REZYSTANCJA TERMICZNA DIOD LED A WIARYGODNOŚĆ DANYCH KATALOGOWYCH
|
|
- Kinga Wróbel
- 8 lat temu
- Przeglądów:
Transkrypt
1 Marcin WESOŁOWSKI Przemysław SKRZYPCZAK Jacek HAUSER REZYSTANCJA TERMICZNA DIOD LED A WIARYGODNOŚĆ DANYCH KATALOGOWYCH STRESZCZENIE Współczesne diody LED charakteryzują się imponującymi parametrami eksploatacyjnymi, zarówno w odniesieniu do generowanych strumieni świetlnych, jak i sprawności przetwarzania energii elektrycznej. Jednak w wielu przypadkach, parametry podawane w notach aplikacyjnych, nie są możliwe do osiągnięcia. Fakt ten wynika z prezentacji tych danych w warunkach cieplnych nie występujących podczas normalnej eksploatacji. W niniejszym artykule analizie poddano problematykę skutecznego odprowadzania ciepła z złącz p-n, do obudów diod. Intensywność tego procesu zależna jest od tzw. rezystancji termicznej, będącej jednym z istotnych parametrów podawanych w notach katalogowych. Z uwagi na znaczną liczbę awarii, zwłaszcza tanich diod LED, podjęto próbę oceny rzeczywistych wartości rezystancji termicznych tych elementów oraz porównanie ich z wartościami podawanymi w katalogach. Słowa kluczowe: diody LED, rezystancja termiczna 1. WSTĘP Diody elektroluminescencyjne są obecnie najbardziej rozwojowym typem źródeł światła. Fakt ten wynika między innymi z ich wysokiej sprawności oraz stosunkowo długim czasem eksploatacji. Spośród szeregu typów diod LED, liczną grupę stanowią dr inż. Marcin WESOŁOWSKI marcin.wesolowski@ien.pw.edu.pl Instytut Energetyki Politechniki Warszawskiej, Warszawa, ul. Koszykowa 75 dr inż. Przemysław SKRZYPCZAK, dr hab. inż. Jacek HAUSER [przemyslaw.s.skrzypczak; jacek.hauser]@put.poznan.pl Politechnika Poznańska, Poznań, ul. Piotrowo 3a PRACE INSTYTUTU ELEKTROTECHNIKI, zeszyt 272, 2016
2 8 M. Wesołowski, P. Skrzypczak, J. Hauser diody budżetowe, których cena jest atrakcyjna. Dane katalogowe tych elementów nie wykazują istotnie niższych parametrów, w stosunku do rozwiązań wiodących producentów [4, 6]. Pomimo tego, bardzo często spotkać można opinię o niepokojąco niskiej trwałości oraz znacznej liczbie awarii diod należących do tej kategorii. Niniejsza praca jest próbą oceny przyczyn wspomnianego zjawiska. Z punktu widzenia eksploatacji, przyczyny mogą leżeć w wadliwej konstrukcji diod, zewnętrznych układów rozpraszania ciepła lub odmiennych mocy cieplnych. Równanie opisujące charakterystykę prądowo-napięciową diody (1.1) [2], umożliwia stwierdzenie jej istotnej zależności od temperatury. Fakt ten wynika z zmienności koncentracji nośników ładunku (n i 2 ) od temperatury, zwłaszcza w silnie domieszkowanych półprzewodnikach. Dodatkowo, w podanej zależności występuje czynnik zwany napięciem cieplnym (kt/q), zależnym bezpośrednio od temperatury złącza. Na rysunku 1.1 zaprezentowano przykładowe charakterystyki diody, przy zróżnicowanych temperaturach. Uq 1 2 D D n p I Aqn kt i e (1.1) Ln N A L p N D gdzie: A q D L N K T U powierzchnia przekroju złącza, ładunek jednostkowy, współczynniki dyfuzji, głębokość wnikania elektronów (n) i dziur (p), koncentracja domieszek, stała Boltzmanna, temperatura, napięcie. Na podstawie podanej zależności (1.1) możliwe jest określenie wpływu temperatury na parametry eksploatacyjne diod elektroluminescencyjnych. Parametry katalogowe zazwyczaj podawane są dla temperatur 20ºC. Wartości te są odmienne od Rys Przykładowe charakterystyki prądowo napięciowe diody LED
3 Rezystancja termiczna diod LED. Wiarygodność danych katalogowych 9 rzeczywistych temperatur pracy złącz p-n, osiągających wartości 150ºC [6]. W tych warunkach sprawność oraz inne parametry charakteryzujące diody są istotnie niższe. Czynnikiem wpływającym na szybką degradację diod LED jest przede wszystkim nadmierna temperatura występująca w obrębie złącza p-n. Jej wartość zależy od mocy grzejnej emitowanej w złączu oraz warunków oddawania ciepła do otoczenia [2]. Podstawowe pomiary parametrów elektrycznych wykazały, iż moc grzejna we wszystkich badanych diodach nie odbiegała od warunków podanych w karcie katalogowej [1]. Przyczyna nadmiernego skrócenia trwałości diod leży zatem w niedostatecznie intensywnym odprowadzaniu ciepła od złącza lub innych czynnikach związanych z wewnętrzną strukturą obudowy diod. 2. OPÓR CIEPLNY DEFINICJA I ZASTOSOWANIA Opis matematyczny procesu oddawania ciepła z złącza p-n diod charakteryzowany jest równaniem Fouriera-Kirchhoffa (2.1) z odpowiednimi warunkami granicznymi [1]. Jego rozwiązanie umożliwia wyznaczenie funkcji t(m, ) gdzie M określa położenie w dowolnie przyjętym układzie współrzędnych [3]. p V t 1 ( w ) t [ ( t)] (2.1) c c gdzie: t temperatura, czas, w-wektor prędkości substancji przewodzącej ciepło, operator Nabla, p V gęstość mocy źródeł ciepła wyrażona w W/m 3, c ciepło właściwe, gęstość, przewodność cieplna właściwa. W zagadnieniach związanych z analizą zjawisk cieplnych w elementach półprzewodnikowych, wystarczające jest zazwyczaj wykorzystanie prostszej formy równania (2.1), ścisłej dla ciał stałych (2.2) z wewnętrznymi źródłami ciepła [3]. t p V a 2 t c (2.2) Złożoność rzeczywistych układów elektronicznych uniemożliwia zazwyczaj korzystanie z analitycznych rozwiązań zależności typu (2.1) lub (2.2). Do celów projektowych z dziedziny wymiany ciepła, elektrotechniki i elektroniki, niezwykle użyteczną wielkością jest rezystancja termiczna (opór cieplny), będący odpowiednikiem rezystancji w dziedzinie elektromagnetyzmu. Rozpatrując element układu termokinetycznego o długości Δl, polu powierzchni ΔF, wykonany z materiału o przewodności
4 10 M. Wesołowski, P. Skrzypczak, J. Hauser cieplnej właściwej λ oraz charakteryzujący się jednowymiarowym przewodzeniem ciepła, możliwe jest określenie gęstości strumienia cieplnego przewodzonego na długości Δl (2.3). q (grad t) (2.3) Zgodnie z powyższą zależnością, ilość ciepła przewodzonego przez jednostkową powierzchnię ciała stałego jest proporcjonalna do przewodności cieplnej właściwej oraz gradientu temperatury występującego w danym ciele. Analiza układów rzeczywistych (w tym przypadku elementów elektronicznych) wymaga zazwyczaj posługiwania się całkowitą mocą cieplną przewodzenia w całym rozpatrywanym obszarze. Prawo Fouriera (2.3) może być przekształcone do postaci opisującej wodzenie mocy cieplnej pomiędzy powierzchniami izotermicznymi (2.4). P (grad t) F (2.4) Możliwa jest prezentacja zależności (2.4) w postaci podobnej do znanego z elektrotechniki prawa Ohma, słusznego dla liniowych ciał stałych (2.5) [4]. gdzie: t h, t l δ F th tl P (2.5) F temperatury, grubość ciała w kierunku przewodzenia, powierzchnia przekroju analizowanego ciała w kierunku normalnym do gradientu temperatury. Wielkość podana w mianowniku (2.5) nazywana jest rezystancją termiczną (oporem cieplnym) (2.6) [4]. W,K/W (2.6) F Wartość oporu cieplnego zależna jest od grubości ciała stałego w kierunku przewodzenia, przewodności cieplnej właściwej oraz wielkości powierzchni zlokalizowanej prostopadle do kierunku propagacji ciepła. W zagadnieniach ogólnych, ciepło nie zawsze jest transportowane w układach jednowymiarowych. Definicja (2.6) może być dowolnie rozszerzana, w zależności od analizowanego układu, poprzez odpowiednie wyliczenie zastępczej powierzchni przenikania ciepła (F). W problematyce wymiany ciepła w elementach elektronicznych, wytwórcy urządzeń podają wartości rezystancji termicznych. Zazwyczaj podawane są wartości rezystancji pomiędzy złączem i obudową. Wielkości te są niezbędne w procesie projektowania i doboru zewnętrznych układów chłodzenia elementów elektronicznych. Jedynie operowanie wiarygodnymi danymi katalogowymi umożliwia racjonalny dobór
5 Rezystancja termiczna diod LED. Wiarygodność danych katalogowych 11 radiatorów, gwarantujący pracę elementów półprzewodnikowych w odpowiednim zakresie temperaturowym. Zgodnie z danymi katalogowymi [4], diody będące tematem niniejszej pracy charakteryzowały się oporem cieplnym wynoszącym 1 K/W. W trakcie pomiarów sprawdzono wiarygodność tych danych, wykorzystując dwie metody scharakteryzowane w kolejnym punkcie artykułu. 3. POMIARY REZYSTANCJI TERMICZNYCH DIOD LED Pomiary rezystancji termicznej diod TH5 wykonano przy wykorzystaniu dwóch metod: metody pasywnej nie wymagającej zasilania diody podczas pomiarów; metody aktywnej, wykorzystującej wyskalowane złącze PN w charakterze czujnika temperatury. Obie metody wykorzystywane są w praktyce pomiarowej parametrów cieplnych ciał stałych. Charakteryzują się odmiennymi źródłami oraz wartościami błędów wpływających na ich dokładność. Z uwagi na zakres wykonywanych prac, wykorzystanie obu proponowanych metod, stanowiących wzajemne uzupełnienie, było podyktowane koniecznością zwiększenia wiarygodności i precyzji wykonywanych badań. Poniżej podano krótką charakterystykę wykorzystywanych metod pomiarowych, wraz z podaniem źródeł potencjalnych niedokładności oraz charakterystyką wykorzystywanego sprzętu. Jednoznaczny pomiar oporu cieplnego możliwy jest przy wykorzystaniu metody pośredniej, wymagającej znajomości strumienia cieplnego przewodzonego w jednowymiarowym polu temperatury (2.5). Podczas praktycznej realizacji tego typu pomiarów, podstawowym problemem jest wytworzenie odpowiedniego pola temperatury, charakteryzującego się jednokierunkowym przewodzeniem ciepła. W niniejszej pracy wykorzystano stanowisko pomiarowe zgodne z ideą pokazaną na rysunku 3.1. Rys Idea stanowiska do statycznych pomiarów rezystancji termicznej diod TH5. 1 grzejnik elektryczny; 2 kalibrowany trzpień miedziany; 3 izolacja cieplna; 4 badana dioda (z odsłoniętym złączem PN); 5 pasta termoprzewodząca; 6 lokalizacja czujników temperatury 3.1. Pasywna metoda wyznaczania oporu cieplnego W analizowanym przypadku, badana rezystancja termiczna diody wyznaczana jest na podstawie znajomości strumienia cieplnego przepływającego przez diodę oraz różnicy
6 12 M. Wesołowski, P. Skrzypczak, J. Hauser temperatur złącza i obudowy diody. Zadaniem kalibrowanego trzpienia miedzianego jest wytworzenie jednowymiarowego, osiowego przepływu ciepła. Temperatura osiągana w stanie cieplnie ustalonym przez grzejnik elektryczny jest czynnikiem wywołującym przepływ strumienia cieplnego wzdłuż trzpienia, w kierunku badanej diody LED. Izolacja cieplna powierzchni bocznej trzpienia pozytywnie wpływa na ograniczenie strat cieplnych do otoczenia. Zgodnie z zależnościami (3.1) oraz (3.2), wartość mocy cieplnej przewodzonej w kierunku badanej diody jest około 152 razy wyższa niż moc tracona do otoczenia. dt PA h 0,186 W (3.1) t F 1 P P B dt d z ln dw 2h 2 t 0,00122 W (3.2) gdzie: P A P B H 1 F p d z d w 2 P B moc przewodzona w kierunku diody, moc tracona z trzpienia do otoczenia; wysokość trzpienia, przewodność cieplna właściwa trzpienia, przekrój trzpienia, zewnętrzna średnica izolacji cieplnej, wewnętrzna średnica izolacji cieplnej, przewodność cieplna izolacji cieplnej, moc tracona z trzpienia do otoczenia. Wykonany układ pomiarowy charakteryzuje się zatem jednowymiarowym przewodzeniem ciepła. Maksymalny błąd wynikający z istnienia strumienia strat cieplnych nie przekracza 0,65%. Pasta termoprzewodząca ma za zadanie zmniejszenie spadku temperatury pomiędzy trzpieniem i strukturą diody. Podczas realizacji pomiarów przyjęto wartość oporu cieplnego przejścia pomiędzy trzpieniem i złączem PN na poziomie 0,4 K/W. Jest to wartość nieco wyższa od spotykanej w literaturze [4, 6]. Dzięki temu, wyniki wykonanych pomiarów będą charakteryzowały się zastępczą rezystancją termiczną diody niższą niż w rzeczywistości. Błąd nie powinien jednak przekraczać 0,1 K/W. Wartość mocy cieplnej P A, wymagana do wyznaczenia rezystancji termicznej diody, obliczana była na podstawie spadku temperatury na kalibrowanym trzpieniu oraz znajomości jego oporu cieplnego. Rezystancja termiczna diod LED wyznaczana była na podstawie zależności (3.3), przy znanych wartościach strumienia cieplnego i temperatur pomiędzy złączem PN diody (t z ) i jej obudową (t ob ). R t t z ob thjc (3.3) PA
7 Rezystancja termiczna diod LED. Wiarygodność danych katalogowych 13 Badania wykonano przy wykorzystaniu trzech diod jednego typu. Wszystkie pomiary wykonano w stanie ustalonym. Zróżnicowane wartości mocy elementu grzejnego powodowały osiąganie zróżnicowanych temperatur w układzie. Zmierzone wartości temperatur w charakterystycznych punktach układu grzejnego (rys. 3.1) oraz znana charakterystyka oporu cieplnego kalibrowanego układu pomiarowego, umożliwiły obliczenie rezystancji termicznych badanych diod. Wyniki pomiarów oraz obliczeń podano w tabeli 3.1 oraz na rysunku 3.2. TABELA 3.1 Wyniki pomiarów rezystancji termicznych diod TH5 przy wykorzystaniu metody pasywnej Nr badanej diody Temperatura obudowy diody, ºC Strumień cieplny, W Różnica temperatur pomiędzy złączem PN oraz obudową diody, ºC Rezystancja termiczna diody, ºC/W I 22,5 0,11 0,4 3,58 I 78 2, ,96 I 99,9 3,24 41,4 12,78 II 31,3 0,27 1,2 4,36 II 68 2, ,38 II 94 2, ,38 III 23,4 0,18 0,7 3,82 III 58,2 2,56 15,3 5,97 III 89 2, ,7 Rys Charakterystyka rezystancji termicznych diod TH5 w funkcji temperatury obudowy
8 14 M. Wesołowski, P. Skrzypczak, J. Hauser Otrzymane wyniki wykazują podobny charakter dla wszystkich badanych diod. Zmierzone rezystancje termiczne są wyższe niż deklarowane w karcie katalogowej [3]. Wartości zbliżone do deklarowanych przez Wytwórcę otrzymano dla temperatury złącza wynoszącej około 20ºC. Stan taki nie występuje podczas normalnej eksploatacji tych elementów. Wytwórca nie podał w karcie katalogowej, przy jakich temperaturach diody występuje podana rezystancja termiczna, co sugeruje możliwość korzystania z deklarowanej wartości w procesie projektowania układów chłodzenia. Na podstawie wykonanych badań wykazano, iż w warunkach temperaturowych odpowiadających znamionowym temperaturom pracy diod LED, rezystancje termiczne są wielokrotnie wyższe Aktywna metoda wyznaczania oporu cieplnego Drugą metodą wykorzystaną do realizacji zadania była metoda umożliwiająca pomiar rezystancji termicznej diody LED podczas jej funkcjonowania. Zgodnie z podstawami teoretycznymi, podanymi w punkcie 2 niniejszej pracy, wyznaczenie rezystancji termicznej wymaga znajomości mocy cieplnej przewodzonej pomiędzy powierzchniami izotermicznymi o znanych temperaturach (2.5). Idea metody jest zgodna z rysunkiem 3.3. Rys Przekrój diody TH5 z zaznaczonym złączem PN (2) oraz lokalizacją miejsc pomiaru temperatury Podczas przepływu prądu przez diodę, w obrębie złącza półprzewodnikowego generowana jest moc cieplna (P c ), powodująca podwyższenie temperatury tego elementu. Wartość mocy cieplnej jest proporcjonalna do iloczynu prądu i napięcia. Moc generowana w złączu p-n (P c ) jest rozpraszana na drodze konwekcji, radiacji i przewodzenia. Podczas pomiarów rezystancji termicznej należy mieć świadomość, iż jedynie część mocy jest przewodzona ze złącza do obudowy (punktu lutowniczego). Moc cieplna wyznaczona zgodnie z podanym powyżej opisem będzie zatem nieco większa niż w rzeczywistości. Ocenia się, że błąd w wartości mocy cieplnej zmierzonej i rzeczywistej nie powinien przekraczać 5%. Dodatkowo, czynnik ten nie wpływa negatywnie na użyteczność wyników pomiaru rezystancji termicznych. Rzeczywiste wartości będą nieco wyższe. Na rysunku 3.4 podano lokalizację punktów pomiarowych temperatury. Jeden z nich znajduje się w punkcie lutowania diody TH5, zgodnie z danymi dostarczonymi przez dystrybutora [3] (rys. 3.4.a). Podczas badań, do punktu lutowniczego przylutowano spoinę pomiarową termoelementu typu K. Widok układu pokazano na rysunku 3.4.b.
9 Rezystancja termiczna diod LED. Wiarygodność danych katalogowych 15 Rys Pomiar temperatury obudowy diody TH5. a) schemat dostarczony przez Dystrybutora, b) układ pomiarowy Bezpośredni pomiar temperatury złącza p-n podczas pracy diody nie jest możliwy. Tym niemniej, z uwagi na fakt, iż zjawiska zachodzące w złączu półprzewodnikowym, istotnie zależą od temperatury, możliwe było wykorzystanie złącza w charakterze przetwornika temperatury. Wykorzystano efekty opisane zależnością (1.1). Przy wymuszeniu napięciowym, prąd płynący przez złącze wykazuje rosnący charakter, wraz z wzrostem temperatury. Podobnie, przy wykorzystaniu źródła prądowego, spadek napięcia na przewodzącej diodzie będzie wzrastał wraz z wzrostem temperatury. Efekty te zostały wykorzystane do pomiaru temperatury złącza podczas pracy. Przed wykorzystaniem opisanych zależności, wykonano skalowanie wykorzystywanych diod, sporządzając ich charakterystyki prądowo-napięciowe przy znanej temperaturze złącza. Proces skalowania wykonano przy wykorzystaniu diod nie przymocowanych do radiatora. W celu zapewnienia stabilnych warunków temperaturowych, wykorzystano kalorymetr z możliwością utrzymywania temperatury z dokładnością ±0,1 K. W warunkach ustalonych mierzono prąd, napięcie oraz temperaturę punktu lutowniczego diody. W stałej temperaturze oraz stanie cieplnie ustalonym, cała dioda charakteryzowała się jednorodnością temperatury (przy braku zasilania). Fakt ten umożliwił stwierdzenie znajomości temperatury złącz PN. Wykonane charakterystyki prądowo napięciowe pozwoliły na: określenie zależności prądu i napięcia od temperatury; określenie granicznych prądów pomiarowych, przekroczenie których powoduje samopodgrzewanie złącz. Schemat blokowy układu pomiarowego oraz jego widok podczas badań pokazano na rysunku 3.5. Rys Schemat układu do wyznaczania charakterystyk prądowo-napięciowych diody TH5 oraz widok urządzeń podczas badań
10 16 M. Wesołowski, P. Skrzypczak, J. Hauser Wykonano badania czterech diod. Z uwagi na brak radiatora podczas tych prób, maksymalny prąd ograniczono do wartości 120 ma. Na rysunku 3.6 pokazano charakterystykę mocy diod LED w funkcji prądu, oraz temperatury diody w funkcji prądu. Rys Charakterystyki mocy w funkcji prądu (a) oraz temperatury w funkcji prądu (b) diod TH5 Wszystkie analizowane diody charakteryzowały się zbliżonymi parametrami. Maksymalne różnice nie przekraczały 3%. Z tego względu, na prezentowanych wykresach zaznaczono jedynie wyniki charakterystyczne dla elementu o minimalnych i maksymalnych wartościach. Przebiegi mocy w funkcji prądu są niemal liniowe, co może sugerować możliwość wykorzystania całego badanego zakresu prądowego do aplikacji związanych z pomiarem temperatury złącza. Tym niemniej, charakterystyki temperatury w funkcji prądu jednoznacznie wykazują, iż efekt samonagrzewania złącza jest widoczny po przekroczeniu prądu o wartości 3 ma. Zaznacza się, że prezentowane wyniki są chakterystyczne jedynie dla badanego układu diod bez radiatora, w temperaturze t 0 = 20 o C. W przypadku zastosowania radiatora, wartość prądu granicznego wzrośnie. Podobny efekt wystąpi w przypadku pracy diody w wyższych temperaturach. Dla temperatur przekraczających 50ºC, efekt samo podgrzewania jest widoczny przy prądach przekraczających 8 ma. Po uruchomieniu termostatu, nastawiano ciąg kolejnych temperatur w zakresie ºC. Po osiągnięciu stanu ustalonego dokonywano pomiaru charakterystyk prądowo napięciowych. Przyjęto, że pomiary temperatury złącza będą wykonywane przy stałym napięciu o wartości 2,53 V. Na rysunku 3.7 pokazano charakterystykę prądu pomiarowego w funkcji temperatury. Wyniki pomiarów diod TH5 były zbliżone. Charakterystyki widoczne na rysunku 3.7 są niemal liniowe, co jest zgodne z podstawami teoretycznymi fizyki półprzewodników. Charakterystyki przyjęto jako wskaźnik temperatury złącza PN podczas badań oporu cieplnego. Podczas wyznaczania charakterystyk prądowo-napięciowych z wykorzystaniem kalorymetru, trzy diody (z czterech badanych) uległy uszkodzeniu przy temperaturach z zakresu ºC. W chwili uszkodzenia diody nie były obciążone prądowo, więc wyklucza się możliwość termicznych zniszczeń struktury na skutek przepływu prądu.
11 Rezystancja termiczna diod LED. Wiarygodność danych katalogowych 17 Fakt ten może świadczyć o wadliwej konstrukcji badanych diod. Rozszerzalność cieplna elementów diody powoduje występowanie nadmiernych naprężeń prowadzących do jej zniszczenia. Rys Charakterystyka prądu w funkcji temperatury dla diod TH5 Posiadając komplet danych (3.1) wykonano badania rezystancji termicznej diod TH5. Wykonano badania trzech diod podczas normalnej pracy, przy prądach z zakresu ma. Diody umieszczono na miedzianym radiatorze, łącznie z termoelementem lutowanym bezpośrednio do punktu lutowniczego (rys. 3.4). Widok układu podczas pracy pokazano na rysunku 3.8. Rys Badanie rezystancji termicznej diod TH5 W zależności od zadanych wartości prądów, temperatury obudów diod stabilizowały się na zróżnicowanych poziomach. W stanach ustalonych dokonywano odczytu temperatury obudowy diody, prądu i napięcia. Wartość prądu pomiarowego, proporcjo-
12 18 M. Wesołowski, P. Skrzypczak, J. Hauser nalnego do temperatury złącza, dokonywana była w chwili przełączenia źródła napięcia na wartość 2,53 V, za pomocą oscyloskopu z soną prądową. Zmierzone wartości zaprezentowano w tabeli 3.2. TABELA 3.2 Wyniki pomiarów wielkości do obliczeń rezystancji termicznej diod TH5 Temperatura obudowy, ºC Napięcie, V Prąd, ma Prąd pomiaru temperatury złącza, ma ,5 78,9 79,3 46,7 37, ,1 68,5 29,8 29, ,8 37,4 81,1 104,5 67,5 42,9 3,4 3,41 3,42 3,49 3,47 3,45 3,53 3,52 3,54 3,37 3,37 3,17 3,62 3,51 3,5 3,38 3,44 3,43 3,54 3,4 3,61 3,65 3, ,5 3,52 3,8 4,6 4,4 4,1 5,3 5,4 5,45 3,3 3 1,6 6,8 4,6 4,4 3 2,38 2,8 3,4 2,8 6,1 5,35 2,4 1,7 Na podstawie charakterystyki skalowania złącza p-n, odczytano charakterystyczne wartości jego temperatury. Na rysunku 3.9 pokazano przebiegi temperatury złącz PN trzech badanych diod. Rys Temperatury złącz PN badanych diod
13 Rezystancja termiczna diod LED. Wiarygodność danych katalogowych 19 Korzystając z podstawowej zależności (3.3) wyznaczono wartości rezystancji termicznych badanych elementów. Wyniki podano w tabeli 3.3 oraz na rysunku TABELA 3.3 Wyznaczone rezystancje termiczne Dioda nr 1 Dioda nr 2 Rezystancja termiczna, K/W Rezystancja termiczna, K/W 4,412 5,717 6,102 6,615 8,372 9,284 9,95 12,431 4,713 5,42 6,388 7,124 7,967 8,877 9,844 11,315 Dioda nr 3 Rezystancja termiczna, K/W 2,709 5,364 6,61 7,43 8,19 9,21 10,56 12,315 Rys Rezystancje termiczne diod TH5 w funkcji temperatury Wyniki pomiarów rezystancji termicznej charakteryzują się dobrą zbieżnością, co świadczy o prawidłowości wykonanych badań. Podobnie, jak podczas pomiarów zaprezentowanych w punkcie 3.1, wartość rezystancji termicznych badanych diod wykazuje tendencję wzrostu wraz ze wzrostem temperatury. Wartości uzyskane w trakcie pomiarów są wyższe niż w karcie katalogowej [1]. 4. PODSUMOWANIE Na podstawie wykonanych prac możliwe jest podanie następujących wniosków: rezystancja termiczna diod LED wykazuje silną zależność od temperatury. Wraz z jej wzrostem, rośnie również opór cieplny, co utrudnia oddawanie ciepła ze złącza p-n.
14 20 M. Wesołowski, P. Skrzypczak, J. Hauser Charakterystyki rezystancji termicznych w funkcji temperatury, uzyskane przy wykorzystaniu dwóch wykorzystywanych metod, wykazują podobną tendencję, co świadczy o poprawności wykonanych pomiarów; wartości rezystancji termicznych są znacząco wyższe od deklarowanych przez producenta w karcie katalogowej [1]; wartości rezystancji termicznych o wartościach zbliżonych do deklarowanych w karcie [1] uzyskano przy temperaturze złącza na poziomie 20ºC, co jest wartością nieosiągalną w warunkach normalnej eksploatacji diod. Ponadto, wytwórca nie podał stosowanej informacji w karcie katalogowej; niezgodność zmierzonych rezystancji termicznych, z danymi katalogowymi, uniemożliwia skuteczny dobór układów chłodzenia diod; znaczna liczba badanych diod ulegała zniszczeniu w temperaturze bliskiej 120ºC, bez obciążenia prądowego (przy nagrzewaniu w kalorymetrze). Fakt ten świadczyć może o wadzie konstrukcyjnej badanych diod. LITERATURA 1. Hauser J.: Elektrotechnika. Podstawy elektrotermii i techniki świetlnej. Wydawnictwo Politechniki Poznańskiej, Hering M.: Termokinetyka dla elektryków. WNT, Warszawa TH5 Data Sheet, TSMC, v. 1.0, June Semiconductor and IN Package Thermal Metrics, Texas Instruments, July Sofia J. W.: Fundamentals of Thermal Resistance Measurements, Analysis Tech., Lasance C. J. M., Poppe A.: Thermal Management for LED Applications, Springer, New York, Przyjęto do druku dnia r. THERMAL RESISTANCE OF CHEAP LED DIODES AND PRECISION OF CATALOGUE DATA Marcin WESOŁOWSKI, Przemysław SKRZYPCZAK, Jacek HAUSER ABSTRACT Today s LEDs are characterized by high exploitation parameters. Both light intensities and efficiencies are the highest in the comparison to other light sources. However, in many cases, parameters given in application notes are impossible to reach. In the article, some aspects of thermal energy dissipation from p-n junctions were discussed. Some methods for the measurements of the thermal resistance of LED junctions were presented. The measurement results were compared to application data. Keywords: LED, thermal resistance
Wyznaczanie współczynnika przenikania ciepła dla przegrody płaskiej
Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI Wyznaczanie współczynnika przenikania ciepła dla przegrody płaskiej - - Wstęp teoretyczny Jednym ze sposobów wymiany ciepła jest przewodzenie.
Grupa: Zespół: wykonał: 1 Mariusz Kozakowski Data: 3/11/2013 111B. Podpis prowadzącego:
Sprawozdanie z laboratorium elektroniki w Zakładzie Systemów i Sieci Komputerowych Temat ćwiczenia: Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa Sprawozdanie Rok: Grupa: Zespół:
BADANIA MODELOWE OGNIW SŁONECZNYCH
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 70 Electrical Engineering 2012 Bartosz CERAN* BADANIA MODELOWE OGNIW SŁONECZNYCH W artykule przedstawiono model matematyczny modułu fotowoltaicznego.
ZADANIE 28. Wyznaczanie przewodnictwa cieplnego miedzi
ZADANIE 28 Wyznaczanie przewodnictwa cieplnego miedzi Wstęp Pomiędzy ciałami ogrzanymi do różnych temperatur zachodzi wymiana ciepła. Ciało o wyższej temperaturze traci ciepło, a ciało o niższej temperaturze
Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 1. Połączenia szeregowe oraz równoległe elementów RC
Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie ĆWICZENIE Połączenia szeregowe oraz równoległe elementów C. CEL ĆWICZENIA Celem ćwiczenia jest praktyczno-analityczna ocena wartości
WYZNACZANIE DYFUZYJNOŚCI CIEPLNEJ PRZY WYKORZYSTANIU KAMERY TERMOWIZYJNEJ
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 79 Electrical Engineering 2014 Marcin WESOŁOWSKI* Ryszard NIEDBAŁA* Jacek HAUSER** WYZNACZANIE DYFUZYJNOŚCI CIEPLNEJ PRZY WYKORZYSTANIU KAMERY TERMOWIZYJNEJ
Instrukcja do laboratorium z fizyki budowli.
Instrukcja do laboratorium z fizyki budowli. Ćwiczenie: Pomiar współczynnika przewodzenia ciepła materiałów budowlanych Strona 1 z 5 Cel ćwiczenia Prezentacja metod stacjonarnych i dynamicznych pomiaru
KONDUKCYJNA WYMIANA CIEPŁA - STYKOWY POMIAR TEMPERATURY
IŃSTYTUT INFORMATYKI STOSOWANEJ POLITECHNIKI ŁÓDZKIEJ Ćwiczenie Nr1 KONDUKCYJNA WYMIANA CIEPŁA - STYKOWY POMIAR TEMPERATURY 1.WPROWADZENIE Przewodzenie ciepła (kondukcja) jest to wymiana ciepła między
Laboratorium Podstaw Elektrotechniki i Elektroniki
Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 2 OBWODY NIELINIOWE PRĄDU
IA. Fotodioda. Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody.
1 A. Fotodioda Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody. Zagadnienia: Efekt fotowoltaiczny, złącze p-n Wprowadzenie Fotodioda jest urządzeniem półprzewodnikowym w którym zachodzi
Instrukcja stanowiskowa
POLITECHNIKA WARSZAWSKA Wydział Budownictwa, Mechaniki i Petrochemii Instytut Inżynierii Mechanicznej w Płocku Zakład Aparatury Przemysłowej LABORATORIUM WYMIANY CIEPŁA I MASY Instrukcja stanowiskowa Temat:
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 123: Półprzewodnikowe złącze p-n
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 123: Półprzewodnikowe złącze p-n Cel ćwiczenia: Zapoznanie się z własnościami warstwowych złącz półprzewodnikowych p-n. Wyznaczanie charakterystyk stałoprądowych
Pomiar wielkości nieelektrycznych: temperatury, przemieszczenia i prędkości.
Zakład Napędów Wieloźródłowych Instytut Maszyn Roboczych CięŜkich PW Laboratorium Elektrotechniki i Elektroniki Ćwiczenie E3 - protokół Pomiar wielkości nieelektrycznych: temperatury, przemieszczenia i
1. Wprowadzenie: dt q = - λ dx. q = lim F
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY Zakład Budowy i Eksploatacji Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA Temat ćwiczenia: WYZNACZANIE WSPÓŁCZYNNIKA PRZEWODNOŚCI
Ćwiczenie 1 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH
LABORAORUM ELEKRONK Ćwiczenie 1 Parametry statyczne diod półprzewodnikowych Cel ćwiczenia Celem ćwiczenia jest poznanie statycznych charakterystyk podstawowych typów diod półprzewodnikowych oraz zapoznanie
Ćwiczenie nr 34. Badanie elementów optoelektronicznych
Ćwiczenie nr 34 Badanie elementów optoelektronicznych 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z elementami optoelektronicznymi oraz ich podstawowymi parametrami, a także doświadczalne sprawdzenie
E12. Wyznaczanie parametrów użytkowych fotoogniwa
1/5 E12. Wyznaczanie parametrów użytkowych fotoogniwa Celem ćwiczenia jest poznanie podstaw zjawiska konwersji energii świetlnej na elektryczną, zasad działania fotoogniwa oraz wyznaczenie jego podstawowych
WSPÓŁCZYNNIK PRZEJMOWANIA CIEPŁA PRZEZ KONWEKCJĘ
INSYU INFORMAYKI SOSOWANEJ POLIECHNIKI ŁÓDZKIEJ Ćwiczenie Nr2 WSPÓŁCZYNNIK PRZEJMOWANIA CIEPŁA PRZEZ KONWEKCJĘ 1.WPROWADZENIE. Wymiana ciepła pomiędzy układami termodynamicznymi może być realizowana na
Ćwiczenie nr 4 Charakterystyki I= f(u) złącza p-n.
Wydział Elektroniki Mikrosystemów i otoniki Politechniki Wrocławskiej TUDA DZENNE LABORATORUM PRZYRZĄDÓW PÓŁPRZEWODNKOWYCH Ćwiczenie nr 4 Charakterystyki = f(u) złącza p-n.. Zagadnienia do samodzielnego
Czym jest prąd elektryczny
Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,
Ćwiczenie 2 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH
LABORATORIUM LKTRONIKI Ćwiczenie Parametry statyczne tranzystorów bipolarnych el ćwiczenia Podstawowym celem ćwiczenia jest poznanie statycznych charakterystyk tranzystorów bipolarnych oraz metod identyfikacji
Instrukcja do ćwiczenia laboratoryjnego nr 2
Instrukcja do ćwiczenia laboratoryjnego nr 2 Temat: Wpływ temperatury na charakterystyki i parametry statyczne diod Cel ćwiczenia. Celem ćwiczenia jest poznanie wpływu temperatury na charakterystyki i
gazów lub cieczy, wywołanym bądź różnicą gęstości (różnicą temperatur), bądź przez wymuszenie czynnikami zewnętrznymi.
WYMIANA (TRANSPORT) CIEPŁA Trzy podstawowe mechanizmy transportu ciepła (wymiany ciepła): 1. PRZEWODZENIIE - przekazywanie energii od jednej cząstki do drugiej, za pośrednictwem ruchu drgającego tych cząstek.
LABORATORIUM ELEKTRONIKA. I. Scalony, trzykońcówkowy stabilizator napięcia II. Odprowadzanie ciepła z elementów półprzewodnikowych
LABORATORIUM ELEKTRONIKA I. Scalony, trzykońcówkowy stabilizator napięcia II. Odprowadzanie ciepła z elementów półprzewodnikowych Opracował: dr inż. Jerzy Sawicki Wymagania, znajomość zagadnień (I): 1.
BADANIE WYMIENNIKA CIEPŁA TYPU RURA W RURZE
BDNIE WYMIENNIK CIEPŁ TYPU RUR W RURZE. Cel ćwiczenia Celem ćwiczenia jest zapoznanie z konstrukcją, metodyką obliczeń cieplnych oraz poznanie procesu przenikania ciepła w rurowych wymiennikach ciepła..
Ć w i c z e n i e 1 POMIARY W OBWODACH PRĄDU STAŁEGO
Ć w i c z e n i e POMIAY W OBWODACH PĄDU STAŁEGO. Wiadomości ogólne.. Obwód elektryczny Obwód elektryczny jest to układ odpowiednio połączonych elementów przewodzących prąd i źródeł energii elektrycznej.
WYZNACZANIE STAŁEJ PLANCKA Z POMIARU CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH DIOD ELEKTROLUMINESCENCYJNYCH. Irena Jankowska-Sumara, Magdalena Krupska
1 II PRACOWNIA FIZYCZNA: FIZYKA ATOMOWA Z POMIARU CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH DIOD ELEKTROLUMINESCENCYJNYCH Irena Jankowska-Sumara, Magdalena Krupska Cel ćwiczenia Celem ćwiczenia jest wyznaczenie
Badanie własności hallotronu, wyznaczenie stałej Halla (E2)
Badanie własności hallotronu, wyznaczenie stałej Halla (E2) 1. Wymagane zagadnienia - ruch ładunku w polu magnetycznym, siła Lorentza, pole elektryczne - omówić zjawisko Halla, wyprowadzić wzór na napięcie
Wyznaczanie współczynnika przewodnictwa
Ćwiczenie C5 Wyznaczanie współczynnika przewodnictwa cieplnego wybranych materiałów C5.1. Cel ćwiczenia Celem ćwiczenia jest poznanie mechanizmów transportu energii, w szczególności zjawiska przewodnictwa
SPRĘŻ WENTYLATORA stosunek ciśnienia statycznego bezwzględnego w płaszczyźnie
DEFINICJE OGÓLNE I WIELKOŚCI CHARAKTERYSTYCZNE WENTYLATORA WENTYLATOR maszyna wirnikowa, która otrzymuje energię mechaniczną za pomocą jednego wirnika lub kilku wirników zaopatrzonych w łopatki, użytkuje
ELEKTROTECHNIKA I ELEKTRONIKA
NWERSYTET TECHNOLOGCZNO-PRZYRODNCZY W BYDGOSZCZY WYDZAŁ NŻYNER MECHANCZNEJ NSTYTT EKSPLOATACJ MASZYN TRANSPORT ZAKŁAD STEROWANA ELEKTROTECHNKA ELEKTRONKA ĆWCZENE: E7 BADANE DODY PROSTOWNCZEJ DODY ZENERA
UNIWERSYTET SZCZECIŃSKI INSTYTUT FIZYKI ZAKŁAD FIZYKI CIAŁA STAŁEGO. Ćwiczenie laboratoryjne Nr.2. Elektroluminescencja
UNIWERSYTET SZCZECIŃSKI INSTYTUT FIZYKI ZAKŁAD FIZYKI CIAŁA STAŁEGO Ćwiczenie laboratoryjne Nr.2 Elektroluminescencja SZCZECIN 2002 WSTĘP Mianem elektroluminescencji określamy zjawisko emisji spontanicznej
Zapoznanie się ze zjawiskiem Seebecka i Peltiera. Zastosowanie elementu Peltiera do chłodzenia i zamiany energii cieplnej w energię elektryczną.
FiIS PRAONIA FIZYZNA I i II Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆIZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OENA el ćwiczenia: Zapoznanie się ze
LABORATORIUM INŻYNIERII MATERIAŁOWEJ
Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM INŻYNIERII MATERIAŁOWEJ Protokół
Pomiar współczynnika przewodzenia ciepła ciał stałych
Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI Pomiar współczynnika przewodzenia ciepła ciał stałych - - Wiadomości wstępne Przewodzenie ciepła jest procesem polegającym na przenoszeniu
gazów lub cieczy, wywołanym bądź różnicą gęstości (różnicą temperatur), bądź przez wymuszenie czynnikami zewnętrznymi.
WYMIANA (TRANSPORT) CIEPŁA Trzy podstawowe mechanizmy transportu ciepła (wymiany ciepła):. PRZEWODZENIE - przekazywanie energii od jednej cząstki do drugiej, za pośrednictwem ruchu drgającego tych cząstek.
BADANIE TRANZYSTORA BIPOLARNEGO
BADANIE TRANZYSTORA BIPOLARNEGO CEL poznanie charakterystyk tranzystora bipolarnego w układzie WE poznanie wybranych parametrów statycznych tranzystora bipolarnego w układzie WE PRZEBIEG ĆWICZENIA: 1.
IV. Wyznaczenie parametrów ogniwa słonecznego
1 V. Wyznaczenie parametrów ogniwa słonecznego Cel ćwiczenia: 1.Zbadanie zależności fotoprądu zwarcia i fotonapięcia zwarcia od natężenia oświetlenia. 2. Wyznaczenie sprawności energetycznej baterii słonecznej.
STABILIZATORY NAPIĘCIA STAŁEGO. 1. Wiadomości wstępne
STABILIZATORY NAPIĘCIA STAŁEGO 1. Wiadomości wstępne Stabilizatory napięcia stałego są to układy elektryczne dostarczające do odbiornika napięcie o stałej wartości niezależnie od zmian w określonych granicach:
Zadanie 106 a, c WYZNACZANIE PRZEWODNICTWA WŁAŚCIWEGO I STAŁEJ HALLA DLA PÓŁPRZEWODNIKÓW. WYZNACZANIE RUCHLIWOŚCI I KONCENTRACJI NOŚNIKÓW.
Zadanie 106 a, c WYZNACZANIE PRZEWODNICTWA WŁAŚCIWEGO I STAŁEJ HALLA DLA PÓŁPRZEWODNIKÓW. WYZNACZANIE RUCHLIWOŚCI I KONCENTRACJI NOŚNIKÓW. 1. Elektromagnes 2. Zasilacz stabilizowany do elektromagnesu 3.
Natężenie prądu elektrycznego
Natężenie prądu elektrycznego Wymuszenie w przewodniku różnicy potencjałów powoduje przepływ ładunków elektrycznych. Powszechnie przyjmuje się, że przepływający prąd ma taki sam kierunek jak przepływ ładunków
DIODY PÓŁPRZEWODNIKOWE
Instrukcja do ćwiczenia laboratoryjnego DIODY PÓŁPRZEWODNIKOWE Instrukcję opracował: dr inż. Jerzy Sawicki Wymagania i wiedza konieczna do wykonania ćwiczenia: 1. Znajomość instrukcji do ćwiczenia, w tym
Ćw. III. Dioda Zenera
Cel ćwiczenia Ćw. III. Dioda Zenera Zapoznanie się z zasadą działania diody Zenera. Pomiary charakterystyk statycznych diod Zenera. Wyznaczenie charakterystycznych parametrów elektrycznych diod Zenera,
ELEMENTY ELEKTRONICZNE TS1C300 018
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEMENY ELEKONICZNE S1C300 018 BIAŁYSOK 2013 1. CEL I ZAKES ĆWICZENIA LABOAOYJNEGO
Laboratorum 4 Dioda półprzewodnikowa
Laboratorum 4 Dioda półprzewodnikowa Marcin Polkowski (251328) 19 kwietnia 2007 r. Spis treści 1 Cel ćwiczenia 2 2 Opis ćwiczenia 2 3 Wykonane pomiary 3 3.1 Dioda krzemowa...............................................
Badanie elementów składowych monolitycznych układów scalonych II
1 Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE Ćwiczenie nr 14 LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH Badanie elementów składowych monolitycznych układów scalonych
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Ćwiczenie 28 : Wyznaczanie charakterystyk termistorów I. Zagadnienia do opracowania. 1. Pasma energetyczne w
Prąd elektryczny - przepływ ładunku
Prąd elektryczny - przepływ ładunku I Q t Natężenie prądu jest to ilość ładunku Q przepływającego przez dowolny przekrój przewodnika w ciągu jednostki czasu t. Dla prądu stałego natężenie prądu I jest
E12. Wyznaczanie parametrów użytkowych fotoogniwa
E12. Wyznaczanie parametrów użytkowych fotoogniwa 1/5 E12. Wyznaczanie parametrów użytkowych fotoogniwa Celem ćwiczenia jest zapoznanie z podstawami zjawiska konwersji energii świetlnej na elektryczną,
Badanie charakterystyk elementów półprzewodnikowych
Badanie charakterystyk elementów półprzewodnikowych W ramach ćwiczenia student poznaje praktyczne właściwości elementów półprzewodnikowych stosowanych w elektronice przez badanie charakterystyk diody oraz
Centralny Ośrodek Chłodnictwa COCH w Krakowie Sp. z o.o Kraków. ul. Juliusza Lea 116. Laboratorium Urządzeń Chłodniczych
Centralny Ośrodek Chłodnictwa COCH w Krakowie Sp. z o.o. 30-133 Kraków ul. Juliusza Lea 116 Laboratorium Urządzeń Chłodniczych e-mail: laboratorium@coch.pl tel. 12 637 09 33 wew. 203, 161, 160 www.coch.pl
WIROWYCH. Ćwiczenie: ĆWICZENIE BADANIE PRĄDÓW ZAKŁ AD ELEKTROENERGETYKI. Opracował: mgr inż. Edward SKIEPKO. Warszawa 2000
SZKOŁA GŁÓWNA SŁUŻBY POŻARNICZEJ KATEDRA TECHNIKI POŻARNICZEJ ZAKŁ AD ELEKTROENERGETYKI Ćwiczenie: ĆWICZENIE BADANIE PRĄDÓW WIROWYCH Opracował: mgr inż. Edward SKIEPKO Warszawa 000 Wersja 1.0 www.labenergetyki.prv.pl
WYKORZYSTANIE METODY ELEMENTÓW SKOŃCZONYCH W MODELOWANIU WYMIANY CIEPŁA W PRZEGRODZIE BUDOWLANEJ WYKONANEJ Z PUSTAKÓW STYROPIANOWYCH
Budownictwo o Zoptymalizowanym Potencjale Energetycznym 2(18) 2016, s. 35-40 DOI: 10.17512/bozpe.2016.2.05 Paweł HELBRYCH Politechnika Częstochowska WYKORZYSTANIE METODY ELEMENTÓW SKOŃCZONYCH W MODELOWANIU
PL B1. POLITECHNIKA LUBELSKA, Lublin, PL BUP 21/11
PL 218599 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 218599 (13) B1 (21) Numer zgłoszenia: 390920 (51) Int.Cl. G01K 15/00 (2006.01) H01L 35/34 (2006.01) Urząd Patentowy Rzeczypospolitej
Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4)
OBWODY JEDNOFAZOWE POMIAR PRĄDÓW, NAPIĘĆ. Obwody prądu stałego.. Pomiary w obwodach nierozgałęzionych wyznaczanie rezystancji metodą techniczną. Metoda techniczna pomiaru rezystancji polega na określeniu
WYZNACZANIE PRACY WYJŚCIA ELEKTRONÓW Z LAMPY KATODOWEJ
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA FIZYKI CIAŁA STAŁEGO Ć W I C Z E N I E N R FCS - WYZNACZANIE PRACY WYJŚCIA ELEKTRONÓW Z LAMPY
Analiza natężenia przepływu ciepła przez materiały stałe dla jednowymiarowych ustalonych warunków przepływów ciepła- zastosowanie równania Fouriera.
Analiza natężenia przepływu ciepła przez materiały stałe dla jednowymiarowych ustalonych warunków przepływów ciepła- zastosowanie równania Fouriera. Uwaga: Energię elektryczną dostarczoną przez element
PRAWO OHMA DLA PRĄDU PRZEMIENNEGO
ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa
F = e(v B) (2) F = evb (3)
Sprawozdanie z fizyki współczesnej 1 1 Część teoretyczna Umieśćmy płytkę o szerokości a, grubości d i długości l, przez którą płynie prąd o natężeniu I, w poprzecznym polu magnetycznym o indukcji B. Wówczas
NAGRZEWANIE INDUKCYJNE POWIERZCHNI PŁASKICH
INSTYTUT INFORMATYKI STOSOWANEJ POLITECHNIKI ŁÓDZKIEJ Ćwiczenia Nr 6 NAGRZEWANIE INDUKCYJNE POWIERZCHNI PŁASKICH 1.WPROWADZENIE. Nagrzewanie indukcyjne jest bezpośrednią metodą grzejną, w której energia
Ćwiczenie 2a. Pomiar napięcia z izolacją galwaniczną Doświadczalne badania charakterystyk układów pomiarowych CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE
Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych 90-924 Łódź, ul. Wólczańska 221/223, bud. B18 tel. 42 631 26 28 faks 42 636 03 27 e-mail secretary@dmcs.p.lodz.pl http://www.dmcs.p.lodz.pl
LABORATORIUM METROLOGII
LABORATORIUM METROLOGII POMIARY PRZEWODNOŚCI CIEPLNEJ CIAŁ STAŁYCH Cel ćwiczenia: zapoznanie z metodami pomiaru współczynnika przewodzenia ciepła, oraz jego wyznaczenie metodą stacjonarną. 1 WPROWADZENIE
Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza
Efekt Halla Cel ćwiczenia Celem ćwiczenia jest zbadanie efektu Halla. Wstęp Siła Loretza Na ładunek elektryczny poruszający się w polu magnetycznym w kierunku prostopadłym do linii pola magnetycznego działa
Diody półprzewodnikowe
Diody półprzewodnikowe prostownicze detekcyjne impulsowe... Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Publikacja
Pomiar rezystancji metodą techniczną
Pomiar rezystancji metodą techniczną Cel ćwiczenia. Poznanie metod pomiarów rezystancji liniowych, optymalizowania warunków pomiaru oraz zasad obliczania błędów pomiarowych. Zagadnienia teoretyczne. Definicja
Podstawy elektrotechniki V1. Na potrzeby wykładu z Projektowania systemów pomiarowych
Podstawy elektrotechniki V1 Na potrzeby wykładu z Projektowania systemów pomiarowych 1 Elektrotechnika jest działem nauki zajmującym się podstawami teoretycznymi i zastosowaniami zjawisk fizycznych z dziedziny
Diody półprzewodnikowe
Diody półprzewodnikowe prostownicze detekcyjne impulsowe... Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Półprzewodniki
Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude
Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 1 Podstawowe prawa obwodów elektrycznych Prąd elektryczny definicja fizyczna Prąd elektryczny powstaje jako uporządkowany ruch
Badania charakterystyki sprawności cieplnej kolektorów słonecznych płaskich o zmniejszonej średnicy kanałów roboczych
Badania charakterystyki sprawności cieplnej kolektorów słonecznych płaskich o zmniejszonej średnicy kanałów roboczych Jednym z parametrów istotnie wpływających na proces odprowadzania ciepła z kolektora
ANALIZA WYMIANY CIEPŁA OŻEBROWANEJ PŁYTY GRZEWCZEJ Z OTOCZENIEM
Wymiana ciepła, żebro, ogrzewanie podłogowe, komfort cieplny Henryk G. SABINIAK, Karolina WIŚNIK* ANALIZA WYMIANY CIEPŁA OŻEBROWANEJ PŁYTY GRZEWCZEJ Z OTOCZENIEM W artykule przedstawiono sposób wymiany
WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ
WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ Instrukcja do ćwiczenia T-06 Temat: Wyznaczanie zmiany entropii ciała
POLITECHNIKA WARSZAWSKA Wydział Elektryczny Zakład Systemów Informacyjno-Pomiarowych
POLITECHNIKA WARSZAWSKA Wydział Elektryczny Zakład Systemów Informacyjno-Pomiarowych Studia... Kierunek... Grupa dziekańska... Zespół... Nazwisko i Imię 1.... 2.... 3.... 4.... Laboratorium...... Ćwiczenie
Regulacja dwupołożeniowa (dwustawna)
Regulacja dwupołożeniowa (dwustawna) I. Wprowadzenie Regulacja dwustawna (dwupołożeniowa) jest często stosowaną metodą regulacji temperatury w urządzeniach grzejnictwa elektrycznego. Polega ona na cyklicznym
wymiana energii ciepła
wymiana energii ciepła Karolina Kurtz-Orecka dr inż., arch. Wydział Budownictwa i Architektury Katedra Dróg, Mostów i Materiałów Budowlanych 1 rodzaje energii magnetyczna kinetyczna cieplna światło dźwięk
(12) OPIS PATENTOWY (19) PL (11) (13) B1
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 173831 (13) B1 (21) Numer zgłoszenia: 304562 Urząd Patentowy (22) Data zgłoszenia: 03.08.1994 Rzeczypospolitej Polskiej (51) IntCl6: G01R 31/26 (54)
Badanie baterii słonecznych w zależności od natężenia światła
POLITECHNIKA WARSZAWSKA Instytut Elektroenergetyki, Zakład Elektrowni i Gospodarki Elektroenergetycznej Przemiany energii laboratorium Ćwiczenie Badanie baterii słonecznych w zależności od natężenia światła
Diody półprzewodnikowe
Diody półprzewodnikowe prostownicze detekcyjne impulsowe... Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Półprzewodniki
Ćwiczenie 425. Wyznaczanie ciepła właściwego ciał stałych. Woda. Ciało stałe Masa kalorymetru z ciałem stałym m 2 Masa ciała stałego m 0
2014 Katedra Fizyki Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg... Godzina... Ćwiczenie 425 Wyznaczanie ciepła właściwego ciał stałych Masa suchego kalorymetru m k = kg Opór grzałki
KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów województwa lubuskiego. Schemat punktowania zadań
1 KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów województwa lubuskiego 8 marca 01 r. zawody III stopnia (finałowe) Schemat punktowania zadań Maksymalna liczba punktów 60. 90% 54pkt. Uwaga! 1. Za
Ćwiczenie nr 2 Charakterystyki I= f(u) złącza p-n.
Wydział Elektroniki Mikrosystemów i otoniki Opracował zespół: Marek Panek, Waldemar Oleszkiewicz, wona Zborowska-Lindert, Bogdan Paszkiewicz, Małgorzata Kramkowska, Beata Ściana, Zdzisław ynowiec, Bogusław
PRZEŁĄCZANIE DIOD I TRANZYSTORÓW
L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE PRZEŁĄCZANIE DIOD I TRANZYSTORÓW REV. 1.1 1. CEL ĆWICZENIA - obserwacja pracy diod i tranzystorów podczas przełączania, - pomiary charakterystycznych czasów
GENERATOR WIELKIEJ CZĘSTOTLIWOŚCI BADANIE ZJAWISK TOWARZYSZĄCYCH NAGRZEWANIU DIELEKTRYKÓW
GENERATOR WIELKIEJ CZĘSTOTLIWOŚCI BADANIE ZJAWISK TOWARZYSZĄCYCH NAGRZEWANIU DIELEKTRYKÓW Nagrzewanie pojemnościowe jest nagrzewaniem elektrycznym związanym z efektami polaryzacji i przewodnictwa w ośrodkach
Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech. Elektronika. Laboratorium nr 3. Temat: Diody półprzewodnikowe i elementy reaktancyjne
Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Elektronika Laboratorium nr 3 Temat: Diody półprzewodnikowe i elementy reaktancyjne SPIS TREŚCI Spis treści... 2 1. Cel ćwiczenia... 3 2. Wymagania...
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Podstawy teorii pasmowej. 2. Klasyfikacja ciał stałych w oparciu o teorię pasmową.
ELEMENTY ELEKTRONICZNE
AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Katedra Elektroniki ELEMENTY ELEKTRONICZNE dr inż. Piotr Dziurdzia paw. C-3,
Termodynamika. Część 12. Procesy transportu. Janusz Brzychczyk, Instytut Fizyki UJ
Termodynamika Część 12 Procesy transportu Janusz Brzychczyk, Instytut Fizyki UJ Zjawiska transportu Zjawiska transportu są typowymi procesami nieodwracalnymi zachodzącymi w przyrodzie. Zjawiska te polegają
Ćwiczenie nr 123: Dioda półprzewodnikowa
Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 123: Dioda półprzewodnikowa
FIZYKA LABORATORIUM prawo Ohma
FIZYKA LABORATORIUM prawo Ohma dr hab. inż. Michał K. Urbański, Wydział Fizyki Politechniki Warszawskiej, pok 18 Gmach Fizyki, murba@if.pw.edu.pl www.if.pw.edu.pl/ murba strona Wydziału Fizyki www.fizyka.pw.edu.pl
LABORATORIUM MECHANIKI PŁYNÓW
Ćwiczenie numer Pomiar współczynnika oporu liniowego 1. Wprowadzenie Stanowisko służy do analizy zjawiska liniowych strat energii podczas przepływu laminarnego i turbulentnego przez rurociąg mosiężny o
Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO
Politechnika Gdańska Wydział Elektrotechniki i Automatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Mechatronika (WM) Laboratorium Elektrotechniki Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO
Pomiar parametrów tranzystorów
Instytut Fizyki ul Wielkopolska 5 70-45 Szczecin Pracownia Elektroniki Pomiar parametrów tranzystorów (Oprac dr Radosław Gąsowski) Zakres materiału obowiązujący do ćwiczenia: zasada działania tranzystora
POLITECHNIKA CZĘSTOCHOWSKA. Poszukiwanie optymalnej średnicy rurociągu oraz grubości izolacji
POLITECHNIKA CZĘSTOCHOWSKA Instytut Maszyn Cieplnych Optymalizacja Procesów Cieplnych Ćwiczenie nr 3 Poszukiwanie optymalnej średnicy rurociągu oraz grubości izolacji Częstochowa 2002 Wstęp. Ze względu
Półprzewodniki. złącza p n oraz m s
złącza p n oraz m s Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Publikacja współfinansowana ze środków Unii
Zasilanie diod LED w aplikacjach oświetleniowych AC liniowym, szeregowym regulatorem prądu układ CL8800 firmy Microchip (Supertex)
1 Zasilanie diod LED w aplikacjach oświetleniowych AC liniowym, szeregowym Zasilanie diod LED w aplikacjach oświetleniowych AC liniowym, szeregowym regulatorem prądu układ CL8800 firmy Microchip (Supertex)
Projektowanie i symulacja systemu pomiarowego do pomiaru temperatury
Paweł PTAK Politechnika Częstochowska, Polska Projektowanie i symulacja systemu pomiarowego do pomiaru temperatury Wstęp Temperatura należy do grupy podstawowych wielkości fizycznych. Potrzeba pomiarów
i elementy z półprzewodników homogenicznych część II
Półprzewodniki i elementy z półprzewodników homogenicznych część II Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego
Analiza korelacyjna i regresyjna
Podstawy Metrologii i Technik Eksperymentu Laboratorium Analiza korelacyjna i regresyjna Instrukcja do ćwiczenia nr 5 Zakład Miernictwa i Ochrony Atmosfery Wrocław, kwiecień 2014 Podstawy Metrologii i
Ćwiczenie nr 43: HALOTRON
Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Data wykonania Data oddania Zwrot do popr. Rok Grupa Zespół Nr ćwiczenia Data oddania Data zaliczenia OCENA Ćwiczenie nr 43: HALOTRON Cel
Badanie charakterystyki prądowo-napięciowej opornika, żarówki i diody półprzewodnikowej z wykorzystaniem zestawu SONDa
Badanie charakterystyki prądowo-napięciowej opornika, żarówki i diody półprzewodnikowej z wykorzystaniem zestawu SONDa Celem doświadczenia jest wyznaczenie charakterystyk prądowo-napięciowych oraz zależności
Laboratorium. Hydrostatyczne Układy Napędowe
Laboratorium Hydrostatyczne Układy Napędowe Instrukcja do ćwiczenia nr Eksperymentalne wyznaczenie charakteru oporów w przewodach hydraulicznych opory liniowe Opracowanie: Z.Kudżma, P. Osiński J. Rutański,