Przedmiotowe Zasady Oceniania z Matematyki klasa II gimnazjum

Wielkość: px
Rozpocząć pokaz od strony:

Download "Przedmiotowe Zasady Oceniania z Matematyki klasa II gimnazjum"

Transkrypt

1 Przedmiotowe Zasady Oceniania z Matematyki klasa II gimnazjum I. Podstawa prawna: Przedmiotowe Zasady Oceniania z matematyki są zgodne z Wewnątrzszkolnymi Zasadami Oceniania oraz z Rozporządzeniem Ministra Edukacji Narodowej z dnia 30 kwietnia 2007 z późniejszymi zmianami w sprawie warunków i sposobu oceniania, klasyfikowania i promowania, oraz Statutem Szkoły. II. Cele oceniania: 1. Wspieranie ucznia w jego rozwoju 2. Określenie stopnia efektywności procesu kształcenia 3. Gromadzenie informacji o uczniu i formułowanie na ich podstawie opinii o jego osiągnięciach w nauce i rozwoju 4. Poinformowanie ucznia o poziomie jego osiągnięć edukacyjnych i postępach w tym zakresie, pomoc uczniowi w samodzielnym planowaniu swojego rozwoju 5. Motywowanie ucznia do dalszej pracy 6. Dostarczanie rodzicom ( prawnym opiekunom ) i wychowawcom informacji o postępach, trudnościach i specjalnych uzdolnieniach ucznia. III. Sposoby oceniania: Ocenie podlegają:, sprawdziany, kartkówki, odpowiedzi ustne, prace domowe, ćwiczenia praktyczne, praca ucznia na lekcji, prace dodatkowe oraz szczególne osiągnięcia. 1. Sprawdziany przeprowadza się w formie pisemnej, a ich celem jest sprawdzenie wiadomości i umiejętności ucznia z zakresu danego działu. Sprawdziany planuje się na zakończenie każdego działu. Uczeń jest informowany o planowanym sprawdzianie z co najmniej tygodniowym wyprzedzeniem Przed każdym sprawdzianem nauczyciel podaje zakres programowy. Każdy sprawdzian poprzedza lekcja (lub dwie lekcje) powtórzeniowa, podczas której nauczyciel zwraca uwagę uczniów na najważniejsze zagadnienia z danego działu. Zasady uzasadniania oceny z pracy klasowej, jej poprawy oraz sposób przechowywania prac klasowych są zgodne z WSO. Praca klasowa umożliwia sprawdzenie wiadomości i umiejętności na wszystkich poziomach wymagań edukacyjnych od koniecznego do wykraczającego. Zasada przeliczania oceny punktowej na stopień szkolny jest zgodna z WSO. Zadania ze sprawdzianu są przez nauczyciela omawiane i poprawiane po oddaniu prac. 2. Kartkówki przeprowadza się w formie pisemnej, a ich celem jest sprawdzenie wiadomości i umiejętności ucznia z zakresu programowego 2, 3 ostatnich jednostek lekcyjnych. Nauczyciel nie ma obowiązku uprzedzania uczniów o terminie i zakresie programowym kartkówki Kartkówka jest tak skonstruowana, by uczeń mógł wykonać wszystkie polecenia w czasie nie dłuższym niż 15 minut. Kartkówka jest oceniana w skali punktowej, a liczba punktów jest przeliczana na ocenę zgodnie z zasadami WSO. Umiejętności i wiadomości objęte kartkówką wchodzą w zakres sprawdzianu przeprowadzanego po zakończeniu działu i tym samym zła ocena z kartkówki może zostać poprawiona sprawdzianem.

2 Zasady przechowywania sprawdzianów reguluje WSO. 3. Odpowiedź ustna obejmuje zakres programowy aktualnie realizowanego działu. Oceniając odpowiedź ustną, nauczyciel bierze pod uwagę: zgodność wypowiedzi z postawionym pytaniem, prawidłowe posługiwanie się pojęciami, zawartość merytoryczną wypowiedzi, sposób formułowania wypowiedzi. 4. Praca domowa jest pisemną lub ustną formą ćwiczenia umiejętności i utrwalania wiadomości zdobytych przez ucznia podczas lekcji. Pisemną pracę domową uczeń wykonuje w zeszycie, lub w formie zleconej przez nauczyciela. Brak pracy domowej oceniany jest zgodnie z umową nauczyciela z uczniami Błędnie wykonana praca domowa jest sygnałem dla nauczyciela, mówiącym o konieczności wprowadzenia dodatkowych ćwiczeń utrwalających umiejętności i nie może być oceniona negatywnie. Przy wystawianiu oceny za pracę domową nauczyciel bierze pod uwagę samodzielność, poprawność i estetykę wykonania. 5. Aktywność i praca ucznia na lekcji są oceniane za pomocą punktów. Punkt uczeń może uzyskać m.in. za samodzielne wykonanie krótkiej pracy na lekcji, krótką prawidłową odpowiedź ustną, aktywną pracę w grupie, pomoc koleżeńską na lekcji przy rozwiązaniu problemu, przygotowanie do lekcji.2 Przedmiotowy system oceniania Punkt ujemny uczeń może uzyskać m.in. za brak przygotowania do lekcji (np. brak przyrządów, zeszytu, zeszytu ćwiczeń), brak zaangażowania na lekcji. Sposób przeliczania punktów na oceny jest zgodny z umową między nauczycielem i uczniami. 6. Prace dodatkowe obejmują dodatkowe zadania dla zainteresowanych uczniów, prace projektowe wykonane indywidualnie lub zespołowo, przygotowanie gazetki ściennej, wykonanie pomocy naukowych, prezentacji. Oceniając ten rodzaj pracy, nauczyciel bierze pod uwagę m.in.: wartość merytoryczną pracy, estetykę wykonania, wkład pracy ucznia, sposób prezentacji, oryginalność i pomysłowość pracy. 7. Szczególne osiągnięcia uczniów, w tym udział w konkursach przedmiotowych, szkolnych i międzyszkolnych, są oceniane zgodnie z zasadami zapisanymi w WSO. IV. Ogólne kryteria wymagań na poszczególne stopnie 1. Ocenę niedostateczną otrzymuje uczeń, który: nie opanował materiału programowego na poziomie wymagań koniecznych nie potrafi wykonać prostych poleceń wymagających zastosowania podstawowych umiejętności nie wykonywał prac domowych, przychodził nieprzygotowany do lekcji braki w wiedzy nie rokują nadziei na ich usunięcie nawet przy pomocy nauczyciela 2. Ocenę dopuszczającą otrzymuje uczeń, który: spełnia wymagania na ocenę dopuszczającą z odpowiednich obszarów aktywności opanował materiał programowy na poziomie wymagań koniecznych braki w wiedzy rokują nadzieję na ich systematyczne nadrabianie w dłuższym okresie czasu posiada wiedzę i umiejętności, które umożliwiają świadome korzystanie z lekcji przy pomocy nauczyciela potrafi wykonać proste polecenia wymagające zastosowania podstawowych umiejętności

3 3. Ocenę dostateczną otrzymuje uczeń, który: spełnia wymagania na ocenę dostateczną z odpowiednich obszarów aktywności opanował materiał programowy na poziomie wymagań koniecznych i podstawowych potrafi wykonywać proste zadania w czasie lekcji wykazuje się aktywnością w stopniu zadawalającym potrafi pod kierunkiem nauczyciela korzystać z podstawowych źródeł informacji 4. Ocenę dobrą otrzymuje uczeń, który: spełnia wymagania na ocenę dobrą z odpowiednich obszarów aktywności opanował materiał programowy na poziomie wymagań koniecznych, podstawowych i rozszerzających potrafi korzystać ze wszystkich poznanych źródeł informacji samodzielnie rozwiązuje typowe zadania, natomiast zadania o większym stopniu trudności rozwiązuje pod kierunkiem nauczyciela jest aktywny w czasie lekcji przychodził na lekcje przygotowany, odrabiał prace domowe 5. Ocenę bardzo dobrą otrzymuje uczeń, który: spełnia wymagania na ocenę bardzo dobrą z odpowiednich obszarów aktywności opanował materiał programowy na poziomie wymagań koniecznych, podstawowych, rozszerzających i dopełniających samodzielnie rozwiązuje problemy i zadania z podręcznika i zbioru zadań oznaczone jako trudne sprawnie korzysta ze wszystkich dostępnych i wskazanych przez nauczyciela źródeł informacji wykazuje się aktywną postawą w czasie lekcji bierze udział w konkursach matematycznych zawsze przychodził na lekcje przygotowany 6. Ocenę celującą otrzymuje uczeń, który: spełnia wymagania na ocenę celującą z odpowiednich obszarów aktywności opanował materiał programowy na poziomie wymagań koniecznych, podstawowych, rozszerzających, dopełniających i wykraczających samodzielnie rozwiązuje problemy i zadania z podręcznika i zbioru zadań oznaczone jako trudne wychodzi z samodzielnymi inicjatywami rozwiązywania konkretnych problemów zarówno w czasie lekcji jak i pracy pozalekcyjnej potrafi korzystać z różnych źródeł informacji, umie samodzielnie zdobyć wiadomości wykazuje się aktywną postawą w czasie lekcji zawsze przychodzi na lekcje przygotowany bierze udział w konkursach matematycznych i odnosi w nich sukcesy V. Szczegółowe kryteria wymagań na poszczególne stopnie Wyróżniono następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania (W). Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je zatem opanować każdy uczeń. Wymagania podstawowe P to wymagania z poziomu K, wzbogacone o typowe problemy, o niewielkim stopniu trudności. Wymagania rozszerzające R to wymagania z poziomów K i P; dotyczą one zagadnień bardziej złożonych i nieco trudniejszych. Wymagania dopełniające D to wymagania z poziomów K, P i R; dotyczą one zagadnień problemowych, trudniejszych, wymagających umiejętności przetwarzania przyswojonych informacji.

4 Wymagania wykraczające W dotyczą zagadnień trudnych, nietypowych, wykraczających poza obowiązkowy program nauczania. I. POTĘGI I PIERWIASTKI oblicza wartości potęg o wykładnikach całkowitych liczb różnych od zera zapisuje liczbę w postaci potęgi o wykładniku ujemnym porządkuje liczby zapisane w postaci potęg w kolejności rosnącej/malejącej określa znak potęgi zapisuje w postaci jednej potęgi iloczyny i ilorazy potęg o takich samych podstawach i wykładnikach całkowitych stosuje wzór na potęgę iloczynu i ilorazu do zapisywania prostych wyrażeń algebraicznych stosuje wzór na potęgę iloczynu i ilorazu do obliczania wartości w prostych wyrażeniach arytmetycznych stosuje wzory na iloczyn i iloraz potęg o tej samej podstawie do rozwiązywania prostych zadań stosuje wzór na potęgowanie potęgi do obliczania wartości wyrażeń arytmetycznych stosuje wzór na potęgowanie potęgi do przekształcania prostych wyrażeń algebraicznych określa, ile cyfr w zapisie dziesiętnym ma potęga liczby 10 w prostych przykładach zapisuje liczbę rzeczywistą w notacji wykładniczej podaje postać dziesiętną liczby zapisanej w postaci wykładniczej podaje wartość pierwiastka drugiego i trzeciego stopnia stosuje pierwiastki do obliczania wartości wyrażeń arytmetycznych rozpoznaje liczby niewymierne szacuje wartości pierwiastków w prostych przypadkach podaje przybliżoną wartość liczb zapisanych w postaci iloczynu liczb wymiernych i pierwiastków w prostych przypadkach stosuje własności pierwiastka z iloczynu i ilorazu do obliczania wartości wyrażeń arytmetycznych włącza czynnik pod znak pierwiastka wyłącza czynnik przed znak pierwiastka stosuje działania na pierwiastkach do zapisu liczb w postaci a b w prostych przypadkach usuwa niewymierność z mianownika w prostych przypadkach stosuje działania na pierwiastkach w obliczeniach pól wielokątów w prostych przypadkach porównuje liczby zapisane w postaci potęg porządkuje liczby zapisane w postaci potęg w kolejności rosnącej/malejącej stosuje wzór na potęgę iloczynu i ilorazu do obliczania wartości wyrażeń arytmetycznych stosuje wzór na potęgę iloczynu i ilorazu do zapisywania wyrażeń algebraicznych w prostszej postaci stosuje wzory na iloczyn i iloraz potęg o tej samej podstawie do rozwiązywania zadań stosuje wzór na potęgowanie potęgi do przekształcania wyrażeń algebraicznych

5 określa, ile cyfr w zapisie dziesiętnym ma iloczyn liczby naturalnej i potęgi liczby 10 stosuje notację wykładniczą do zamiany jednostek stosuje działania na pierwiastkach do zapisu liczb w postaci a b usuwa niewymierność z mianownika porównuje liczby zapisane w postaci pierwiastków podaje przybliżoną wartość liczb zapisanych w postaci a b stosuje działania na pierwiastkach w obliczeniach pól wielokątów Poziom W Uczeń otrzymuje ocenę celującą, jeśli opanował wiadomości i umiejętności z poziomów K i D, a ponadto: oblicza średnią geometryczną liczb nieujemnych rozwiązuje zadania o podwyższonym stopniu trudności dotyczące potęg i pierwiastków II. OKRĘGI I KOŁA stosuje własności punktów należących do okręgu do rozwiązywania zadań oblicza, jaką częścią całego okręgu są łuki jakie zataczają końce wskazówek zegara w danym czasie w prostych przypadkach rozpoznaje okręgi styczne rozróżnia pojęcia wycinka kołowego i odcinka kołowego oblicza miarę kąta środkowego, gdy okrąg jest podzielony na łuki tej samej długości w prostych przypadkach oblicza wartości wyrażeń arytmetycznych, w których występuje liczba oblicza długość okręgu o danym promieniu lub średnicy oblicza długość promienia lub średnicy okręgu o danej długości stosuje wzór na długość okręgu do rozwiązywania zadań, w tym również do rozwiązywania zadań osadzonych w kontekście praktycznym w prostych przypadkach oblicza pole koła o danym promieniu oblicza promień koła o danym polu oblicza pole pierścienia kołowego stosuje wzór na pole koła do rozwiązywania zadań, w tym również do rozwiązywania zadań osadzonych w kontekście praktycznym w prostych przypadkach oblicza długość łuku wyznaczonego przez kąt środkowy 90, 30, 60 itp. określa wzajemne położenie okręgów oblicza, jaką częścią całego okręgu są łuki, jakie zataczają końce wskazówek zegara w danym czasie oblicza miarę kąta środkowego, gdy okrąg jest podzielony na łuki tej samej długości stosuje wzór na długość okręgu i na pole koła do rozwiązywania zadań, w tym również do rozwiązywania zadań osadzonych w kontekście praktycznym oblicza długość łuku i pole wycinka kołowego wyznaczonego przez dowolny kąt środkowy stosuje wzory na długość łuku i pole wycinka kołowego do rozwiązywania zadań, w tym również do rozwiązywania zadań osadzonych w kontekście praktycznym

6 Poziom W Uczeń otrzymuje ocenę celującą, jeśli opanował wiadomości i umiejętności z poziomów K D, a ponadto: stosuje wzory na długość łuku i pole wycinka kołowego do rozwiązywania trudniejszych zadań III. RÓWNANIA I PROPORCJONALNOŚĆ redukuje wyrazy podobne w sumie algebraicznej mnoży jednomian przez sumę algebraiczną upraszcza wyrażenie algebraiczne i oblicza jego wartość dla podanej wartości zmiennej w prostych przypadkach wyłącza podany czynnik przed nawias w sumie algebraicznej zapisuje związki między wielkościami za pomocą sum algebraicznych w prostych przypadkach mnoży sumy algebraiczne przez siebie oraz redukuje wyrazy podobne w otrzymanej sumie mnoży liczby postaci a b c w prostych przypadkach stosuje mnożenie sum algebraicznych do rozwiązywania równań sprawdza, czy dane wielkości są wprost proporcjonalne zapisuje związki między wielkościami wprost proporcjonalnymi za pomocą równania pierwszego stopnia z jedną niewiadomą wyznacza współczynnik proporcjonalności w prostych przypadkach sprawdza, czy dane wielkości są odwrotnie proporcjonalne oblicza współczynnik proporcjonalności odwrotnej w prostych przypadkach zapisuje związki między wielkościami odwrotnie proporcjonalnymi za pomocą równania pierwszego stopnia z jedną niewiadomą w prostych przypadkach stosuje proporcjonalność odwrotną do rozwiązywania zadań tekstowych, w tym do zadań osadzonych w kontekście praktycznym w typowych sytuacjach upraszcza wyrażenia algebraiczne i oblicza ich wartość dla podanych wartości zmiennych wyłącza wspólny czynnik przed nawias w sumie algebraicznej zapisuje związki między wielkościami za pomocą sum algebraicznych przeprowadza dowody stosując działania na wyrażeniach algebraicznych wyznacza dziedzinę wyrażenia algebraicznego stosuje mnożenie sum algebraicznych do rozwiązywania równań stosuje wzory na kwadrat sumy, kwadrat różnicy i różnicę kwadratów do upraszczania wyrażeń algebraicznych zapisuje związki między wielkościami wprost proporcjonalnymi za pomocą równania pierwszego stopnia z jedną niewiadomą stosuje proporcję do rozwiązywania zadań tekstowych zapisuje związki między wielkościami odwrotnie proporcjonalnymi za pomocą równania pierwszego stopnia z jedną niewiadomą stosuje proporcjonalność odwrotną do rozwiązywania zadań tekstowych, w tym do zadań osadzonych w kontekście praktycznym

7 Poziom W Uczeń otrzymuje ocenę celującą, jeśli opanował wiadomości i umiejętności z poziomów K D, a ponadto: stosuje wzory na kwadrat sumy, kwadrat różnicy i różnicę kwadratów do upraszczania wyrażeń algebraicznych w trudniejszych przypadkach IV. TRÓJKĄTY PROSTOKĄTNE oblicza długość jednego z boków trójkąta prostokątnego, mając dane długości dwóch pozostałych boków stosuje twierdzenie Pitagorasa do obliczania obwodów i pól prostokątów sprawdza, czy trójkąt o podanych długościach boków jest prostokątny stosuje twierdzenie odwrotne do twierdzenia Pitagorasa w prostych zadaniach tekstowych oblicza długość przekątnej kwadratu, mając daną długość boku lub obwód kwadratu oblicza wysokość trójkąta równobocznego, mając daną długość jego boku oblicza długość boku trójkąta równobocznego, mając daną wysokość wyznacza długości pozostałych boków trójkąta o kątach 45, 45, 90 lub 30, 60, 90, mając długość jednego z jego boków w prostych przypadkach stosuje własności trójkątów o kątach 45, 45, 90 lub 30, 60, 90 do rozwiązywania typowych zadań stosuje twierdzenie Pitagorasa do rozwiązywania zadań dotyczących prostokąta i rombu oblicza odległość między punktami umieszczonymi w układzie współrzędnych sprawdza, czy trójkąt o danych wierzchołkach jest trójkątem prostokątnym stosuje twierdzenie Pitagorasa do obliczania obwodów i pól prostokątów stosuje twierdzenie odwrotne do twierdzenia Pitagorasa do uzasadniania, że dany czworokąt ma kąt prosty oblicza długość boku kwadratu, mając daną długość jego przekątnej oblicza pole i obwód trójkąta równobocznego, mając daną długość boku lub wysokość stosuje wzory na długość przekątnej kwadratu, wysokość trójkąta równobocznego i pole trójkąta równobocznego do rozwiązywania zadań tekstowych stosuje własności trójkątów o kątach 45, 45, 90 lub 30, 60, 90 do rozwiązywania zadań stosuje twierdzenie Pitagorasa do rozwiązywania zadań dotyczących czworokątów 2, 3 konstruuje odcinki o długościach itp. stosuje w układzie współrzędnych twierdzenie Pitagorasa do uzasadniania własności czworokątów o danych wierzchołkach Poziom W Uczeń otrzymuje ocenę celującą, jeśli opanował wiadomości i umiejętności z poziomów K D, a ponadto: przeprowadza dowód twierdzenie Pitagorasa sprawdza, czy trójkąt o podanych długościach boków jest ostrokątny czy rozwartokątny

8 wyprowadza wzór na długość przekątnej kwadratu, wysokość trójkąta równobocznego i pole trójkąta równobocznego V. UKŁADY RÓWNAŃ LINIOWYCH podaje przykładowe rozwiązania równania liniowego z dwiema niewiadomymi sprawdza, czy podana para liczb spełnia dany układ równań zapisuje w postaci układu równań podane informacje tekstowe wyznacza wskazaną zmienną z danego równania liniowego rozwiązuje układy równań metodą podstawiania określa, ile rozwiązań ma dany układ równań w prostych przypadkach rozwiązuje układy równań metodą przeciwnych współczynników w prostych przypadkach stosuje układy równań liniowych do rozwiązywania prostych zadań tekstowych do danego równania dopisuje drugie równanie tak, aby rozwiązaniem była dana para liczb dobiera współczynniki liczbowe w układzie równań tak, aby dana para liczb była jego rozwiązaniem określa, ile rozwiązań ma dany układ równań dopisuje drugie równanie tak, aby układ był sprzeczny, oznaczony, nieoznaczony rozwiązuje układ trzech równań z trzema niewiadomymi stosuje układy równań do rozwiązywania zadań tekstowych Poziom W Uczeń otrzymuje ocenę celującą, jeśli opanował wiadomości i umiejętności z poziomów K D, a ponadto: 2 2 rozwiązuje równanie typu x y 25 w zbiorze liczb naturalnych VI. OKRĘGI I WIELOKĄTY FOREMNE oblicza odległość punktu leżącego na stycznej do okręgu od jego środka konstruuje styczną do okręgu przechodzącą przez dany punkt określa liczbę punktów wspólnych prostej i okręgu stosuje w prostych przypadkach własności stycznej do okręgu do wyznaczania miary kątów rozpoznaje wielokąty opisane na okręgu konstruuje okrąg wpisany w trójkąt wyznacza miary kątów trójkąta opisanego na okręgu korzystając z własności jego środka oblicza promień okręgu wpisanego w trójkąt równoboczny i prostokątny stosuje zależność między długością boku trójkąta równobocznego a długością promienia okręgu wpisanego w ten trójkąt do rozwiązywania prostych zadań rozpoznaje wielokąty wpisane w okrąg konstruuje okrąg opisany na trójkącie

9 określa położenie środka okręgu opisanego na trójkącie, mając dane miary jego kątów oblicza promień okręgu opisanego na trójkącie równobocznym i prostokątnym stosuje zależność między długością boku trójkąta równobocznego a długością promienia okręgu opisanego na tym trójkącie do rozwiązywania prostych zadań wyznacza liczbę osi symetrii wielokąta foremnego rozpoznaje, które wielokąty foremne mają środek symetrii konstruuje niektóre wielokąty foremne oblicz miarę kąta wewnętrznego wielokąta foremnego stosuje własności stycznej do okręgu do wyznaczania miary kątów stosuje twierdzenie o odcinkach wyznaczonych przez styczne do okręgu poprowadzone z tego samego punktu leżącego poza okręgiem do rozwiązywania zadań stosuje zależność między długością boku trójkąta równobocznego a długością promienia okręgu wpisanego w ten trójkąt do rozwiązywania zadań stosuje zależność między długością boku trójkąta równobocznego a długością promienia okręgu opisanego na tym trójkącie do rozwiązywania zadań stosuje zależności między długością boku kwadratu, trójkąta równobocznego lub sześciokąta foremnego, a długością promienia okręgu wpisanego lub opisanego na tym wielokącie do rozwiązywania zadań Poziom W Uczeń otrzymuje ocenę celującą, jeśli opanował wiadomości i umiejętności z poziomów K D, a ponadto: wyprowadza zależności między długością boków wielokąta wpisanego lub opisanego na okręgu a długością promienia okręgu VII. GRANIASTOSŁUPY wskazuje w graniastosłupach krawędzie równoległe i prostopadłe wyznacza liczbę wierzchołków, krawędzi i ścian danego graniastosłupa rysuje przekątne w graniastosłupach stosuje zależności między liczbą wierzchołków, krawędzi i ścian graniastosłupa rysuje siatkę danego graniastosłupa rysuje siatkę graniastosłupa prostego, mając dany jej fragment w prostych przypadkach oblicza pola powierzchni bocznej lub całkowitej graniastosłupów prawidłowych oblicza objętość prostopadłościanu o podanych długościach krawędzi zamienia dane jednostki objętości na inne oblicza objętości graniastosłupów prawidłowych rozwiązuje zadania dotyczące graniastosłupów prawidłowych, stosując twierdzenie Pitagorasa i własności trójkątów prostokątnych rysuje siatkę graniastosłupa prostego, mając dany jej fragment oblicza pola powierzchni bocznej lub całkowitej graniastosłupów prostych oblicza objętości graniastosłupów prostych

10 rozwiązuje zadania o kontekście praktycznym dotyczące objętości graniastosłupów rozwiązuje zadania dotyczące graniastosłupów, stosując twierdzenie Pitagorasa i własności trójkątów prostokątnych Poziom W Uczeń otrzymuje ocenę celującą, jeśli opanował wiadomości i umiejętności z poziomów K D, a ponadto: wyprowadza wzór na przekątną sześcianu, prostopadłościanu VIII. STATYSTYKA I PRAWDOPODOBIEŃSTWO odczytuje informacje z tabel, diagramów i wykresów interpretuje dane statystyczne przedstawione za pomocą tabel, diagramów i wykresów w prostych przypadkach oblicza średnią arytmetyczną danych liczb wyznacza medianę zestawu danych oblicza średnią arytmetyczną i medianę danych przedstawionych na diagramie wykorzystuje średnią arytmetyczną i medianę do rozwiązywania prostych zadań wypisuje wszystkie możliwe wyniki w prostym doświadczeniu losowym podaje wyniki sprzyjające zdarzeniu losowemu w prostych przypadkach oblicza prawdopodobieństwa zdarzeń losowych w prostych przypadkach przedstawia dane statystyczne za pomocą tabel, diagramów i wykresów wykorzystuje własności średniej arytmetycznej i mediany do rozwiązywania zadań wypisuje wszystkie możliwe wyniki w doświadczeniu losowym podaje wyniki sprzyjające zdarzeniu losowemu oblicza prawdopodobieństwa zdarzeń losowych Poziom W Uczeń otrzymuje ocenę celującą, jeśli opanował wiadomości i umiejętności z poziomów K D, a ponadto: oblicza prawdopodobieństwa zdarzeń losowych w trudniejszych przypadkach VI. Zasady wystawiania oceny śródrocznej oraz końcowo rocznej 1. Klasyfikacja semestralna i roczna polega na podsumowaniu osiągnięć edukacyjnych ucznia oraz ustaleniu oceny klasyfikacyjnej. 2. Zgodnie z zapisami WSO nauczyciele i wychowawcy na początku każdego roku szkolnego informują uczniów oraz ich rodziców o: wymaganiach edukacyjnych niezbędnych do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki, sposobach sprawdzania osiągnięć edukacyjnych uczniów, warunkach i trybie uzyskania wyższej niż przewidywana oceny klasyfikacyjnej, trybie odwoływania od wystawionej oceny klasyfikacyjnej. 3. Przy wystawianiu oceny śródrocznej lub rocznej nauczyciel bierze pod uwagę stopień opanowania poszczególnych działów tematycznych, oceniany na podstawie wymienionych

11 w punkcie II różnych form sprawdzania wiadomości i umiejętności. Szczegółowe kryteria wystawienia oceny klasyfikacyjnej określa WSO. VII. Zasady uzupełniania braków i poprawiania ocen Uczeń ma prawo ubiegać się o podwyższenie proponowanej mu oceny końcowej, zgodnie z obowiązującym Rozporządzeniem i z zachowaniem procedury: 1. Po zaproponowaniu przez nauczyciela oceny końcowej, uczeń lub jego rodzic ( prawny opiekun) występuje na piśmie z prośbą o umożliwienie uczniowi podwyższenie oceny. 2. Nauczyciel ustala termin i zakres pisemnej diagnozy wiedzy i umiejętności. 3. Nauczyciel przygotowuje dla ucznia zestaw zadań, zgodnie z wymaganiami na daną ocenę. 4. Diagnoza odbywa się nie później niż na dwa dni przed końcowym posiedzeniem Rady Pedagogicznej. 5. Nauczyciel ocenia zakres wiedzy i umiejętności ucznia i informuje o ocenie zainteresowanego ( na ustną prośbę ucznia lub jego rodzica / prawnego opiekuna, nauczyciel uzasadnia ocenę). VIII. Sposoby i zasady informowania rodziców i uczniów o postępach 1. Uczniowie: informacja ustna ( bieżące wskazywanie umiejętności podczas lekcji, odpowiedzi ustnej, pracy samodzielnej ucznia), wpis do zeszytu, przekazanie informacji wychowawcy klasy, przedstawienie uczniowskich prac pisemnych 2. Rodzice: informacja przekazana podczas rozmowy indywidualnej ( oceny cząstkowe, ocena śródroczna lub roczna), wpis do zeszytu osiągnięć ucznia, wpis do dziennika, nagrody, przekazanie informacji wychowawcy klasy, przedstawienie uczniowskich prac pisemnych IX. Szczegółowe cele edukacyjne zawarte w Podstawie Programowej 1. Liczby wymierne dodatnie. a. odczytuje i zapisuje liczby naturalne dodatnie w systemie rzymskim (w zakresie do 3000); b. dodaje, odejmuje, mnoży i dzieli liczby wymierne zapisane w postaci ułamków zwykłych lub rozwinięć dziesiętnych skończonych zgodnie z własną strategią obliczeń (także z wykorzystaniem kalkulatora); c. zamienia ułamki zwykłe na ułamki dziesiętne (także okresowe), zamienia ułamki dziesiętne skończone na ułamki zwykłe; d. zaokrągla rozwinięcia dziesiętne liczb; e. oblicza wartości nieskomplikowanych wyrażeń arytmetycznych zawierających ułamki zwykłe i dziesiętne; f. szacuje wartości wyrażeń arytmetycznych; g. stosuje obliczenia na liczbach wymiernych do rozwiązywania problemów w kontekście praktycznym, w tym do zamiany jednostek (jednostek prędkości, gęstości itp.). 2. Liczby wymierne (dodatnie i niedodatnie). a. interpretuje liczby wymierne na osi liczbowej. Oblicza odległość między dwie ma liczbami na osi liczbowej;

12 b. wskazuje na osi liczbowej zbiór liczb spełniających warunek typu: x 3, x < 5; c. dodaje, odejmuje, mnoży i dzieli liczby wymierne; d. oblicza wartości nieskomplikowanych wyrażeń arytmetycznych zawierających liczby wymierne. 3. Potęgi. a. oblicza potęgi liczb wymiernych o wykładnikach naturalnych; b. zapisuje w postaci jednej potęgi: iloczyny i ilorazy potęg o takich samych podstawach, iloczyny i ilorazy potęg o takich samych wykładnikach oraz potęgę potęgi (przy wykładnikach naturalnych); c. porównuje potęgi o różnych wykładnikach naturalnych i takich samych podstawach oraz porównuje potęgi o takich samych wykładnikach naturalnych i różnych dodatnich podstawach; d. zamienia potęgi o wykładnikach całkowitych ujemnych na odpowiednie potęgi o wykładnikach naturalnych; e. zapisuje liczby w notacji wykładniczej, tzn. w postaci a 10 k, gdzie 1 a < 10 oraz k jest liczbą całkowitą. 4. Pierwiastki. a. oblicza wartości pierwiastków drugiego i trzeciego stopnia z liczb, które są odpowiednio kwadratami lub sześcianami liczb wymiernych; b. wyłącza czynnik przed znak pierwiastka oraz włącza czynnik pod znak pierwiastka; c. mnoży i dzieli pierwiastki drugiego stopnia; d. mnoży i dzieli pierwiastki trzeciego stopnia. 5. Procenty. a. przedstawia część pewnej wielkości jako procent lub promil tej wielkości i odwrotnie; b. oblicza procent danej liczby; c. oblicza liczbę na podstawie danego jej procentu; d. stosuje obliczenia procentowe do rozwiązywania problemów w kontekście praktycznym, np. oblicza ceny po podwyżce lub obniżce o dany procent, wykonuje obliczenia związane z VAT, oblicza odsetki dla lokaty rocznej. 6. Wyrażenia algebraiczne. a. opisuje za pomocą wyrażeń algebraicznych związki między różnymi wielkościami; b. oblicza wartości liczbowe wyrażeń algebraicznych; c. redukuje wyrazy podobne w sumie algebraicznej; d. dodaje i odejmuje sumy algebraiczne; e. mnoży jednomiany, mnoży sumę algebraiczną przez jednomian oraz, w nietrudnych przykładach, mnoży sumy algebraiczne; f. wyłącza wspólny czynnik z wyrazów sumy algebraicznej poza nawias; g. wyznacza wskazaną wielkość z podanych wzorów, w tym geometrycznych i fizycznych. 7. Równania. a. zapisuje związki między wielkościami za pomocą równania pierwszego stopnia z jedną niewiadomą, w tym związki między wielkościami wprost proporcjonalnymi i odwrotnie

13 proporcjonalnymi; b. sprawdza, czy dana liczba spełnia równanie stopnia pierwszego z jedną niewiadomą; c. rozwiązuje równania stopnia pierwszego z jedną niewiadomą; d. zapisuje związki między nieznanymi wielkościami za pomocą układu dwóch równań pierwszego stopnia z dwiema niewiadomymi; e. sprawdza, czy dana para liczb spełnia układ dwóch równań stopnia pierwszego z dwiema niewiadomymi; f. rozwiązuje układy równań stopnia pierwszego z dwiema niewiadomymi; g. za pomocą równań lub układów równań opisuje i rozwiązuje zadania osadzone w kontekście praktycznym. 8. Wykresy funkcji. a. zaznacza w układzie współrzędnych na płaszczyźnie punkty o danych współrzędnych; b. odczytuje współrzędne danych punktów; c. odczytuje z wykresu funkcji: wartość funkcji dla danego argumentu, argumenty dla danej wartości funkcji, dla jakich argumentów funkcja przyjmuje wartości dodatnie, dla jakich ujemne, a dla jakich zero; d. odczytuje i interpretuje informacje przedstawione za pomocą wykresów funkcji (w tym wykresów opisujących zjawiska występujące w przyrodzie, gospodarce, życiu codziennym); e. oblicza wartości funkcji podanych nieskomplikowanym wzorem i zaznacza punkty należące do jej wykresu. 9. Statystyka opisowa i wprowadzenie do rachunku prawdopodobieństwa. a. interpretuje dane przedstawione za pomocą tabel, diagramów słupkowych i koło wych, wykresów; b. wyszukuje, selekcjonuje i porządkuje informacje z dostępnych źródeł; c. przedstawia dane w tabeli, za pomocą diagramu słupkowego lub kołowego; d. wyznacza średnią arytmetyczną i medianę zestawu danych; e. analizuje proste doświadczenia losowe (np. rzut kostką, rzut monetą, wyciąganie losu) i określa prawdopodobieństwa najprostszych zdarzeń w tych doświadczeniach (prawdopodobieństwo wypadnięcia orła w rzucie monetą, dwójki lub szóstki w rzucie kostką, itp.). 10. Figury płaskie. a. korzysta ze związków między kątami utworzonymi przez prostą przecinającą dwie proste równoległe; b. rozpoznaje wzajemne położenie prostej i okręgu, rozpoznaje styczną do okręgu; c. korzysta z faktu, że styczna do okręgu jest prostopadła do promienia poprowadzonego do punktu styczności; d. rozpoznaje kąty środkowe; e. oblicza długość okręgu i łuku okręgu; f. oblicza pole koła, pierścienia kołowego, wycinka kołowego; g. stosuje twierdzenie Pitagorasa; h. korzysta z własności kątów i przekątnych w prostokątach, równoległobokach, rombach i w trapezach; i. oblicza pola i obwody trójkątów i czworokątów; j. zamienia jednostki pola;

14 k. oblicza wymiary wielokąta powiększonego lub pomniejszonego w danej skali; l. oblicza stosunek pól wielokątów podobnych; m. rozpoznaje wielokąty przystające i podobne; n. stosuje cechy przystawania trójkątów; o. korzysta z własności trójkątów prostokątnych podobnych; p. rozpoznaje pary figur symetrycznych względem prostej i względem punktu. Rysuje pary figur symetrycznych; q. rozpoznaje figury, które mają oś symetrii, i figury, które mają środek symetrii. Wskazuje oś symetrii i środek symetrii figury; r. rozpoznaje symetralną odcinka i dwusieczną kąta; s. konstruuje symetralną odcinka i dwusieczną kąta; t. konstruuje kąty o miarach 60, 30, 45 ; u. konstruuje okrąg opisany na trójkącie oraz okrąg wpisany w trójkąt; v. rozpoznaje wielokąty foremne i korzysta z ich podstawowych własności. 11. Bryły. a. rozpoznaje graniastosłupy i ostrosłupy prawidłowe; b. oblicza pole powierzchni i objętość graniastosłupa prostego, ostrosłupa, walca, stożka, kuli (także w zadaniach osadzonych w kontekście praktycznym); c. zamienia jednostki objętości.

Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE

Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je

Bardziej szczegółowo

ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY:

ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY: ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY: KLASA II GIMNAZJUM Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je zatem opanować

Bardziej szczegółowo

Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum

Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum I. POTĘGI I PIERWIASTKI oblicza wartości potęg o wykładnikach całkowitych liczb różnych od zera zapisuje liczbę

Bardziej szczegółowo

REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM

REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM Treści nauczania wg podstawy programowej Podręcznik M+ Klasa I Klasa II Klasa III 1. Liczby wymierne dodatnie. Uczeń: 1) odczytuje

Bardziej szczegółowo

ZESPÓŁ SZKÓŁ W OBRZYCKU

ZESPÓŁ SZKÓŁ W OBRZYCKU Matematyka na czasie Program nauczania matematyki w gimnazjum ZGODNY Z PODSTAWĄ PROGRAMOWĄ I z dn. 23 grudnia 2008 r. Autorzy: Agnieszka Kamińska, Dorota Ponczek ZESPÓŁ SZKÓŁ W OBRZYCKU Wymagania edukacyjne

Bardziej szczegółowo

Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 2

Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 2 Agnieszka Kamińska, Dorota Ponczek Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 2 Proponujemy, by omawiając dane zagadnienie programowe lub rozwiązując

Bardziej szczegółowo

PG im. Tadeusza Kościuszki w Kościerzycach Przedmiot

PG im. Tadeusza Kościuszki w Kościerzycach Przedmiot KARTA MONITOROWANIA PODSTAWY PROGRAMOWEJ KSZTAŁCENIA OGÓLNEGO III etap edukacyjny PG im. Tadeusza Kościuszki w Kościerzycach Przedmiot matematyka Klasa......... Rok szkolny Imię i nazwisko nauczyciela

Bardziej szczegółowo

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum)

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum) Podstawa programowa przedmiotu MATEMATYKA III etap edukacyjny (klasy I - III gimnazjum) Cele kształcenia wymagania ogólne: I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i tworzy teksty o

Bardziej szczegółowo

WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM

WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM TEMAT WYMAGANIA SZCZEGÓŁOWE 1. LICZBY I WYRAŻENIA ALGEBRAICZNE 2. System dziesiątkowy 1. Liczby wymierne dodatnie. Uczeń: 1) zaokrągla rozwinięcia dziesiętne

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE

WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE Przekształcenia algebraiczne Równania i układy równań Pojęcie funkcji. Własności funkcji. WYRAŻENIA

Bardziej szczegółowo

Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka

Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka TEMAT 5. Przekątna kwadratu. Wysokość trójkąta równobocznego 6. Trójkąty o kątach 90º, 45º, 45º oraz 90º, 30º, 60º 1. Okrąg opisany na trójkącie

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM

ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM TEMAT LICZBA GODZIN LEKCYJNYCH 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1 2. System dziesiątkowy 2-4 3. System rzymski 5-6 WYMAGANIA SZCZEGÓŁOWE

Bardziej szczegółowo

Wymagania edukacyjne klasa trzecia.

Wymagania edukacyjne klasa trzecia. TEMAT Wymagania edukacyjne klasa trzecia. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Lekcja organizacyjna System dziesiątkowy System rzymski Liczby wymierne i niewymierne

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu

Bardziej szczegółowo

Wymagania edukacyjne klasa druga.

Wymagania edukacyjne klasa druga. Wymagania edukacyjne klasa druga. TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. POTĘGI Potęga o wykładniku naturalnym Iloczyn i iloraz potęg o jednakowych podstawach Potęgowanie potęgi Potęgowanie

Bardziej szczegółowo

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2 TEMAT 1. LICZBY I DZIAŁANIA 14 20 LICZBA GODZIN LEKCYJNYCH 1. Liczby 1-2 2. Rozwinięcia dziesiętne liczb wymiernych 3. Zaokrąglanie liczb. Szacowanie wyników 1 1-2 WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ

Bardziej szczegółowo

Temat lekcji Zakres treści Wymagania podstawowe Wymagania ponadpodstawowe

Temat lekcji Zakres treści Wymagania podstawowe Wymagania ponadpodstawowe Agnieszka Kamińska, Dorota Ponczek Matematyka na czasie Rozkład materiału i plan wynikowy dla klasy Temat lekcji Zakres treści Wymagania podstawowe Wymagania ponadpodstawowe 1. Potęga o wykładniku całkowitym.

Bardziej szczegółowo

1. Potęga o wykładniku naturalnym Iloczyn i iloraz potęg o jednakowych podstawach Potęgowanie potęgi 1 LICZBA GODZIN LEKCYJNYCH

1. Potęga o wykładniku naturalnym Iloczyn i iloraz potęg o jednakowych podstawach Potęgowanie potęgi 1 LICZBA GODZIN LEKCYJNYCH TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI 1. POTĘGI 1. Potęga o wykładniku naturalnym 2-3 2. Iloczyn i iloraz potęg o jednakowych podstawach 3. Potęgowanie potęgi

Bardziej szczegółowo

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2 TEMAT 1. LICZBY I DZIAŁANIA 14 0 LICZBA GODZIN LEKCYJNYCH 1. Liczby 1-. Rozwinięcia dziesiętne liczb wymiernych 3. Zaokrąglanie liczb. Szacowanie wyników 4. Dodawanie i odejmowanie liczb dodatnich 1 1-

Bardziej szczegółowo

Wymagania edukacyjne klasa pierwsza.

Wymagania edukacyjne klasa pierwsza. Wymagania edukacyjne klasa pierwsza. TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I DZIAŁANIA Liczby Rozwinięcia dziesiętne liczb wymiernych Zaokrąglanie liczb. Szacowanie wyników Dodawanie

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny

Wymagania edukacyjne na poszczególne oceny Wymaganiach edukacyjne niezbędne do otrzymania przez ucznia klasy I Gimnazjum poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki, wynikające z programu nauczania: praca zbiorowa

Bardziej szczegółowo

KRYTERIA OCENIANIA Z MATEMATYKI w klasie 2a w roku szkolnym 2017/18. realizowany program nauczania: Matematyka na czasie, 4 godziny tygodniowo

KRYTERIA OCENIANIA Z MATEMATYKI w klasie 2a w roku szkolnym 2017/18. realizowany program nauczania: Matematyka na czasie, 4 godziny tygodniowo RYTERIA OCENIANIA Z MATEMATYI w klasie 2a w roku szkolnym 2017/18 realizowany program nauczania: Matematyka na czasie, 4 godziny tygodniowo wymagania konieczne (ocena 2); P wymagania podstawowe (ocena

Bardziej szczegółowo

Agnieszka Kamińska, Dorota Ponczek. Matematyka na czasie Rozkład materiału i plan wynikowy dla klasy 2

Agnieszka Kamińska, Dorota Ponczek. Matematyka na czasie Rozkład materiału i plan wynikowy dla klasy 2 Agnieszka amińska, Dorota Ponczek Matematyka na czasie Rozkład materiału i plan wynikowy dla klasy Temat lekcji Zakres treści Osiągnięcia uczeń: 1. Potęga o wykładniku całkowitym. Mnożenie i dzielenie

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny Matematyka na czasie dla klasy 2

Wymagania edukacyjne na poszczególne oceny Matematyka na czasie dla klasy 2 Wymagania edukacyjne na poszczególne oceny Matematyka na czasie dla klasy Prezentowane wymagania edukacyjne są zintegrowane z planem wynikowym autorstwa Agnieszki amińskiej, Doroty Ponczek, będącym propozycją

Bardziej szczegółowo

MATEMATYKA - gimnazjum - cele i wymagania z podstawy programowej

MATEMATYKA - gimnazjum - cele i wymagania z podstawy programowej MATEMATYKA - gimnazjum - cele i wymagania z podstawy programowej 1. Cel: Liczby wymierne dodatnie. 1) odczytuje i zapisuje liczby naturalne dodatnie w systemie rzymskim (w zakresie do 3000); 2) dodaje,

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ GIMNAZJUM Opracowane do programu Matematyka na czasie, Wydawnictwo Nowa Era

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ GIMNAZJUM Opracowane do programu Matematyka na czasie, Wydawnictwo Nowa Era WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ GIMNAZJUM Opracowane do programu Matematyka na czasie, Wydawnictwo Nowa Era POTĘGI I PIERWIASTKI POTĘGI Na ocenę dopuszczającą uczeń: zna i rozumie pojęcie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE

WYMAGANIA EDUKACYJNE GIMNAZJUM NR 2 W RYCZOWIE WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z MATEMATYKI w klasie II gimnazjum str. 1 Wymagania edukacyjne niezbędne

Bardziej szczegółowo

Matematyka Wymagania edukacyjne, kryteria oceniania i sposoby sprawdzania osiągnięć edukacyjnych uczniów

Matematyka Wymagania edukacyjne, kryteria oceniania i sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka Wymagania edukacyjne, kryteria oceniania i sposoby sprawdzania osiągnięć edukacyjnych uczniów Wymagania edukacyjne ogólne 1. Uczeń interpretuje i tworzy teksty o charakterze matematycznym, używa

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne stopnie szkolne klasa III

Wymagania edukacyjne na poszczególne stopnie szkolne klasa III Wymagania edukacyjne na poszczególne stopnie szkolne klasa III Rozdział 1. Bryły - wie, czym jest graniastosłup, graniastosłup prosty, graniastosłup prawidłowy - wie, czym jest ostrosłup, ostrosłup prosty,

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla kl. 2 Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2016/2017

Wymagania edukacyjne z matematyki dla kl. 2 Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2016/2017 NAUCZYCIEL: edukacyjne z matematyki dla kl. 2 Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2016/2017 mgr Dorota Maj PODRĘCZNIK: Liczy się matematyka WYD. WSiP Na lekcjach matematyki

Bardziej szczegółowo

MATEMATYKA KLASA III GIMNAZJUM

MATEMATYKA KLASA III GIMNAZJUM Ogólne wymagania edukacyjne Ocenę celującą otrzymuje uczeń, który: MATEMATYKA KLASA III GIMNAZJUM Potrafi stosować wiadomości w sytuacjach nietypowych (problemowych) Operuje twierdzeniami i je dowodzi

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI

WYMAGANIA EDUKACYJNE Z MATEMATYKI WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA 2 I. POTĘGI I PIERWIASTKI oblicza wartości potęg o wykładnikach całkowitych liczb różnych od zera zapisuje liczbę w postaci potęgi o wykładniku ujemnym porządkuje

Bardziej szczegółowo

Przedmiotowe zasady oceniania matematyka

Przedmiotowe zasady oceniania matematyka Gimnazjum nr 1 im. Jana Pawła II w Polkowicach Przedmiotowe zasady oceniania matematyka Ogólne cele oceniania z matematyki w gimnazjum: - informowanie ucznia o stopniu opanowania przez niego umiejętności

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 2 (oddział gimnazjalny)

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 2 (oddział gimnazjalny) edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 2 (oddział gimnazjalny) Stopień Rozdział 1. Potęgi i pierwiastki zapisuje w postaci potęgi iloczyn

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE W KLASIE DRUGIEJ Z MATEMATYKI GIMNAZJUM NR 19 W KRAKOWIE

WYMAGANIA EDUKACYJNE W KLASIE DRUGIEJ Z MATEMATYKI GIMNAZJUM NR 19 W KRAKOWIE WYMAGANIA EDUKACYJNE W KLASIE DRUGIEJ Z MATEMATYKI GIMNAZJUM NR 19 W KRAKOWIE I. Szkolne zasady oceniania i sposoby sprawdzania osiągnięć edukacyjnych 1. Ocenianie ma charakter systematyczny i wieloaspektowy.

Bardziej szczegółowo

Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka

Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka I. Potęgi i pierwiastki. Klasa II 1. Zapisuje w postaci potęgi iloczyn tych samych czynników i odwrotnie. 2. Oblicza

Bardziej szczegółowo

Matematyka na czasie

Matematyka na czasie Agnieszka Kamińska, Dorota Ponczek Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klas gimnazjalnych: 2 i 3 Proponujemy, by omawiając dane zagadnienie programowe

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne

Katalog wymagań programowych na poszczególne stopnie szkolne rozpoznaje figury podobne zna własności figur podobnych rozpoznaje trójkąty prostokątne podobne Rozdział 6. Figury podobne zna cechy podobieństwa trójkątów prostokątnych podobnych podaje skalę podobieństwa

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne

Katalog wymagań programowych na poszczególne stopnie szkolne rozpoznaje figury podobne zna własności figur podobnych rozpoznaje trójkąty prostokątne podobne Rozdział 6. Figury podobne zna cechy podobieństwa trójkątów prostokątnych podobnych podaje skalę podobieństwa

Bardziej szczegółowo

Egzamin gimnazjalny 2015 część matematyczna

Egzamin gimnazjalny 2015 część matematyczna Egzamin gimnazjalny 2015 część matematyczna imię i nazwisko Kalendarz gimnazjalisty Tydz. Dział start 22.09 29 26.09 Przygotowanie do pracy zapoznanie się z informacjami na temat egzaminu gimnazjalnego

Bardziej szczegółowo

Regulamin XVI Regionalnego Konkursu Matematycznego "Czas na szóstkę"

Regulamin XVI Regionalnego Konkursu Matematycznego Czas na szóstkę Regulamin XVI Regionalnego Konkursu Matematycznego "Czas na szóstkę" 1. Konkurs jest przeznaczony dla uczniów klas III gimnazjum oraz dla klas VII i VIII szkół podstawowych. 2. Organizatorzy: - Zespół

Bardziej szczegółowo

DZIAŁ II: PIERWIASTKI

DZIAŁ II: PIERWIASTKI Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen z przedmiotu matematyka w II klasie gimnazjum w roku szkolnym 2016/2017 Wymagania edukacyjne dostosowane do obowiązującej

Bardziej szczegółowo

Regulamin XV Regionalnego Konkursu Matematycznego Czas na szóstkę

Regulamin XV Regionalnego Konkursu Matematycznego Czas na szóstkę Regulamin XV Regionalnego Konkursu Matematycznego Czas na szóstkę 1. Konkurs jest przeznaczony dla uczniów klas II - III gimnazjum oraz dla klas VII szkół podstawowych. 2. Organizatorzy: - Zespół Szkół

Bardziej szczegółowo

Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1

Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1 Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1 Wyróżniono następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające

Bardziej szczegółowo

Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner

Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner Semestr I Rozdział: Potęgi i pierwiastki zapisuje w postaci potęgi iloczyn tych samych

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VII SZKOŁY PODSTAWOWEJ

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VII SZKOŁY PODSTAWOWEJ WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VII SZKOŁY PODSTAWOWEJ Ocenę niedostateczną otrzymuje uczeń, jeśli nie opanował wiadomości i umiejętności na ocenę dopuszczającą, nie wykazuje chęci poprawy

Bardziej szczegółowo

Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132

Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132 Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132 Zestaw zadań z zakresu matematyki posłużył w dniu 24 kwietnia 2013 roku do sprawdzenia u uczniów

Bardziej szczegółowo

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM. Arytmetyka

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM. Arytmetyka KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM Na stopień dostateczny uczeń powinien umieć: Arytmetyka - obliczać wartości wyrażeń arytmetycznych, w których występują liczby wymierne, - szacować wartości

Bardziej szczegółowo

Wymagania edukacyjne dla klasy drugiej POTĘGI I PIERWIASTKI

Wymagania edukacyjne dla klasy drugiej POTĘGI I PIERWIASTKI zna pojęcie potęgi o wykładniku naturalnym i oblicza jej wartość zapisuje potęgę w postaci iloczynu zapisuje iloczyn jednakowych czynników w postaci potęgi porównuje potęgi o różnych wykładnikach naturalnych

Bardziej szczegółowo

Końcoworoczne kryteria oceniania dla klasy II z matematyki Rok szkolny 2015/2016 przygotowała mgr inż. Iwona Śliczner

Końcoworoczne kryteria oceniania dla klasy II z matematyki Rok szkolny 2015/2016 przygotowała mgr inż. Iwona Śliczner Końcoworoczne kryteria oceniania dla klasy II z matematyki Rok szkolny 2015/2016 przygotowała mgr inż. Iwona Śliczner Ocenę dopuszczającą otrzymuje uczeń, który: definiuje pojęcie potęgi o wykładniku naturalnym,

Bardziej szczegółowo

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM POTĘGI I PIERWIASTKI - pojęcie potęgi o wykładniku naturalnym; - wzór na mnożenie i dzielenie potęg o tych samych podstawach; - wzór na potęgowanie

Bardziej szczegółowo

Przedmiotowe zasady oceniania w oddziałach gimnazjalnych matematyka

Przedmiotowe zasady oceniania w oddziałach gimnazjalnych matematyka Przedmiotowe zasady oceniania w oddziałach gimnazjalnych matematyka Ogólne cele oceniania z matematyki w gimnazjum: - informowanie ucznia o stopniu opanowania przez niego umiejętności matematycznych w

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem Ocenę dopuszczającą otrzymuje uczeń, który umie: 1.zapisywać potęgi w postaci iloczynów 2. zapisywać iloczyny jednakowych

Bardziej szczegółowo

Wymagania edukacyjne z matematyki - gimnazjum

Wymagania edukacyjne z matematyki - gimnazjum Wymagania edukacyjne z matematyki - gimnazjum Skrót postanowień: III etap edukacyjny (kl. I-III gimnazjum) Cele kształcenia (wymagania ogólne): wykorzystanie i tworzenie informacji - uczeń interpretuje

Bardziej szczegółowo

Wymagania programowe na poszczególne oceny. Klasa 2. Potęgi o wykładnikach naturalnych i całkowitych. Poziom wymagań edukacyjnych:

Wymagania programowe na poszczególne oceny. Klasa 2. Potęgi o wykładnikach naturalnych i całkowitych. Poziom wymagań edukacyjnych: Wymagania programowe na poszczególne oceny Poziom wymagań edukacyjnych: K konieczny (ocena dopuszczająca) P podstawowy (ocena dostateczna) R rozszerzający (ocena dobra) D dopełniający (ocena bardzo dobra)

Bardziej szczegółowo

III etap edukacyjny MATEMATYKA

III etap edukacyjny MATEMATYKA III etap edukacyjny MATEMATYKA Cele kształcenia wymagania ogólne I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i tworzy teksty o charakterze matematycznym, używa języka matematycznego do

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE 8 SZKOŁY PODSTAWOWEJ

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE 8 SZKOŁY PODSTAWOWEJ WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE 8 SZKOŁY PODSTAWOWEJ Wymagania na poszczególne oceny konieczne (ocena dopuszczająca) 1.

Bardziej szczegółowo

1. FUNKCJE DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia

1. FUNKCJE DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia L.P. DZIAŁ Z PODRĘCZNIKA 1. FUNKCJE 2. POTĘGI I PIERWIASTKI NaCoBeZu kryteria sukcesu w języku ucznia 1. Wiem, co to jest układ współrzędnych, potrafię nazwać osie układu. 2. Rysuję układ współrzędnych

Bardziej szczegółowo

Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania

Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania Kryteria ocen z matematyki w Gimnazjum Klasa I Liczby i działania obliczać wartości wyrażeń arytmetycznych, w których występują liczby wymierne skracać i rozszerzać ułamki zwykłe porównywać dwa ułamki

Bardziej szczegółowo

Przedmiotowy system oceniania matematyka

Przedmiotowy system oceniania matematyka Gimnazjum nr 1 im. Jana Pawła II w Polkowicach Przedmiotowy system oceniania matematyka Ogólne cele oceniania z matematyki w gimnazjum: - informowanie ucznia o stopniu opanowania przez niego umiejętności

Bardziej szczegółowo

Wymagania edukacyjne z matematyki Klasa II program Matematyka z plusem Rok szkolny 2017/2018

Wymagania edukacyjne z matematyki Klasa II program Matematyka z plusem Rok szkolny 2017/2018 Wymagania edukacyjne z matematyki Klasa II program Matematyka z plusem Rok szkolny 2017/2018 I Okres POTĘGI zapisać potęgę w postaci iloczynu liczb, zapisać iloczyn jednakowych czynników w postaci potęgi

Bardziej szczegółowo

Wymagania z matematyki na poszczególne oceny Klasa 2 gimnazjum

Wymagania z matematyki na poszczególne oceny Klasa 2 gimnazjum Wymagania z matematyki na poszczególne oceny Klasa 2 gimnazjum Stopień celujący może otrzymać uczeń, który spełnia kryteria na stopień bardzo dobry oraz: posiada wiadomości i umiejętności znacznie wykraczające

Bardziej szczegółowo

Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1

Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1 Agnieszka Kamińska, Dorota Ponczek Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1 Proponujemy, by omawiając dane zagadnienie programowe lub rozwiązując

Bardziej szczegółowo

Przedmiotowy system oceniania dla uczniów z obowiązkiem dostosowania wymagań edukacyjnych z matematyki w kl.ii

Przedmiotowy system oceniania dla uczniów z obowiązkiem dostosowania wymagań edukacyjnych z matematyki w kl.ii Matematyka klasa II kryteria oceniania dla uczniów z obowiązkiem dostosowania wymagań edukacyjnych opracowano na podstawie programu MATEMATYKA Z PLUSEM DZIAŁ 1. POTĘGI zna i rozumie pojęcie potęgi o wykładniku

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy II gimnazjum

Wymagania edukacyjne z matematyki dla klasy II gimnazjum Wymagania edukacyjne z matematyki dla klasy II gimnazjum Poniższy dokument jest zgodny z: Nową Podstawę Programową, Programem nauczania matematyki oraz Przedmiotowymi zasadami oceniania Matematyka na czasie,

Bardziej szczegółowo

MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania

MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania MATEMATYKA WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski Treści zapisane kursywą (i oznaczone gwiazdką) wykraczają poza podstawę programową. Nauczyciel może je realizować,

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem pojęcie potęgi o wykładniku naturalnym wzór na mnożenie i dzielenie potęg o tych samych podstawach wzór na potęgowanie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II GIMNAZJUM Małgorzata Janik

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II GIMNAZJUM Małgorzata Janik WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II GIMNAZJUM Małgorzata Janik DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY Potęgi i pierwiastki Uczeń: Zna i rozumie pojęcie potęgi o wykładniku naturalnym Umie

Bardziej szczegółowo

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM Na ocenę dopuszczającą uczeń umie : WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM stosować cztery podstawowe działania na liczbach wymiernych, zna kolejność wykonywania działań

Bardziej szczegółowo

Wymagania edukacyjne dla klasy pierwszej Matematyka na czasie

Wymagania edukacyjne dla klasy pierwszej Matematyka na czasie Wymagania edukacyjne dla klasy pierwszej Matematyka na czasie Wyróżniono następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki kl.ii

Przedmiotowy system oceniania z matematyki kl.ii DZIAŁ 1. POTĘGI Matematyka klasa II - wymagania programowe zna i rozumie pojęcie potęgi o wykładniku naturalnym (K) umie zapisać potęgę w postaci iloczynu (K) umie zapisać iloczyn jednakowych czynników

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie 7 szkoły podstawowej

Wymagania edukacyjne z matematyki w klasie 7 szkoły podstawowej Wymagania edukacyjne z matematyki w klasie 7 szkoły podstawowej Ocenę niedostateczną otrzymuje uczeń, który nie opanował wiadomości i umiejętności, określonych programem nauczania matematyki w klasie VII.

Bardziej szczegółowo

KLASA II WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE STOPNIE MATEMATYKA. Wymagania edukacyjne. dostosowane są do programu MATEMATYKA Z PLUSEM DZIAŁ I

KLASA II WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE STOPNIE MATEMATYKA. Wymagania edukacyjne. dostosowane są do programu MATEMATYKA Z PLUSEM DZIAŁ I WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE STOPNIE MATEMATYKA Wymagania edukacyjne dostosowane są do programu MATEMATYKA Z PLUSEM KLASA II DZIAŁ I POTĘGI I PIERWIASTKI Poziomy wymagań edukacyjnych: K - konieczny

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne z matematyki Klasa II. na ocenę dopuszczającą

Szczegółowe wymagania edukacyjne z matematyki Klasa II. na ocenę dopuszczającą Szczegółowe wymagania edukacyjne z matematyki Klasa II na ocenę dopuszczającą UCZEŃ zna podręcznik i zeszyt ćwiczeń, z których będzie korzystał w ciągu roku szkolnego na lekcjach matematyki; W zakresie

Bardziej szczegółowo

Lista działów i tematów

Lista działów i tematów Lista działów i tematów Gimnazjum. Klasa 1 Liczby i działania Liczby Rozwinięcia dziesiętne liczb wymiernych Zaokrąglenia liczb. Szacowanie wyników Dodawanie i odejmowanie liczb dodatnich Mnożenie i dzielenie

Bardziej szczegółowo

Przedmiotowe System Oceniania z matematyki na podstawie programu "Matematyka z plusem"

Przedmiotowe System Oceniania z matematyki na podstawie programu Matematyka z plusem Przedmiotowe System Oceniania z matematyki na podstawie programu "Matematyka z plusem" Opracowany zgodnie ze Statutem oraz z Wewnątrzszkolnym Systemem Oceniania Przedmiotem oceny z matematyki są: 1) wiedza,

Bardziej szczegółowo

6. Notacja wykładnicza stosuje notację wykładniczą do przedstawiania bardzo dużych liczb

6. Notacja wykładnicza stosuje notację wykładniczą do przedstawiania bardzo dużych liczb LICZBY I DZIAŁANIA PROCENTY str. 1 Przedmiot: matematyka Klasa: 2 ROK SZKOLNY 2015/2016 temat Wymagania podstawowe P 2. Wartość bezwzględna oblicza wartość bezwzględną liczby wymiernej 3. Potęga o wykładniku

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie II gimnazjum

Wymagania edukacyjne z matematyki w klasie II gimnazjum Wymagania edukacyjne z matematyki w klasie II gimnazjum Dział Poziom wymagań koniecznych (na ocenę dopuszczającą) Poziom wymagań podstawowych (na ocenę dostateczną) Poziom wymagań rozszerzających (na ocenę

Bardziej szczegółowo

Wymagania na poszczególne stopnie szkolne

Wymagania na poszczególne stopnie szkolne Wymagania na poszczególne stopnie szkolne Dział, temat Wymagania na ocenę dopuszczającą (K) Wymagania na ocenę dostateczną (P) Wymagania na ocenę dobrą (R) Wymagania na ocenę bardzo dobrą (D) Wymagania

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie VII szkoły podstawowej

Wymagania edukacyjne z matematyki w klasie VII szkoły podstawowej Wymagania edukacyjne z matematyki w klasie VII szkoły podstawowej ROZDZIAŁ I LICZBY Uczeń otrzymuje ocenę dopuszczającą jeśli: 1. rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie

Bardziej szczegółowo

rozszerzające (ocena dobra)

rozszerzające (ocena dobra) WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 8 ROK SZKOLNY 2018/2019 OPARTE NA PROGRAMIE NAUCZANIA MATEMATYKI W SZKOLE PODSTAWOWEJ MATEMATYKA Z PLUSEM Wymagania na poszczególne oceny konieczne (ocena dopuszczająca)

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie II gimnazjum w roku szkolnym 2016/2017 opracowane na podstawie programu Matematyka z plusem GWO

Wymagania edukacyjne z matematyki w klasie II gimnazjum w roku szkolnym 2016/2017 opracowane na podstawie programu Matematyka z plusem GWO Wymagania edukacyjne z matematyki w klasie II gimnazjum w roku szkolnym 2016/2017 opracowane na podstawie programu Matematyka z plusem GWO POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa II program Matematyka z plusem POTĘGI POZIOM KONIECZNY ocena dopuszczająca zapisać potęgę w postaci iloczynu zapisać iloczyn jednakowych czynników w postaci potęgi

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum

Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum Semestr I Stopień Rozdział 1. Liczby Zamienia liczby dziesiętne na ułamki

Bardziej szczegółowo

konieczne (ocena dopuszczająca) Temat podstawowe (ocena dostateczna) dopełniające (ocena bardzo dobra) rozszerzające (ocena dobra)

konieczne (ocena dopuszczająca) Temat podstawowe (ocena dostateczna) dopełniające (ocena bardzo dobra) rozszerzające (ocena dobra) Wymagania na poszczególne oceny szkolne Klasa 7 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane

Bardziej szczegółowo

rozszerzające (ocena dobra) podstawowe (ocena dostateczna)

rozszerzające (ocena dobra) podstawowe (ocena dostateczna) Wymagania na poszczególne oceny szkolne Klasa 7 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane

Bardziej szczegółowo

konieczne (ocena dopuszczająca) Temat podstawowe (ocena dostateczna) dopełniające (ocena bardzo dobra) rozszerzające (ocena dobra)

konieczne (ocena dopuszczająca) Temat podstawowe (ocena dostateczna) dopełniające (ocena bardzo dobra) rozszerzające (ocena dobra) Wymagania na poszczególne oceny szkolne Klasa 7 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY ŚRÓDROCZNE I ROCZNE Z MATEMATYKI W KLASIE 8 SZKOŁY PODSTAWOWEJ

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY ŚRÓDROCZNE I ROCZNE Z MATEMATYKI W KLASIE 8 SZKOŁY PODSTAWOWEJ WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY ŚRÓDROCZNE I ROCZNE Z MATEMATYKI W KLASIE 8 SZKOŁY PODSTAWOWEJ Wymagania na poszczególne oceny ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII

WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII ROZDZIAŁ I LICZBY 1. rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 2. odczytuje liczby naturalne dodatnie zapisane w

Bardziej szczegółowo

Liczby. Wymagania programowe kl. VII. Dział

Liczby. Wymagania programowe kl. VII. Dział Wymagania programowe kl. VII Dział Liczby rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 odczytuje liczby naturalne dodatnie zapisane w systemie rzymskim w zakresie do

Bardziej szczegółowo

EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012. CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA Matematyka WOJEWÓDZTWO KUJAWSKO-POMORSKIE

EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012. CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA Matematyka WOJEWÓDZTWO KUJAWSKO-POMORSKIE Okręgowa Komisja Egzaminacyjna w Gdańsku EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA Matematyka WOJEWÓDZTWO KUJAWSKO-POMORSKIE Osiągnięcia gimnazjalistów z zakresu matematyki

Bardziej szczegółowo

konieczne (ocena dopuszczająca) Temat rozszerzające (ocena dobra)

konieczne (ocena dopuszczająca) Temat rozszerzające (ocena dobra) Wymagania na poszczególne oceny szkolne Klasa 7 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane

Bardziej szczegółowo

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA II

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA II 1 KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA II POTĘGI umie zapisać potęgę w postaci iloczynu umie zapisać iloczyn jednakowych czynników w postaci potęgi umie obliczyć potęgę o wykładniku

Bardziej szczegółowo

MATEMATYKA Z KLUCZEM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY SIÓDMEJ

MATEMATYKA Z KLUCZEM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY SIÓDMEJ MATEMATYKA Z KLUCZEM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY SIÓDMEJ ocena dopuszczająca (wymagania konieczne), : rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie 3000, porównuje

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VII

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VII WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VII Ocena Dopuszczający Osiągnięcia ucznia rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 odczytuje liczby naturalne dodatnie zapisane

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI MATEMATYKA WOKÓŁ NAS WSiP

WYMAGANIA EDUKACYJNE Z MATEMATYKI MATEMATYKA WOKÓŁ NAS WSiP WYMAGANIA EDUKACYJNE Z MATEMATYKI MATEMATYKA WOKÓŁ NAS WSiP KLASA 1 Główne działy podstawy programowej Liczby wymierne dodatnie Liczby wymierne (dodatnie i niedodatnie) Hasła programowe Cztery działania

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM w roku szkolnym 2015/2016

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM w roku szkolnym 2015/2016 WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM w roku szkolnym 2015/2016 Dział Na ocenę dopuszczającą Na ocenę dostateczną Na ocenę dobrą POTĘGI PIERWIASTKI Uczeń: zna i rozumie pojęcie o

Bardziej szczegółowo