosując terminologię inżynierów sieciowych, czterech oktetów (bajtów 8-bitowych). Aby zapisać adres IP,

Bardziej szczegółowo

Sieci Komputerowe. Zadania warstwy sieciowej. Adres IP. Przydzielanie adresów IP. Adresacja logiczna Trasowanie (ang. routing)

Sieci Komputerowe. Zadania warstwy sieciowej. Adres IP. Przydzielanie adresów IP. Adresacja logiczna Trasowanie (ang. routing) Sieci Komputerowe Zadania warstwy sieciowej Wykład 4. Warstwa sieciowa. Adresacja IP. Adresacja logiczna Trasowanie (ang. routing) Urządzenia pracujące w warstwie trzeciej nazywają się ruterami. Fragmentacja

Bardziej szczegółowo

Systemy operacyjne i sieci komputerowe Szymon Wilk Adresowanie w sieciach Klasy adresów IP a) klasa A

Systemy operacyjne i sieci komputerowe Szymon Wilk Adresowanie w sieciach Klasy adresów IP a) klasa A i sieci komputerowe Szymon Wilk Adresowanie w sieciach 1 1. Klasy adresów IP a) klasa A sieć host 0 mało sieci (1 oktet), dużo hostów (3 oktety) pierwszy bit równy 0 zakres adresów dla komputerów 1.0.0.0-127.255.255.255

Bardziej szczegółowo

SIECI KOMPUTEROWE wykład dla kierunku informatyka semestr 4 i 5

SIECI KOMPUTEROWE wykład dla kierunku informatyka semestr 4 i 5 SIECI KOMPUTEROWE wykład dla kierunku informatyka semestr 4 i 5 dr inż. Michał Sajkowski Instytut Informatyki PP pok. 227G PON PAN, Wieniawskiego 17/19 Michal.Sajkowski@cs.put.poznan.pl tel. +48 (61) 8

Bardziej szczegółowo

Akademia Techniczno-Humanistyczna w Bielsku-Białej

Akademia Techniczno-Humanistyczna w Bielsku-Białej Akademia Techniczno-Humanistyczna w Bielsku-Białej Wydział Budowy Maszyn i Informatyki Laboratorium z sieci komputerowych Ćwiczenie numer: 5 Temat ćwiczenia: Badanie protokołów rodziny TCP/IP 1. Wstęp

Bardziej szczegółowo

KOMUNIKACJA SIECIOWA Z WYKORZYSTANIEM PROTOKOŁU IPV6

KOMUNIKACJA SIECIOWA Z WYKORZYSTANIEM PROTOKOŁU IPV6 KOMUNIKACJA SIECIOWA Z WYKORZYSTANIEM PROTOKOŁU IPV6 Mariusz Piwiński Instytut Fizyki Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytet Mikołaja Kopernika w Toruniu ul. Grudziądzka 5, 87-100

Bardziej szczegółowo

Adresy w sieciach komputerowych

Adresy w sieciach komputerowych Adresy w sieciach komputerowych 1. Siedmio warstwowy model ISO-OSI (ang. Open System Interconnection Reference Model) 7. Warstwa aplikacji 6. Warstwa prezentacji 5. Warstwa sesji 4. Warstwa transportowa

Bardziej szczegółowo

Laboratorium 6.7.2: Śledzenie pakietów ICMP

Laboratorium 6.7.2: Śledzenie pakietów ICMP Topologia sieci Tabela adresacji Urządzenie Interfejs Adres IP Maska podsieci Domyślna brama R1-ISP R2-Central Serwer Eagle S0/0/0 10.10.10.6 255.255.255.252 Nie dotyczy Fa0/0 192.168.254.253 255.255.255.0

Bardziej szczegółowo

Adresacja IP w sieciach komputerowych. Adresacja IP w sieciach komputerowych

Adresacja IP w sieciach komputerowych. Adresacja IP w sieciach komputerowych Adresacja IP w sieciach komputerowych 1. Model odniesienia OSI. Przyczyny powstania: - Gwałtowny rozwój i sieci komputerowych na początku lat 70. XX wieku, - Powstanie wielu niekompatybilnych ze sobą protokołów

Bardziej szczegółowo

Określanie konfiguracji TCP/IP

Określanie konfiguracji TCP/IP Określanie konfiguracji TCP/IP Marek Kozłowski Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska Warszawa, 2014/2015 Internet Control Message Protocol Protokół IP nie jest wyposażony w żadne

Bardziej szczegółowo

Struktura adresu IP v4

Struktura adresu IP v4 Adresacja IP v4 E13 Struktura adresu IP v4 Adres 32 bitowy Notacja dziesiętna - każdy bajt (oktet) z osobna zostaje przekształcony do postaci dziesiętnej, liczby dziesiętne oddzielone są kropką. Zakres

Bardziej szczegółowo

Protokół DHCP. DHCP Dynamic Host Configuration Protocol

Protokół DHCP. DHCP Dynamic Host Configuration Protocol Protokół DHCP Patryk Czarnik Bezpieczeństwo sieci komputerowych MSUI 2009/10 DHCP Dynamic Host Configuration Protocol Zastosowanie Pobranie przez stację w sieci lokalnej danych konfiguracyjnych z serwera

Bardziej szczegółowo

Akademia Techniczno-Humanistyczna w Bielsku-Białej

Akademia Techniczno-Humanistyczna w Bielsku-Białej Akademia Techniczno-Humanistyczna w Bielsku-Białej Wydział Budowy Maszyn i Informatyki Laboratorium z sieci komputerowych Ćwiczenie numer: 1 Temat ćwiczenia: Adresacja w sieciach komputerowych podstawowe

Bardziej szczegółowo

Skąd dostać adres? Metody uzyskiwania adresów IP. Statycznie RARP. Część sieciowa. Część hosta

Skąd dostać adres? Metody uzyskiwania adresów IP. Statycznie RARP. Część sieciowa. Część hosta Sieci komputerowe 1 Sieci komputerowe 2 Skąd dostać adres? Metody uzyskiwania adresów IP Część sieciowa Jeśli nie jesteśmy dołączeni do Internetu wyssany z palca. W przeciwnym przypadku numer sieci dostajemy

Bardziej szczegółowo

Systemy Operacyjne i Sieci Komputerowe Adres MAC 00-0A-E6-3E-FD-E1

Systemy Operacyjne i Sieci Komputerowe Adres MAC 00-0A-E6-3E-FD-E1 Adres MAC (ang. MAC address) jest 48-bitowy i zapisywany jest heksadecymalnie (szesnastkowo). Pierwsze 24 bity oznaczają producenta karty sieciowej, pozostałe 24 bity są unikalnym identyfikatorem danego

Bardziej szczegółowo

Sieci Komputerowe. Wykład 1: TCP/IP i adresowanie w sieci Internet

Sieci Komputerowe. Wykład 1: TCP/IP i adresowanie w sieci Internet Sieci Komputerowe Wykład 1: TCP/IP i adresowanie w sieci Internet prof. nzw dr hab. inż. Adam Kisiel kisiel@if.pw.edu.pl Pokój 114 lub 117d 1 Kilka ważnych dat 1966: Projekt ARPANET finansowany przez DOD

Bardziej szczegółowo

1) Skonfiguruj nazwę hosta na ruterze zgodną z przyjętą topologią i Tabelą adresacji.

1) Skonfiguruj nazwę hosta na ruterze zgodną z przyjętą topologią i Tabelą adresacji. ROUTER a. Połącz się z ruterem konsolowo i przejdź do trybu uprzywilejowanego. Router> enable Router# b. Ustaw właściwy czas na ruterze. Router# clock set 10:40:30 6 February 2013 Router# c. Przejdź do

Bardziej szczegółowo

Podstawy sieci komputerowych

Podstawy sieci komputerowych mariusz@math.uwb.edu.pl http://math.uwb.edu.pl/~mariusz Uniwersytet w Białymstoku 2018/2019 Ekspancja sieci TCP/IP i rozwój adresacji IP 1975 opracowanie IPv4 32 bity na adres IP 2 32, czyli ok. 4 miliardów

Bardziej szczegółowo

Adresowanie grupowe. Bartłomiej Świercz. Katedra Mikroelektroniki i Technik Informatycznych. Łódź, 25 kwietnia 2006

Adresowanie grupowe. Bartłomiej Świercz. Katedra Mikroelektroniki i Technik Informatycznych. Łódź, 25 kwietnia 2006 Adresowanie grupowe Bartłomiej Świercz Katedra Mikroelektroniki i Technik Informatycznych Łódź, 25 kwietnia 2006 Wstęp Na potrzeby sieci komputerowych zdefiniowano rożne rodzaje adresowania: adresowanie

Bardziej szczegółowo

Sieci komputerowe. Tadeusz Kobus, Maciej Kokociński Instytut Informatyki, Politechnika Poznańska

Sieci komputerowe. Tadeusz Kobus, Maciej Kokociński Instytut Informatyki, Politechnika Poznańska Sieci komputerowe Tadeusz Kobus, Maciej Kokociński Instytut Informatyki, Politechnika Poznańska Warstwa sieciowa Sieci Komputerowe, T. Kobus, M. Kokociński 2 Sieci Komputerowe, T. Kobus, M. Kokociński

Bardziej szczegółowo

Akademia Techniczno-Humanistyczna w Bielsku-Białej

Akademia Techniczno-Humanistyczna w Bielsku-Białej Akademia Techniczno-Humanistyczna w Bielsku-Białej Wydział Budowy Maszyn i Informatyki Laboratorium z sieci komputerowych Ćwiczenie numer: 3 Temat ćwiczenia: Narzędzia sieciowe w systemie Windows 1. Wstęp

Bardziej szczegółowo

Warstwa sieciowa. Adresowanie IP. Zadania. Warstwa sieciowa ćwiczenie 5

Warstwa sieciowa. Adresowanie IP. Zadania. Warstwa sieciowa ćwiczenie 5 Warstwa sieciowa Zadania 1. Co to jest i do czego służy maska podsieci? 2. Jakie wyróżniamy klasy adresów IP? Jakie konsekwencje ma wprowadzenie podziału klasowego adresów IP? Jaka jest struktura adresów

Bardziej szczegółowo

Stos TCP/IP Warstwa Internetu. Sieci komputerowe Wykład 4

Stos TCP/IP Warstwa Internetu. Sieci komputerowe Wykład 4 Stos TCP/IP Warstwa Internetu Sieci komputerowe Wykład 4 Historia Internetu (1 etap) Wojsko USA zleca firmie Rand Corp. wyk. projektu sieci odpornej na atak nuklearny. Uruchomienie sieci ARPANet (1 IX

Bardziej szczegółowo

WYKŁAD. Telnet FTP SMTP DNS BOOTP DHCP TCP UDP SCTP. ARP IP (v4, v6) ICMP IGMP PPP RFC 826 ARP RFC 792 ICMP RFC 1112 IGMP

WYKŁAD. Telnet FTP SMTP DNS BOOTP DHCP TCP UDP SCTP. ARP IP (v4, v6) ICMP IGMP PPP RFC 826 ARP RFC 792 ICMP RFC 1112 IGMP Inne protokoły TCP/IP Telnet FTP SMTP DNS BOOTP DHCP PPP RFC 826 ARP RFC 792 ICMP RFC 1112 IGMP RFC 854 RFC 959 FTP TELNET RFC 821 SMTP RFC 882 DNS RFC 951 BOOTP RFC 1541 DHCP TCP UDP SCTP ARP IP (v4,

Bardziej szczegółowo

Unicast jeden nadawca i jeden odbiorca Broadcast jeden nadawca przesyła do wszystkich Multicast jeden nadawca i wielu (podzbiór wszystkich) odbiorców

Unicast jeden nadawca i jeden odbiorca Broadcast jeden nadawca przesyła do wszystkich Multicast jeden nadawca i wielu (podzbiór wszystkich) odbiorców METODY WYMIANY INFORMACJI W SIECIACH PAKIETOWYCH Unicast jeden nadawca i jeden odbiorca Broadcast jeden nadawca przesyła do wszystkich Multicast jeden nadawca i wielu (podzbiór wszystkich) odbiorców TRANSMISJA

Bardziej szczegółowo

Podstawy sieci komputerowych

Podstawy sieci komputerowych mariusz@math.uwb.edu.pl http://math.uwb.edu.pl/~mariusz Uniwersytet w Białymstoku Zakład Dydaktyki i Nowoczesnych Technologii w Kształceniu 2017/2018 Ekspancja sieci TCP/IP i rozwój adresacji IP 1975 opracowanie

Bardziej szczegółowo

ZiMSK. Routing statyczny, ICMP 1

ZiMSK. Routing statyczny, ICMP 1 ZiMSK dr inż. Łukasz Sturgulewski, luk@kis.p.lodz.pl, http://luk.kis.p.lodz.pl/ dr inż. Artur Sierszeń, asiersz@kis.p.lodz.pl dr inż. Andrzej Frączyk, a.fraczyk@kis.p.lodz.pl Routing statyczny, ICMP 1

Bardziej szczegółowo

Sieci komputerowe - Protokoły wspierające IPv4

Sieci komputerowe - Protokoły wspierające IPv4 2013-06-20 Piotr Kowalski KAiTI Plan i problematyka wykładu 1. Odwzorowanie adresów IP na sprzętowe i odwrotnie protokoły ARP i RARP. - Protokoły wspierające IPv4 2. Routing IP Tablice routingu, routing

Bardziej szczegółowo

Laboratorium - Wykorzystanie programu Wireskark do badania ramek Ethernetowych

Laboratorium - Wykorzystanie programu Wireskark do badania ramek Ethernetowych Laboratorium - Wykorzystanie programu Wireskark do badania ramek Ethernetowych Topologia Cele Część 1: Badanie pól nagłówka w ramce Ethernet II. Cześć 2: Użycie programu Wireshark do przechwycenia i analizy

Bardziej szczegółowo

Mobile IP. Mobilne protokoły warstwy 3 i 4.

Mobile IP. Mobilne protokoły warstwy 3 i 4. Mobile IP Mobilne protokoły warstwy 3 i 4. Wstęp Mobilność przezroczysta, dla protokołów i aplikacji warstw wyższych, zmiana punktu przyłączenia węzła do sieci Przemieszczanie pomiędzy sieciami -> zmiana

Bardziej szczegółowo

Sieci komputerowe i administracja systemów

Sieci komputerowe i administracja systemów Sieci komputerowe i administracja systemów Protokoły warstwy sieciowej modelu OSI-ISO dr inż. Andrzej Opaliński andrzej.opalinski@agh.edu.pl Plan wykładu Wprowadzenie Opis warstw Protokoły IPX AppleTalk

Bardziej szczegółowo

Warstwa sieciowa rutowanie

Warstwa sieciowa rutowanie Warstwa sieciowa rutowanie Protokół IP - Internet Protocol Protokoły rutowane (routed) a rutowania (routing) Rutowanie statyczne i dynamiczne (trasowanie) Statyczne administrator programuje trasy Dynamiczne

Bardziej szczegółowo

LABORATORIUM Systemy teletransmisji i transmisja danych

LABORATORIUM Systemy teletransmisji i transmisja danych LABORATORIUM Systemy teletransmisji i transmisja danych INSTRUKCJA NR:3 TEMAT: Podstawy adresowania IP w protokole TCP/IP 1 Cel ćwiczenia: WyŜsza Szkoła Technik Komputerowych i Telekomunikacji Zapoznanie

Bardziej szczegółowo

Uproszczony opis obsługi ruchu w węźle IP. Trasa routingu. Warunek:

Uproszczony opis obsługi ruchu w węźle IP. Trasa routingu. Warunek: Uproszczony opis obsługi ruchu w węźle IP Poniższa procedura jest dokonywana dla każdego pakietu IP pojawiającego się w węźle z osobna. W routingu IP nie wyróżniamy połączeń. Te pojawiają się warstwę wyżej

Bardziej szczegółowo

Funkcje warstwy sieciowej. Podstawy wyznaczania tras. Dostarczenie pakietu od nadawcy od odbiorcy (RIP, IGRP, OSPF, EGP, BGP)

Funkcje warstwy sieciowej. Podstawy wyznaczania tras. Dostarczenie pakietu od nadawcy od odbiorcy (RIP, IGRP, OSPF, EGP, BGP) Wyznaczanie tras (routing) 1 Wyznaczanie tras (routing) 17 Funkcje warstwy sieciowej Podstawy wyznaczania tras Routing statyczny Wprowadzenie jednolitej adresacji niezaleŝnej od niŝszych warstw (IP) Współpraca

Bardziej szczegółowo

Administracja sieciami LAN/WAN

Administracja sieciami LAN/WAN Administracja sieciami LAN/WAN Protokoły routingu dr Zbigniew Lipiński Instytut Matematyki i Informatyki ul. Oleska 48 50-204 Opole zlipinski@math.uni.opole.pl Zagadnienia Protokół Protokół Protokół Protokół

Bardziej szczegółowo

Zarządzanie ruchem w sieci IP. Komunikat ICMP. Internet Control Message Protocol DSRG DSRG. DSRG Warstwa sieciowa DSRG. Protokół sterujący

Zarządzanie ruchem w sieci IP. Komunikat ICMP. Internet Control Message Protocol DSRG DSRG. DSRG Warstwa sieciowa DSRG. Protokół sterujący Zarządzanie w sieci Protokół Internet Control Message Protocol Protokół sterujący informacje o błędach np. przeznaczenie nieosiągalne, informacje sterujące np. przekierunkowanie, informacje pomocnicze

Bardziej szczegółowo

Protokoły wspomagające. Mikołaj Leszczuk

Protokoły wspomagające. Mikołaj Leszczuk Protokoły wspomagające Mikołaj Leszczuk Spis treści wykładu Współpraca z warstwą łącza danych: o o ICMP o o ( ARP ) Protokół odwzorowania adresów ( RARP ) Odwrotny protokół odwzorowania adresów Opis protokołu

Bardziej szczegółowo

Scenariusz lekcji Opracowanie: mgr Bożena Marchlińska NKJO w Ciechanowie Czas trwania jednostki lekcyjnej: 90 min.

Scenariusz lekcji Opracowanie: mgr Bożena Marchlińska NKJO w Ciechanowie Czas trwania jednostki lekcyjnej: 90 min. Scenariusz lekcji Opracowanie: mgr Bożena Marchlińska NKJO w Ciechanowie Czas trwania jednostki lekcyjnej: 90 min. Temat lekcji: Adresy IP. Konfiguracja stacji roboczych. Część I. Cele lekcji: wyjaśnienie

Bardziej szczegółowo

Sieci komputerowe Warstwa sieci i warstwa transportowa

Sieci komputerowe Warstwa sieci i warstwa transportowa Sieci komputerowe Warstwa sieci i warstwa transportowa Ewa Burnecka / Janusz Szwabiński ewa@ift.uni.wroc.pl / szwabin@ift.uni.wroc.pl Sieci komputerowe (C) 2003 Janusz Szwabiński p.1/43 Model ISO/OSI Warstwa

Bardziej szczegółowo

Przewodowe sieci dostępu do. Dr inż. Małgorzata Langer

Przewodowe sieci dostępu do. Dr inż. Małgorzata Langer Przewodowe sieci dostępu do Internetu - model OSI Dr inż. Małgorzata Langer ISO 7498-1 (1994 rok) OSI - Open System Interconnection Cele OSI: Logiczny rozkład złożonej sieci na mniejsze części (WARSTWY)

Bardziej szczegółowo