Jerzy Kubowski. Supercritical Water Cooled Reactor. Reactor

Wielkość: px
Rozpocząć pokaz od strony:

Download "Jerzy Kubowski. Supercritical Water Cooled Reactor. Reactor"

Transkrypt

1 ELEKTROWNIE JĄDROWE Z REAKTORAMI O NADKRYTYCZNYCH PARAMETRACH CHŁODZIWA Jerzy Kubowski Przedmowa Elektrownie jądrowe z reaktorami, w których czynnikiem roboczym jest para wodna o nadkrytycznych parametrach należą do najbardziej obiecujących spośród sześciu typów reaktorów energetycznych IV generacji wybranych do perspektywicznych badań. W języku angielskim noszą nazwę Supercritical Water Cooled Reactors (SCWR).Większość reaktorów IV generacji jest w stadium koncepcyjnym lub doświadczalnym (tab. 1). Ich wprowadzenie do eksploatacji przewiduje się za jakichś lat. Rozważa się budowę reaktorów typu SCWR zarówno jako termicznych, jak i prędkich. Z informacji na ich temat można jednak wnosić, iż bardziej perspektywicznymi reaktorami są reaktory termiczne. Nad koncepcją reaktorów tego typu pracuje obecnie 32. organizacje naukowo- badawcze w 13. państwach. Tabela 1. Reaktory IV generacji, wybrane do dalszych studiów i badań Typ reaktora Nazwa angielska Skrót nazwy i planowany rok uruchomienia Reaktor prędki chłodzony gazem Gas - Cooled Fast Reactor GFR 2025 Reaktor prędki chłodzony ołowiem (chłodziwo w postaci ciekłej ołowiowo bizmutowej mieszaniny) Lead Cooled Fast Reactor LFR 2025 Reaktor chłodzony stopioną solą Molten Salt Reactor MSR 2025 Reaktor prędki chłodzony sodem Sodium Cooled Fast Reactor SFR 2015 Reaktor lekkowodny o nadkrytycznych parametrach chłodziwa Reaktor wysokotemperaturowy Supercritical Water Cooled Reactor Very High Temperature Reactor SCWR 2025 VHTR 2020 W niniejszym popularno naukowym opracowaniu przedstawione zostały konstrukcyjne rozwiązania i układy technologiczne elektrowni z takimi właśnie reaktorami. Ponadto opisano także podstawowe właściwości pary wodnej, będącej czynnikiem roboczym w tych siłowniach. 1

2 Własności pary wodnej Jeśli wodę, znajdującą się pod ciśnieniem 101,325 kpa (1 atm atmosfera fizyczna), podgrzać do temperatury 100 С, to ulegnie ona wrzeniu: powstająca para będzie miała taką samą temperaturę, lecz znacznie większą objętość. Do czasu, gdy w układzie pozostanie pewna ilość wody, panująca w nim temperatura pomimo ciągłego doprowadzania doń ciepła pozostanie stała. Stan, w którym woda i para znajdują się w równowadze termodynamicznej nazywa się stanem nasycenia, a charakteryzujące go temperatura i ciśnienie parametrami nasycenia. Oznacza to, iż między wodą i parą nasyconą ustala się dynamiczna równowaga: liczba molekuł wydobywająca się z wody w ciągu jednostki czasu i przechodząca do fazy parowej, jest równa liczbie molekuł pary, jaka powraca (skrapla się) w tym samym czasie do wody. Jedynie wówczas, gdy cała woda zostanie zamieniona w parę (której objętość przy 100 C jest 1673 razy większa od objętości wody przy 4 C ) temperatura może ponownie zacząć rosnąć. Przy tym para ze stanu nasyconego przechodzi do stanu przegrzania; para taka nazywa się parą przegrzaną (suchą, nienasyconą). Charakteryzuje się większą temperaturą od temperatury pary nasyconej przy tym samym ciśnieniu. Im wyższa temperatura pary przegrzanej, tym wyższy jest współczynnik sprawności cieplnej elektrowni. Gdy proces parowania zachodzi przy różnych wartościach ciśnienia, to temperatura parowania zmienia się w zależności od ciśnienia (tab. 2). Tabela 2. Zależność temperatury oraz gęstości wody i pary, będących w stanie nasycenia, od ciśnienia pary nasyconej (at atmosfera techniczna) Ciśnienie pary nasyconej Temperatura C Gęstość kg/m 3 MPa (at) Woda Para 0,098 (1) 99, ,58 0,980 (10) ,9 5,05 9,80 (100) 309,5 691,9 54,2 19,6 (220) 372,1 420,0 229 Dalsze zwiększanie ilości ciepła w układzie prowadzi do stanu krytycznego, który charakteryzuje się tym, iż fazy ciekła i gazowa (woda i para), znajdujące się w równowadze termodynamicznej; wykazują identyczne własności. Parametry krytyczne dla wody wynoszą: ciśnienie 22,115 MPa, temperatura - 647,3 K (374,14 C). Przemiany stanów skupienia w zależności od ciśnienia i temperatury są pokazany na rys. 1. 2

3 Rys. 1. Wykres przemian fazowych wody w zależności od parametrów termodynamicznych ciśnienia (P) i temperatury (T) Oznaczenia: S- faza stała, P para, C ciecz, K punkt krytyczny, SCWR, PWR, BWR - parametry pracy reaktorów, odpowiednio reaktora o nadkrytycznych parametrach chłodziwa, reaktora wodnego ciśnieniowego (Pressurized Water Reactor ), reaktora z wodą wrzącą (Boiling Water Reactor). Technologiczne układy elektrowni Najważniejszą zaletą reaktorów typu SCWR jest możliwość uzyskania wysokiej sprawności cieplnej sięgającej ok. 45 %, wobec ok. 35% - w nowoczesnych elektrowniach jądrowych (EJ). Stanowią następny etap w rozwoju elektrowni z reaktorami typu PWR (Pressurized Water Reactor reaktor wodny ciśnieniowy), mające dziś największy udział w ogólnej liczbie elektrowni jądrowych na świecie. Praca w zakresie ciśnienia nadkrytycznego pozwala wyeliminować wrzenie chłodziwa, czyli w okresie całego cyklu roboczego pozostanie ono w stanie jednofazowym. W porównaniu do reaktora typu PWR, gdzie wystąpienie wrzenia chłodziwa w rdzeniu jest zazwyczaj zjawiskiem bardzo niebezpiecznym, tu o pojawienie się takiej sytuacji nie ma obawy. Parę doprowadza się do turbiny bezpośrednio. Z powodu większego ciepła zawartego w jednostce masy chłodziwa, jego gęstość przepływu (kg/(s. m 2 ) - odniesiona na jednostkę mocy cieplnej wydzielanej w rdzeniu - jest mniejsza niż w przypadku reaktora typu PWR, pracującego przy parametrach pary nasyconej. Zatem odpada konieczność instalowania jak w tym ostatnim reaktorze- pomp cyrkulacyjnych, wytwornic pary, stabilizatorów ciśnienia i oddzielaczy wilgoci, a ponadto rozmiary urządzeń współpracujących z reaktorem (pompy, rurociągi itp.) ulegają redukcji. Zalety zastosowania reaktora typu SCWR widać wyraźnie, jeśli się porówna schematy głównych urządzeń technologicznych pokazanych na rysunkach 2 i 3. 3

4 Rys. 2. Schemat ideowy elektrowni z reaktorem typu PWR Rys. 3. Schemat ideowy elektrowni z reaktorem typu SCWR Wszystko to pozwoli na konstruowanie budynków (obudów bezpieczeństwa) reaktorów typu SCWR o względnie mniejszych rozmiarach (rys.4). 4

5 Rys. 4. Rozmiary budynków reaktorów lekkowodnych trzech typów Reaktor amerykański Konstrukcja reaktora jest pokazana na rys. 5 i 6. Chłodziwo doprowadza się dwiema drogami: 10 % szczeliną między koszem, w którym osadzony jest rdzeń, a zbiornikiem reaktora, oraz bezpośrednio do obszaru rdzenia (90 %) za pośrednictwem specjalnych kanałów wodnych. Takie rozwiązanie jest uwarunkowane tym, iż gęstość chłodziwa (które spełnia zarazem rolę moderatora) spada z 760. kg/m 3 na wlocie do reaktora, do ok. 90. kg/m 3 na wylocie. Po zmieszaniu się obu strumieni w obszarze pod dolną płytą, chłodziwo przepływając do góry przez kanały paliwowe odbiera wytworzone w nich ciepło. Tym sposobem zapewnia się doprowadzenie dostatecznej ilości moderatora także do górnego obszaru rdzenia. Rdzeń reaktora (rys.7) tworzą kasety paliwowe o kwadratowym przekroju (rys. 8), rozmieszczone w regularnych odstępach. Każda zawiera pęk 300. elementów paliwowych wykonanych w postaci cienkich cylindrycznych prętów, zamkniętych w rurkach (koszulkach) dla ochrony paliwa przed bezpośrednim kontaktem z chłodziwem. Pręt jest złożony z wielu ceramicznych tabletek (pastylek) dwutlenku uranu. Woda chłodząca przepływa między elementami paliwowymi od dołu do góry. Konstrukcja kasety umożliwia względnie łatwe 5

6 manipulowanie paliwem wewnątrz zbiornika reaktora i jego transport. Dane konstrukcyjne elementu paliwowego są zebrane w tab. 3. Rys. 5. Konstrukcja amerykańskiego reaktora typu SCWR, firmy Westinghouse Parametry: moc cieplna MWt, moc elektryczna netto 1600 MWe, sprawność cieplna 44,8 %, ciśnienie czynnika roboczego 25 MPa, temperatura wody zasilającej 280 C, temperatura pary wylotowej 500 C, strumień przepływu czynnika roboczego 1843 kg/s, czas eksploatacji 60 lat. 6

7 Rys. 6. Zbiornik reaktora (wymiary w metrach) Parametry: wysokość całkowita (z górną pokrywą) 12,4 m, ciśnienie 25,0/27,5 MPa, temperatura 280/231 C, 2 króćce wlotowe, 2 króćce wylotowe, masa 780 t, maks. fluencja neutronów o energii >1 MeV [n/cm 2 ] (jest to dopuszczalna liczba neutronów, jaka w ciągu całego okresu eksploatacji reaktora przeniknie przez 1 cm 2 powierzchni zbiornika; jest wielkością dawki neutronów służącą ocenie radiacyjnego uszkodzenia jego materiału) Rys. 7. Konfiguracja rdzenia Dane: liczba kaset 145, równoważna średnica 3,93 m, średnice kosza (wew./zewn.) 4,3/4,4 m, średnia gęstość mocy 69,4 kw/litr 7

8 Rys. 8. Kaseta paliwowa Dane: konfiguracja elementów paliwowych w kasecie - 25x25, liczba elementów paliwowych w kasecie 300, liczba wodnych kanałów w kasecie 36, bok kanału wodnego 33,6 mm, grubość ścianki kanału wodnego 0,4 mm, materiał pręta regulacyjnego An-In-Cd, materiał pręta bezpieczeństwa B 4 C, grubość szczeliny między kasetami 3 mm, bok kasety 286 mm, skok siarki 288 mm. Tabela 3. Charakterystyka elementu paliwowego Parametr Zewnętrzna średnica elementu paliwowego Odległość między osiami elementów paliwowych Grubość koszulki elementu paliwowego Średnica pastylki paliwowej Paliwo Wzbogacenie w izotop U-235 Długość czynna Długość całkowita Wartość 10,2 mm 11,2 mm 0,63 mm 8,78 mm UO 2 (95 % gęstości teoretycznej) średnio 5 % (wagowo) 4,27 m 4,87 m 8

9 Projekt elektrowni francuskiej W dziedzinie energetyki jądrowej Francja należy do przodujących krajów. Jej przemysłowe konsorcjum AREVA, prawie w 80. % należące do rządowej, badawczo - technologicznej organizacji CEA (Commissariat à l'énergie Atomique) zatrudnia ponad pracowników naukowych. Prowadzi rozległe prace badawcze nad rozwojem czwartej generacji reaktorów. W zakresie reaktorów typu SCWR już od kilku lat intensywnie kontynuuje prace nad reaktorem HPLWR (High Performance Light Water Reactor wysokosprawny lekkowodny reaktor). Stanowi on logiczną ewolucję konstrukcji lekkowodnego energetycznego reaktora trzeciej generacji EPR o mocy 1600 MWe (European Pressurized Water Reactor) typu PWR, który obecnie jest podstawą nowoczesnych elektrowni tej firmy. Francja wznosi je w Finlandii, Chinach, a także u siebie: 2. czerwca 2008 r. prezydent Nicolas Sarcozy poinformował o decyzji budowy drugiej elektrowni z tym reaktorem. Zapewne wkrótce AREVA uzyska licencję na budowę tego reaktora także w USA. W 2006 r. plan badań nad tym reaktorem włączony został do VI Programu Euroatomu (SIXTH FRAMEWORK PROGRAMME of EURATOM), do którego przystąpiło 10 organizacji z ośmiu członkowskich państw. Schemat koncepcyjny elektrowni z reaktorem HPLWR jest pokazany na rysunkach 9. i 10. 9

10 Перегретый пар, пар, имеющий температуру выше температуры насыщения при том же давлении. Водяной П. п., служащий рабочим телом паровых двигателей, получают в пароперегревателях котлоагрегата. Чем выше температура водяного П. п., тем выше термический кпд этих двигателей. Конструкционные материалы стали, обычно используемые в котло- и турбостроении, допускают перегрев пара до температуры 570 С при давлении до 25 Мн/м 2 (250 кгс/см 2 ), а отдельные установки работают при температуре П. п. 650 С и давлении 30 Мн/м 2. Rys.9. Schemat koncepcyjny francuskiej elektrowni z reaktorem HPLWR 10

11 Rys. 10. Zbiornik reaktora HPLWR Parametry reaktora: moc elektryczna netto 1000 MWe, ciśnienie pary 25 MPa, temperatura wody 280 C, temperatura pary 500 C, strumień przepływu chłodziwa - ok kg/s, czynna wysokość rdzenia 4200 mm, całkowita wysokość zbiornika mm, wewnętrzna średnica zbiornika 3380 mm. Elektrownie rosyjskie W jednej z opracowywanych koncepcji elektrowni jądrowej z reaktorem typu SCWR zastosowano reaktor WGERS (Wodo - Grafitowyj Energeticzeskij Reaktor so Swerchkriticzeskim dawlenijem; wodno grafitowy energetyczny reaktor z chłodziwem o nadkrytycznych parametrach. W ten sposób rosyjscy konstruktorzy nawiązali do skonstuowanych - na początku rozwoju technologii jądrowej reaktorów z moderatorem grafitowym i kanałami paliwowymi chłodzonymi wodą. Budzi to nie najlepsze skojarzenie z czarnobylską elektrownią wyposażoną w reaktor RBMK (Reaktor Bolszoj Mośnosti Kanalnyj).o takim samym składzie materiałowym moderatora: grafit woda. Podobieństwo dobrze widać ze schematu technologicznego zamieszczonego na rysunku

12 Rys. 11. Układ technologiczny rosyjskiego reaktora typu WGERS z chłodziwem o nadkrytycznych parametrach: 250 at (24,52 MPa), 550 C; 1 główny rurociąg o średnicy 300 mm, 2 parowy kolektor zbiorczy o śr. 130 mm, 3 rurociągi parowe o śr. 35 mm, 4 kanały paliwowe w stosie grafitowych bloków, 5 reaktor, 6 rurociąg wody zasilającej o śr. 300 mm, 7 kolektor rozdzielczy o śr. 130 mm, 8 rurociągi wodne o śr. 25 mm, 9 zbiorniki wody układu UACR - szybkodziałającego układu awaryjnego chłodzenia reaktora, zbiorniki BUCR biernego układu chłodzenia reaktora W tabeli 4 pokazano charakterystyki techniczne dwóch elektrowni z takimi reaktorami. Natomiast w konstrukcji budynku (rys. 12) w porównaniu do reaktora RBMK - można dostrzec zasadniczą różnicę: przewidziano dwupowłokową obudowę bezpieczeństwa. Zaprojektowano również układ awaryjny, działający na zasadzie biernego bezpieczeństwa. Do zalet tego reaktora można odnieść wymianę paliwa podczas ruchu elektrowni operację, której w przypadku reaktorów posiadających zbiorniki ciśnieniowe, przeprowadzić się nie da. Wymaga bowiem zdemontowania górnej pokrywy 12

13 Tabela 4. Parametry elektrowni jądrowych z reaktorami typu WGERS Parametr WGERS-850 WGERS-1700 Moc reaktora; elektryczna/cieplna /3780 Wydatek pary na turbinę w t/h Parametry pary na wlocie do turbiny - ciśnienie [kg/cm 2 ] 240 (ok.24 MPa) - temperatura [ C] 540 Współczynnik sprawności, brutto/netto, % 45,5 / 43,7 Temperatura wody zasilającej [ C] 250 Liczba kanałów paliwowych Wysokość rdzenia [m] 7 Średnica zewnętrzna/grubość koszulki elementu 10,5 / 0,6 paliwowego [mm] Materiał koszulki stal chromoniklowa Okres eksploatacji 50 lat 13

14 Rys. 12. Reaktor rosyjski typu WGERS o mocy elektrycznej 850 MWe; 1 - obudowa bezpieczeństwa (containment), 2 zbiorniki BUCR, 3 -maszyna załadowcza kanałów paliwowych, 4 rurociąg parowy, 5 rurociąg wody zasilającej, 6- kolektor rozdzielczy, 7 układ rurociągów, 8 reaktor, 9 zbiornik rozbryzgowy Podstawową częścią reaktora stanowi kanał paliwowy (rys. 13) wykonany w postaci rury Fielda, w którym dopływ zimnego chłodziwa do zewnętrznej szczeliny pozwala utrzymać temperaturę bloków grafitowych i metalowych konstrukcji na odpowiednim poziomie. Ceramiczno metalowa struktura paliwa (rys 14) posiada następujące zalety: 1) kompensuje puchnięcie paliwa, będącego głównie skutkiem powstawania gazów w procesie reakcji rozszczepienia jąder uranu, 2) zatrzymuje ok. 90 % produktów rozszczepienia w granulkach UO 2, 3) zwiększa stopień wypalenia paliwa, 14

15 4) sprzyja powstawaniu względnie niskich temperatur paliwa i koszulki: C, 5) akumuluje małą ilość ciepła, co ułatwia powyłączeniowe chłodzenie reaktora, 6) w przypadku awaryjnego uszkodzenia koszulki elementu, 2 3 krotnie zmniejsza ilość uwolnionych promieniotwórczych produktów. Rys. 13. Konstrukcja kanału paliwowego w postaci rury Fielda (rura w rurze); chłodziwo przepływa w układzie przeciwprądowym Rys. 14. Konstrukcja elementu paliwowego Przewiduje się, że koszt jednostkowy mocy instalowanej elektrowni będzie na poziomie 1000 $/kw. Problemy materiałowe Należą zapewne do najważniejszych zagadnień stojących przed ośrodkami badawczo rozwojowymi reaktorów typu SCWR. Dotyczą zarówno paliwa, jak i wszystkich materiałów konstrukcyjnych rdzenia. Ich odporność na warunki panujące w środowisku o wysokich 15

16 wartościach ciśnienia i temperatury chłodziwa w polu promieniowania jądrowego nie są dostatecznie zbadane. W szczególności dotyczy to skutków napromieniania tych materiałów neutronami w ciągu długiego okresu eksploatacji siłowni, które prowadzi do uszkodzeń radiacyjnych siatek krystalicznych, a w konsekwencji do zmian fizycznych i mechanicznych właściwości; będzie miało zasadniczy wpływ na ich wytrzymałość. Dotychczas nie zostały dostatecznie zbadane stopy metali, które mogły by być zastosowane zarówno do wyrobu koszulek elementów paliwowych, jak i materiałów konstrukcyjnych. Idzie głównie o określenie dawek neutronów (fluencji neutronów), pod których wpływem w materiałach występują takie efekty jak zwiększona kruchość i ciągliwość. Innym problemem jest puchnięcie materiałów spowodowane wtrąceniem w ich siatki krystaliczne nowych atomów pierwiastków powstałych z reakcji pochłaniania neutronów. Z punktu widzenia metalurgii metali do najważniejszych reakcji należą: (n,α) i (n,p), w których wyniku tworzą się odpowiednio - hel i wodór. Hel ma praktyczne znaczenie przy napromienianiu stali. Jest głównie wynikiem reakcji pochłaniania neutronów przez zawarte w stali - jądra atomów pierwiastków niklu i boru: 58 Ni(n,γ) 59 Ni 59 Ni(n,He) 56 Fe, 10 B(n,He) 7 Li. Ponadto nie jest także dobrze znane zachowanie się wody w środowisku wysokiej temperatury i promieniowania jądrowego - w szczególności: procesy jej radiolizy i korozyjnego oddziaływania na materiały. * * * Źródła literaturowe 1. < 2. < ATELIERS/27_28_novembre_2006/exposes/HPLWR_Starflinger_Gedepeon.pdf> 3. < 4. < 5. < 6. < 16

ELEKTROWNIE. Czyste energie 2014-01-20. Energetyka jądrowa. Damazy Laudyn Maciej Pawlik Franciszek Strzelczyk

ELEKTROWNIE. Czyste energie 2014-01-20. Energetyka jądrowa. Damazy Laudyn Maciej Pawlik Franciszek Strzelczyk Czyste energie wykład 11 Energetyka jądrowa dr inż. Janusz Teneta Wydział EAIiIB Katedra Automatyki i Inżynierii Biomedycznej AGH Kraków 2014 ELEKTROWNIE Damazy Laudyn Maciej Pawlik Franciszek Strzelczyk

Bardziej szczegółowo

Reakcje rozszczepienia i energetyka jądrowa

Reakcje rozszczepienia i energetyka jądrowa J. Pluta, Metody i technologie jądrowe Reakcje rozszczepienia i energetyka jądrowa Energia wiązania nukleonu w jądrze w funkcji liczby masowej jadra A: E w Warunek energetyczny deficyt masy: Reakcja rozszczepienia

Bardziej szczegółowo

Energetyka Jądrowa. źródło: Wszystko o energetyce jądrowej, AREVA

Energetyka Jądrowa. źródło: Wszystko o energetyce jądrowej, AREVA Energetyka Jądrowa Wykład 5 28 marca 2017 źródło: Wszystko o energetyce jądrowej, AREVA Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Kiedy efektywne

Bardziej szczegółowo

8. TYPY REAKTORÓW JĄDROWYCH

8. TYPY REAKTORÓW JĄDROWYCH Wydział Fizyki UW Podstawy bezpieczeństwa energetyki jądrowej, 2018 8. TYPY REAKTORÓW JĄDROWYCH Dr inż. A. Strupczewski, prof. NCBJ Narodowe Centrum Badań Jądrowych Zasada działania EJ Reaktory BWR i

Bardziej szczegółowo

Czyste energie. Energetyka jądrowa. wykład 13. dr inż. Janusz Teneta. Wydział EAIiIB Katedra Automatyki i Inżynierii Biomedycznej

Czyste energie. Energetyka jądrowa. wykład 13. dr inż. Janusz Teneta. Wydział EAIiIB Katedra Automatyki i Inżynierii Biomedycznej Czyste energie wykład 13 Energetyka jądrowa dr inż. Janusz Teneta Wydział EAIiIB Katedra Automatyki i Inżynierii Biomedycznej AGH Kraków 2013 ELEKTROWNIE Damazy Laudyn Maciej Pawlik Franciszek Strzelczyk

Bardziej szczegółowo

Energetyka jądrowa - reaktor

Energetyka jądrowa - reaktor Energetyka jądrowa - reaktor Autor: Sebastian Brzozowski biuro PTPiREE ( Energia Elektryczna lipiec 2012) Pierwszy na świecie eksperymentalny reaktor jądrowy CP1 (zwany wówczas stosem atomowym") uruchomiono

Bardziej szczegółowo

Energetyka Jądrowa. źródło: Wszystko o energetyce jądrowej, AREVA

Energetyka Jądrowa. źródło: Wszystko o energetyce jądrowej, AREVA Energetyka Jądrowa Wykład 8 26 kwietnia 2016 źródło: Wszystko o energetyce jądrowej, AREVA Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Reakcja

Bardziej szczegółowo

Energetyka Jądrowa. Wykład 11 maj Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Energetyka Jądrowa. Wykład 11 maj Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Energetyka Jądrowa Wykład 11 maj 2017 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Wykład prof. Tadeusza Hilczera (UAM) prezentujący reaktor

Bardziej szczegółowo

Energetyka Jądrowa. źródło: Wszystko o energetyce jądrowej, AREVA

Energetyka Jądrowa. źródło: Wszystko o energetyce jądrowej, AREVA Energetyka Jądrowa Wykład 7 11 kwietnia 2017 źródło: Wszystko o energetyce jądrowej, AREVA Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Moderator

Bardziej szczegółowo

Typy konstrukcyjne reaktorów jądrowych

Typy konstrukcyjne reaktorów jądrowych 44 Typy konstrukcyjne 1) Reaktory zbiornikowe pręt regulacyjny wylot wody podgrzanej H wlot wody zasilającej pręty paliwowe osłona termiczna rdzeń reaktora D Wymiary zbiornika D do 6 m ; H do 20 m grubość

Bardziej szczegółowo

ROZDZIAŁ VII. Kierunki rozwoju energii jądrowej. Produkcja energii w reaktorach fuzji jądrowejj TECHNICAL UNIVERSITY OF CZĘSTOCHOWA

ROZDZIAŁ VII. Kierunki rozwoju energii jądrowej. Produkcja energii w reaktorach fuzji jądrowejj TECHNICAL UNIVERSITY OF CZĘSTOCHOWA Kierunki rozwoju energii jądrowej. Produkcja energii w reaktorach fuzji jądrowejj 1. DOTYCHCZASOWE ROZWIĄZANIA KONSTRUKCYJNE REAKTORÓW ENERGETYCZNYCH Do podstawowych rozwiązań konstrukcyjnych reaktorów

Bardziej szczegółowo

Elektrownie jądrowe (J. Paska)

Elektrownie jądrowe (J. Paska) 1. Energetyczne reaktory jądrowe Elektrownie jądrowe (J. Paska) Rys. 1. Przykładowy schemat reakcji rozszczepienia: 94 140 38 Sr, 54 Xe - fragmenty rozszczepienia Ubytek masy przy rozszczepieniu jądra

Bardziej szczegółowo

Reaktor jądrowy. Schemat. Podstawy fizyki jądrowej - B.Kamys

Reaktor jądrowy. Schemat. Podstawy fizyki jądrowej - B.Kamys Reaktor jądrowy Schemat Elementy reaktora Rdzeń Pręty paliwowe (np. UO 2 ) Pręty regulacyjne i bezpieczeństwa (kadm, bor) Moderator (woda, ciężka woda, grafit, ) Kanały chłodzenia (woda, ciężka woda, sód,

Bardziej szczegółowo

Podstawy bezpieczeństwa energetyki jądrowej, Czarnobyl jak doszło do awarii

Podstawy bezpieczeństwa energetyki jądrowej, Czarnobyl jak doszło do awarii Wydział Fizyki UW Podstawy bezpieczeństwa energetyki jądrowej, 2018 6. Czarnobyl jak doszło do awarii Prof. NCBJ dr inż. A. Strupczewski Plan wykładu 1 1. Ogólna charakterystyka reaktora RBMK 2. Wady konstrukcyjne

Bardziej szczegółowo

JAPOŃSKA ELEKTROWNIA JĄDROWA FUKUSHIMA 1

JAPOŃSKA ELEKTROWNIA JĄDROWA FUKUSHIMA 1 JAPOŃSKA ELEKTROWNIA JĄDROWA FUKUSHIMA 1 * SEKWENCJA ZDARZEŃ, KONSTRUKCJA I PARAMETRY REAKTORÓW * Jerzy Kubowski Jedenastego marca 2011 r. w japońskiej elektrowni jądrowej, należącej do największych tego

Bardziej szczegółowo

Model elektrowni jądrowej

Model elektrowni jądrowej Model elektrowni jądrowej Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z budową i działaniem elektrowni jądrowej. Wstęp Rozszczepienie jądra atomowego to proces polegający na rozpadzie wzbudzonego

Bardziej szczegółowo

opracował: mgr inż. Piotr Marchel Symulacyjne badanie elektrowni jądrowej

opracował: mgr inż. Piotr Marchel Symulacyjne badanie elektrowni jądrowej POLITECHNIKA WARSZAWSKA Instytut Elektroenergetyki, Zakład Elektrowni i Gospodarki Elektroenergetycznej Elektrownie laboratorium opracował: mgr inż. Piotr Marchel Ćwiczenie Symulacyjne badanie elektrowni

Bardziej szczegółowo

Elektrownia Jądrowa Loviisa (SF) I. Podział Reaktorów - kryteria

Elektrownia Jądrowa Loviisa (SF) I. Podział Reaktorów - kryteria Elektrownia Jądrowa Loviisa (SF) I. Podział Reaktorów - kryteria Energetyczne reaktory jądrowe 1) zastosowanie 2) widmo neutronów 3) chłodziwo/moderator 4) paliwo 5) budowa bjaśnienia skrótów 6) projekty

Bardziej szczegółowo

Energetyka Jądrowa. Wykład 10 5 maja 2015. Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.

Energetyka Jądrowa. Wykład 10 5 maja 2015. Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu. Energetyka Jądrowa Wykład 10 5 maja 2015 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Reaktor ATMEA 1 Reaktor ten będzie oferowany przez spółkę

Bardziej szczegółowo

Skonstruowanie litowo-deuterowego konwertera neutronów termicznych na neutrony prędkie o energii 14 MeV w reaktorze MARIA (Etap 14, 5.1.

Skonstruowanie litowo-deuterowego konwertera neutronów termicznych na neutrony prędkie o energii 14 MeV w reaktorze MARIA (Etap 14, 5.1. Skonstruowanie litowo-deuterowego konwertera neutronów termicznych na neutrony prędkie o energii 14 MeV w reaktorze MARIA (Etap 14, 5.1.) Krzysztof Pytel, Rafał Prokopowicz Badanie wytrzymałości radiacyjnej

Bardziej szczegółowo

Obiegi gazowe w maszynach cieplnych

Obiegi gazowe w maszynach cieplnych OBIEGI GAZOWE Obieg cykl przemian, po przejściu których stan końcowy czynnika jest identyczny ze stanem początkowym. Obrazem geometrycznym obiegu jest linia zamknięta. Dla obiegu termodynamicznego: przyrost

Bardziej szczegółowo

Rozszczepienie (fission)

Rozszczepienie (fission) Rozszczepienie (fission) Odkryte w 1938 r. przy naświetlaniu jąder 238 U neutronami Zaobserwowano rozpad beta produktów reakcji, przypisany początkowo radowi 226 Ra Hahn i Strassmann pokazali metodami

Bardziej szczegółowo

ELEKTROWNIA JĄDROWA, TO NIE BOMBA Jerzy Kubowski

ELEKTROWNIA JĄDROWA, TO NIE BOMBA Jerzy Kubowski ELEKTROWNIA JĄDROWA, TO NIE BOMBA Jerzy Kubowski Elektrownię jądrową z bombą atomową łączy tylko jedno: ich działania są oparte na wykorzystaniu tego samego zjawiska, jakim jest rozszczepienie jądra atomu

Bardziej szczegółowo

Energetyka Jądrowa. Wykład 9 9 maja Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Energetyka Jądrowa. Wykład 9 9 maja Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Energetyka Jądrowa Wykład 9 9 maja 2017 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Reaktor ATMEA 1 Reaktor ten będzie oferowany przez spółkę

Bardziej szczegółowo

Przykładowe kolokwium nr 1 dla kursu. Przenoszenie ciepła ćwiczenia

Przykładowe kolokwium nr 1 dla kursu. Przenoszenie ciepła ćwiczenia Przykładowe kolokwium nr 1 dla kursu Grupa A Zad. 1. Określić różnicę temperatur zewnętrznej i wewnętrznej strony stalowej ścianki kotła parowego działającego przy nadciśnieniu pn = 14 bar. Grubość ścianki

Bardziej szczegółowo

Materiały Reaktorowe. Efekty fizyczne uszkodzeń radiacyjnych c.d.

Materiały Reaktorowe. Efekty fizyczne uszkodzeń radiacyjnych c.d. Materiały Reaktorowe Efekty fizyczne uszkodzeń radiacyjnych c.d. Luki (pory) i pęcherze Powstawanie i formowanie luk zostało zaobserwowane w 1967 r. Podczas formowania luk w materiale następuje jego puchnięcie

Bardziej szczegółowo

Energetyka dział gospodarki obejmujący przetwarzanie, gromadzenie, przenoszenie i wykorzystanie energii

Energetyka dział gospodarki obejmujący przetwarzanie, gromadzenie, przenoszenie i wykorzystanie energii Podstawowe pojęcia gospodarki energetycznej WYKŁAD 1 Opracował: mgr inż. Marcin Wieczorek www.marwie.net.pl Energetyka dział gospodarki obejmujący przetwarzanie, gromadzenie, przenoszenie i wykorzystanie

Bardziej szczegółowo

Chłodnica pary zasilającej

Chłodnica pary zasilającej Chłodnica pary zasilającej CZŁONEK GRUPY ARCA FLOW Zastosowanie chłodnic pary zasilającej ARTES Chłodnice pary zasilającej są instalacjami chłodzenia do regulacji temperatury pary i gorących gazów. Ich

Bardziej szczegółowo

Układ siłowni z organicznymi czynnikami roboczymi i sposób zwiększania wykorzystania energii nośnika ciepła zasilającego siłownię jednobiegową

Układ siłowni z organicznymi czynnikami roboczymi i sposób zwiększania wykorzystania energii nośnika ciepła zasilającego siłownię jednobiegową PL 217365 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 217365 (13) B1 (21) Numer zgłoszenia: 395879 (51) Int.Cl. F01K 23/04 (2006.01) F01K 3/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej

Bardziej szczegółowo

Para wodna najczęściej jest produkowana w warunkach stałego ciśnienia.

Para wodna najczęściej jest produkowana w warunkach stałego ciśnienia. PARA WODNA 1. PRZEMIANY FAZOWE SUBSTANCJI JEDNORODNYCH Para wodna najczęściej jest produkowana w warunkach stałego ciśnienia. Przy niezmiennym ciśnieniu zmiana wody o stanie początkowym odpowiadającym

Bardziej szczegółowo

INSTYTUT FIZYKI JĄDROWEJ im. Henryka Niewodniczańskiego Polskiej Akademii Nauk

INSTYTUT FIZYKI JĄDROWEJ im. Henryka Niewodniczańskiego Polskiej Akademii Nauk INSTYTUT FIZYKI JĄDROWEJ im. Henryka Niewodniczańskiego Polskiej Akademii Nauk 日本 The Fukushima INuclear Power Plant 福島第一原子力発電所 Fukushima Dai-Ichi Krzysztof Kozak INSTYTUT FIZYKI JĄDROWEJ PAN ROZSZCZEPIENIE

Bardziej szczegółowo

Reaktor badawczy MARIA stan techniczny i wykorzystanie. Grzegorz Krzysztoszek

Reaktor badawczy MARIA stan techniczny i wykorzystanie. Grzegorz Krzysztoszek Nauka i technika wobec wyzwania budowy elektrowni jądrowej Mądralin 2013 Reaktor badawczy MARIA stan techniczny i wykorzystanie Grzegorz Krzysztoszek Warszawa 13-15 lutego 2013 ITC, Politechnika Warszawska

Bardziej szczegółowo

Energetyka Jądrowa. Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Wykład 8 25 kwietnia 2017

Energetyka Jądrowa. Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów  Wykład 8 25 kwietnia 2017 Energetyka Jądrowa Wykład 8 25 kwietnia 2017 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Typy i generacje reaktorów Teoretycznie istnieje daleko

Bardziej szczegółowo

Techniki niskotemperaturowe w medycynie

Techniki niskotemperaturowe w medycynie INŻYNIERIA MECHANICZNO-MEDYCZNA WYDZIAŁ MECHANICZNY POLITECHNIKA GDAŃSKA Techniki niskotemperaturowe w medycynie Temat: Lewobieżny obieg gazowy Joule a a obieg parowy Lindego Prowadzący: dr inż. Zenon

Bardziej szczegółowo

Mgr inż. Marta DROSIŃSKA Politechnika Gdańska, Wydział Oceanotechniki i Okrętownictwa

Mgr inż. Marta DROSIŃSKA Politechnika Gdańska, Wydział Oceanotechniki i Okrętownictwa MECHANIK 7/2014 Mgr inż. Marta DROSIŃSKA Politechnika Gdańska, Wydział Oceanotechniki i Okrętownictwa WYZNACZENIE CHARAKTERYSTYK EKSPLOATACYJNYCH SIŁOWNI TURBINOWEJ Z REAKTOREM WYSOKOTEMPERATUROWYM W ZMIENNYCH

Bardziej szczegółowo

FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych

FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych Wykład 10 Energetyka jądrowa Rozszczepienie 235 92 236 A1 A2 U n 92U Z F1 Z F2 2,5n 1 2 Q liczba neutronów 0 8, średnio 2,5 najbardziej prawdopodobne

Bardziej szczegółowo

Reakcja rozszczepienia

Reakcja rozszczepienia Reakcje jądrowe Reakcja rozszczepienia W reakcji rozszczepienia neutron powoduje rozszczepienie cięższego jądra na dwa lub więcej mniejsze jadra lżejszych pierwiastków oraz kilka neutronów. Podczas tej

Bardziej szczegółowo

HTR - wysokotemperaturowy reaktor jądrowy przyjazny środowisku. Jerzy Cetnar AGH

HTR - wysokotemperaturowy reaktor jądrowy przyjazny środowisku. Jerzy Cetnar AGH HTR - wysokotemperaturowy reaktor jądrowy przyjazny środowisku Jerzy Cetnar AGH Rodzaje odziaływań rekatorów jądrowych na środowisko człowieka Bezpośrednie Zagrożenia w czasie eksploatacji Zagrożeniezwiązane

Bardziej szczegółowo

Typowe konstrukcje kotłów parowych. Maszyny i urządzenia Klasa II TD

Typowe konstrukcje kotłów parowych. Maszyny i urządzenia Klasa II TD Typowe konstrukcje kotłów parowych Maszyny i urządzenia Klasa II TD 1 Walczak podstawowy element typowych konstrukcji kotłów parowych zbudowany z kilku pierścieniowych członów z blachy stalowej, zakończony

Bardziej szczegółowo

POLITECHNIKA GDAŃSKA

POLITECHNIKA GDAŃSKA POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY Temat: Proces wrzenia czynników chłodniczych w rurach o rozwiniętej powierzchni Wykonał Korpalski Radosław Koniszewski Adam Sem. 8 SiUChKl 1 Gdańsk 2008 Spis treści

Bardziej szczegółowo

Promieniowanie jonizujące

Promieniowanie jonizujące Promieniowanie jonizujące Wykład IV Krzysztof Golec-Biernat Promieniotwórczość naturalna Uniwersytet Rzeszowski, 22 listopada 2017 Wykład IV Krzysztof Golec-Biernat Promieniowanie jonizujące 1 / 21 Reakcja

Bardziej szczegółowo

Spis treści 1 Przedsięwzięcie 11 1.1 Lider przedsięwzięcia 11 1.2 Cel i uzasadnienie przedsięwzięcia 12 1.3 Lokalizacja i zapotrzebowanie terenu 13

Spis treści 1 Przedsięwzięcie 11 1.1 Lider przedsięwzięcia 11 1.2 Cel i uzasadnienie przedsięwzięcia 12 1.3 Lokalizacja i zapotrzebowanie terenu 13 Spis treści 1 Przedsięwzięcie 11 1.1 Lider przedsięwzięcia 11 1.2 Cel i uzasadnienie przedsięwzięcia 12 1.3 Lokalizacja i zapotrzebowanie terenu 13 1.4 Wstępny harmonogram realizacji 13 1.5 Powiązania

Bardziej szczegółowo

CYKL PALIWOWY: OTWARTY CZY ZAMKNIĘTY CZY TO WYSTARCZY?

CYKL PALIWOWY: OTWARTY CZY ZAMKNIĘTY CZY TO WYSTARCZY? CYKL PALIWOWY: OTWARTY CZY ZAMKNIĘTY CZY TO WYSTARCZY? Stefan Chwaszczewski Instytut Energii Atomowej POLATOM W obecnie eksploatowanych reaktorach energetycznych, w procesach rozszczepienia jądrowego wykorzystywane

Bardziej szczegółowo

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia wyrównawcze z fizyki -Zestaw 4 -eoria ermodynamika Równanie stanu gazu doskonałego Izoprzemiany gazowe Energia wewnętrzna gazu doskonałego Praca i ciepło w przemianach gazowych Silniki cieplne

Bardziej szczegółowo

K raków 26 ma rca 2011 r.

K raków 26 ma rca 2011 r. K raków 26 ma rca 2011 r. Zadania do ćwiczeń z Podstaw Fizyki na dzień 1 kwietnia 2011 r. r. dla Grupy II Zadanie 1. 1 kg/s pary wo dne j o ciśnieniu 150 atm i temperaturze 342 0 C wpada do t urbiny z

Bardziej szczegółowo

PLAN WYNIKOWY MASZYNOZNAWSTWO OGÓLNE

PLAN WYNIKOWY MASZYNOZNAWSTWO OGÓLNE LN WYNIKOWY MSZYNOZNWSTWO OGÓLNE KLS I technik mechanik o specjalizacji obsługa i naprawa pojazdów samochodowych. Ilość godzin 38 tygodni x 1 godzina = 38 godzin rogram ZS 17/2004/19 2115/MEN 1998.04.16

Bardziej szczegółowo

Dwie podstawowe konstrukcje kotłów z cyrkulującym złożem. Cyklony zewnętrzne Konstrukcja COMPACT

Dwie podstawowe konstrukcje kotłów z cyrkulującym złożem. Cyklony zewnętrzne Konstrukcja COMPACT Dr inż. Ryszard Głąbik, Zakład Kotłów i Turbin Kotły fluidalne to jednostki wytwarzające w sposób ekologiczny energię cieplną w postaci gorącej wody lub pary z paliwa stałego (węgiel, drewno, osady z oczyszczalni

Bardziej szczegółowo

wrzenie - np.: kotły parowe, wytwornice pary, chłodziarki parowe, chłodzenie (np. reaktory jądrowe, silniki rakietowe, magnesy nadprzewodzące)

wrzenie - np.: kotły parowe, wytwornice pary, chłodziarki parowe, chłodzenie (np. reaktory jądrowe, silniki rakietowe, magnesy nadprzewodzące) Wymiana ciepła podczas wrzenia 1. Wstęp wrzenie - np.: kotły parowe, wytwornice pary, chłodziarki parowe, chłodzenie (np. reaktory jądrowe, silniki rakietowe, magnesy nadprzewodzące) współczynnik wnikania

Bardziej szczegółowo

3. Przejścia fazowe pomiędzy trzema stanami skupienia materii:

3. Przejścia fazowe pomiędzy trzema stanami skupienia materii: Temat: Zmiany stanu skupienia. 1. Energia sieci krystalicznej- wielkość dzięki której można oszacować siły przyciągania w krysztale 2. Energia wiązania sieci krystalicznej- ilość energii potrzebnej do

Bardziej szczegółowo

Wykład 3. Diagramy fazowe P-v-T dla substancji czystych w trzech stanach. skupienia. skupienia

Wykład 3. Diagramy fazowe P-v-T dla substancji czystych w trzech stanach. skupienia. skupienia Wykład 3 Substancje proste i czyste Przemiany w systemie dwufazowym woda para wodna Diagram T-v dla przejścia fazowego woda para wodna Diagramy T-v i P-v dla wody Punkt krytyczny Temperatura nasycenia

Bardziej szczegółowo

Wykorzystanie ciepła odpadowego dla redukcji zużycia energii i emisji 6.07.09 1

Wykorzystanie ciepła odpadowego dla redukcji zużycia energii i emisji 6.07.09 1 Wykorzystanie ciepła odpadowego dla redukcji zużycia energii i emisji 6.07.09 1 Teza ciepło niskotemperaturowe można skutecznie przetwarzać na energię elektryczną; można w tym celu wykorzystywać ciepło

Bardziej szczegółowo

Wydział Elektryczny Katedra Elektroenergetyki. Analiza stanów pracy elektrowni jądrowej

Wydział Elektryczny Katedra Elektroenergetyki. Analiza stanów pracy elektrowni jądrowej Politechnika Białostocka Wydział Elektryczny Katedra Elektroenergetyki Instrukcja do zajęć laboratoryjnych Temat ćwiczenia: Analiza stanów pracy elektrowni jądrowej Numer ćwiczenia: 4 Laboratorium z przedmiotu:

Bardziej szczegółowo

Produkcja paliwa jądrowego, funkcjonowanie elektrowni jądrowej, systemy bezpieczeństwa elektrowni.

Produkcja paliwa jądrowego, funkcjonowanie elektrowni jądrowej, systemy bezpieczeństwa elektrowni. Produkcja paliwa jądrowego, funkcjonowanie elektrowni jądrowej, systemy bezpieczeństwa elektrowni. Zamiana UF 6 na paliwo jądrowe: 1) zamiana UF 6 na UO 2, 2) wytwarzanie pastylek, 3) wytwarzanie prętów

Bardziej szczegółowo

WSPÓŁCZESNE TECHNOLOGIE JĄDROWE W ENERGETYCE 1

WSPÓŁCZESNE TECHNOLOGIE JĄDROWE W ENERGETYCE 1 Współczesne technologie jądrowe w energetyce 73 WSPÓŁCZESNE TECHNOLOGIE JĄDROWE W ENERGETYCE 1 prof dr hab inż Jacek Marecki / Politechnika Gdańska 1 WPROWADZENIE Do awangardowych dziedzin nauki i techniki,

Bardziej szczegółowo

Energetyka Jądrowa. Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Wykład 9 28 kwietnia 2015

Energetyka Jądrowa. Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Wykład 9 28 kwietnia 2015 Energetyka Jądrowa Wykład 9 28 kwietnia 2015 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Typy i generacje reaktorów Teoretycznie istnieje daleko

Bardziej szczegółowo

Warunki izochoryczno-izotermiczne

Warunki izochoryczno-izotermiczne WYKŁAD 5 Pojęcie potencjału chemicznego. Układy jednoskładnikowe W zależności od warunków termodynamicznych potencjał chemiczny substancji czystej definiujemy następująco: Warunki izobaryczno-izotermiczne

Bardziej szczegółowo

Równanie gazu doskonałego

Równanie gazu doskonałego Równanie gazu doskonałego Gaz doskonały to abstrakcyjny model gazu, który zakłada, że gaz jest zbiorem sprężyście zderzających się kulek. Wiele gazów w warunkach normalnych zachowuje się jak gaz doskonały.

Bardziej szczegółowo

Instrukcja stanowiskowa

Instrukcja stanowiskowa POLITECHNIKA WARSZAWSKA Wydział Budownictwa, Mechaniki i Petrochemii Instytut Inżynierii Mechanicznej w Płocku Zakład Aparatury Przemysłowej LABORATORIUM WYMIANY CIEPŁA I MASY Instrukcja stanowiskowa Temat:

Bardziej szczegółowo

POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY

POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY AUTOMATYKA CHŁODNICZA TEMAT: Racje techniczne wykorzystania rurki kapilarnej lub dyszy w małych urządzeniach chłodniczych i sprężarkowych pompach ciepła Mateusz

Bardziej szczegółowo

Reaktory Wodne Wrzące (BWR)

Reaktory Wodne Wrzące (BWR) Reaktory Wodne Wrzące (BWR) K. Różycki, K. Samul Instytut Problemów Jądrowych Warszawa, 21 III 2011 1 Spis treści: Działanie reaktora Obudowa bezpieczeostwa Systemy zabezpieczeo Przykładowy przebieg awarii

Bardziej szczegółowo

Dr inż. Andrzej Tatarek. Siłownie cieplne

Dr inż. Andrzej Tatarek. Siłownie cieplne Dr inż. Andrzej Tatarek Siłownie cieplne 1 Wykład 1 Podziały i klasyfikacje elektrowni Moc elektrowni pojęcia podstawowe 2 Energia elektryczna szczególnie wygodny i rozpowszechniony nośnik energii Łatwość

Bardziej szczegółowo

BILANS CIEPLNY CZYNNIKI ENERGETYCZNE

BILANS CIEPLNY CZYNNIKI ENERGETYCZNE POLITECHNIKA WARSZAWSKA Wydział Chemiczny LABORATORIUM PROCESÓW TECHNOLOGICZNYCH PROJEKTOWANIE PROCESÓW TECHNOLOGICZNYCH Ludwik Synoradzki, Jerzy Wisialski BILANS CIEPLNY CZYNNIKI ENERGETYCZNE Jerzy Wisialski

Bardziej szczegółowo

Technologia reaktorów WWER

Technologia reaktorów WWER Technologia reaktorów WWER Spośród ponad 400 reaktorów energetycznych pracujących dziś na świecie zdecydowaną większość stanowią reaktory lekkowodne. Wśród nich najwięcej jest reaktorów wodnych ciśnieniowych.

Bardziej szczegółowo

Gospodarka wypalonym paliwem jądrowym analiza opcji dla energetyki jądrowej w Polsce

Gospodarka wypalonym paliwem jądrowym analiza opcji dla energetyki jądrowej w Polsce Gospodarka wypalonym paliwem jądrowym analiza opcji dla energetyki jądrowej w Polsce Stefan Chwaszczewski Program energetyki jądrowej w Polsce: Zainstalowana moc: 6 000 MWe; Współczynnik wykorzystania

Bardziej szczegółowo

Obieg Ackeret Kellera i lewobieżny obieg Philipsa (Stirlinga) podstawy teoretyczne i techniczne możliwości realizacji

Obieg Ackeret Kellera i lewobieżny obieg Philipsa (Stirlinga) podstawy teoretyczne i techniczne możliwości realizacji Obieg Ackeret Kellera i lewobieżny obieg Philipsa (Stirlinga) podstawy teoretyczne i techniczne możliwości realizacji Monika Litwińska Inżynieria Mechaniczno-Medyczna GDAŃSKA 2012 1. Obieg termodynamiczny

Bardziej szczegółowo

BADANIE WYMIENNIKA CIEPŁA TYPU RURA W RURZE

BADANIE WYMIENNIKA CIEPŁA TYPU RURA W RURZE BDNIE WYMIENNIK CIEPŁ TYPU RUR W RURZE. Cel ćwiczenia Celem ćwiczenia jest zapoznanie z konstrukcją, metodyką obliczeń cieplnych oraz poznanie procesu przenikania ciepła w rurowych wymiennikach ciepła..

Bardziej szczegółowo

Budowa układu wysokosprawnej kogeneracji w Opolu kontynuacją rozwoju kogeneracji w Grupie Kapitałowej ECO S.A. Poznań

Budowa układu wysokosprawnej kogeneracji w Opolu kontynuacją rozwoju kogeneracji w Grupie Kapitałowej ECO S.A. Poznań Budowa układu wysokosprawnej kogeneracji w Opolu kontynuacją rozwoju kogeneracji w Grupie Kapitałowej ECO S.A. Poznań 24-25.04. 2012r EC oddział Opole Podstawowe dane Produkcja roczna energii cieplnej

Bardziej szczegółowo

PL B1. KABUSHIKI KAISHA TOSHIBA, Tokyo, JP , JP, ONO YASUNORI, Tokyo, JP BUP 05/

PL B1. KABUSHIKI KAISHA TOSHIBA, Tokyo, JP , JP, ONO YASUNORI, Tokyo, JP BUP 05/ PL 216230 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 216230 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 383172 (22) Data zgłoszenia: 20.08.2007 (51) Int.Cl.

Bardziej szczegółowo

Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej

Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej w Systemach Technicznych Symulacja prosta dyszy pomiarowej Bendemanna Opracował: dr inż. Andrzej J. Zmysłowski

Bardziej szczegółowo

Otrzymywanie wodoru M

Otrzymywanie wodoru M Otrzymywanie wodoru M Własności wodoru Wodór to najlżejszy pierwiastek świata, składa się on tylko z 1 protonu i krążącego wokół niego elektronu. W stanie wolnym występuje jako cząsteczka dwuatomowa H2.

Bardziej szczegółowo

Laboratorium z Konwersji Energii. Kolektor słoneczny

Laboratorium z Konwersji Energii. Kolektor słoneczny Laboratorium z Konwersji Energii Kolektor słoneczny 1.0 WSTĘP Kolektor słoneczny to urządzenie służące do bezpośredniej konwersji energii promieniowania słonecznego na ciepło użytkowe. Podział urządzeń

Bardziej szczegółowo

Pomiary ciepła spalania i wartości opałowej paliw gazowych

Pomiary ciepła spalania i wartości opałowej paliw gazowych Pomiary ciepła spalania i wartości opałowej paliw gazowych Ciepło spalania Q s jest to ilość ciepła otrzymana przy spalaniu całkowitym i zupełnym jednostki paliwa wagowej lub objętościowej, gdy produkty

Bardziej szczegółowo

Rodzaj nadawanych uprawnień: obsługa, konserwacja, remont, montaż, kontrolnopomiarowe.

Rodzaj nadawanych uprawnień: obsługa, konserwacja, remont, montaż, kontrolnopomiarowe. Kurs energetyczny G2 (6 godzin zajęć) Rodzaj nadawanych uprawnień: obsługa, konserwacja, remont, montaż, kontrolnopomiarowe. Zakres uprawnień: a. piece przemysłowe o mocy powyżej 50 kw; b. przemysłowe

Bardziej szczegółowo

Materiały do budowy kotłów na parametry nadkrytyczne

Materiały do budowy kotłów na parametry nadkrytyczne Materiały do budowy kotłów na parametry nadkrytyczne Autor: prof. dr hab. inż. Adam Hernas, Instytut Nauki o Materiałach, Politechnika Śląska ( Nowa Energia 5-6/2013) Rozwój krajowej energetyki warunkowany

Bardziej szczegółowo

Innowacyjny układ odzysku ciepła ze spalin dobry przykład

Innowacyjny układ odzysku ciepła ze spalin dobry przykład Innowacyjny układ odzysku ciepła ze spalin dobry przykład Autor: Piotr Kirpsza - ENEA Wytwarzanie ("Czysta Energia" - nr 1/2015) W grudniu 2012 r. Elektrociepłownia Białystok uruchomiła drugi fluidalny

Bardziej szczegółowo

Elementy Fizyki Jądrowej. Wykład 8 Rozszczepienie jąder i fizyka neutronów

Elementy Fizyki Jądrowej. Wykład 8 Rozszczepienie jąder i fizyka neutronów Elementy Fizyki Jądrowej Wykład 8 Rozszczepienie jąder i fizyka neutronów Rozszczepienie lata 30 XX w. poszukiwanie nowych nuklidów n + 238 92U 239 92U + reakcja przez jądro złożone 239 92 U 239 93Np +

Bardziej szczegółowo

Reaktory jądrowe generacji III/III+, czyli poprawa bezpieczeństwa, wydajności oraz zmniejszenie ilości odpadów

Reaktory jądrowe generacji III/III+, czyli poprawa bezpieczeństwa, wydajności oraz zmniejszenie ilości odpadów Reaktory jądrowe generacji III/III+, czyli poprawa bezpieczeństwa, wydajności oraz zmniejszenie ilości odpadów Igor Królikowski, Michał Orliński Katedra Energetyki Jądrowej, Wydział Energetyki i Paliw

Bardziej szczegółowo

Budowa atomu. Izotopy

Budowa atomu. Izotopy Budowa atomu. Izotopy Zadanie. atomu lub jonu Fe 3+ atomowa Z 9 masowa A Liczba protonów elektronów neutronów 64 35 35 36 Konfiguracja elektronowa Zadanie 2. Atom pewnego pierwiastka chemicznego o masie

Bardziej szczegółowo

klasyfikacja kotłów wg kryterium technologia spalania: - rusztowe, - pyłowe, - fluidalne, - paleniska specjalne cyklonowe

klasyfikacja kotłów wg kryterium technologia spalania: - rusztowe, - pyłowe, - fluidalne, - paleniska specjalne cyklonowe Dr inż. Ryszard Głąbik, Zakład Kotłów i Turbin Pojęcia, określenia, definicje Klasyfikacja kotłów, kryteria klasyfikacji Współspalanie w kotłach różnych typów Przegląd konstrukcji Współczesna budowa bloków

Bardziej szczegółowo

Dr inż. Andrzej Tatarek. Siłownie cieplne

Dr inż. Andrzej Tatarek. Siłownie cieplne Dr inż. Andrzej Tatarek Siłownie cieplne 1 Wykład 8 Układy cieplne elektrowni kondensacyjnych 2 Elementy układów cieplnych Wymienniki ciepła Wymiennik ciepła - element w którym występują najczęściej dwa

Bardziej szczegółowo

Czym jest elektrownia jądrowa? Fabryka prądu, gdzie źródłem ciepła jest reaktor jądrowy (zamiast kotła parowego). Ciepło to jest wynikiem

Czym jest elektrownia jądrowa? Fabryka prądu, gdzie źródłem ciepła jest reaktor jądrowy (zamiast kotła parowego). Ciepło to jest wynikiem Czym jest elektrownia jądrowa? Fabryka prądu, gdzie źródłem ciepła jest reaktor jądrowy (zamiast kotła parowego). Ciepło to jest wynikiem rozszczepienia jąder atomu we wnętrzu reaktora. Paliwem jądrowym

Bardziej szczegółowo

4. Wytwarzanie energii elektrycznej i cieplnej 4.1. Uwagi ogólne

4. Wytwarzanie energii elektrycznej i cieplnej 4.1. Uwagi ogólne 4. Wytwarzanie energii elektrycznej i cieplnej 4.1. Uwagi ogólne Elektrownia zakład produkujący energię elektryczną w celach komercyjnych; Ciepłownia zakład produkujący energię cieplną w postaci pary lub

Bardziej szczegółowo

Energetyka konwencjonalna odnawialna i jądrowa

Energetyka konwencjonalna odnawialna i jądrowa Energetyka konwencjonalna odnawialna i jądrowa Wykład 10-11.XII.2018 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Energetyka Jądrowa 11.XII.2018

Bardziej szczegółowo

Zagospodarowanie energii odpadowej w energetyce na przykładzie współpracy bloku gazowo-parowego z obiegiem ORC.

Zagospodarowanie energii odpadowej w energetyce na przykładzie współpracy bloku gazowo-parowego z obiegiem ORC. Zagospodarowanie energii odpadowej w energetyce na przykładzie współpracy bloku gazowo-parowego z obiegiem ORC. Dariusz Mikielewicz, Jan Wajs, Michał Bajor Politechnika Gdańska Wydział Mechaniczny Polska

Bardziej szczegółowo

APV Hybrydowe Spawane Płytowe Wymienniki Ciepła

APV Hybrydowe Spawane Płytowe Wymienniki Ciepła APV Hybrydowe Spawane Płytowe Wymienniki Ciepła Technologia Hybrydowe Wymienniki Ciepła APV są szeroko wykorzystywane w przemyśle od 98 roku. Szeroki zakres możliwych tworzonych konstrukcji w systemach

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - - zadania z fizyki, wzory fizyczne, fizyka matura

pobrano z serwisu Fizyka Dla Każdego -  - zadania z fizyki, wzory fizyczne, fizyka matura 14. Fizyka jądrowa zadania z arkusza I 14.10 14.1 14.2 14.11 14.3 14.12 14.4 14.5 14.6 14.13 14.7 14.8 14.14 14.9 14. Fizyka jądrowa - 1 - 14.15 14.23 14.16 14.17 14.24 14.18 14.25 14.19 14.26 14.27 14.20

Bardziej szczegółowo

Specyficzne własności helu w temperaturach kriogenicznych

Specyficzne własności helu w temperaturach kriogenicznych POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY Specyficzne własności helu w temperaturach kriogenicznych Opracowała: Joanna Pałdyna W ramach przedmiotu: Techniki niskotemperaturowe w medycynie Kierunek studiów:

Bardziej szczegółowo

Zadanie 1. Zadanie 2.

Zadanie 1. Zadanie 2. Zadanie 1. Określić nadciśnienie powietrza panujące w rurociągu R za pomocą U-rurki, w której znajduje się woda. Różnica poziomów wody w U-rurce wynosi h = 100 cm. Zadanie 2. Określić podciśnienie i ciśnienie

Bardziej szczegółowo

Dane potrzebne do wykonania projektu z przedmiotu technologia odlewów precyzyjnych.

Dane potrzebne do wykonania projektu z przedmiotu technologia odlewów precyzyjnych. Dane potrzebne do wykonania projektu z przedmiotu technologia odlewów precyzyjnych. 1. Obliczanie elementów układu wlewowo zasilającego Rys 1 Elemety układu wlewowo - zasilającego gdzie: ZW zbiornik wlewowy

Bardziej szczegółowo

ANALIZA PORÓWNAWCZA KOSZTÓW WYTWARZANIA ENERGII ELEKTRYCZNEJ. Janusz Sowiński Instytut Elektroenergetyki Politechnika Częstochowska

ANALIZA PORÓWNAWCZA KOSZTÓW WYTWARZANIA ENERGII ELEKTRYCZNEJ. Janusz Sowiński Instytut Elektroenergetyki Politechnika Częstochowska ANALIZA PORÓWNAWCZA KOSZTÓW WYTWARZANIA ENERGII ELEKTRYCZNEJ Janusz Sowiński Instytut Elektroenergetyki Politechnika Częstochowska Przewidywany rozwój energetyki światowej do 2050 umiarkowany wzrost zużycia

Bardziej szczegółowo

Skojarzone wytwarzanie energii elektrycznej i ciepła w źródłach rozproszonych (J. Paska)

Skojarzone wytwarzanie energii elektrycznej i ciepła w źródłach rozproszonych (J. Paska) 1. Idea wytwarzania skojarzonego w źródłach rozproszonych Rys. 1. Wytwarzanie energii elektrycznej i ciepła: rozdzielone (a) w elektrowni kondensacyjnej i ciepłowni oraz skojarzone (b) w elektrociepłowni

Bardziej szczegółowo

57 Zjazd PTChem i SITPChem Częstochowa, Promotowany miedzią niklowy katalizator do uwodornienia benzenu

57 Zjazd PTChem i SITPChem Częstochowa, Promotowany miedzią niklowy katalizator do uwodornienia benzenu 57 Zjazd PTChem i SITPChem Częstochowa, 14-18.09.2014 Promotowany miedzią niklowy katalizator do uwodornienia benzenu Kamila Michalska Kazimierz Stołecki Tadeusz Borowiecki Uwodornienie benzenu do cykloheksanu

Bardziej szczegółowo

Skraplanie czynnika chłodniczego R404A w obecności gazu inertnego. Autor: Tadeusz BOHDAL, Henryk CHARUN, Robert MATYSKO Środa, 06 Czerwiec :42

Skraplanie czynnika chłodniczego R404A w obecności gazu inertnego. Autor: Tadeusz BOHDAL, Henryk CHARUN, Robert MATYSKO Środa, 06 Czerwiec :42 Przeprowadzono badania eksperymentalne procesu skraplania czynnika chłodniczego R404A w kanale rurowym w obecności gazu inertnego powietrza. Wykazano negatywny wpływ zawartości powietrza w skraplaczu na

Bardziej szczegółowo

b) Wybierz wszystkie zdania prawdziwe, które odnoszą się do przemiany 2.

b) Wybierz wszystkie zdania prawdziwe, które odnoszą się do przemiany 2. Fizyka Z fizyką w przyszłość Sprawdzian 8B Sprawdzian 8B. Gaz doskonały przeprowadzono ze stanu P do stanu K dwoma sposobami: i, tak jak pokazano na rysunku. Poniżej napisano kilka zdań o tych przemianach.

Bardziej szczegółowo

BUDOWA I ZASADA DZIAŁANIA ABSORPCYJNEJ POMPY CIEPŁA

BUDOWA I ZASADA DZIAŁANIA ABSORPCYJNEJ POMPY CIEPŁA Anna Janik AGH Akademia Górniczo-Hutnicza Wydział Energetyki i Paliw BUDOWA I ZASADA DZIAŁANIA ABSORPCYJNEJ POMPY CIEPŁA 1. WSTĘP W ostatnich latach obserwuje się wzrost zainteresowania tematem pomp ciepła.

Bardziej szczegółowo

Energetyka jądrowa. Energetyka jądrowa

Energetyka jądrowa. Energetyka jądrowa Energetyka jądrowa Zasada zachowania energii i E=mc 2 Budowa jąder atomowych i ich energia wiązania Synteza: z gwiazd na Ziemię... Neutrony i rozszczepienie jąder atomowych Reaktory: klasyczne i akceleratorowe

Bardziej szczegółowo

Destylacja z parą wodną

Destylacja z parą wodną Destylacja z parą wodną 1. prowadzenie iele związków chemicznych podczas destylacji przy ciśnieniu normalnym ulega rozkładowi lub polimeryzacji. by możliwe było ich oddestylowanie należy wykonywać ten

Bardziej szczegółowo

Ramowy program zajęć dydaktycznych studiów podyplomowych: ENERGETYKA JĄDROWA

Ramowy program zajęć dydaktycznych studiów podyplomowych: ENERGETYKA JĄDROWA Ramowy program zajęć dydaktycznych studiów podyplomowych: ENERGETYKA JĄDROWA Lp. Nazwa przedmiotu 1 2 3 Elementy fizyki jądrowej Podstawy teorii reaktorów Klasyczne i niekonwencjonalne źródła energii Treść

Bardziej szczegółowo

Bezpieczeństwo użytkowania samochodów zasilanych wodorem

Bezpieczeństwo użytkowania samochodów zasilanych wodorem Politechnika Śląska w Gliwicach Instytut Maszyn i Urządzeń Energetycznych Bezpieczeństwo użytkowania samochodów zasilanych wodorem prof. dr hab. inż. Andrzej Rusin dr inż. Katarzyna Stolecka bezbarwny,

Bardziej szczegółowo

Milena Oziemczuk. Temperatura

Milena Oziemczuk. Temperatura Milena Oziemczuk Temperatura Informacje ogólne Temperatura jest jedną z podstawowych wielkości fizycznych w termodynamice i określa miarą stopnia nagrzania ciał. Temperaturę można ściśle zdefiniować tylko

Bardziej szczegółowo