Ćwiczenie nr Badanie oscyloskopu
|
|
- Mateusz Matysiak
- 9 lat temu
- Przeglądów:
Transkrypt
1 1 Podstawy teoretyczne Ćwiczenie nr Badanie oscyloskopu Budowa oscyloskopu Oscyloskop elektroniczny jest przyrządem służącym do obserwacji sygnałów elektrycznych i pomiaru ich parametrów. Na rys.1 pokazano schemat blokowy oscyloskopu. Przełącznik AC/DC AC DC Tłumik Rwe=1M Współczynnik odchylania V/div 5 mv/div Przesuw Y 100 nf Uwe(t) 10 mv/div 20 mv/div 5 V/div Wzmacniacz Y Wewn Układ wyzwalania Generator podstawy czasu Wzmacniacz X Zewn Zbocze Poziom Auto Norm s/div Xzewn Przesuw X B Rys. 1. Schemat blokowy oscyloskopu W schemacie blokowym wyodrębnić można cztery bloki funkcjonalne: - lampę oscyloskopową - blok odchylania pionowego - blok odchylania poziomego - blok wyzwalania i synchronizacji Podstawowym podzespołem oscyloskopu jest lampa oscyloskopowa, wewnątrz której znajduje się układ elektrod z żarzoną katodą, emitujący i skupiający elektrony w wiązkę. Elektrony, uderzając w ekran lampy pokryty materiałem luminescencyjnym, powoduje powstanie punktu świetlnego. Między zespołem elektrod i ekranem lampy znajdują się dwie pary wzajemnie prostopadłych płytek odchylających X, Y, które uczestniczą w powstaniu obrazu przebiegu badanego sygnału. Na rysunku 2 pokazano uproszczoną konstrukcję lampy oscyloskopowej. Katoda Siatka Anoda przyśpieszająca Jaskrawość Uy Ux 1500 V Rys.2 Budowa lampy oscyloskopowej Badany sygnał u (t) wprowadza się na płytki odchylania pionowego Y lampy oscyloskopowej poprzez przełącznik wyboru rodzaju wejścia stało- lub zmiennoprądowego, tłumik, czyli nastawny
2 2 dzielnik napięcia oraz szerokopasmowy wzmacniacz Y. Załączenie przełącznika w pozycję AC wprowadza sprzężenie poprzez kondensator, co sprawia, ze z sygnału wejściowego u (t) wyeliminowana zostaje składowa stała. Tłumik (nastawny dzielnik napięcia) umoż1iwia zmianę współczynnika odchylania K y w szerokich granicach od mv/div (mv/działkę) do kilku V/div (V/działkę), przy czym zwykle współczynniki przyjmują wartości z szeregu liczbowego np. 0.1 V/div, 0,2 V/div, 0,5 V/div, 1 V/div, 0,2 V/div, 5 V/div. W wielu wykonaniach oscyloskopów 1 działka odpowiada odcinkowi 1 cm i dlatego często w języku potocznym jednostka współczynnika odchylania określana jest w V/cm jest to jednak zapis nieformalny i w zasadzie nie powinien być stosowany. Współczynnik odchylania wyrażony w V/div określa wartość napięcia stałego lub chwilowego, jakie należy doprowadzić do wejścia oscyloskopu, aby spowodować odchylenie plamki o odcinek równy 1div. Rezystancja wejściowa oscyloskopu ma zwykle wartość 1 MW i nie zależy od nastawy współczynnika odchylania.. Do płytek odchylania poziomego X doprowadza się poprzez wzmacniacz X. napięcie o dowolnym przebiegu z wejścia We X lub z generatora podstawy czasu, który sterowany jest sygnałem wyjściowym z układu synchronizującego. Synchronizacja może być wewnętrzna (za pomocą badanego sygnału) lub zewnętrzna ( za pomocą sygnału doprowadzonego z zewnątrz do odpowiedniego gniazda oscyloskopu). Na rys.3. pokazano widok płyty czołowej oscyloskopu oraz powiększenie obrazu panelu z elementami regulacyjnymi Rys.3 widok płyty czołowej oscyloskopu
3 3 Powstawanie obrazu Pod wpływem napięcia stałego doprowadzonego tylko do płytek odchylania Y lub X plamka świetlna przemieści się w kierunku Y lub X, przy czym odległość pomiędzy nowym położeniem i położeniem poprzednim plamki jest proporcjonalna do wartości napięcia odpowiednio na płytkach Y lub X (rys. 4.a,b). Doprowadzenie napięcia stałego do obu par płytek spowoduje, że plamka przemieści się w położenie będące wynikiem sumy dwóch wymuszeń w kierunku X i Y (rys. 4c.). W przypadku sterowania jednej pary elektrod napięciem przemiennym o dostatecznie szybkich zmianach na ekranie widoczny jest odcinek o długości proporcjonalnej do wartości podwójnej amplitudy napięcia (rys. 4.d). Rys. 4. Powstawanie obrazu na ekranie oscyloskopu W wyniku doprowadzenia do płytek odchylania X Y napięć sinusoidalnie zmiennych o identycznej częstotliwości i amplitudzie otrzymuje się na ekranie charakterystyczne obrazy, zwane figurami Lissajous, pozwalające na wyznaczenie kąta przesunięcia fazowego między przebiegami napięciowymi (rys. 5). Rys. 5. Krzywe Lissajous Wartość przesunięcia fazowego φ oblicza się z zależności: a j = arctg (1) b W większości zastosowań oscyloskop służy do obserwacji kształtu przebiegu badanego napięcia doprowadzonego do płytek odchylania pionowego Y. Obraz tego przebiegu uzyskuje się przez doprowadzenie do płytek odchylania poziomego X napięcia piłokształtnego z generatora podstawy czasu (rys. 6). Napięcie to narasta proporcjonalnie do czasu roboczego t r dzięki czemu plamka Rys. 6. Napięcie piłokształtne generatora podstawy czasu
4 4 przesuwa się ruchem jednostajnym od lewej do prawej strony ekranu. Prędkość ruchu plamki zależy od prędkości narastania napięcia liniowego. W czasie powrotu t r plamka zostaje wygaszona i po lewej stronie ekranu oczekuje przez czas t o (czas oczekiwania) na następny cykl pracy. Zasadę powstawania obrazu przebiegu badanego napięcia przedstawia rysunek 7, na którym do płytek Y doprowadzono badane napięcie, a do płytek X napięcie piłokształtne. Rys. 7. Powstawanie obrazu przebiegu u (t) na ekranie oscyloskopu przy sterowaniu płytek X sygnałem piłokształtnym Stabilizacja obrazu Nieruchomy obraz przebiegu na ekranie uzyskamy tylko wtedy, gdy badany przebieg jest powtarzalny. Aby kolejne obrazy nakładały się na siebie, generator podstawy czasu powinien pracować synchronicznie z badanym przebiegiem, czyli jego momenty startu winny przypadać każdorazowo w identycznym punkcie badanego przebiegu. Doprowadzenie do zgodności w czasie mierzonego przebiegu i piłokształtnego napięcia podstawy czasu nazywa się synchronizacją. Stabilizację obrazu uzyskuje się za pomocą układu synchronizacji, sterującego generatorem podstawy czasu. Stosowane są dwa sposoby stabilizacji obrazu: wyzwalanie automatyczne i wyzwalanie normalne. Stosowanie stabilizacji w trybie auto zaleca się zwłaszcza dla niedoświadczonego użytkownika oscyloskopu Stabilizacja AUTO daje dobre rezultaty pod warunkiem, że częstotliwość sygnału wejściowego ma wartość większą od kilkunastu Hz. Zastosowanie pracy auto ułatwia wprawdzie uzyskanie stabilizacji obrazu, ale w żadnym wypadku nie należy interpretować, że właściwości tego trybu stabilizacji obrazu całkowicie zwalniają operatora z czynności obsługowych wręcz przeciwnie, wykonanie takich czynności zwykle jest konieczne. W celu uzyskania stabilizacji należy ustawić przełącznik źródła wyzwalania SOURCE w pozycję na ten kanał, do którego doprowadzony jest sygnał mierzony. Następnie należy pokrętło POZIOM WYZWALANIA (LEVEL) ustawić w takim położeniu, dla którego jest stabilny obraz (w wielu przypadkach wystarczy ustawić pokrętło LEVEL w środkowym położeniu). Niedoświadczeni użytkownicy oscyloskopu w celu uzyskania stabilnego (nieruchomego) obrazu zwykle podejmują próby zmiany nastawy pokrętła współczynnika czasu (s/div), pomijając zupełnie pokrętło LEVEL. Z reguły są to zabiegi nie przynoszące oczekiwanego rezultatu, a jedynym efektem jest zmiana ilości okresów przebiegu u(t) rysowanych na ekranie oscyloskopu. Stosowanie trybu wyzwalanie normalne NORM poleca się bardziej doświadczonym użytkownikom. Głównym mankamentem tego trybu stabilizacji obrazu jest to, że przy braku sygnału wejściowego u(t) brak jest na ekranie linii zwanej potocznie linią podstawy czasu i w efekcie użytkownik widzi ciemny ekran. Identyczny efekt ciemnego ekranu oscyloskopu uzyskuje się dla pracy NORM, gdy sygnał jest wprawdzie doprowadzony, ale poziom wyzwalania (LEVEL) jest niewłaściwy (np. pokrętło skręcone w jedną ze skrajnych pozycji). Istotną zaletą pracy norm jest bardzo dobra stabilizacja dla sygnałów o częstotliwościach z całego pasma przenoszenia oscyloskopu (w tym również dla bardzo niskich wartości częstotliwości) oraz sygnałów o złożonych kształtach.
5 5 Cwiczenie nr Badanie właściwości oscyloskopu Laboratorium Metrologii PP 2005/ Obiekt badania i zakres ćwiczenia Obiektem badań jest analogowy oscyloskop dwukanałowy. Zakres ćwiczenia obejmuje: Badanie właściwości przełącznika AC-DC Sprawdzenie wartości współczynnika odchylania toru Y Badanie układu stabilizacji 2. Zadania pomiarowe i technika pomiarów 2.1. Badanie przełącznika wyboru rodzaju wejścia AC-DC Testowanie przełącznika AC-DC Doprowadzić sygnał do wejścia oscyloskopu zgodnie z punktami. zamieszczonymi w tabeli 1. Zastosować pracę AUTO. Narysować zaobserwowane obrazy w tabeli.1 Tab.1 Sposób badania Obraz na ekranie dla we DC Obraz na ekranie dla we AC a) Brak sygnału wejściowego ustawić linię podstawy czasu na środku ekranu. W dalszych badaniach (punkty b, c, d, ) pozostawić środkowe położeni linii odniesienia podstawy czasu. Położenie linii odniesienia można łatwo sprawdzić ustawiając odpowiedni przełącznik w położenie GND b) Sygnał wejściowy: napięcie stałe np. :U = 5V. c) Sygnał wejściowy: napięcie sinusoidalne u (t) = U m sin w t. Amplituda U m : kilka V, częstotliwość dowolna z zakresu 50 Hz do kilkaset khz d) sygnał wejściowy zmiennoprądowy ze składową stałą u (t) = Uo + U m sin w t (wykorzystać możliwość ustawienia składowej stałej za pomocą nastaw generatora (pokrętło DC offset)
6 6 Schemat układu pokazano na rys. 8. Przełącznik AC/DC Tłumik V/div Uwe(t) C U Rwe=1M Rys.8. Schemat układu do testowania przełacznika AC-DC Podać wnioski dotyczące wyników testowania. - Czy działanie przełącznika AC-DC jest prawidłowe (uszkodzony, czy sprawny) - Wyjaśnić w oparciu o schemat elektryczny i wiadomości z podstaw elektrotechniki przyczyny dla których występują (lub nie występują) różnice w rysowanych obrazach dla we DC i AC Badanie charakterystyki częstotliwościowej toru Y. Jest to zależność Y= f (f) wartości amplitudy przebiegu sinusoidalnego odczytanej na ekranie od częstotliwości, przy zastosowaniu stałej wartości amplitudy napięcia sinusoidalnego na wejściu oscyloskopu. Technika pomiarów: Do wejścia Y oscyloskopu doprowadzić z generatora sygnał sinusoidalny o częstotliwości około 1 khz i amplitudzie o takiej wartości, aby napięcie międzyszczytowe (peak-peak) wyrażone w działkach miało wartość Y pp1khz = 6,0 div (ustawić precyzyjnie na wartość 6,0 div). Napięcie to traktować należy jest jako sygnał odniesienia i w dalszej części badania nie wolno dokonywać zmian jego wartości Badanie należy przeprowadzić dla obu wejść - AC oraz DC - zmieniając częstotliwość w zakresie od 1 Hz do 1 MHz (szczególnie starannie dokonać pomiarów dla częstotliwości z zakresu 1Hz- 20 Hz zagęścić odległość kroku pomiarów zastosować np. 1 Hz, 3Hz 5Hz, 9Hz, 14Hz,... ) należy zmierzyć wartości międzyszczytowe Y pp napięcia na ekranie. Wyniki pomiarów zamieścić w tabeli 2a i 2b oraz wykonać wykres charakterystyki amplitudowej wyrażonej w jednostkach względnych zgodnie z zależnością: Y div pp G = = f ( f ) (2) Y div pp1khz Wzmacniacz Y gdzie: Y pp wartość międzyszczytowa ampitudy rysowanego obrazu przebiegu sinusoidalnego wyrażona w div dla nastawionej częstotliwości f Y pp 1kHz - wartość międzyszczytowa ampitudy rysowanego obrazu przebiegu sinusoidalnego wyrażona w div dla częstotliwości odniesienia f= 1kHz
7 7 Tab.2a Wyniki pomiarów dla we DC f Y pp1khz Y pp G (nastawa generatora) Hz div div - 6,0 Tab. 2b Wyniki pomiarów dla we AC Zadania: f Y pp1khz Y pp G (nastawa generatora) Hz div div - 6,0 - wykonać wykresy charakterystyk amplitudowych wyrażonych w jednostkach względnych - Y div pp G = Y div pp1khz - określić pasmo przenoszenia toru Y - jako kryterium szerokości pasma przenoszenia przyjąć zmianę wysokości rysowanego obrazu o około 5% w stosunku do wartości uzyskanej dla częstotliwości 1 khz, - Wyjaśnić przyczynę różnic pomiędzy dolnymi granicami pasma przenoszenia dla wejść AC i DC. - obliczyć wartość pojemności sprzęgającej C przełącznika AC-DC. Do obliczeń wykorzystać informację, że R we oscyloskopu (rezystancja wejściowa tłumika) ma wartość R we = 1 MΩ oraz dane z tabeli 2b (dla częstotliwości np. 5 Hz
8 Badanie zniekształceń kształtu sygnału spowodowanych właściwościami przełącznika AC-DC Do wejścia oscyloskopu należy doprowadzić sygnały wejściowe o kształtach sinusoidy, prostokąta, trójkąta o parametrach podanych w tabeli 3. Narysować (ew. fotografia) uzyskane obrazy dla wejść DC i AC. Tab.3. Badanie zniekształceń sygnałów na ekranie oscyloskopu Sposób badania DC AC a) Sygnał sinusoidalny, amplituda 2-3 V. w okienkach narysować (fotografia) kształt dla częstotliwości f = 20 Hz. Jako pierwsze w kolejności badań zastosować wejście DC i następnie AC Zadania: Czy zobrazowany przebieg ma kształt sinusoidy dla obydwu wejść DC i AC Czy wzrost częstotliwości sygnału powoduje zmianę kształtu sygnału (pogorszenie, ew. polepszenie) b) Sygnał prostokątny, amplituda 2-3 V. w okienkach narysować (fotografia) kształt dla częstotl. f = 20Hz. Jako pierwsze w kolejności badań zastosować wejście DC i następnie AC Zadania: Czy zobrazowany przebieg ma kształt prostokątny dla obydwu wejść DC i AC Czy wzrost częstotliwości sygnału powoduje zmianę kształtu sygnału (pogorszenie, ew. polepszenie) Dla jakiego zakresu częstotliwości można uznać, że kształt rysowanego przebiegu odpowiada prostokątnemu (??? do 1 MHz) b) Sygnał trójkątny, amplituda 2-3 V. w okienkach narysować (fotografia) kształt dla częstotl. f = 20Hz. Jako pierwsze w kolejności badań zastosować wejście DC i następnie AC Zadania: Czy zobrazowany przebieg ma kształt trójkątny dla obydwu wejść DC i AC Czy wzrost częstotliwości sygnału powoduje zmianę kształtu sygnału (pogorszenie, ew. polepszenie) Dla jakiego zakresu częstotliwości można uznać, że kształt rysowanego przebiegu odpowiada trójkątnemu (??? do 1 MHz)
9 Przenikanie zakłóceń do obwodu pomiarowego Przenikanie zakłóceń do obwodu pomiarowego. Po odłączeniu kabla pomiarowego od źródła sygnału sprawdzić doświadczalnie, jakie efekty na ekranie uzyskuje się przez dotknięcie ręką przewodu "gorącego" oraz przewodu "masy" kabla pomiarowego oscyloskopu. Uzyskać obraz przebiegu zakłócającego. Sprawdzić doświadczalnie efekt przenikania zakłóceń spowodowany zbliżeniem (zetknięciem) przewodu gorącego do izolowanego kabla sieciowego podłączonego do sieci 230 V. Sposób badania ilustruje rys. 9. Obraz sygnału zakłóceń Rys.9 Badanie przenikania zakłóceń do obwodu pomiarowego oscyloskopu Zadanie: - wyjaśnić zaobserwowane zjawiska z wykorzystaniem schematu elektrycznego przedstawiającego obwód prądu zakłócającego, - narysować obraz uzyskanego przebiegu i określić: okres rysowanego przebiegu T, częstotliwość f i amplitudę U m odpowiednio z zależności (3) (4) i (5) : T = K C X (3) 1 (4) f = T Y (5) pp U m = KY 2 Gdzie - K C - współczynnik czasu [s/div]. - K y nastawa współczynnika odchylania [V/div] - Y pp odległość odpowiadająca wartości napięcia międzyszczytowego U pp
10 Sprawdzenie wartości współczynnika odchylania toru Y Celem pomiaru jest określenie rzeczywistej (poprawnej) wartości dowolnie wybranej nastawy współczynnika odchylania K Y i wyznaczenie błędu względnego jakim obarczona jest badana wartość nastawy K Y. Pomiar należy dokonać tylko dla jednej, dowolnie wybranej nastawy współczynnika odchylania K Y (np. przyjąć do badań wartość nastawy o znamionowej wartości K Yn = 1V/div). Rys. 10. Układ do pomiaru współczynnika odchylania toru Y Układ pomiarowy pokazano na rysunku 10. Do wejścia Y oscyloskopu doprowadzić napięcie stałe z zasilacza o znanej, wskazywanej przez woltomierz wartości. Aby zmniejszyć błąd odczytu odcinka Y, stanowiącego miarę wartości mierzonego napięcia U y, należy nastawić napięcie sygnału o takiej wartości, aby odchylenie plamki świetlnej wynosiło co najmniej 6 div pola odczytowego ekranu. Wyniki pomiarów i obliczeń umieścić w tablicy 4 w której: K Y - znamionowa wartość współczynnika odchylania toru Y, U Y - - napięcie stałe doprowadzone do toru Y, K Yp - wartość poprawna współczynnika odchylania toru Y obliczona z zależności: UY KYp = (6) Y Y - odchylenie plamki od położenia spoczynkowego, d Ky - błąd wartości poprawnej współczynnika odchylania K Yp (błąd jakim obarczona jest wartość obliczona ze wzoru (6), traktowana jako wartość poprawna). Konieczność oszacowania tego błędu wynika z elementarnych zasad metrologii jeżeli chcemy sprawdzać znamionową wartość nastawy podaną przez producenta, to musimy zapewnić, aby pomiar tej wartości był wykonany z odpowiednio dużą dokładnością, lepszą od dokładności deklarowanej przez producenta oscyloskopu. Producent oscyloskopu podał w instrukcji, że graniczny błąd względny wartości K y nastawy współczynnika odchylania wynosi 3%. Oznacza to, że błąd d Kyp wyznaczonej przez użytkownika wartości poprawnej K yp powinien mieć znacząco mniejszą wartość od od 3% - na przykład 1-2%. d = d + d (7.) Kyp U y Gdzie: d U błąd pomiaru napięcia woltomierzem (na podstawie klasy lub patrz instrukcja multimetru cyfrowego), d Y - względny błąd odczytu pomiaru długości Y (należy samodzielnie przyjąć wartość bezwzględnego błędu odczytu np.: ΔY = 0,1 div i obliczyć błąd względny d Y ) d Y - błąd badanej nastawy współczynnika K Y obliczamy z zależności: K y - K yp d Y = (8) K Tablica 4 Sprawdzenie wartości współczynnika odzchylania K Y U Y Y L.p (nastawiona (odczytana z (odczytana z. wartość) woltomierza) ekranu osc.) y K Yp (Wartość poprawna) d Kyp (błąd wartości poprawnej) d Ky (błąd nastawy K y ) V/div V div V/div % % np. 1V/div
11 Badanie układu synchronizacji Zastosować stabilizację obrazu typu wyzwalanie automatyczne, a następnie stabilizację obrazu typu wyzwalanie normalne Zadania pomiarowe: opisać efekty zaobserwowane na ekranie oscyloskopu i ocenić jakość stabilizacji obrazu dla następujących przypadków: - sygnał U Y nie jest dołączony do wejścia Y - sygnał U Y ma częstotliwość 10 khz - zastosować prawidłowy i nieprawidłowy poziom wyzwalania i różne nastawy współczynników czasu (kilka sąsiednich nastaw). - sygnał U Y ma częstotliwość mniejszą od 10 Hz Tab 6 Badanie układu synchronizacji Sposób badania AUTO NORM 1. Brak sygnału U Y 2. Doprowadzić sygnał o częstotliwości około 10 khz Komentarz: Komentarz: a) zastosować prawidłowy poziom wyzwalania i zbadać jakość stabilizację obrazu dla kilku wartości współczynników czasu. Komentarz: czy jest poprawna stabilizacja obrazu dla kilku sąsiednich nastaw współczynników czasu? Komentarz: czy jest poprawna stabilizacja obrazu dla kilku sąsiednich nastaw współczynników czasu? b) zastosować nieprawidłowy poziom wyzwalania i zbadać jakość stabilizację obrazu dla kilku wartości współczynników czasu Komentarz: czy jest widoczny obraz? Czy zmiany nastaw współczynnika czasu umożliwiają osiągniecie efektu stabilizacji? Komentarz: czy jest widoczny obraz? Czy zmiany nastaw współczynnika czasu umożliwiają osiągniecie efektu stabilizacji 3. Doprowadzić sygnał o częstotliwości około 10Hz. Zastosować prawidłowy poziom wyzwalania (pokrętło LEVEL w pobliżu położenia środkowego) Komentarz: czy jest poprawna stabilizacja obrazu dla wszystkich nastawionych współczynników czasu? Komentarz: czy jest poprawna stabilizacja obrazu dla wszystkich nastawionych współczynników czasu?
Ćwiczenie. Badanie oscyloskopu
1 Ćwiczenie Podstawy teoretyczne Badanie oscyloskopu Budowa oscyloskopu Oscyloskop elektroniczny jest przyrządem służącym do obserwacji sygnałów elektrycznych i pomiaru ich parametrów. Na rys.1 pokazano
POMIARY OSCYLOSKOPOWE. Instrukcja wykonawcza
ĆWICZENIE 51 POMIARY OSCYLOSKOPOWE Instrukcja wykonawcza 1. Wykaz przyrządów a. Oscyloskop dwukanałowy b. Dwa generatory funkcyjne (jednym z nich może być generator zintegrowany z oscyloskopem) c. Przesuwnik
I Zastosowanie oscyloskopu do pomiarów kąta przesunięcia fazowego.
I Zastosowanie oscyloskopu do pomiarów kąta przesunięcia fazowego. II Badanie charakterystyk statycznych elementów nieliniowych za pomocą oscyloskopu (realizacja tematyki na życzenie prowadzącego laboratorium)
Ćwiczenie nr 28. Badanie oscyloskopu analogowego
Ćwiczenie nr 28 Badanie oscyloskopu analogowego 1. Cel ćwiczenia Celem ćwiczenia jest poznanie budowy i zasady działania oraz nabycie umiejętności posługiwania się oscyloskopem analogowym. 2. Dane znamionowe
INSTRUKCJA DO ĆWICZENIA
INSTRUKCJA DO ĆWICZENIA Temat: Pomiary oscyloskopowe. Budowa oscyloskopu 1. Cel ćwiczenia Poznanie obsługi i zasad wykorzystania oscyloskopu do obserwacji i pomiarów amplitudy napięcia przebiegów elektrycznych.
Podstawy obsługi oscyloskopu
Podstawy obsługi oscyloskopu Spis treści Wstęp. Opis podstawowych przełączników oscyloskopu. Przełączniki sekcji odchylania pionowego (Vertical) Przełączniki sekcji odchylania poziomego (Horizontal) Przełączniki
INSTYTUT SYSTEMÓW ELEKTRONICZNYCH WYDZIAŁ ELEKTRONIKI WAT. Warsztaty inżynierskie elektrotechniczne
INSTYTUT SYSTEMÓW ELEKTRONICZNYCH WYDZIAŁ ELEKTRONIKI WAT Warsztaty inżynierskie elektrotechniczne Ćwiczenie 4 Grupa: Zespół w składzie: 1. 2. 3. 4. Temat: Pomiary oscyloskopowe Data wykonania ćwiczenia:...
Podstawy użytkowania i pomiarów za pomocą OSCYLOSKOPU
Podstawy użytkowania i pomiarów za pomocą OSCYLOSKOPU Spis treści Wstęp...2 1. Opis podstawowych przełączników regulacyjnych oscyloskopu...3 1.1 Przełączniki sekcji odchylania pionowego (Vertical)...3
PRACOWNIA ELEKTRONIKI
PRACOWNIA ELEKTRONIKI Ćwiczenie nr 4 Temat ćwiczenia: Badanie wzmacniacza UNIWERSYTET KAZIMIERZA WIELKIEGO W BYDGOSZCZY INSTYTUT TECHNIKI 1. 2. 3. Imię i Nazwisko 1 szerokopasmowego RC 4. Data wykonania
Badanie wzmacniacza niskiej częstotliwości
Instytut Fizyki ul Wielkopolska 5 70-45 Szczecin 9 Pracownia Elektroniki Badanie wzmacniacza niskiej częstotliwości (Oprac dr Radosław Gąsowski) Zakres materiału obowiązujący do ćwiczenia: klasyfikacje
Laboratorium Przyrządów Półprzewodnikowych Laboratorium 1
Laboratorium Przyrządów Półprzewodnikowych Laboratorium 1 1/10 2/10 PODSTAWOWE WIADOMOŚCI W trakcie zajęć wykorzystywane będą następujące urządzenia: oscyloskop, generator, zasilacz, multimetr. Instrukcje
LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO
POLITECHNIKA ŚLĄSKA WYDZIAŁ TRANSPORTU KATEDRA LOGISTYKI I TRANSPORTU PRZEMYSŁOWEGO NR 1 POMIAR PRZESUNIĘCIA FAZOWEGO Katowice, październik 5r. CEL ĆWICZENIA Poznanie zjawiska przesunięcia fazowego. ZESTAW
Ćwiczenie 5. Pomiary parametrów sygnałów napięciowych. Program ćwiczenia:
Ćwiczenie 5 Pomiary parametrów sygnałów napięciowych Program ćwiczenia: 1. Pomiar wartości skutecznej, średniej wyprostowanej i maksymalnej sygnałów napięciowych o kształcie sinusoidalnym, prostokątnym
WZMACNIACZ OPERACYJNY
1. OPIS WKŁADKI DA 01A WZMACNIACZ OPERACYJNY Wkładka DA01A zawiera wzmacniacz operacyjny A 71 oraz zestaw zacisków, które umożliwiają dołączenie elementów zewnętrznych: rezystorów, kondensatorów i zwór.
Imię i nazwisko (e mail): Rok: 2018/2019 Grupa: Ćw. 5: Pomiar parametrów sygnałów napięciowych Zaliczenie: Podpis prowadzącego: Uwagi:
Wydział: EAIiIB Imię i nazwisko (e mail): Rok: 2018/2019 Grupa: Zespół: Data wykonania: LABORATORIUM METROLOGII Ćw. 5: Pomiar parametrów sygnałów napięciowych Zaliczenie: Podpis prowadzącego: Uwagi: Wstęp
Zakres wymaganych wiadomości do testów z przedmiotu Metrologia. Wprowadzenie do obsługi multimetrów analogowych i cyfrowych
Zakres wymaganych wiadomości do testów z przedmiotu Metrologia Ćwiczenie 1 Wprowadzenie do obsługi multimetrów analogowych i cyfrowych budowa i zasada działania przyrządów analogowych magnetoelektrycznych
Badanie właściwości multipleksera analogowego
Ćwiczenie 3 Badanie właściwości multipleksera analogowego Program ćwiczenia 1. Sprawdzenie poprawności działania multipleksera 2. Badanie wpływu częstotliwości przełączania kanałów na pracę multipleksera
D-1. Cel ćwiczenia: U(t) = U DC + f AC (t), które spełniają równania: U ŚR = 1 T U t =U DC, U ŚR = 1
Cel ćwiczenia: 1. Celem ćwiczenia jest poznanie zasady działania analogowego oscyloskopu elektronicznego i jego schematu blokowego. 2. Poznanie głównych parametrów charakteryzujących sygnał okresowy. 3.
PRACOWNIA ELEKTRONIKI
PRACOWNIA ELEKTRONIKI UNIWERSYTET KAZIMIERZA WIELKIEGO W BYDGOSZCZY INSTYTUT TECHNIKI Ćwiczenie nr Temat ćwiczenia:. 2. 3. Imię i Nazwisko Badanie filtrów RC 4. Data wykonania Data oddania Ocena Kierunek
Uśrednianie napięć zakłóconych
Politechnika Rzeszowska Katedra Metrologii i Systemów Diagnostycznych Laboratorium Miernictwa Elektronicznego Uśrednianie napięć zakłóconych Grupa Nr ćwicz. 5 1... kierownik 2... 3... 4... Data Ocena I.
POMIARY OSCYLOSKOPOWE
Ćwiczenie 51 E. Popko POMIARY OSCYLOSKOPOWE Cel ćwiczenia: wykonanie pomiarów wielkości elektrycznych charakteryzują-cych przebiegi przemienne. Zagadnienia: prąd przemienny, składanie drgań, pomiar amplitudy,
Zapoznanie z przyrządami stanowiska laboratoryjnego. 1. Zapoznanie się z oscyloskopem HAMEG-303.
Zapoznanie z przyrządami stanowiska laboratoryjnego. 1. Zapoznanie się z oscyloskopem HAMEG-303. Dołączyć oscyloskop do generatora funkcyjnego będącego częścią systemu MS-9140 firmy HAMEG. Kanał Yl dołączyć
Własności dynamiczne przetworników pierwszego rzędu
1 ĆWICZENIE 7. CEL ĆWICZENIA. Własności dynamiczne przetworników pierwszego rzędu Celem ćwiczenia jest poznanie własności dynamicznych przetworników pierwszego rzędu w dziedzinie czasu i częstotliwości
Ćwiczenie 21. Badanie właściwości dynamicznych obiektów II rzędu. Zakres wymaganych wiadomości do kolokwium wstępnego: Program ćwiczenia:
Ćwiczenie Badanie właściwości dynamicznych obiektów II rzędu Program ćwiczenia:. Pomiary metodą skoku jednostkowego a. obserwacja charakteru odpowiedzi obiektu dynamicznego II rzędu w zależności od współczynnika
Ćwiczenie 3: Pomiar parametrów przebiegów sinusoidalnych, prostokątnych i trójkątnych. REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU
REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU R C E Z w B I Ł G O R A J U LABORATORIUM pomiarów elektronicznych UKŁADÓW ANALOGOWYCH Ćwiczenie 3: Pomiar parametrów przebiegów sinusoidalnych, prostokątnych
Zastosowania pomiarowe oscyloskopu analogowego
LABORATORIUM METROLOGII Wydział Elektrotechniki i Informatyki Katedra Automatyki i Metrologii Ćwiczenie nr.7 Zastosowania pomiarowe oscyloskopu analogowego Cel ćwiczenia: Zapoznanie studentów z budową,
WZMACNIACZ NAPIĘCIOWY RC
WZMACNIACZ NAPIĘCIOWY RC 1. WSTĘP Tematem ćwiczenia są podstawowe właściwości jednostopniowego wzmacniacza pasmowego z tranzystorem bipolarnym. Zadaniem ćwiczących jest dokonanie pomiaru częstotliwości
Ćwiczenie nr 11. Projektowanie sekcji bikwadratowej filtrów aktywnych
Ćwiczenie nr 11 Projektowanie sekcji bikwadratowej filtrów aktywnych 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi filtrami elektrycznymi o charakterystyce dolno-, środkowo- i górnoprzepustowej,
Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8
Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 1. Cel ćwiczenia Celem ćwiczenia jest dynamiczne badanie wzmacniacza operacyjnego, oraz zapoznanie się z metodami wyznaczania charakterystyk częstotliwościowych.
Bierne układy różniczkujące i całkujące typu RC
Instytut Fizyki ul. Wielkopolska 15 70-451 Szczecin 6 Pracownia Elektroniki. Bierne układy różniczkujące i całkujące typu RC........ (Oprac. dr Radosław Gąsowski) Zakres materiału obowiązujący do ćwiczenia:
UKŁADY Z PĘTLĄ SPRZĘŻENIA FAZOWEGO (wkładki DA171A i DA171B) 1. OPIS TECHNICZNY UKŁADÓW BADANYCH
UKŁADY Z PĘTLĄ SPRZĘŻENIA FAZOWEGO (wkładki DA171A i DA171B) WSTĘP Układy z pętlą sprzężenia fazowego (ang. phase-locked loop, skrót PLL) tworzą dynamicznie rozwijającą się klasę układów, stosowanych głównie
POMIARY OSCYLOSKOPOWE 51
POMIAR OSCLOSKOPOWE 51 I. WSTĘP Oscyloskop jest przyrządem służącym do obserwacji, rejestracji i pomiaru napięć elektrycznych zmieniających się w czasie. Schemat blokowy tego urządzenia pokazano na Rys.
Laboratorum 2 Badanie filtru dolnoprzepustowego P O P R A W A
Laboratorum 2 Badanie filtru dolnoprzepustowego P O P R A W A Marcin Polkowski (251328) 15 marca 2007 r. Spis treści 1 Cel ćwiczenia 2 2 Techniczny i matematyczny aspekt ćwiczenia 2 3 Pomiary - układ RC
Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Katedra Elektroniki
Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Na podstawie instrukcji Wtórniki Napięcia,, Laboratorium układów Elektronicznych Opis badanych układów Spis Treści 1. CEL ĆWICZENIA... 2 2.
L ABORATORIUM UKŁADÓW ANALOGOWYCH
WOJSKOWA AKADEMIA TECHNICZNA W YDZIAŁ ELEKTRONIKI zima L ABORATORIUM UKŁADÓW ANALOGOWYCH Grupa:... Data wykonania ćwiczenia: Ćwiczenie prowadził: Imię:......... Data oddania sprawozdania: Podpis: Nazwisko:......
Badanie właściwości dynamicznych obiektów I rzędu i korekcja dynamiczna
Ćwiczenie 20 Badanie właściwości dynamicznych obiektów I rzędu i korekcja dynamiczna Program ćwiczenia: 1. Wyznaczenie stałej czasowej oraz wzmocnienia statycznego obiektu inercyjnego I rzędu 2. orekcja
Pomiar podstawowych parametrów liniowych układów scalonych
Instytut Fizyki ul Wielkopolska 15 70-451 Szczecin 5 Pracownia Elektroniki Pomiar podstawowych parametrów liniowych układów scalonych Zakres materiału obowiązujący do ćwiczenia: wzmacniacz operacyjny,
Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7
Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego, poznanie jego charakterystyki przejściowej
Tranzystor bipolarny LABORATORIUM 5 i 6
Tranzystor bipolarny LABORATORIUM 5 i 6 Marcin Polkowski (251328) 10 maja 2007 r. Spis treści I Laboratorium 5 2 1 Wprowadzenie 2 2 Pomiary rodziny charakterystyk 3 II Laboratorium 6 7 3 Wprowadzenie 7
ĆWICZENIE NR 1 TEMAT: Wyznaczanie parametrów i charakterystyk wzmacniacza z tranzystorem unipolarnym
ĆWICZENIE NR 1 TEMAT: Wyznaczanie parametrów i charakterystyk wzmacniacza z tranzystorem unipolarnym 4. PRZEBIE ĆWICZENIA 4.1. Wyznaczanie parametrów wzmacniacza z tranzystorem unipolarnym złączowym w
Ćwiczenie: "Mierniki cyfrowe"
Ćwiczenie: "Mierniki cyfrowe" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Próbkowanie
Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU
REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU R C E Z w B I Ł G O R A J U LABORATORIUM pomiarów elektronicznych UKŁADÓW ANALOGOWYCH Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza
Ćwiczenie nr 65. Badanie wzmacniacza mocy
Ćwiczenie nr 65 Badanie wzmacniacza mocy 1. Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych parametrów wzmacniaczy oraz wyznaczenie charakterystyk opisujących ich właściwości na przykładzie wzmacniacza
Wzmacniacze napięciowe z tranzystorami komplementarnymi CMOS
Wzmacniacze napięciowe z tranzystorami komplementarnymi CMOS Cel ćwiczenia: Praktyczne wykorzystanie wiadomości do projektowania wzmacniacza z tranzystorami CMOS Badanie wpływu parametrów geometrycznych
Wzmacniacze operacyjne
Wzmacniacze operacyjne Cel ćwiczenia Celem ćwiczenia jest badanie podstawowych układów pracy wzmacniaczy operacyjnych. Wymagania Wstęp 1. Zasada działania wzmacniacza operacyjnego. 2. Ujemne sprzężenie
KATEDRA ELEKTRONIKI AGH WYDZIAŁ EAIIE. Dydaktyczny model 4-bitowego przetwornika C/A z siecią rezystorów o wartościach wagowych
KATEDRA ELEKTRONIKI AGH WYDZIAŁ EAIIE Przetworniki A/C i C/A Data wykonania LABORATORIUM TECHNIKI CYFROWEJ Skład zespołu: Dydaktyczny model 4-bitowego przetwornika C/A z siecią rezystorów o wartościach
Instrukcja do ćwiczenia laboratoryjnego nr 11
Instrukcja do ćwiczenia laboratoryjnego nr 11 Temat: Charakterystyki i parametry tyrystora Cel ćwiczenia. Celem ćwiczenia jest poznanie właściwości elektrycznych tyrystora. I. Wymagane wiadomości. 1. Podział
POMIARY WYBRANYCH PARAMETRÓW TORU FONICZNEGO W PROCESORACH AUDIO
Politechnika Rzeszowska Katedra Metrologii i Systemów Diagnostycznych Laboratorium Elektroniczne przyrządy i techniki pomiarowe POMIARY WYBRANYCH PARAMETRÓW TORU FONICZNEGO W PROCESORACH AUDIO Grupa Nr
Podstawowe zastosowania wzmacniaczy operacyjnych
ĆWICZENIE 0 Podstawowe zastosowania wzmacniaczy operacyjnych I. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z budową i właściwościami wzmacniaczy operacyjnych oraz podstawowych układów elektronicznych
Rys. 1. Przykład umieszczenia regulatorów jasności i ostrości obrazu kreślonego na ekranie lampy oscyloskopowej.
Cel ćwiczenia: Celem ćwiczenia jest uzupełnienie wiedzy oraz nabycie przez ćwiczących praktycznych umiejętności z zakresu posługiwania się oscyloskopem analogowym jako narzędziem pomiarowym. Istotnym elementem
Lekcja 80. Budowa oscyloskopu
Lekcja 80. Budowa oscyloskopu Oscyloskop, przyrząd elektroniczny służący do badania przebiegów czasowych dla na ogół szybkozmiennych impulsów elektrycznych. Oscyloskop został wynaleziony przez Thomasa
Ćw. 8: POMIARY Z WYKORZYSTANIE OSCYLOSKOPU Ocena: Podpis prowadzącego: Uwagi:
Wydział: EAIiE Imię i nazwisko (e mail): Rok: Grupa: Zespół: Data wykonania: LABORATORIUM METROLOGII Ćw. 8: POMIARY Z WYKORZYSTANIE OSCYLOSKOPU Ocena: Podpis prowadzącego: Uwagi: Wstęp Celem ćwiczenia
Państwowa Wyższa Szkoła Zawodowa
Państwowa Wyższa Szkoła Zawodowa w Legnicy Laboratorium Podstaw Elektroniki i Miernictwa Ćwiczenie nr 5 WZMACNIACZ OPERACYJNY A. Cel ćwiczenia. - Przedstawienie właściwości wzmacniacza operacyjnego - Zasada
LABORATORIUM METROLOGII Wydział Elektrotechniki i Informatyki Katedra Automatyki i Metrologii. Ćwiczenie nr 7
LABORATORIUM METROLOGII Wydział Elektrotechniki i Informatyki Katedra Automatyki i Metrologii Ćwiczenie nr 7 Zastosowania pomiarowe oscyloskopu analogowego Cel ćwiczenia: Zapoznanie studentów z budową
Filtry aktywne filtr środkowoprzepustowy
Filtry aktywne iltr środkowoprzepustowy. Cel ćwiczenia. Celem ćwiczenia jest praktyczne poznanie właściwości iltrów aktywnych, metod ich projektowania oraz pomiaru podstawowych parametrów iltru.. Budowa
Politechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: UKŁADY ELEKTRONICZNE 2 (TS1C500 030) Tranzystor w układzie wzmacniacza
Politechnika Warszawska
Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki Skrypt do ćwiczenia T.02. Woltomierz RMS oraz Analizator Widma 1. Woltomierz RMS oraz Analizator Widma Ćwiczenie to ma na celu poznanie
Miernictwo I INF Wykład 12 dr Adam Polak
Miernictwo I INF Wykład 12 dr Adam Polak ~ 1 ~ I. Przyrządy do rejestracji i obserwacji sygnałów zmiennych A. Rejestratory 1. Rejestratory elektromechaniczne X-t a) Podstawowe właściwości (1) Służą do
POMIARY OSCYLOSKOPOWE II
Laboratorium Metrologii II. 2012/13 zlachpolitechnika Rzeszowska Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II POMIARY OSCYLOSKOPOWE II Grupa Nr ćwicz. 1 1... kierownik 2...
Filtry aktywne filtr górnoprzepustowy
. el ćwiczenia. Filtry aktywne filtr górnoprzepustowy elem ćwiczenia jest praktyczne poznanie właściwości filtrów aktywnych, metod ich projektowania oraz pomiaru podstawowych parametrów filtru.. Budowa
Przetworniki AC i CA
KATEDRA INFORMATYKI Wydział EAIiE AGH Laboratorium Techniki Mikroprocesorowej Ćwiczenie 4 Przetworniki AC i CA Cel ćwiczenia Celem ćwiczenia jest poznanie budowy i zasady działania wybranych rodzajów przetworników
METROLOGIA. Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki
METROLOGIA Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EINS Zjazd 11, wykład nr 18 Prawo autorskie Niniejsze materiały podlegają ochronie
Zastosowanie współczesnego oscyloskopu katodowego w miernictwie 1. Zasada działania oscyloskopu i jego budowa
Zastosowanie współczesnego oscyloskopu katodowego w miernictwie 1. Zasada działania oscyloskopu i jego budowa Oscyloskop elektroniczny jest przyrządem słuŝącym do wizualnej obserwacji odwzorowań przedstawiających
Instrukcja do ćwiczenia Nr 60
Instrukcja do ćwiczenia Nr 60 Temat: BADANIE PRĄDÓW ZMIENNYCH ZA POMOCĄ U ELEKTRONOWEGO I. Wstęp. Oscylograf elektronowy jest urządzeniem służącym do obserwacji przebiegu różnego rodzaju napięć oraz do
Państwowa Wyższa Szkoła Zawodowa
Państwowa Wyższa Szkoła Zawodowa w Legnicy Laboratorium Podstaw Elektroniki i Miernictwa Ćwiczenie nr 17 WZMACNIACZ OPERACYJNY A. Cel ćwiczenia. - Przedstawienie właściwości wzmacniacza operacyjnego -
ZASADY DOKUMENTACJI procesu pomiarowego
Laboratorium Podstaw Miernictwa Laboratorium Podstaw Elektrotechniki i Pomiarów ZASADY DOKUMENTACJI procesu pomiarowego Przykład PROTOKÓŁU POMIAROWEGO Opracowali : dr inż. Jacek Dusza mgr inż. Sławomir
TRANZYSTOROWY UKŁAD RÓŻNICOWY (DN 031A)
TRANZYSTOROWY UKŁAD RÓŻNICOWY (DN 031A) obciąże nie dynamiczne +1 +1 + 1 R 47k z erowanie R 8 3k R 9 6, 8 k R 11 6,8 k R 12 3k + T 6 BC17 T 7 BC17 + R c 20k zespół sterowania WY 1 R 2k R 23 9 R c dyn R
Instrukcja do ćwiczenia laboratoryjnego
Instrukcja do ćwiczenia laboratoryjnego adanie parametrów statycznych i dynamicznych ramek Logicznych Opracował: mgr inż. ndrzej iedka Wymagania, znajomość zagadnień: 1. Parametry statyczne bramek logicznych
Politechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA EKS1A300024 ZASTOSOWANIE WZMACNIACZY OPERACYJNYCH W UKŁADACH
Wzmacniacze napięciowe z tranzystorami komplementarnymi CMOS
Wzmacniacze napięciowe z tranzystorami komplementarnymi CMOS Cel ćwiczenia: Praktyczne wykorzystanie wiadomości do projektowania wzmacniacza z tranzystorami CMOS Badanie wpływu parametrów geometrycznych
Tranzystory bipolarne. Właściwości dynamiczne wzmacniaczy w układzie wspólnego emitera.
ĆWICZENIE 5 Tranzystory bipolarne. Właściwości dynamiczne wzmacniaczy w układzie wspólnego emitera. I. Cel ćwiczenia Badanie właściwości dynamicznych wzmacniaczy tranzystorowych pracujących w układzie
Ćwiczenie 21 Temat: Komparatory ze wzmacniaczem operacyjnym. Przerzutnik Schmitta i komparator okienkowy Cel ćwiczenia
Ćwiczenie 21 Temat: Komparatory ze wzmacniaczem operacyjnym. Przerzutnik Schmitta i komparator okienkowy Cel ćwiczenia Poznanie zasady działania układów komparatorów. Prześledzenie zależności napięcia
Zastosowania pomiarowe oscyloskopu
Ćwiczenie nr 4 Zastosowania pomiarowe oscyloskopu Celem ćwiczenia jest zapoznanie studentów z budową oraz zasadą działania oscyloskopu analogowego i cyfrowego a także ze sposobem wykonywania pomiarów za
Imię i nazwisko (e mail): Rok:. (2010/2011) Grupa: Ćw. 5: Pomiar parametrów sygnałów napięciowych Zaliczenie: Podpis prowadzącego: Uwagi:
Wydział: EAIiE Kierunek: Imię i nazwisko (e mail): Rok:. (2010/2011) Grupa: Zespół: Data wykonania: LABORATORIUM METROLOGII Ćw. 5: Pomiar parametrów sygnałów napięciowych Zaliczenie: Podpis prowadzącego:
INSTRUKCJA LABORATORIUM Metrologia techniczna i systemy pomiarowe.
INSTRUKCJA LABORATORIUM Metrologia techniczna i systemy pomiarowe. MTiSP pomiary częstotliwości i przesunięcia fazowego MTiSP 003 Autor: dr inż. Piotr Wyciślok Strona 1 / 8 Cel Celem ćwiczenia jest wykorzystanie
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 7 BADANIE ODPOWIEDZI USTALONEJ NA OKRESOWY CIĄG IMPULSÓW 1. Cel ćwiczenia Obserwacja przebiegów wyjściowych
Pomiary napięć i prądów zmiennych
Ćwiczenie 1 Pomiary napięć i prądów zmiennych Instrukcja do ćwiczenia opracował: Wojciech Słowik 03.2015 ver. 03.2018 (LS, WS, LB, K) 1. Cel ćwiczenia Zapoznanie się z układami pomiarowymi napięć oraz
Badanie bezzłączowych elementów elektronicznych
Temat ćwiczenia: Badanie bezzłączowych elementów elektronicznych - - ` Symbol studiów (np. PK10): data wykonania ćwiczenia - Dzień tygodnia: godzina wykonania ćwiczenia Lp. Nazwisko i imię*: 1 Pluton/Grupa
L ABORATORIUM UKŁADÓW ANALOGOWYCH
WOJSKOWA AKADEMIA TECHNICZNA W YDZIAŁ ELEKTRONIKI zima 2010 L ABORATORIUM UKŁADÓW ANALOGOWYCH Grupa:... Data wykonania ćwiczenia: Ćwiczenie prowadził: Imię:......... Data oddania sprawozdania: Podpis:
Ćwiczenie 7 POMIARY CZĘSTOTLIWOŚCI I INTERWAŁU CZASU Opracowała: A. Szlachta
Ćwiczenie 7 POMIARY CZĘSTOTLIWOŚCI I INTERWAŁU CZASU Opracowała: A. Szlachta I. Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych metod pomiaru częstotliwości. Metody analogowe, zasada cyfrowego
BADANIE ELEMENTÓW RLC
KATEDRA ELEKTRONIKI AGH L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE BADANIE ELEMENTÓW RLC REV. 1.0 1. CEL ĆWICZENIA - zapoznanie się z systemem laboratoryjnym NI ELVIS II, - zapoznanie się z podstawowymi
Badanie układów aktywnych część II
Ćwiczenie nr 10 Badanie układów aktywnych część II Cel ćwiczenia. Zapoznanie się z czwórnikami aktywnymi realizowanymi na wzmacniaczu operacyjnym: układem różniczkującym, całkującym i przesuwnikiem azowym,
W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,
Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.
Głównym elementem oscyloskopu jest lampa próżniowa z ekranem pokrytym od wewnątrz warstwą luminoforu. Luminofory to substancje emitujące
Oscyloskop Używany jest przede wszystkim do pomiarów, obserwacji i analizy kształtu czasowych przebiegów okresowych lub nieokresowych napięcia i prądu, do pomiaru wartości częstotliwości, kąta fazowego
Źródła zasilania i parametry przebiegu zmiennego
POLIECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGEYKI INSYU MASZYN I URZĄDZEŃ ENERGEYCZNYCH LABORAORIUM ELEKRYCZNE Źródła zasilania i parametry przebiegu zmiennego (E 1) Opracował: Dr inż. Włodzimierz
PROTOKÓŁ POMIAROWY - SPRAWOZDANIE
PROTOKÓŁ POMIAROWY - SPRAWOZDANIE LABORATORIM PODSTAW ELEKTROTECHNIKI I ELEKTRONIKI Grupa Podgrupa Numer ćwiczenia 5 Nazwisko i imię Data wykonania. ćwiczenia. Prowadzący ćwiczenie Podpis Ocena sprawozdania
Wstęp. Doświadczenia. 1 Pomiar oporności z użyciem omomierza multimetru
Wstęp Celem ćwiczenia jest zaznajomienie się z podstawowymi przyrządami takimi jak: multimetr, oscyloskop, zasilacz i generator. Poznane zostaną również podstawowe prawa fizyczne a także metody opracowywania
LABORATORIUM ELEKTRONIKI WZMACNIACZ MOCY
ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKACJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 9 WZMACNIACZ MOCY DO UŻYTKU
Ryszard Kostecki. Badanie własności filtru rezonansowego, dolnoprzepustowego i górnoprzepustowego
Ryszard Kostecki Badanie własności filtru rezonansowego, dolnoprzepustowego i górnoprzepustowego Warszawa, 3 kwietnia 2 Streszczenie Celem tej pracy jest zbadanie własności filtrów rezonansowego, dolnoprzepustowego,
WIECZOROWE STUDIA NIESTACJONARNE LABORATORIUM UKŁADÓW ELEKTRONICZNYCH
POLITECHNIKA WARSZAWSKA Instytut Radioelektroniki Zakład Radiokomunikacji WIECZOROWE STUDIA NIESTACJONARNE Semestr III LABORATORIUM UKŁADÓW ELEKTRONICZNYCH Ćwiczenie Temat: Badanie wzmacniacza operacyjnego
WZMACNIACZ OPERACYJNY
Zakład Elektroniki I I P i B Laboratorium Układów Elektronicznych WZMACNIACZ OPERACYJNY TEMATYKA ĆWICZENIA WYMAGANE WIADOMOŚCI Celem ćwiczenia jest poznanie niektórych układów pracy wzmacniacza operacyjnego
WZMACNIACZE OPERACYJNE Instrukcja do zajęć laboratoryjnych
WZMACNIACZE OPERACYJNE Instrukcja do zajęć laboratoryjnych Tematem ćwiczenia są zastosowania wzmacniaczy operacyjnych w układach przetwarzania sygnałów analogowych. Ćwiczenie składa się z dwóch części:
LABORATORIUM ELEKTRONICZNYCH UKŁADÓW POMIAROWYCH I WYKONAWCZYCH. Badanie detektorów szczytowych
LABORATORIM ELEKTRONICZNYCH KŁADÓW POMIAROWYCH I WYKONAWCZYCH Badanie detektorów szczytoch Cel ćwiczenia Poznanie zasady działania i właściwości detektorów szczytoch Wyznaczane parametry Wzmocnienie detektora
ĆWICZENIE LABORATORYJNE. TEMAT: Badanie liniowych układów ze wzmacniaczem operacyjnym (2h)
ĆWICZENIE LABORATORYJNE TEMAT: Badanie liniowych układów ze wzmacniaczem operacyjnym (2h) 1. WPROWADZENIE Przedmiotem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego
Wzmacniacz tranzystorowy
Wzmacniacz tranzystorowy. Cel ćwiczenia Celem ćwiczenia jest poznanie właściwości jednostopniowego, tranzystorowego wzmacniacza napięcia. Wyniki pomiarów parametrów samego tranzystora jak i całego układu
POLITECHNIKA WROCŁAWSKA, WYDZIAŁ PPT I-21 LABORATORIUM Z PODSTAW ELEKTROTECHNIKI I ELEKTRONIKI 2
Cel ćwiczenia: Praktyczne poznanie podstawowych parametrów wzmacniaczy operacyjnych oraz ich możliwości i ograniczeń. Wyznaczenie charakterystyki amplitudowo-częstotliwościowej wzmacniacza operacyjnego.
ZASTOSOWANIA WZMACNIACZY OPERACYJNYCH
ZASTOSOWANIA WZMACNIACZY OPERACYJNYCH 1. WSTĘP Tematem ćwiczenia są zastosowania wzmacniaczy operacyjnych w układach przetwarzania sygnałów analogowych. Zadaniem ćwiczących jest dokonanie pomiaru charakterystyk
PRACOWNIA ELEKTRONIKI
PRAOWNIA ELEKTRONIKI Temat ćwiczenia: UNIWERSYTET KAZIMIERZA WIELKIEGO W BYDGOSZZY INSTYTUT TEHNIKI Imię i Nazwisko BADANIE. 2. 3. GENERATORA OLPITTSA 4. Data wykonania Data oddania Ocena Kierunek Rok
Wyznaczanie prędkości dźwięku w powietrzu
Imię i Nazwisko... Wyznaczanie prędkości dźwięku w powietrzu Opracowanie: Piotr Wróbel 1. Cel ćwiczenia. Celem ćwiczenia jest wyznaczenie prędkości dźwięku w powietrzu, metodą różnicy czasu przelotu. Drgania