DAWKI PRZY NORMALNEJ PRACY ELEKTROWNI JĄDROWYCH
|
|
- Radosław Kołodziejczyk
- 8 lat temu
- Przeglądów:
Transkrypt
1 Biuletyn Miesięczny PSE, sierpień 2005, 9-21Cykl: Energetyka atomowa DAWKI PRZY NORMALNEJ PRACY ELEKTROWNI JĄDROWYCH Dr inż. A. Strupczewski 1 Ogólne tendencje Elektrownie jądrowe wytwarzają obecnie około 17% energii elektrycznej zużywanej na świecie, a liczba bloków z reaktorami energetycznymi przekroczyła 440 w 32 krajach świata. W najbliższym dwudziestoleciu zaplanowano wzrost mocy globalnej elektrowni jądrowych na świecie o 60%, z 320 GWe w chwili obecnej do 440 GWe w 2025 roku. Mimo to wkład elektrowni jądrowych w ogólny poziom promieniowania jest pomijalnie mały msv/rok wobec średnio 2,4 msv/rok jakie otrzymuje człowiek wskutek promieniowania tła naturalnego i zabiegów medycznych. Wraz z rozwojem energetyki jądrowej podnoszono stale bezpieczeństwo jądrowe i obniżano dawki promieniowania. Obecne uwolnienia produktów radioaktywnych z EJ są pomijalnie małe, a także w przeszłości uwolnienia podczas normalnej eksploatacji EJ nie powodowały wykrywalnych efektów zdrowotnych. Jednakże skutki awarii w Czarnobylu, chociaż była ona tylko jednym odosobnionym wypadkiem, bynajmniej nie reprezentatywnym dla energetyki jądrowej, rzucają cień wątpliwości na dobre wyniki wszystkich innych elektrowni, choć z uwagi na całkowicie odmienną konstrukcję nie mogą one spowodować podobnego skażania otoczenia. Ponadto przeciwnicy energetyki jądrowej donoszą wciąż o zachorowaniach na białaczkę, rzekomo powodowanych przez instalacje jądrowe. Jaka jest prawda? Zacznijmy od faktów. Uwolnienia radioaktywne z EJ i z zakładów przerobu paliwa wypalonego są stale kontrolowane. Wyniki pomiarów podlegają kontroli urzędów dozoru jądrowego w krajach prowadzących eksploatację EJ, a w skali globalnej są zbierane i publikowane przez Komitet Naukowy ONZ ds. Skutków Promieniowania Atomowego (UNSCEAR). UNSCEAR publikuje także inne dane dotyczące promieniowania, między innymi wielkości uwolnień substancji radioaktywnych z elektrowni opalanych paliwem organicznym które wbrew oczekiwaniom porównywalne są z uwolnieniami z EJ. Jednostką przyjętą do pomiaru radioaktywności jest bekerel (Bq) odpowiadający jednemu rozpadowi atomu na sekundę. Większa jednostka używana tradycyjnie to 1 Curie, równy 3, Bq. Systematyczne wysiłki energetyki jądrowej zmierzające do redukcji uwolnień substancji radioaktywnych i utrzymania narażenia radiacyjnego na poziomie tak niskim jak to możliwe w rozsądnych granicach (as low as reasonably achievable -ALARA) doprowadziły do imponujących sukcesów. Nikt ani z personelu, ani z ludności wokoło elektrowni nie otrzymał dawek, które spowodowałyby utratę zdrowia lub życia, nikt - poza ofiarami Czarnobyla, który nie jest typowy dla reaktorów energetycznych i zasługuje na osobną dyskusję. Energetyka jądrowa z natury rzeczy nie wydziela gazów powodujących efekt cieplarniany, ani nie powoduje zanieczyszczeń atmosfery związkami siarki, azotu i pyłami. Dzięki temu zaś, że od pierwszych lat jej rozwoju przywiązywano ogromną wagę do redukowania emisji substancji radioaktywnych i narażenia radiacyjnego personelu, energetyka jądrowa osiągnęła wyniki, które mogą być wzorem dla innych gałęzi przemysłu. Dotyczy to zarówno działań zmierzających do zmniejszania zagrożeń społeczeństwa jak i pracowników. 1 Przewodniczący Komisji Bezpieczeństwa Jądrowego i Ochrony Radiologicznej, Instytut Energii Atomowej, Swierk, A.Strupczewski@cyf.gov.pl 1
2 Małe i wciąż obniżane narażenie radiacyjne pracowników elektrowni. Ludźmi najbardziej narażonymi na promieniowanie z EJ są jej właśni pracownicy. Dlatego kierownictwo elektrowni przykłada dużą wagę do redukcji dawek, jakie pracownicy otrzymują w czasie normalnej pracy i remontów urządzeń. Nie wystarcza przy tym chronić najbardziej narażonych pracowników kosztem dawek otrzymywanych przez innych pracowników. Celem jest zmniejszenie dawki kolektywnej 2, czyli sumy wszystkich dawek otrzymywanych przez wszystkich pracowników elektrowni i personel czasowo zatrudniony przy pracach naprawczych. Dbałość o zmniejszanie narażenia radiacyjnego nie powoduje bynajmniej obniżenia efektywności pracy elektrowni, wręcz przeciwnie, ich współczynniki wykorzystania mocy zainstalowanej rosną. Dane zbierane przez urzędy dozoru jądrowego w różnych krajach i przez Światowe Stowarzyszenie Operatorów EJ WANO (World Association of Nuclear Operators) wykazują, że w elektrowniach o najwyższych współczynnikach wykorzystania mocy zainstalowanej dawki kolektywne są najniższe. Na Rys. 1 widać krzywe oparte na danych WANO [1] przedstawiające wzrost średniego współczynnika wykorzystania mocy zainstalowanej we wszystkich EJ na świecie, oraz dawki kolektywne w EJ z reaktorami PWR, a więc takimi, jakie prawdopodobnie będą budowane w Polsce. Dawki te, otrzymywane łącznie przez wszystkich pracowników elektrowni jądrowych, włączając w to i zespoły remontowe spoza elektrowni, systematycznie maleją. Wykorzystanie mocy zainstalowanej i dawki kolektywne w EJ Dawka kolektywna, os-sv Dawka kol. w EJ z PWR Wsp. wykorzystania mocy zainst Wsp. wykorzystania mocy zainst Lata Rys. 1 Wzrost współczynnika wykorzystania mocy zainstalowanej w EJ na świecie i obniżanie średniej dawki kolektywnej na rok pracy bloku z reaktorem PWR. Dane z [1]. Co prawda, obniżanie dawek pracowników nie jest bynajmniej sprawą prostą. Pracownicy elektrowni otrzymują dawki promieniowania przede wszystkim podczas prac remontowych, gdy otwierają zbiorniki ze skażoną wodą lub zawory, na których osadziły się zaktywowane produkty korozji, gdy otwierają zbiornik reaktora i dokonują przeładunków paliwa, słowem, gdy znika szczelność jednej z barier powstrzymujących uwolnienia produktów radioaktywnych. Aby zmniejszyć zagrożenie pracowników trzeba dążyć do sprawnego wykonywania prac remontowych, tak by czas narażenia na promieniowanie był krótki, a z drugiej strony zapewnić maksymalną czystość obiegów reaktora w czasie normalnej pracy EJ, tak by w obiegach tych nie gromadziły się materiały promieniotwórcze. Dlatego w obniżaniu dawek wielką rolę gra ulepszanie konstrukcji i materiałów EJ. Np. z konstrukcji stykających się z wodą przepływającą przez rdzeń reaktora usuwa się materiały ulegające aktywacji pod 2 Dawka kolektywna (mierzona w osobo-siwertach) to suma dawek indywidualnych otrzymanych przez wszystkich pracowników wykonujących daną pracę (np. wymianę urządzeń w EJ) lub narażonych na promieniowanie z danego źródła (np. mieszkających w pobliżu elektrowni jądrowej). 2
3 wpływem promieniowania neutronowego w rdzeniu, takie jak np. kadm. Dzięki temu ilość zanieczyszczeń rozpuszczonych w wodzie obiegu pierwotnego i krążących wraz z nią w reaktorze jest mniejsza, a co za tym idzie, mniejsze jest ich promieniowanie i mniejsze są dawki otrzymywane przez personel przy remoncie urządzeń. Równolegle postępuje podnoszenie szczelności paliwa tak by nie wyciekały z niego do wody produkty rozszczepienia i podnoszenie szczelności obiegu pierwotnego. Podejmuje się też wysiłki dla usprawnienia pracy w rejonach promieniowania. Przynosi to rezultaty okresy przestojów remontowych w elektrowniach są skracane, a dawki stale maleją. Dla większych prac remontowych, takich jak wymiana wytwornic pary, przygotowania trwają wiele lat. Wszystkie czynności są starannie zaplanowane, możliwe zmiany technologii wykonywania prac ocenia się z punktu widzenia ich wpływu na dawki otrzymywane przez pracowników, a wyniki tych ocen wpływają na podejmowane decyzje. Ogromnie ważny wpływ ma zdobywanie doświadczenia. Przykładem może być wymiana wytwornic pary w elektrowniach belgijskich i szwajcarskich. O ile w 1993 r. przy wymianie wytwornicy pary w Doel 3 (Belgia) pracownicy otrzymali dawkę kolektywną 1,9 os-sv, to przy powtórzeniu tej operacji w EJ Tihange 1 w 1995 r. dawka była mniejsza (1,6 os-sv), a przy podobnych operacjach w trzech następnych blokach jądrowych w Belgii w latach dawki kolektywne wynosiły około 0,64 os-sv. [2]. Podobnie w 1993 r. przy wymianie wytwornic pary w Beznau 1 w Szwajcarii dawka wyniosła 1,2 os-sv, a w 1999 tę samą pracę wykonano w bloku Beznau 2 przy dawce kolektywnej 0,64 os-sv. [3]. W elektrowniach amerykańskich dawki kolektywne były najwyższe w roku 1980, gdy wykonywano szereg przeróbek wynikających z doświadczeń z awarii w Harrisburgu (EJ TMI-2) w 1978 roku. Od tamtej pory dawki stale malały, osiągając w 2001 r. poziom 1 os-sv średnio dla wszystkich reaktorów w USA, przy czym dla reaktorów PWR dawki te były znacznie niższe. Dawki indywidualne dla pracowników elektrowni amerykańskich zmalały z 9,5 msv rocznie w 1973 roku do 1,7 msv rocznie w 2002 r. [4]. W krajach UE redukcja dawek była jeszcze skuteczniejsza np. w EJ Borssele w Holandii dawki kolektywne zmalały z 4 osobo-sv w latach 80-tych do 0,3 os-sv w 2003 r, a średnie dawki indywidualne spadły do 0,5 msv rocznie [5]. W przemyśle jądrowym przyjęto zasadę Bezpieczeństwo jest sprawą wspólną i elektrownie jądrowe prowadzą stale wymianę doświadczeń, tak że metody pracy opracowane w jednaj elektrowni są udostępniane innym elektrowniom. Pomaga to bardzo w podnoszeniu niezawodności i obniżaniu dawek radiacyjnych. Wielkości dawek kolektywnych przedstawione na rys. 1 i dawek indywidualnych cytowane powyżej można porównać z dawkami granicznymi ustalanymi przez urzędy dozoru jądrowego. Według przepisów w wielu krajach UE, indywidualne dawki graniczne ustalone są zgodnie z zaleceniami ICRP na 20 msv/rok, a dawki kolektywne na 4 os-sv/blok/rok. Jak podkreśla rząd francuski w swym raporcie na Konwencję o Bezpieczeństwie Jądrowym, te dawki indywidualne ustalono z dużym marginesem bezpieczeństwa w stosunku do dawek, przy których obserwuje się ujemne skutki zdrowotne promieniowania tj msv [6]. Jednocześnie we wszystkich krajach kładzie się nacisk na maksymalną redukcję dawek zgodnie z zasadą ALARA. Np. w Słowenii planowanie prac pod kątem maksymalnej redukcji dawek w granicach rozsądku (ALARA) wymagane jest dla wszystkich prac, przy których maksymalna dawka indywidualna przekracza 5 msv, lub dawka kolektywna jest większa niż 0,01 os-sv. Stosowanie zasady ALARA kontrolowane jest przez komitet ALARA, powoływany na najwyższym szczeblu zarządzania elektrownią [7]. Z każdym rokiem do reaktorów wprowadza się kolejne ulepszenia, a dawki promieniowania otrzymywane przez pracowników maleją. W Niemczech, gdzie pracują reaktory czterech typów budowane w kolejnych fazach rozwoju energetyki jądrowej, dawki kolektywne w EJ z 3
4 reaktorami trzeciego typu obniżono w 2000 r. do 0,7 os-sv na blok rocznie, a w EJ z reaktorami czwartego, najnowszego typu nawet do 0,18 os-sv na blok rocznie! [8]. Biorąc pod uwagę, że proponowany przez konsorcjum francusko-niemieckie nowy reaktor EPR ma wszystkie zalety najnowszych reaktorów w Niemczech i we Francji, a ponadto szereg dodatkowych ulepszeń opracowanych przez najlepsze zespoły projektowe w UE, można oczekiwać, że dawki dla pracowników przyszłych polskich EJ będą naprawdę bardzo małe. Analizy radiologiczne przeprowadzone dla budowanej obecnie elektrowni w Olkiluoto z reaktorem EPR potwierdzają te oczekiwania [9]. Uwolnienia radioaktywne poza obszar elektrowni jądrowej Według zasad przyjętych przez Komisję Energii Atomowej USA w połowie XX wieku, a więc na samym początku rozwoju energetyki jądrowej, żadna osoba nie może być narażona na znaczące dodatkowe zagrożenie wskutek pracy elektrowni jądrowej, a społeczne ryzyko wynikające z pracy EJ powinno być porównywalne z ryzykiem powodowanym przez inne formy wytwarzania energii i nie może powodować znaczącego zwiększenia całkowitego zagrożenia społecznego. Dla osiągnięcia tego celu ustalono, że dawki wokoło EJ należy ograniczyć tak, by powodowane przez nie średnie ryzyko zachorowania na raka wśród populacji mieszkającej w promieniu 16 km nie przekraczało 0.1% sumy zachorowań na raka wynikających ze wszystkich innych przyczyn [10]. W owym czasie średnia umieralność na raka wynosiła w USA około 0,002 na rok, tak że określona liczbowo wartość zagrożenia dopuszczalnego ze strony elektrowni jądrowych dla krytycznej grupy ludności 3 wynosiła średnio na osobę na rok. Od tej pory wydzielenia produktów rozszczepienia z reaktorów jądrowych do otoczenia elektrowni stale malały. Na rys. 2 pokazano spadek wydzieleń jodu, gazów szlachetnych i pyłów radioaktywnych do atmosfery z elektrowni jądrowych z reaktorami PWR (dane z [11]). TBq/GWe.a Redukcja emisji z reaktorów PWR wg [UNSCEAR 2000] 220 < Gazy szlachetne TBq/GWe.a > Jod 131 GBq/GWe.a > Pyły radioaktywne GBq/GWe.a GBq/GWe.a Rys. 2 Redukcja emisji z reaktorów PWR, dane liczbowe z [11] Warto tu dodać, że nie wszystkie produkty rozszczepienia są równie groźne. Do najgroźniejszych należą pyły radioaktywne (takie jak cez czy stront), które dostają się do organizmu człowieka i pozostają w nim długo, bo ich okres zaniku jest długi. Mniej groźny jest jod, który wprawdzie osadza się w tarczycy, ale stosunkowo szybko zanika (okres połowicznego zaniku izotopu J-131 to 8 dni, a dla innych izotopów jodu mniej). Jak pamiętamy z poprzedniego 3 Krytyczna grupa ludności grupa najbardziej zagrożona, np. w przypadku ludności wokoło EJ jest to zwykle grupa niemowląt, lub dzieci w wieku 2-7 lat, zamieszkałych w rejonie wokoło EJ. 4
5 artykułu, badania wielu osób, które napromieniowywano jodem w celach diagnostycznych lub leczniczych, nie wykazały żadnego wzrostu zachorowań na raka [12]. Tym niemniej jod jako pierwiastek o znacznej lotności jest typowym zagrożeniem, z którym walczy się przy obniżaniu dawek w elektrowniach jądrowych. Najmniej groźne są wydzielenia gazów szlachetnych, które wprawdzie emitują promieniowanie gamma i beta, ale ulatniają się do otoczenia i nie pozostają w organizmie człowieka. Porównanie zagrożenia chorobą nowotworową powodowane przez wydzielenie równych wielkości aktywności (mierzonej w liczbie rozpadów promieniotwórczych na sekundę, tj. Bq) gazów szlachetnych (krypton Kr, ksenon Xe), jodu (J) i cezu (Cs) pokazano na rys. 3 (dane z [13]). Zagrożenie ze strony cezu jest największe, bo ma on okres połowicznego zaniku 30 lat, a więc pozostaje w otoczeniu człowieka długo po kompletnym zniknięciu jodu i gazów szlachetnych. Zagrożenie względne przy wydzieleniu takch samych aktywności różnych produktów rozszczepienia Względne niebezpieczeństwo raka, znormalizowane do jedności dla cezu E E-03 Xe Kr I Cs Rys. 3 Względne zagrożenie zachorowaniem na raka powodowane wydzieleniem pewnej aktywności produktów rozszczepienia, znormalizowane do jedności dla cezu. Jak widać jod jest mniej groźny, a gaz szlachetne powodują znikomo małe zagrożenie. Dane do wykresu zaczerpnięte z [13]. Teraz, gdy zdajemy sobie sprawę z wielkości względnych zagrożeń, popatrzmy jeszcze raz na rys. 2. Jak widać, wysiłki energetyki jądrowej szły głównie w kierunku redukcji emisji cezu, jodu i innych pyłów radioaktywnych, i przyniosły dobre rezultaty. Jak podaje [14], średnie uwolnienia z EJ z reaktorami PWR w krajach UE w 2003 roku mierzone na wyprodukowanej jednostkę energii elektrycznej wyniosły dla gazów szlachetnych 4,9 GBq/GWh, a dla jodu i aerozoli odpowiednio 0, i 0, GBq/GWh [14], a więc były ponad sto tysięcy razy mniejsze. Najgroźniejsze izotopy są najskuteczniej zatrzymywane. Najbardziej reprezentatywne dla rozwoju energetyki jądrowej w Europie są elektrownie francuskie. Ich łączna moc wynosi 62,8 GWe, a więc jest około dwukrotnie większa od całej mocy wszystkich elektrowni w Polsce. Średnie uwolnienia jodu i aerozoli z elektrowni francuskich wynosiły w 2000 r. około 0,4% dopuszczalnych uwolnień w skali rocznej. [6]. Wydzielenia ciekłych odpadów radioaktywnych wynosiły około 0.5% wielkości dopuszczalnych. Im nowsze reaktory, tym wydzielenia są mniejsze. I tak np. elektrownie w Chooz i Civaux wyposażone w reaktory najnowszej generacji o łącznej mocy 4x1450 MWe emitują w sumie poniżej 4 TBq gazów szlachetnych i trytu, a poniżej 0,4 GBq jodów i pyłów radioaktywnych razem. Z rysunku 2 widać, że na przełomie stulecia średnie na świecie uwolnienia gazów szlachetnych wynosiły 13 TBq/GWe-rok. Wymienione powyżej elektrownie francuskie osiągnęły wskaźnik niższy od 1 TBq/GWe-rok dla gazów szlachetnych i trytu razem, 5
6 a poniżej 0,1 GBq/GWE-rok dla jodu i pyłów radioaktywnych razem! [6]. Wielkości tych nie można pokazać na rys. 2, bo pokrywają się z osią poziomą. Biorąc pod uwagę ulepszone możliwości techniczne elektrowni jądrowych, urząd dozoru jądrowego Francji ustalił dla ostatnio zbudowanych EJ z reaktorami 1450 MWe limity 10 razy niższe niż dla poprzednich bloków 1300 MWe. Podczas gdy dawne limity dla EJ z dwoma reaktorami o mocy 1300 MWe wynosiły 110 GBq dla jodu i aerosoli łącznie, a 3300 TBq dla gazów szlachetnych łącznie z trytem i C-14, dla nowych EJ w Chooz i Civaux limity te wynoszą odpowiednio 11 GBq i 330 TBq, chociaż moc tych EJ jest zwiększona. Co więcej, wobec tego że EJ emitowały tylko ułamki procenta wielkości granicznych, Francja podjęła akcję ogólnej redukcji dozwolonych limitów emisji. Bloki uzyskujące przedłużenie licencji po 1995 roku mają narzucone limity niższe niż obowiązujące poprzednio. Przykładowe wielkości emisji dozwolonych dla EJ 2 x 1300 MWe wg starych i obecnych przepisów pokazane są w Tabl. 1. Tablica 1 Emisje dozwolone i rzeczywiste w EJ we Francji pracujących na podstawie zezwoleń pierwotnych (stare limity) i obecnych, odnowionych na bazie nowych przepisów (nowe limity) [6]. EJ Golfech, 2x1300 MWe (stare limity) 6 Flamanville, 2x1300 MWe (nowe limity) Limit Rzeczywiste emisje Limit Rzeczywiste emisje Gazy szlachetne, TBq/rok , ,90 Tryt, TBq/rok 1) 1) 5 2,03 Węgiel C-14, TBq/rok 1) 1) 1,4 0,416 Jod, GBq/rok 55 0,083 0,8 0,108 Aerosole, GBq/rok 2) 2) 0,8 0,0049 1) Wielkości te były włączone w pozycję Gazy szlachetne 2) Wielkości te były włączone w pozycję Jod i aerosole Jak widać, nowe limity są około 30 razy niższe od obowiązujących dawniej. Dawne limity były zupełnie wystarczające z punktu widzenia zdrowia ludzi, lecz rząd francuski podkreśla, że wskutek rozwoju technicznych możliwości elektrowni dawne ograniczenia przestały mieć sens, bo w rzeczywistości uwolnienia były nieporównywalnie mniejsze. Dlatego wprowadzono nowe limity, od 2 do 40 razy mniejsze w zależności od izotopu i elektrowni [6]. W innych krajach emisje są również systematycznie redukowane. Dawki wokoło elektrowni jądrowych dopuszczalne i rzeczywiste. Wielkość rekomendowanej dawki dopuszczalnej dla ludności powodowanej przez instalacje jądrowe określiła Międzynarodowa Komisja Ochrony Przed Promieniowaniem (ICRP) jako 1 msv/rok. Wielkość tę przyjęto jako obowiązującą w krajach Unii Europejskiej. Dodatkowo w niektórych krajach urzędy dozoru jądrowego wprowadzają ograniczenia mające zapewnić, że w stosunku do zaleceń ICRP będzie zachowany margines bezpieczeństwa w przypadku jednoczesnej pracy kilku elektrowni jądrowych lub innych dużych źródeł promieniowania (poza napromieniowaniem związanym z medycyną). W Niemczech dla promieniowania z EJ ustalono limit równy 0,3 msv/rok. W Finlandii urząd dozoru jądrowego określił emisje dopuszczalne z elektrowni tak, by dodatkowa dawka roczna powodowana przez EJ nie przekraczała 0,1 msv. We Francji natomiast obowiązuje dawka 1 msv/rok, chociaż limity uwolnień odpowiadają dawkom o wiele mniejszym.
7 W metodyce określania emisji dopuszczalnych urzędy dozoru przyjmują założenia niekorzystne, tak by w rzeczywistości dawki były mniejsze od dozwolonych. Granice uwolnień ustalane są przez dozór jądrowy w wiodących krajach UE w taki sposób, by dawki roczne od uwolnień gazowych i ciekłych nie przekraczały wielkości podanych w tablicy 2. Ponadto elektrownie starają się utrzymać emisje na poziomie jak najmniejszym zgodnie z zasadą ALARA. W efekcie rzeczywiste dawki wokoło EJ są znacznie mniejsze od dozwolonych. Tabl. 2 Efektywne dawki graniczne do określenia dopuszczalnych uwolnień z EJ Kraj Dawka od uwolnień gazowych Dawka od uwolnień ciekłych Źródło Na całe ciało Na dowolny organ Na całe ciało Na dowolny organ Belgia 50 μsv/rok 150 μsv/rok 30 μsv/rok 100 μsv/rok 2 Czechy 200 μsv/rok Finlandia 100 μsv/rok od promieniowania zewnętrznego i wchłaniania substancji promieniotwórczych łącznie Francja 1000 μsv/rok od promieniowania zewnętrznego i wchłaniania substancji promieniotwórczych łącznie Niemcy 300 μsv/rok 1800 μsv/rok 300 μsv/rok 1800 μsv/rok 8 Słowenia 50 μsv/rok od wszystkich uwolnień radioaktywnych μsv/rok od promieniowania zewnętrznego od urządzeń EJ Hiszpania 100 μsv/rok łącznie od wszystkich emisji z EJ 14 Szwajcaria 300 μsv/rok od EJ, w tym 100 μsv/rok z promieniowania bezpośredniego i 200 μsv/rok od emisji W. Brytania 300 μsv/rok od jednego bloku, 500 μsv/rok od EJ z wieloma blokami i 1000 μsv/rok od wszystkich źródeł łącznie z promieniowaniem dawnych emisji, ale poza medycyną. USA 50 μsv/rok* 150 μsv/rok 30 μsv/rok 100 μsv/rok 4 * Ponadto w USA obowiązuje zasada, że należy zmniejszać dawki dla ludności, gdy koszt potrzebnych do tego środków jest mniejszy niż $/os-sv [4] We francuskiej EJ Flammanville z dwoma reaktorami typu PWR o mocy 900 MWe moc dawki powodowanej przez wszystkie emisje z EJ wynosi typowo msv/rok. Powołany przez rząd francuski Komitet Souleau stwierdził, że maksymalne dawki odpowiadające dozwolonym limitom wyniosłyby 0,3 msv/rok, podczas gdy rzeczywiste dawki poza terenem elektrowni wyniosły średnio 0,01 msv, a więc 30 razy mniej niż dawki graniczne, a 200 razy mniej niż tło promieniowania naturalnego [18]. Podobnie w USA uwolnienia średnie ze wszystkich EJ są dużo niższe niż wartości dopuszczalne. Nigdy nie wykryto żadnych ujemnych skutków zdrowotnych powodowanych przez te niskie uwolnienia, i nie oczekuje się by kiedykolwiek takie skutki wystąpiły. Wbrew twierdzeniom publicystów antynuklearnych, przeprowadzone na ogromną skalę ( osób) studium amerykańskiego Instytutu Chorób Nowotworowych potwierdziło, że nie ma żadnych oznak wzrostu zachorowań na raka w sąsiedztwie instalacji jądrowych w USA [19]. 7
8 W Szwajcarii dawki wokoło EJ wahają się od 0,01 do 0,001 msv rocznie. Elektrownia jądrowa w Gosgen przez 14 lat powodowała dawki dla najbardziej narażonej grupy ludności leżące poniżej 0,001 msv/rok [3]. Dla pokazania pełnego obrazu warto dodać, że w jednej z elektrowni szwajcarskich, mianowicie w Muehlebergu, zdarzyła się jednak awaria w systemie przerobu suchych żywic zatrzymujących materiały radioaktywne i doszło do znaczącego wydzielenia długo życiowych produktów radioaktywnych poza elektrownię. Było to w 1987 r., a od tej pory elektrownia pracuje dobrze i poziom promieniowania stale maleje. Ale, żeby dopowiedzieć sprawę do końca jakie też było promieniowanie w sąsiedztwie EJ w chwili owej awarii? Wyższe niż średnie tło promieniowania na Ziemi (2,4 msv/rok), czy takie jak średnio w Finlandii (7 msv/rok), czy tak wysokie jak w Ramsar w Iranie (70 msv/rok)? O nie, owo natężenie awaryjne w szczycie wyniosło 0.1 msv/rok, a więc było 20 razy MNIEJSZE od normalnego poziomu tła promieniowania [3]. A przy tym EJ Muehleblerg to elektrownia bardzo stara. W nowszych elektrowniach stałe dążenie do redukcji emisji substancji radioaktywnych doprowadziło do stanu, gdzie dawki od elektrowni jądrowych są mniejsze nie tylko od tła naturalnego, które waha się od 2 do 10 msv/rok, ale i od zaleceń Międzynarodowej Komisji Ochrony Radiologicznej MKOR (1 msv(rok), Unii Europejskiej (UE) i od wymagań urzędów dozoru jądrowego (DJ). Wymagania te są różne, na rys, 4 pokazano poziom wymagany w Niemczech (0,3 msv/rok) Dawka roczna msv/rok Porównanie dawek promieniowania od EJ z tłem naturalnym i dawkami dozwolonymi Zalecenia UE i MKOR Zalecenia DJ Wymagania EUR EJ Ringhals EJ we Francji Rys. 4 Porównanie dawek promieniowania od EJ z tłem naturalnym i dawkami dozwolonymi. Dawka rzeczywista dla krytycznej grupy ludności wokoło EJ Ringhals (Szwecja) wynosi 0.03 msv/rok. Dawki wokoło innych EJ w Szwecji są jeszcze mniejsze. We Francji dawki dla krytycznej grupy ludności wokoło EJ wynoszą około 0.01 msv/rok [6]. Średnia moc dawki dla ludności Francji, gdzie przecież energia jądrowa dostarcza 80% potrzebnej krajowi energii elektrycznej, wynosi 0,001 msv/rok [6], a więc jest pomijalnie mała według wszelkich ocen, czy to formułowanych przez Francuską Akademię Medyczną, czy przez ICRP lub UNSCEAR. W Finlandii dawki dopuszczalne dla ludności powodowane pracą EJ ustalono na 0,1 msv/rok. [16]. Przy przyjęciu niekorzystnych założeń, dawka efektywna, którą mogła spowodować praca EJ Olkiluoto z blokami 1 i 2 oceniana była na msv/rok. W ciągu ostatnich kilku lat dawka obliczona na podstawie rzeczywistych danych dla najbardziej narażonej osoby w okolicy EJ Olkiluoto była dużo niższa, poniżej msv/rok. Po oddaniu do eksploatacji nowego bloku nr 3 (reaktorem PWR o mocy 1600 MWe) dawki dopuszczalne dla ludności pozostaną bez zmiany na poziomie 0,1 msv/rok [16]. 8
9 Przy przyjęciu niekorzystnych założeń teoretycznie możliwa dawka roczna dla najbardziej narażonej osoby w sąsiedztwie EJ powodowana pracą Olkiluoto 3 została oceniona na msv/rok. W oparciu o doświadczenie eksploatacyjne EJ w Niemczech i we Francji można przyjąć z dużym marginesem bezpieczeństwa, że rzeczywiste uwolnienia będą dużo niższe od wielkości przyjętych w raporcie bezpieczeństwa. Gdy blok Olkiluoto 3 zostanie oddany do eksploatacji, roczne dawki efektywne dla wszystkich trzech bloków EJ Olkiluoto pozostaną dużo niższe niż msv (0.014 msv od bloku nr 3 i msv od dwóch istniejących bloków) tj. będą niższe od określonej przepisami dawki granicznej 0.1 msv rocznie [16]. Polski czytelnik nie powinien sądzić, że wyniki Szwajcarów, Niemców czy Amerykanów są dla nas nieosiągalne ze względu na różnice w kulturze technicznej i uwarunkowania społeczne. W sąsiadującej z nami Słowacji w końcu lat 80-tych budowano EJ z dwoma reaktorami typu WWER 400, podobnymi do budowanych w Polsce reaktorów w EJ Żarnowiec. Po zmianie ustroju na Słowacji zatrzymano budowę EJ Mochovce na kilka lat, ale nie porzucono jej i po wprowadzeniu szeregu ulepszeń uruchomiono jednak oba te reaktory. Reaktory te dostarczają obecnie energię elektryczną dwukrotnie taniej niż elektrownie konwencjonalne i spełniają wszystkie wymagania bezpieczeństwa obowiązujące w UE. Pomiary radiologiczne wykazały, że moce dawek w ich otoczeniu są tak małe, że nie daje się ich mierzyć. Gdy dokonano obliczeń, okazało się, że w ciągu 6 lat od chwili uruchomienia EJ Mochovce roczne dawki dodatkowe powodowane przez tę elektrownię nigdy nie przekroczyły jednej MILIONOWEJ siwerta (wahały się od 0,1 do 0,7 mikrosv). [7]. Podobnie na Węgrzech roczne dawki efektywne w odległości 3 km od EJ Paks z 4 reaktorami WWER 440 wynoszą od 0,1 do 0,5 mikrosiwerta [20]. Jeśli takie wyniki mogą osiągać rok po roku Słowacy czy Węgrzy w elektrowniach z reaktorami zaprojektowanymi przed 30 laty, które odrzuciliśmy jako niedostatecznie dobre dla Polski, to chyba będziemy potrafili dorównać im mając EJ z najnowszymi reaktorami, dostarczoną przez najlepsze firmy reaktorowe w XXI wieku! W tej chwili możemy już stwierdzić, że w praktyce redukcje uwolnień radioaktywnych dyktowane przez zasadę ALARA wykraczają daleko poza wymagania urzędów dozoru jądrowego. Dzięki temu wpływ elektrowni jądrowych na poziom promieniowania i dawki w okolicy elektrowni jest tak mały, że najczęściej nie daje się go wykryć bezpośrednio i wyniki szacuje się na podstawie założeń pesymizujących. Ryzyko powodowane bliskością elektrowni jądrowej Zgodnie z Encyklopedią Energii z 2004 roku, następujące czynności powodują ten sam wzrost ryzyka, równy prawdopodobieństwu zgonu 1 na milion w ciągu 1 roku: 9
10 Dawki otrzymywane od źródeł naturalnych lub wskutek działań człowieka, msv 420 Dawka roczna kosmonauty na orbicie 300 Dawka roczna od promieniowania naturalnego w Ramsar (Iran) 20 Dawka roczna w niewietrzonym domu na podłożu granitowym 3,6 Dawka roczna od promieniowania naturalnego na wysokości 1500 m npm. 2,4 Dawka roczna średnia na ziemi od źródeł naturalnych 0,7 Dawka otrzymywana przy prześwietleniu rentgenowskim płuc 0,06 Dawka od promieniowania kosmicznego podczas lotu Warszawa-New York- Warszawa <0,01 Dawka otrzymywana podczas tygodniowego pobytu na nartach w górach <0,001 Dawka roczna w najbliższym sąsiedztwie elektrowni jądrowej Wypalenie 1,4 papierosa Jazda 16 km na rowerze Zjedzenie 40 łyżek stołowych masła z orzeszków ziemnych Wypicie 30 puszek dietetycznego napoju gazowanego zawierającego sacharynę Mieszkanie przez 50 lat w odległości 8 km od reaktora jądrowego [21]. Porównania te mogą budzić sprzeciwy, bo masło z orzeszków ziemnych nie ma nic wspólnego z energetyką (a zagrożenie powoduje zawarta w orzeszkach ziemnych aflatoksyna). Właściwsze zapewne będą porównania z innymi gałęziami energetyki. Porównania te przedstawimy w dalszych artykułach, po omówieniu problemu awarii w elektrowni jądrowej, który budzi żywe emocje, szczególnie od czasu awarii w Czarnobylu. Ale porównanie wielkości dawek występujących typowo wokoło elektrowni jądrowych z dawkami z innych źródeł pokazane na rysunku obok obrazuje jak znikome jest zagrożenie ze strony EJ. Dodatkowa moc dawki poniżej msv/ rok powodowana przez EJ jest niezauważalnym przyrostem na tle wahań promieniowania tła naturalnego. Jak osiągamy tak małe uwolnienia poza elektrownię? W rdzeniu reaktora zachodzi reakcja łańcuchowa rozszczepienia uranu, która wytwarza ciepło, ale też i powoduje emisję promieniowania. Przykład takiej reakcji pokazano na rys. 5. Ksenon i stront to dwa spośród wielu izotopów promieniotwórczych, które mogą powstać po rozszczepieniu uranu i ulegać dalszemu rozpadowi, emitując promieniowanie alfa, beta i gamma. Rys. 5 Przykład reakcji rozszczepienia. Po uderzeniu neutronu w jądro uranu U-235 następuje rozszczepienie uranu, wyrzucenie jąder produktów rozszczepienia niosących ogromną energię kinetyczną (około 168 MeV 4 ) i ulegających dalszym rozpadom radioaktywnym, oraz emisja promieniowania gamma i wyrzucenie dwóch lub trzech neutronów, mogących powodować dalsze rozszczepienia. Łącznie jedno rozszczepienie powoduje wydzielenie energii około 200 MeV 4 MeV Milion elektrono woltów energia równa 1, Ws. 10
11 Przed bezpośrednim promieniowaniem emitowanym podczas reakcji rozszczepienia chronimy się otaczając rdzeń reaktora grubymi osłonami z żelazobetonu, które jak się okazało w ostatnich latach mogą też skutecznie chronić rdzeń reaktora przed zamachami terrorystów. Bardziej skomplikowany problem przedstawia możliwe wydzielanie produktów rozszczepienia z paliwa do wody chłodzącej rdzeń i rozprzestrzenianie ich w obiegu pierwotnym, a w razie jego nieszczelności poza obieg. Jak widzieliśmy z liczb podanych powyżej, w stosunku do aktywności znajdującej się w rdzeniu wydzielenia poza elektrownią są znikomo małe, praktycznie zerowe. Jak udaje się to osiągnąć? Nie jest to zadanie łatwe i konstrukcja bezpiecznego reaktora kosztuje drogo. Dlatego nakłady inwestycyjne na budowę EJ są tak wysokie układy elektrowni, tworzące wspólnie system barier powstrzymujących uwalnianie produktów rozszczepienia - muszą zapewnić zatrzymywanie produktów rozszczepienia wewnątrz elektrowni zarówno w czasie normalnej eksploatacji jak i podczas stanów przejściowych, a także awaryjnych. Schemat układu barier w EJ pokazany jest na rys. 6. obudowa bezpieczeństwa Produkty rozszczepienia powstają w paliwie uranowym i pozostają w nim podczas pracy i po wyłączeniu reaktora. Droga, jaką przebywają jądra izotopów materiał paliwowy koszulka granica ciśnieniowa obiegu pierwotnego 11 powstających przy rozszczepieniu jest bardzo krótka, rządu mikronów, tak że ponad 99% produktów rozszczepienia nie opuszcza pastylek paliwowych. Tak więc samo paliwo stanowi pierwszą barierę, powstrzymującą uwalnianie produktów rozszczepienia. Rys. 6 Schemat barier w EJ powstrzymujących uwolnienia produktów rozszczepienia. Produkty rozszczepienia w postaci gazowej (jak ksenon lub krypton) lub takie jak jod czy cez, lotne w wysokich temperaturach ( o C) panujących w paliwie, częściowo wydostają się poza pastylki paliwowe, ale zatrzymywane są przez otaczające paliwo koszulki z cyrkonu, materiału bardzo wytrzymałego i odpornego na wysokie temperatury. Koszulki te stanowią drugą barierę chroniącą przed wyjściem produktów rozszczepienia. Od zewnątrz koszulki omywane są wodą, odbierającą od paliwa energię rozszczepienia w postaci ciepła, przenoszonego na zewnątrz reaktora w celu wytworzenia pary wodnej napędzającej turbogeneratory. Stężenia produktów rozszczepienia w wodzie są stosunkowo małe i ściśle kontrolowane, a w razie nagłego wzrostu tych stężeń reaktor zostaje wyłączony, znajduje się nieszczelne elementy paliwowe i usuwa się je z rdzenia. Woda chłodząca płynie w obiegu, którego ścianki, zawory itd. wykonane są z najwyższą starannością, z najlepszych materiałów, i podlegają kontroli podczas pracy i po wyłączeniu reaktora. Granica ciśnieniowa tego obiegu chłodzenia, zwanego obiegiem pierwotnym, stanowi trzecią barierę powstrzymującą uwalnianie produktów rozszczepienia. Na koniec, cały obieg pierwotny otoczony jest szczelną obudową bezpieczeństwa, stanowiącą kopułę ze zbrojonego betonu, często z dwóch koncentrycznych warstw, z dodatkową wykładziną stalową od wewnątrz, zwiększającą
12 szczelność obudowy będącej ostatnią, czwartą kolejną barierą chroniącą otoczenie elektrowni przed wydostaniem się produktów rozszczepienia na zewnątrz. Te cztery bariery zapewniają niemal całkowite powstrzymanie produktów rozszczepienia w granicach elektrowni. Przykładem skuteczności systemu barier ochronnych elektrowni jądrowej jest Tablica 3 pokazująca rozkład względny w EJ dwóch ważnych z punktu widzenia bezpieczeństwa izotopów promieniotwórczych - jodu i strontu. Aktywność tych izotopów w paliwie przyjęto umownie jako jedność, i podano frakcje, jakie wydostają się poza obręb kolejnych barier. Jak widać, dzienne wydzielenia do atmosfery to aktywności setki miliardów razy mniejsze od aktywności w rdzeniu reaktora. Tak więc, mówiąc o redukcji wydzieleń praktycznie biorąc do zera nie popełniamy błędu. Tabl 3 Rozkład względny izotopów promieniotwórczych w elektrowni jądrowej z reaktorem WWER 440/213 np. w EJ Mochovce. Izotop W paliwie W szczelinie pod koszulką W obiegu pierwotnym We wnętrzu obudowy bezpieczeństwa W atmosferze, uwolnienia dziennie J ,01 1/100 tys. 1/100 mln 1/ 100 mld Sr ,001 1/10 mln 1/10 mld 1/mln mld Wydzielenia gazów szlachetnych powstających wskutek rozszczepienia, takich jak ksenon i krypton, są większe, ale ich wpływ na zdrowie człowieka jest niewielki, bo nie zatrzymują się w organizmie człowieka tak jak jod czy stront. Tym niemniej, system barier zatrzymuje skutecznie także i te gazy, a fakt, że system składa się z czterech kolejnych barier zabezpiecza przed nadmiernymi uwolnieniami nawet wtedy, gdy jedna z barier ulegnie uszkodzeniu. Warto dodać, że bariery te są konstrukcjami trwałymi, i ani materiał pastylek paliwowych, ani koszulki cyrkonowe, ani rurociągi obiegu pierwotnego nie mogą być wyłączone z systemu barier, tak jak podejrzewają przeciwnicy elektrowni jądrowych, przekonani że inżynierowie jądrowi w dążeniu do brudnych zysków gotowi są do wyłączania zabezpieczeń i skażania środowiska. Ostatnia bariera, ponad metrowej grubości żelazo-betonowa obudowa bezpieczeństwa też nie może zniknąć. Wokoło elektrowni jądrowej utrzymywana jest sieć placówek pomiarowych, rejestrujących w sposób ciągły wydzielania i poziomy aktywności powietrza i wody i wykrywających wszelkie odchylenia. Wyniki tych pomiarów są kontrolowane i dostępne dla wszystkich zainteresowanych. Rys. 6. EJ Loviisa w zimie Poza kontrolą rządową i nadzorem ONZ wydzielenia z elektrowni jądrowych są obserwowane przez organizacje antynuklearne, które wykorzystują każdą okazję by wzbudzać protesty publiczne przeciw pracy EJ. Szereg komisji i komitetów obywatelskich walczących przeciw elektrowniom jądrowym otrzymuje finansowanie z funduszy rządowych, a każdy obywatel 12
13 ma prawo wglądu w wyniki pomiarów i obliczeń. Ta jawność w zakresie ochrony radiologicznej jest cechą szczególnie cenną, zapewniającą społeczeństwu możliwość nadzoru i wywierania wpływu na działania przedsiębiorstw energetyki jądrowej. Energetyka jądrowa pokazała, że taka jawność jest możliwa i że jest ona korzystna dla obu stron. Jak dotąd, żadna inna gałąź przemysłu nie osiągnęła takiego poziomu jawności i systematycznej kontroli wywieranego przez nią wpływu na środowisko. Efekty są widoczne czyste niebo nad elektrowniami jądrowymi pozostaje osiągnięciem, do którego mogą tylko dążyć inne gałęzie przemysłu. Literatura KINGDOM OF BELGIUM, Third Meting of the Contracting Parties to the Convention on Nuclear Safety, National Report, Sept SWITZERLAND Implementation of the obligations of the Convention on Nuclear Safety, the Third Swiss Report in accordance with article 5, July 2004, 4 THE UNITED STATES OF AMERICA Third National Report for the Convention on Nuclear Safety US NRC Sept. 2004, NUREG NETHERLANDS Convention on Nuclear Safety, National Report of the Kingdom of Netherlands, The Hague, Sept FRANCE 3 rd French National Report on Implementation of the obligations of the Convention on Nuclear Safety issued for the 2005 Peer Review Meeting, July SLOVAK REPUBLIC National report compiled in terms of the Convention on Nuclear Safety, Sept GERMANY Environmental Policy, Convention on Nuclear Safety, Report by the Government of the Federal Republic of Germany. BMU Sept RADIATION AND NUCLEAR SAFETY AUTHORITY (STUK): Statement Issued by the Radiation and Nuclear Safety Authority Concerning the Construction of the Olkiluoto Nuclear Power Plant Unit 3, Annex Safety Assessment of the Olkiluoto 3 Nuclear Power Plant Unit for the Issuance of Construction License 10 US NUCLEAR REGULATORY COMMISSION, US NRC Policy Statement on Nuclear Power Plant Safety Goals, Atomic Energy Clearing House, 32(26); (23 June 1986). 11 UNSCEAR Report 2000: Sources and Effects of Ionizing Radiation. 12 STRUPCZEWSKI A. Oddziaływanie małych dawek promieniowania na zdrowie człowieka, Biuletyn Miesięczny czerwiec 2005, Insights into the control of the release of iodine, strontium and other fission products in the containment by severe accident management, NEA/CSNI/R(2000)9 14 SPAIN, Convention on Nuclear Safety, Third National Report, September CZECH REPUBLIC, National Report under the Convention on Nuclear Safety, revision STUK Finnish Report On Nuclear Safety Convention On Nuclear Safety September 2004 STUK-B-YTO THE UNITED KINGDOM's Third National Report On Compliance With The Convention On Nuclear Safety Obligations Revision 3, September GROUPE RADIOECOLOGIE NORD CONTENTIN Estimation des niveaux d exposition aux rayonnements ionisants et des risques de leucemies associes de populations du Nord- Contentin, Synthese, (July 1999) 19 JABLON, S., et al., Cancer in populations living near nuclear facilities, National Cancer Institute, NIH Publication No , US Dept. of Health and Human Services, (July 1990). 20 REPUBLIC OF HUNGARY, National Report, Convention on Nuclear Safety, Third Report, INHABER H.: Risk Analysis Applied to Energy Systems, Encyclopedia of Energy, Volume 5. Elsevier,
ROZDZIAŁ XV. DAWKI WOKÓŁ ELEKTROWNI JĄDROWYCH 1
ROZDZIAŁ XV. DAWKI WOKÓŁ ELEKTROWNI JĄDROWYCH 1 15.1 Wstęp Jak już wspominaliśmy, elektrownie jądrowe wytwarzają obecnie około 17% energii elektrycznej zużywanej na świecie, a liczba bloków z reaktorami
2. EMISJE Z ELEKTROWNI JĄDROWYCH W CZASIE EKSPLOATACJI
Wydział Fizyki UW Podstawy bezpieczeństwa energetyki jądrowej, 2018 2. EMISJE Z ELEKTROWNI JĄDROWYCH W CZASIE EKSPLOATACJI Prof. NCBJ dr inż. A. Strupczewski 1 Spis treści Rola EJ w walce z emisjami CO2
Elektrownia jądrowa to dobry sąsiad 1
Elektrownia jądrowa to dobry sąsiad 1 Autor: dr inż. Andrzej Strupczewski ( Energetyka Cieplna i Zawodowa nr 1/2014) Energetyka jądrowa budzi kontrowersje. Wiele osób obawia się negatywnego oddziaływania
Przewidywane skutki awarii elektrowni w Fukushimie. Paweł Olko Instytut Fizyki Jądrowej PAN
Przewidywane skutki awarii elektrowni w Fukushimie Paweł Olko Instytut Fizyki Jądrowej PAN Plan prezentacji 1. Ryzyko i dawki w ochronie przed promieniowaniem 2. Skutki ekonomiczne i zdrowotne po awarii
Promieniowanie jonizujące
Promieniowanie jonizujące Wykład IV Krzysztof Golec-Biernat Promieniotwórczość naturalna Uniwersytet Rzeszowski, 22 listopada 2017 Wykład IV Krzysztof Golec-Biernat Promieniowanie jonizujące 1 / 21 Reakcja
Gospodarka wypalonym paliwem jądrowym analiza opcji dla energetyki jądrowej w Polsce
Gospodarka wypalonym paliwem jądrowym analiza opcji dla energetyki jądrowej w Polsce Stefan Chwaszczewski Program energetyki jądrowej w Polsce: Zainstalowana moc: 6 000 MWe; Współczynnik wykorzystania
CEL 4. Natalia Golnik
Etap 15 Etap 16 Etap 17 Etap 18 CEL 4 OPRACOWANIE NOWYCH LUB UDOSKONALENIE PRZYRZĄDÓW DO POMIARÓW RADIOMETRYCZNYCH Natalia Golnik Narodowe Centrum Badań Jądrowych UWARUNKOWANIA WYBORU Rynek przyrządów
Do dyskusji. Czy potrafimy unieszkodliwiać odpady radioaktywne? Prof. dr inż. A. Strupczewski Narodowe Centrum Badań Jądrowych
Do dyskusji Czy potrafimy unieszkodliwiać odpady radioaktywne? Prof. dr inż. A. Strupczewski Narodowe Centrum Badań Jądrowych A.Strupczewski@cyf.gov.pl Układ barier izolujących paliwo wypalone w szwedzkim
Elementy Fizyki Jądrowej. Wykład 8 Rozszczepienie jąder i fizyka neutronów
Elementy Fizyki Jądrowej Wykład 8 Rozszczepienie jąder i fizyka neutronów Rozszczepienie lata 30 XX w. poszukiwanie nowych nuklidów n + 238 92U 239 92U + reakcja przez jądro złożone 239 92 U 239 93Np +
Pracownicy elektrowni są narażeni na promieniowanie zewnętrzne i skażenia wewnętrzne.
Reaktory jądrowe, Rurociągi pierwszego obiegu chłodzenia, Baseny służące do przechowywania wypalonego paliwa, Układy oczyszczania wody z obiegu reaktora. Pracownicy elektrowni są narażeni na promieniowanie
Reakcje rozszczepienia i energetyka jądrowa
J. Pluta, Metody i technologie jądrowe Reakcje rozszczepienia i energetyka jądrowa Energia wiązania nukleonu w jądrze w funkcji liczby masowej jadra A: E w Warunek energetyczny deficyt masy: Reakcja rozszczepienia
Promieniowanie w naszych domach. I. Skwira-Chalot
Promieniowanie w naszych domach I. Skwira-Chalot Co to jest promieniowanie jonizujące? + jądro elektron Rodzaje promieniowania jonizującego Przenikalność promieniowania L. Dobrzyński, E. Droste, W. Trojanowski,
Podstawy bezpieczeństwa energetyki jądrowej, Czarnobyl jak doszło do awarii
Wydział Fizyki UW Podstawy bezpieczeństwa energetyki jądrowej, 2018 6. Czarnobyl jak doszło do awarii Prof. NCBJ dr inż. A. Strupczewski Plan wykładu 1 1. Ogólna charakterystyka reaktora RBMK 2. Wady konstrukcyjne
Bezpieczeństwo jądrowe i ochrona radiologiczna w spółkach jądrowych PGE
Bezpieczeństwo jądrowe i ochrona radiologiczna w spółkach jądrowych PGE dr inż. Krzysztof W. Fornalski PGE EJ 1 Sp. z o.o. Plan wystąpienia Dlaczego bezpieczeństwo jądrowe i ochrona radiologiczna? Polskie
Energetyka Jądrowa. Wykład 10 5 maja 2015. Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.
Energetyka Jądrowa Wykład 10 5 maja 2015 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Reaktor ATMEA 1 Reaktor ten będzie oferowany przez spółkę
Budowa EJ dźwignią rozwoju polskiego przemysłu
Dr inż. Andrzej Strupczewski, prof. nadzw. NCBJ Budowa EJ dźwignią rozwoju polskiego przemysłu Zorganizowana przez Ministerstwo Energii konferencja Promieniujemy na całą gospodarkę Polski przemysł dla
Energetyka Jądrowa. źródło: Wszystko o energetyce jądrowej, AREVA
Energetyka Jądrowa Wykład 7 11 kwietnia 2017 źródło: Wszystko o energetyce jądrowej, AREVA Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Moderator
Podstawowe zasady ochrony radiologicznej
OCHRONA RADIOLOGICZNA 1 Podstawowe zasady ochrony radiologicznej Jakub Ośko OCHRONA RADIOLOGICZNA zapobieganie narażeniu ludzi i skażeniu środowiska, a w przypadku braku możliwości zapobieżenia takim sytuacjom
SYMULACJA GAMMA KAMERY MATERIAŁ DLA STUDENTÓW. Szacowanie pochłoniętej energii promieniowania jonizującego
SYMULACJA GAMMA KAMERY MATERIAŁ DLA STUDENTÓW Szacowanie pochłoniętej energii promieniowania jonizującego W celu analizy narażenia na promieniowanie osoby, której podano radiofarmaceutyk, posłużymy się
PROJEKT MALY WIELKI ATOM
PROJEKT MALY WIELKI ATOM MISZKIEL PRZEMYSŁAW SEMESTR 1LO2B ELEKTROWNIA W CZARNOBYLU Katastrofa w Czarnobylu - jedna z największych katastrof przemysłowych XX wieku, oceniana jako największa katastrofa
Onkalo -pierwsze składowisko głębokie wypalonego paliwa jądrowego i odpadów promieniotwórczych
Onkalo -pierwsze składowisko głębokie wypalonego paliwa jądrowego i odpadów promieniotwórczych XVII Konferencja Inspektorów Ochrony Radiologicznej Skorzęcin 11-14.06.2014 dr Wiesław Gorączko Politechnika
Prawda o transformacji energetycznej w Niemczech Energiewende
Dr inż. Andrzej Strupczewski, prof. NCBJ 12.09.2018 Prawda o transformacji energetycznej w Niemczech Energiewende https://www.cire.pl/item,168580,13,0,0,0,0,0,prawda-o-transformacji-energetycznej-w-niemczechenergiewende.html
INSTYTUT FIZYKI JĄDROWEJ im. Henryka Niewodniczańskiego Polskiej Akademii Nauk
INSTYTUT FIZYKI JĄDROWEJ im. Henryka Niewodniczańskiego Polskiej Akademii Nauk 日本 The Fukushima INuclear Power Plant 福島第一原子力発電所 Fukushima Dai-Ichi Krzysztof Kozak INSTYTUT FIZYKI JĄDROWEJ PAN ROZSZCZEPIENIE
Zadania powtórkowe do egzaminu maturalnego z chemii Budowa atomu, układ okresowy i promieniotwórczość
strona 1/11 Zadania powtórkowe do egzaminu maturalnego z chemii Budowa atomu, układ okresowy i promieniotwórczość Monika Gałkiewicz Zad. 1 () Przedstaw pełną konfigurację elektronową atomu pierwiastka
Zgodnie z rozporządzeniem wczesne wykrywanie skażeń promieniotwórczych należy do stacji wczesnego ostrzegania, a pomiary są prowadzone w placówkach.
Rozporządzenie Rady Ministrów z dnia 17 grudnia 2002 r. w sprawie stacji wczesnego wykrywania skażeń promieniotwórczych i placówek prowadzących pomiary skażeń promieniotwórczych Joanna Walas Łódź, 2014
PODSTAWOWE NORMY OCHRONY PRZED PROMIENIOWANIEM JOIZUJĄCYM
Tadeusz Musiałowicz Dyrektywa Rady Unii ustanawiająca PODSTAWOWE NORMY OCHRONY PRZED PROMIENIOWANIEM JOIZUJĄCYM Projekt przedstawiony na podstawie Artykułu 31 Układu Euratom, do opinii Europejskiego Komitetu
Niska emisja sprawa wysokiej wagi
M I S EMISJA A Przedsiębiorstwo Energetyki Cieplnej w Suwałkach Sp. z o.o. Niska emisja sprawa wysokiej wagi Niska emisja emisja zanieczyszczeń do powietrza kominami o wysokości do 40 m, co prowadzi do
Struktura sektora energetycznego w Europie
Struktura sektora energetycznego w Europie seminarium Energia na jutro 15-16, września 2014 źródło: lion-deer.com 1. Mieszkańcy Europy, 2. Struktura wytwarzania energii w krajach Europy, 3. Uzależnienie
Zawartość i sposoby usuwania rtęci z polskich węgli energetycznych. mgr inż. Michał Wichliński
Zawartość i sposoby usuwania rtęci z polskich węgli energetycznych mgr inż. Michał Wichliński Rtęć Rtęć występuje w skorupie ziemskiej w ilości 0,05 ppm, w małych ilościach można ją wykryć we wszystkich
przyziemnych warstwach atmosfery.
Źródła a promieniowania jądrowego j w przyziemnych warstwach atmosfery. Pomiar radioaktywności w powietrzu w Lublinie. Jan Wawryszczuk Radosław Zaleski Lokalizacja monitora skażeń promieniotwórczych rczych
pobrano z serwisu Fizyka Dla Każdego - - zadania z fizyki, wzory fizyczne, fizyka matura
14. Fizyka jądrowa zadania z arkusza I 14.10 14.1 14.2 14.11 14.3 14.12 14.4 14.5 14.6 14.13 14.7 14.8 14.14 14.9 14. Fizyka jądrowa - 1 - 14.15 14.23 14.16 14.17 14.24 14.18 14.25 14.19 14.26 14.27 14.20
WPŁYW PRODUKCJI ENERGII ELEKTRYCZNEJ W ŹRÓDŁACH OPALANYCH WĘGLEM BRUNATNYM NA STABILIZACJĘ CENY ENERGII DLA ODBIORCÓW KOŃCOWYCH
Górnictwo i Geoinżynieria Rok 35 Zeszyt 3 2011 Andrzej Patrycy* WPŁYW PRODUKCJI ENERGII ELEKTRYCZNEJ W ŹRÓDŁACH OPALANYCH WĘGLEM BRUNATNYM NA STABILIZACJĘ CENY ENERGII DLA ODBIORCÓW KOŃCOWYCH 1. Węgiel
8. TYPY REAKTORÓW JĄDROWYCH
Wydział Fizyki UW Podstawy bezpieczeństwa energetyki jądrowej, 2018 8. TYPY REAKTORÓW JĄDROWYCH Dr inż. A. Strupczewski, prof. NCBJ Narodowe Centrum Badań Jądrowych Zasada działania EJ Reaktory BWR i
NOWA ELEKTROWNIA ATOMOWA, FINLANDIA PROCEDURA OCENY ODDZIAŁYWANIA NA ŚRODOWISKO, KONSULTACJE MIĘDZYNARODOWE
Styczeń 2008 Fennovoima Oy NOWA ELEKTROWNIA ATOMOWA, FINLANDIA PROCEDURA OCENY ODDZIAŁYWANIA NA ŚRODOWISKO, KONSULTACJE MIĘDZYNARODOWE Styczeń 2008 2 (9) 1 WPROWADZENIE Fińska firma energetyczna Fennovoima
Fizyka współczesna. Jądro atomowe podstawy Odkrycie jądra atomowego: 1911, Rutherford Rozpraszanie cząstek alfa na cienkich warstwach metalu
Odkrycie jądra atomowego: 9, Rutherford Rozpraszanie cząstek alfa na cienkich warstwach metalu Tor ruchu rozproszonych cząstek (fakt, że część cząstek rozprasza się pod bardzo dużym kątem) wskazuje na
Energetyka odnawialna w procesie inwestycyjnym budowy zakładu. Znaczenie energii odnawialnej dla bilansu energetycznego
Energetyka odnawialna w procesie inwestycyjnym budowy zakładu Znaczenie energii odnawialnej dla bilansu energetycznego Znaczenie energii odnawialnej dla bilansu energetycznego Wzrost zapotrzebowania na
Przepisy dotyczące ochrony radiologicznej obowiązujące w Polsce 3
OCHRONA RADIOLOGICZNA Przepisy dotyczące ochrony radiologicznej obowiązujące w Polsce 3 Jakub Ośko Rozdział 4. Obiekty jądrowe 2 Rozdział 4. Art. 3. 17) elektrownia jądrowa, reaktor badawczy, zakład wzbogacania
Innowacyjne technologie a energetyka rozproszona.
Innowacyjne technologie a energetyka rozproszona. - omówienie wpływu nowych technologii energetycznych na środowisko i na bezpieczeństwo energetyczne gminy. Mgr inż. Artur Pawelec Seminarium w Suchej Beskidzkiej
Sonochemia. Schemat 1. Strefy reakcji. Rodzaje efektów sonochemicznych. Oscylujący pęcherzyk gazu. Woda w stanie nadkrytycznym?
Schemat 1 Strefy reakcji Rodzaje efektów sonochemicznych Oscylujący pęcherzyk gazu Woda w stanie nadkrytycznym? Roztwór Znaczne gradienty ciśnienia Duże siły hydrodynamiczne Efekty mechanochemiczne Reakcje
ELEKTROWNIA JĄDROWA W WOJEWÓDZTWIE ZACHODNIOPOMORSKIM. Mariusz P. Dąbrowski Konrad Czerski (18.03.2009)
ELEKTROWNIA JĄDROWA W WOJEWÓDZTWIE ZACHODNIOPOMORSKIM Mariusz P. Dąbrowski Konrad Czerski (18.03.2009) Rozwój cywilizacyjny społeczeństwa wymaga coraz większych i wydajniejszych źródeł energii (odbiorcy
CYKL PALIWOWY: OTWARTY CZY ZAMKNIĘTY CZY TO WYSTARCZY?
CYKL PALIWOWY: OTWARTY CZY ZAMKNIĘTY CZY TO WYSTARCZY? Stefan Chwaszczewski Instytut Energii Atomowej POLATOM W obecnie eksploatowanych reaktorach energetycznych, w procesach rozszczepienia jądrowego wykorzystywane
Podstawowe własności jąder atomowych
Podstawowe własności jąder atomowych 1. Ilość protonów i neutronów Z, N 2. Masa jądra M j = M p + M n - B 2 2 Q ( M c ) ( M c ) 3. Energia rozpadu p 0 k 0 Rozpad zachodzi jeżeli Q > 0, ta nadwyżka energii
Koszty energetyki jądrowej
Energetyka jądrowa i odnawialne źródła energii w świetle zrównoważonego rozwoju Koszty energetyki jądrowej Dr inż. A. Strupczewski Wiceprezes Stowarzyszenia Ekologów na Rzecz Energii Nuklearnej SEREN Warszawa,
Promieniowanie w środowisku człowieka
Promieniowanie w środowisku człowieka Jeżeli przyjrzymy się szczegółom mapy nuklidów zauważymy istniejące w przyrodzie w stosunkowo dużych ilościach nuklidy nietrwałe. Ich czasy zaniku są duże, większe
KONFERENCJA: JAK DBAĆ O CZYSTE
KONFERENCJA: JAK DBAĆ O CZYSTE POWIETRZE W POLSKICH AGLOMERACJACH? WYBRANEASPEKTYJAKOŚCI POWIETRZA WMIASTACH Artur Jerzy BADYDA 2 Problemy jakości powietrza PROBLEMYJAKOŚCIPOWIETRZA ozanieczyszczenie powietrza
doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e)
1 doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e) Ilość protonów w jądrze określa liczba atomowa Z Ilość
Rozpad gamma. Przez konwersję wewnętrzną (emisję wirtualnego kwantu gamma, który przekazuje swą energię elektronom z powłoki atomowej)
Rozpad gamma Deekscytacja jądra atomowego (przejście ze stanu wzbudzonego o energii do niższego stanu o energii ) może zachodzić dzięki oddziaływaniu elektromagnetycznemu przez tzw. rozpad gamma Przejście
Elektrownie Atomowe. Łukasz Osiński i Aleksandra Prażuch
Elektrownie Atomowe Łukasz Osiński i Aleksandra Prażuch Budowa atomu Czym jest elektrownia atomowa? Historia elektrowni atomowych Schemat elektrowni atomowych Zasada działania elektrowni atomowych Argentyna
WPŁYW ELEKTROWNI JADROWEJ NA OTOCZENIE. Autor: Dr inż. Grzegorz Jezierski - Politechnika Opolska. ( Energetyka Cieplna i Zawodowa nr 1/2010)
1 WPŁYW ELEKTROWNI JADROWEJ NA OTOCZENIE Autor: Dr inż. Grzegorz Jezierski - Politechnika Opolska ( Energetyka Cieplna i Zawodowa nr 1/2010) Pozyskiwaniu energii w rozmaitych jej formach od zarania dziejów
NEUTRONOWA ANALIZA AKTYWACYJNA ANALITYKA W KONTROLI JAKOŚCI PODSTAWOWE INFORMACJE O REAKCJACH JĄDROWYCH - NEUTRONOWA ANALIZA AKTYWACYJNA
ANALITYKA W KONTROLI JAKOŚCI WYKŁAD 3 NEUTRONOWA ANALIZA AKTYWACYJNA - PODSTAWOWE INFORMACJE O REAKCJACH JĄDROWYCH - NEUTRONOWA ANALIZA AKTYWACYJNA REAKCJE JĄDROWE Rozpad promieniotwórczy: A B + y + ΔE
Energia chińskiego smoka. Próba zdefiniowania chińskiej polityki energetycznej. mgr Maciej M. Sokołowski WPiA UW
Energia chińskiego smoka. Próba zdefiniowania chińskiej polityki energetycznej. mgr Maciej M. Sokołowski WPiA UW Definiowanie polityki Polityka (z gr. poly mnogość, różnorodność; gr. polis państwo-miasto;
XLI Zjazd Fizykow Polskich, Lublin 05.09.2011. 1 Seabrook, New Hampshire, USA
Popularyzacja wiedzy o oddziaływaniach jądrowych i interaktywna wystawa Atomowa Eureka - E=mc2 Mariusz P. Dąbrowski i Jerzy Stelmach, Instytut Fizyki, Uniwersytet Szczeciński XLI Zjazd Fizykow Polskich,
Bezpieczeństwo jądrowe i ochrona radiologiczna w Programie polskiej energetyki jądrowej
Bezpieczeństwo jądrowe i ochrona radiologiczna w Programie polskiej energetyki jądrowej 2 1. Charakterystyka Programu polskiej energetyki jądrowej 3 1.1 Elektrownie jądrowe w promieniu 300 km od Polski
Wyznaczanie promieniowania radonu
Wyznaczanie promieniowania radonu Urszula Kaźmierczak 1. Cele ćwiczenia Zapoznanie się z prawem rozpadu promieniotwórczego, Pomiar aktywności radonu i produktów jego rozpadu w powietrzu.. Źródła promieniowania
Elektrownia jądrowa w Polsce bezpieczna i opłacalna Renata PALECKA, Krzysztof PAJĄK Politechnika Wrocławska
Elektrownia jądrowa w Polsce bezpieczna i opłacalna Renata PALECKA, Krzysztof PAJĄK Politechnika Wrocławska Unijne standardy Polska ma jeden z najniższych w Europie wskaźników zużycia energii elektrycznej
Czym fascynuje, a czym niepokoi energetyka jądrowa?
Czym fascynuje, a czym niepokoi energetyka jądrowa? Kohabitacja. Rola gazu w rozwoju gospodarki niskoemisyjnej Ludwik Pieńkowski Środowiskowe Laboratorium CięŜkich Jonów Uniwersytet Warszawski Fascynacja
Wykorzystanie węgla kamiennego. Warszawa, 18 grudnia 2013
Wykorzystanie węgla kamiennego Warszawa, 18 grudnia 2013 2 Zasoby kopalin energetycznych na świecie (stan na koniec 2012 r.) Ameryka Płn. 245/34/382 b. ZSRR 190/16/1895 Europa 90/3/150 Bliski Wschód 1/109/2842
Wyższy Urząd Górniczy. Zagrożenie radiacyjne w podziemnych wyrobiskach górniczych
Wyższy Urząd Górniczy Zagrożenie radiacyjne w podziemnych wyrobiskach górniczych Zagrożenie radiacyjne w podziemnych wyrobiskach górniczych Katowice 2011 Copyright by Wyższy Urząd Górniczy, Katowice 2011
Energetyka Jądrowa. Wykład 9 9 maja Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
Energetyka Jądrowa Wykład 9 9 maja 2017 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Reaktor ATMEA 1 Reaktor ten będzie oferowany przez spółkę
I N F O R M A C J A O S T A N I E O C H R O N Y R A D I O L O G I C Z N E J K R A J O W E G O W R O K U
I N F O R M A C J A O S T A N I E O C H R O N Y R A D I O L O G I C Z N E J K R A J O W E G O S K Ł A D O W I S K A O D P A D Ó W P R O M I E N I O T W Ó R C Z Y C H W 2 0 1 8 R O K U Zgodnie z artykułem
Monitoring i ocena środowiska
Monitoring i ocena środowiska Monika Roszkowska Łódź, dn. 12. 03. 2014r. Plan prezentacji: Źródła zanieczyszczeń Poziomy dopuszczalne Ocena jakości powietrza w Gdańsku, Gdyni i Sopocie Parametry normowane
Zagrożenia naturalnymi źródłami promieniowania jonizującego w przemyśle wydobywczym. Praca zbiorowa pod redakcją Jana Skowronka
Zagrożenia naturalnymi źródłami promieniowania jonizującego w przemyśle wydobywczym Praca zbiorowa pod redakcją Jana Skowronka GŁÓWNY INSTYTUT GÓRNICTWA Katowice 2007 SPIS TREŚCI WPROWADZENIE (J. SKOWRONEK)...
POLITECHNIKA WARSZAWSKA
POLITECHNIKA WARSZAWSKA Wydział Elektryczny Instytut Elektroenergetyki Zakład Elektrowni i Gospodarki Elektroenergetycznej Elektrownie atomowe materiały do wykładu Piotr Biczel treść wykładów 1. elektrownia
Spis treści 1 Przedsięwzięcie 11 1.1 Lider przedsięwzięcia 11 1.2 Cel i uzasadnienie przedsięwzięcia 12 1.3 Lokalizacja i zapotrzebowanie terenu 13
Spis treści 1 Przedsięwzięcie 11 1.1 Lider przedsięwzięcia 11 1.2 Cel i uzasadnienie przedsięwzięcia 12 1.3 Lokalizacja i zapotrzebowanie terenu 13 1.4 Wstępny harmonogram realizacji 13 1.5 Powiązania
Do dyskusji. Bezpieczeństwo transportu odpadów radioaktywnych. Prof. dr inż. A. Strupczewski Narodowe Centrum Badań Jądrowych
Do dyskusji Bezpieczeństwo transportu odpadów radioaktywnych Prof. dr inż. A. Strupczewski Narodowe Centrum Badań Jądrowych A.Strupczewski@cyf.gov.pl Transport odpadów promieniotwórczych Ulubiona okazja
METODY DETEKCJI PROMIENIOWANIA JĄDROWEGO 3
METODY DETEKCJI PROMIENIOWANIA JĄDROWEGO 3 ENERGETYKA JĄDROWA KONWENCJONALNA (Rozszczepienie fision) n + Z Z 2 A A A2 Z X Y + Y + m n + Q A ~ 240; A =A 2 =20 2 E w MeV / nukl. Q 200 MeV A ENERGETYKA TERMOJĄDROWA
C5: BADANIE POCHŁANIANIA PROMIENIOWANIA α i β W POWIETRZU oraz w ABSORBERACH
C5: BADANIE POCHŁANIANIA PROMIENIOWANIA α i β W POWIETRZU oraz w ABSORBERACH CEL ĆWICZENIA Celem ćwiczenia jest: zbadanie pochłaniania promieniowania β w różnych materiałach i wyznaczenie zasięgu promieniowania
ELEKTROWNIE. Czyste energie 2014-01-20. Energetyka jądrowa. Damazy Laudyn Maciej Pawlik Franciszek Strzelczyk
Czyste energie wykład 11 Energetyka jądrowa dr inż. Janusz Teneta Wydział EAIiIB Katedra Automatyki i Inżynierii Biomedycznej AGH Kraków 2014 ELEKTROWNIE Damazy Laudyn Maciej Pawlik Franciszek Strzelczyk
OCHRONA RADIOLOGICZNA. Kilka słów wstępu. Jakub Ośko
OCHRONA RADIOLOGICZNA Kilka słów wstępu Jakub Ośko OCHRONA RADIOLOGICZNA zapobieganie narażeniu ludzi i skażeniu środowiska, a w przypadku braku możliwości zapobieżenia takim sytuacjom - ograniczenie ich
ORGANIZATOR: Narodowe Centrum Badań Jądrowych PATRONAT:
ORGANIZATOR: Narodowe Centrum Badań Jądrowych PATRONAT: SZCZEGÓŁY ORGANIZACYJNE: Termin: 7-10 maja 2012 roku Miejsce: Warszawa (wykłady) oraz Świerk (warsztaty) Limit miejsc: Warsztaty + wykłady 100 osób
WPŁYW ELEKTROWNI JĄDROWYCH NA ŚRODOWISKO
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 74 Electrical Engineering 2013 Justyna MICHALAK* WPŁYW ELEKTROWNI JĄDROWYCH NA ŚRODOWISKO W artykule przedstawiono zagadnienia dotyczące wpływu elektrowni
System handlu emisjami a dywersyfikacja źródeł energii jako wyzwanie dla państw członkowskich Unii Europejskiej. Polski, Czech i Niemiec
System handlu emisjami a dywersyfikacja źródeł energii jako wyzwanie dla państw członkowskich Unii Europejskiej. Porównanie strategii i doświadczeń Polski, Czech i Niemiec mgr Łukasz Nadolny Uniwersytet
Bezpieczeństwo i ekonomika kształtują energetykę jądrową jutra
Bezpieczeństwo i ekonomika kształtują energetykę jądrową jutra Konferencja PTN - Mądralin 213 Warszawa 13-15 luty 2013 Ziemowit Iwanski Vice President, Poland & Region Nuclear Plant Projects Copyright
Elektroenergetyka w Polsce Z wyników roku 2013 i nie tylko osądy bardzo autorskie
Elektroenergetyka w Polsce 2014. Z wyników roku 2013 i nie tylko osądy bardzo autorskie Autor: Herbert Leopold Gabryś ("Energetyka" - czerwiec 2014) Na sytuację elektroenergetyki w Polsce w decydujący
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 96: Dozymetria promieniowania gamma
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 96: Dozymetria promieniowania gamma Cel ćwiczenia: Zapoznanie się z podstawami dozymetrii promieniowania jonizującego. Porównanie własności absorpcyjnych promieniowania
PLAN DZIAŁANIA KT NR 266 ds. Aparatury Jądrowej
Strona 1 PLAN DZIAŁANIA KT NR 266 ds. Aparatury Jądrowej STRESZCZENIE W oparciu o akty prawne dotyczące bezpieczeństwa jądrowego i ochrony radiologicznej (zast. Prawo Atomowe oraz Nuclear Safety Standards)
PODSTAWY DOZYMETRII. Fot. M.Budzanowski. Fot. M.Budzanowski
PODSTAWY DOZYMETRII Fot. M.Budzanowski Fot. M.Budzanowski NARAŻENIE CZŁOWIEKA Napromieniowanie zewnętrzne /γ,x,β,n,p/ (ważne: rodzaj promieniowania, cząstki i energia,) Wchłonięcie przez oddychanie i/lub
III Kongres Elektryki Polskiej
III Kongres Elektryki Polskiej Stowarzyszenie Elektryków Polskich 02.04.2019 Odnawialne źródła energii czy energetyka jądrowa czego potrzeba Polsce? Dr inż. A. Strupczewski, prof. NCBJ Przewodniczący Komisji
Budowa atomu. Izotopy
Budowa atomu. Izotopy Zadanie. atomu lub jonu Fe 3+ atomowa Z 9 masowa A Liczba protonów elektronów neutronów 64 35 35 36 Konfiguracja elektronowa Zadanie 2. Atom pewnego pierwiastka chemicznego o masie
Autor. Adrian Prusko ENERGOPOMIAR Sp. z o.o. Zakład Ochrony Środowiska
Autor Adrian Prusko ENERGOPOMIAR Sp. z o.o. Zakład Ochrony Środowiska W polskiej energetyce rozpoczął się proces odbudowywania mocy produkcyjnych z wielu miejsc w całym kraju dochodzą wiadomości o rozpoczęciu
Nowe elektrownie jądrowe bezpieczne nawet po awarii
Nowe elektrownie jądrowe bezpieczne nawet po awarii Autor: dr inż. Andrzej Strupczewski, prof. nadzw. w Narodowym Centrum Badań Jądrowych ( Energetyka Cieplna i Zawodowa nr 2/2014) W poprzednim artykule
Polityka energetyczna w UE a problemy klimatyczne Doświadczenia Polski
Polityka energetyczna w UE a problemy klimatyczne Doświadczenia Polski Polityka energetyczna w Unii Europejskiej Zobowiązania ekologiczne UE Zobowiązania ekologiczne UE na rok 2020 redukcja emisji gazów
JAKOŚĆ POWIETRZA W WARSZAWIE
JAKOŚĆ POWIETRZA W WARSZAWIE Badania przeprowadzone w Warszawie wykazały, że w latach 1990-2007 w mieście stołecznym nastąpił wzrost emisji całkowitej gazów cieplarnianych o około 18%, co przekłada się
Energetyka Jądrowa. Wykład 3 14 marca Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
Energetyka Jądrowa Wykład 3 14 marca 2017 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Henri Becquerel 1896 Promieniotwórczość 14.III.2017 EJ
Czy zaszkodzi nam promieniowanie przy normalnej pracy elektrowni jądrowej?
Czy zaszkodzi nam promieniowanie przy normalnej pracy elektrowni jądrowej? Autor: Doc. dr inŝ. Andrzej Strupczewski - Rzecznik energetyki jądrowej, Instytut Energii Atomowej POLATOM ( Energetyka Cieplna
I ,11-1, 1, C, , 1, C
Materiał powtórzeniowy - budowa atomu - cząstki elementarne, izotopy, promieniotwórczość naturalna, okres półtrwania, średnia masa atomowa z przykładowymi zadaniami I. Cząstki elementarne atomu 1. Elektrony
Technologia i doświadczenie firmy. dla polskiego programu energii jądrowej. Spotkanie z przedsiębiorstwami Pomorza Gdańsk, 20 kwietnia 2012 roku
Technologia i doświadczenie firmy dla polskiego programu energii jądrowej Spotkanie z przedsiębiorstwami Pomorza Gdańsk, 20 kwietnia 2012 roku Plan prezentacji 1 2 3 4 5 6 Słowo wstępne o grupie AREVA
Radionuklidy w układzie chłodzenia i w układach pomocniczych EJ z reaktorami PWR
Energetyka Jądrowa, IFJ PAN, Kraków, 26 listopad2007 Radionuklidy w układzie chłodzenia i w układach pomocniczych EJ z reaktorami PWR Jerzy Narbutt Zakład Radiochemii, Instytut Chemii i Techniki Jądrowej,
Realizacja Programu polskiej energetyki jądrowej
Źródło: Fotolia.com Łukasz Sawicki 2012 r. Źródło: martinlisner - www.fotolia.com Realizacja Programu polskiej energetyki jądrowej Od 1 stycznia 2014 r. do 31 października 2017 r. Najwyższa Izba Kontroli
Skorzęcin 2014. Fukushima. Reminiscencje ze spotkania International Nuclear Workers' Unions' Network. Skorzęcin 2014 r. Grzegorz Jezierski
Fukushima Reminiscencje ze spotkania International Nuclear Workers' Unions' Network Skorzęcin 2014 r. Grzegorz Jezierski 29-30 października 2013 r. w Tokio oraz Fukushimie miało miejsce spotkanie Międzynarodowej
wodór, magneto hydro dynamikę i ogniowo paliwowe.
Obecnieprodukcjaenergiielektrycznejodbywasię główniewoparciuosurowcekonwencjonalne : węgiel, ropę naftową i gaz ziemny. Energianiekonwencjonalnaniezawszejest energią odnawialną.doniekonwencjonalnychźródełenergii,
O co pytają mieszkańcy lokalnych społeczności. i jakie mają wątpliwości związane z wydobyciem gazu łupkowego.
O co pytają mieszkańcy lokalnych społeczności i jakie mają wątpliwości związane z wydobyciem gazu łupkowego. Czy szczelinowanie zanieczyszcza wody gruntowe? Warstwy wodonośne chronione są w ten sposób,
PO CO NAM TA SPALARNIA?
PO CO NAM TA SPALARNIA? 1 Obowiązek termicznego zagospodarowania frakcji palnej zawartej w odpadach komunalnych 2 Blok Spalarnia odpadów komunalnych energetyczny opalany paliwem alternatywnym 3 Zmniejszenie
Przyszłość energetyki słonecznej na tle wyzwań energetycznych Polski. Prof. dr hab. inż. Maciej Nowicki
Przyszłość energetyki słonecznej na tle wyzwań energetycznych Polski Prof. dr hab. inż. Maciej Nowicki Polski system energetyczny na rozdrożu 40% mocy w elektrowniach ma więcej niż 40 lat - konieczność
Doniesienia z katastrofy w elektrowni Fukushima I (Dai-ichi Japonia)
Doniesienia z katastrofy w elektrowni Fukushima I (Dai-ichi Japonia) Elektrownia z widocznymi czterema reaktorami przed katastrofą Schemat działania reaktora BWR http://pl.wikipedia.org/wiki/reaktor_wodny_wrzący
Substancje radioaktywne w środowisku lądowym
KRAKÓW 2007 Substancje radioaktywne w środowisku lądowym Andrzej Komosa Zakład Radiochemii i Chemii Koloidów UMCS Lublin Radioizotopy w środowisku Radioizotopy pierwotne, istniejące od chwili powstania
Pomiar dobrobytu gospodarczego
Ekonomiczny Uniwersytet Dziecięcy Pomiar dobrobytu gospodarczego Uniwersytet w Białymstoku 07 listopada 2013 r. dr Anna Gardocka-Jałowiec EKONOMICZNY UNIWERSYTET DZIECIĘCY WWW.UNIWERSYTET-DZIECIECY.PL
Energetyka Jądrowa. Wykład 11 maj Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
Energetyka Jądrowa Wykład 11 maj 2017 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Wykład prof. Tadeusza Hilczera (UAM) prezentujący reaktor
POMPY CIEPŁA Analiza rynku Wykres 1
POMPY CIEPŁA Analiza rynku W Polsce dominującą rolę w produkcji energii elektrycznej odgrywa węgiel ( jego udział w globalnej wielkości mocy zainstalowanej w naszym kraju w 2005 roku wynosił 95%). Struktura
Koszt budowy i eksploatacji elektrowni i elektrociepłowni wykorzystujących biomasę
Koszt budowy i eksploatacji elektrowni i elektrociepłowni wykorzystujących biomasę Autor: Marek Łukasz Michalski, Politechnika Krakowska ( Energia Gigawat grudzień 26) Światowe zasoby biomasy są obecnie