EKOLOGICZNE ŹRÓDŁA ENERGII
|
|
- Leszek Cybulski
- 8 lat temu
- Przeglądów:
Transkrypt
1 II Krajowa Konferencja Naukowo-Techniczna EKOLOGIA W ELEKTRONICE Przemysłowy Instytut Elektroniki Warszawa, EKOLOGICZNE ŹRÓDŁA ENERGII Włodzimierz MOCNY Przemysłowy Instytut Elektroniki Warszawa, ul. Długa 44/50, w. 270, wmocny@pie.edu.pl W artykule zostały omówione zagadnienia związane z przetwarzaniem energii słonecznej w energią elektryczną. Omówiony został również system pomiarowy przeznaczony do określania jakości materiałów używanych przy produkcji ogniw słonecznych. Badana próbka jest oświetlana światłem monochromatycznym. Dla różnych długości fali promieniowania padającego mierzony jest prąd zwarcia fotoogniwa. Na tej podstawie wyliczana jest droga dyfuzji. Metoda pozwala ocenić gęstość defektów i poziom zanieczyszczeń w badanej próbce. 1. POZYSKIWANIE ENERGII SŁONECZNEJ Rozwój społeczny i gospodarczy każdego państwa wiąże się ze zwiększonym zapotrzebowaniem na energię elektryczną. Z tego powodu światowa produkcja surowców energetycznych systematycznie wzrasta. W krajach wysoko rozwiniętych udało się utrzymać zużycie energii na tym samym poziomie. Było to możliwe dzięki oszczędzaniu energii i polepszaniu współczynnika sprawności przy jej wytwarzaniu. Według przewidywań do pokrycia zapotrzebowania na energię elektryczną wybieranych będzie wiele dróg: umocni się korzystanie z kopalnych źródeł energii, w coraz szerszym zakresie korzystać się będzie z alternatywnych źródeł energii. Klasyczne źródła ropy naftowej wystarczą na 100 lat. Złoża ropy w piaskach i łupkach wystarczą na kolejne 100 lat. Złoża węgla kamiennego mogą być eksploatowane przez 1000 lat. Do tej pory do wytwarzania energii elektrycznej wykorzystywano głównie energię powstającą podczas spalanie węgla. Dziś wiemy, że istnieją inne źródła energii, z których możemy korzystać. 82
2 Perspektywy wyczerpania się zapasów paliw kopalnych oraz obawy o stan środowiska naturalnego człowieka znacznie zwiększyły zainteresowanie odnawialnymi źródłami energii. Światowe zużycie energii Światowe złoża gazu Światowe złoża ropy Światowe złoża uranu Światowe złoża węgla Energia słoneczna Zużyta w fotosyntezie Rys. 1. Światowe zasoby energetyczne W konsekwencji nastąpił poważny wzrostu ich zastosowań w wielu krajach. Od roku 1990 ilość energii (ciepła i energii elektrycznej) wytwarzanej z energii promieniowania słonecznego wzrosła ponad dwukrotnie, a z energii wiatru czterokrotnie. Po podpisaniu Protokołu z Kioto w grudniu 1997 roku odnawialne źródła energii weszły w nowy i ważny etap rozwoju. Technologie odnawialnych źródeł energii rozwinęły się już do takiego stopnia, że mogą konkurować z konwencjonalnymi systemami energetycznymi. Odnawialne źródła energii są źródłami lokalnymi. Mogą one: - zwiększyć poziom bezpieczeństwa energetycznego zmniejszając eksport paliw kopalnych, - stworzyć nowe miejsca pracy, szczególnie w małych i średnich przedsiębiorstwach, - promować rozwój regionalny. Modułowy charakter większości technologii odnawialnych źródeł energii pozwala na ich stopniową rozbudowę w miarę potrzeb, co ułatwia ich finansowanie. Pamiętać należy również o olbrzymich korzyściach dla środowiska naturalnego człowieka płynących ze stosowania tych technologii. Moduł Układy regulacji Falownik Bateria akumulatorów Ogniwo Zespół modułów Sieć energetyczna Licznik Gniazdo zasilające Rys. 2. Przykładowe rozwiązanie systemu fotowoltaicznego System fotowoltaiczny składa się z modułów fotowoltaicznych, oraz elementów dostosowujących wytwarzany w fotoogniwach prąd stały do potrzeb zasilanych urządzeń. Jeżeli system jest przewidziany do dostarczania energii elektrycznej w nocy, 83
3 konieczne jest stosowanie odpowiedniego układu magazynowania energii (akumulatory) wyprodukowanej w ciągu dnia. Jeżeli system zasila urządzenie stałoprądowe potrzebny jest kontroler napięcia. Do zasilania z systemu fotowoltaicznego urządzeń zmiennoprądowych konieczne jest użycie falownika. Najpowszechniejszym materiałem używanym do produkcji ogniw słonecznych jest krzem. Największe sprawności przetwarzania promieniowania słonecznego (do 30 %) uzyskuje się z ogniw wytworzonych z arsenku galu (GaAs), ale jednocześnie ogniwa te są najdroższe. Typowe fotoogniwo to płytka półprzewodnikowa z krzemu krystalicznego lub polikrystalicznego. W materiale płytki uformowana jest bariera potencjału w postaci złącza p-n. Grubość płytek zawiera się w granicach mikrometrów. Na przednią i tylną stronę płytki naniesione są metaliczne połączenia. Stanowią kontakty przewodzące prąd wytworzony w fotoogniwie. a) b) Rys. 3. Płytka fotoogniwa a) krzem monokrystaliczny b) krzem polikrystaliczny Ogniwa z krzemu monokrystalicznego wykonywane są z płytek o kształcie okrągłym, a następnie przycinane na kwadraty dla zwiększenia upakowania na powierzchni modułu. Monokrystaliczne fotoogniwa wykazują najwyższe sprawności przetwarzania energii ze wszystkich ogniw krzemowych. Są jednak najdroższe w produkcji. W badaniach laboratoryjnych pojedyncze ogniwa osiągają sprawności rzędu 24%. Ogniwa produkowane na skalę masową mają sprawności około 17%. Polikrystaliczne fotoogniwa krzemowe wykonane są z dużych prostopadłościennych bloków krzemu o dużych ziarnach. Bloki te są cięte na prostokątne płytki, w których również formowana jest bariera potencjału. Polikrystaliczne fotoogniwa są mniej wydajne niż monokrystaliczne, jednak ich koszt produkcji jest niższy. Podstawowymi zaletami technologii wykorzystującej krzem są: możliwość wykorzystania doświadczeń przemysłu półprzewodnikowego, relatywnie wysokie sprawności przetwarzania promieniowania słonecznego, prostota i bardzo dobra stabilność pracy. Ich wady to duże zużycie dużo drogiego materiału w produkcji. Mają też ograniczoną wielkość i muszą być łączone w moduły. Przewiduje się, że następna generacja fotoogniw będzie się opierać na technologiach cienkowarstwowych. Dzięki stosowaniu jedynie bardzo cienkich warstw (grubości pojedynczych mikrometrów) drogiego materiału półprzewodnikowego na tanich podłożach o dużej powierzchni można będzie znacznie zredukować całkowity koszt fotoogniwa. Ogniwa cienkowarstwowe są wprawdzie mniej sprawne od najlepszych ogniw z krzemu krystalicznego, ale oczekuje się, że w przyszłości, przy produkcji na skalę masową, będą one znacznie tańsze. Obecnie najbardziej zaawansowane ogniwa cienkowarstwowe wykonywane są z krzemu amorficznego (a-si) i jego stopów (a-sige, a-sic). Technologia pojedynczych, podwójnych i potrójnych ogniw jest dobrze rozwinięta. Ogniwa potrójne osiągnęły w 84
4 skali laboratoryjnej sprawność 13%. Ogniwa z krzemu amorficznego są powszechnie używane w produktach wymagających małej mocy zasilania (kalkulatory kieszonkowe, zegarki, itp.). Zaletami ogniw wytworzonych z krzemu amorficznego są: mały koszt materiału, niewielkie zużycie energii przy produkcji, możliwość osadzania na giętkich podłożach, zintegrowane połączenia i możliwość uzyskania dużych powierzchni ogniw. Fotoogniwo jest podstawowym elementem systemu fotowoltaicznego. Pojedyncze ogniwo produkuje zazwyczaj pomiędzy 1 a 2 W mocy elektrycznej co jest niewystarczające dla większości zastosowań. Dla uzyskania większych napięć lub prądów ogniwa łączone są szeregowo lub równolegle tworząc moduł fotowoltaiczny. Moc takich modułów (dostępne na rynku maja powierzchnię od 0,3 do 1 m 2 ) wyrażana jest w watach mocy szczytowej zdefiniowanych jako moc dostarczana przez nie w warunkach standardowych (STC), tj. przy promieniowaniu słonecznym AM1.5 o mocy 1000 W/m2 i temperaturze otoczenia 25 C i zwykle kształtuje się pomiędzy 30 a 120 Wp. Moduły są hermetyzowane, aby uchronić je przed korozją, wilgocią, zanieczyszczeniami i wpływami atmosfery. Obudowy ogniw muszą być trwałe, ponieważ od modułów fotowoltaicznych oczekuje się czasów życia przynajmniej lat. Na rynku znajduje się szeroki wachlarz modułów o różnej wielkości pokrywający zapotrzebowanie na szybko rosnącą ilość zastosowań fotowoltaicznych. Wytwarza się specjalne moduły, które są zintegrowane z dachami lub fasadami budynków. Produkowane są również moduły szczególnie odporne na korozję wywołaną słoną wodą morską. Znajdują one zastosowanie na łodziach żaglowych, znakach nawigacyjnych i latarniach morskich. Czas zwrotu kosztów energii waha się od 2 do 6 lat w zależności od regionu i klimatu. Cienkowarstwowe moduły fotowoltaiczne są tańsze, przy produkcji masowej, niż moduły z krzemu krystalicznego, ale mają niższe wydajności. Większość dostępnych obecnie na rynku modułów z krzemu amorficznego ma sprawności pomiędzy 4 % a 8 %. Zwrot kosztów energii szacowany jest na 1 do 3 lat. Rys. 4. Przykłady modułów fotowoltaicznych Nie istnieją praktycznie żadne ograniczenia w zastosowaniu modułów fotowoltaicznych. Mogą być instalowane w dowolnej ilości i konfiguracji. Instalacja może dostarczać zarówno prąd stały jak i przemienny. Może być podłączona do sieci energetycznej (sprzedając wyprodukowaną energię) lub też być zupełnie autonomiczną. Moduły fotowoltaiczne mogą mieć następujące zastosowania: w domach mieszkalnych i domkach letniskowych - zasilanie całości lub części obiektu, do zasilanie pomp obiegowych do kolektorów słonecznych, przy zasilaniu nadajników radiowych, telewizyjnych, telekomunikacyjnych, BTSów, itp., 85
5 w instalacjach oświetleniowych, w tym w oświetleniu pasów startowych na lotniskach, w instalacjach alarmowych i TV przemysłowej - jako pewne i niezależne źródło zasilania, w reklamach świetlnych i oświetleniu tablic reklamowych - jest to często tańsze niż podłączenie do sieci, do zasilania urządzeń na łodziach i statkach oraz w samochodach kempingowych, jako niezależne źródło energii dla pomp, przepompowni i linii produkcyjnych, jako jedyne źródło energii dla stacji meteorologicznych i innej aparatury badawczo - pomiarowej, w miejscach trudnodostępnych, gdzie nie ma sieci energetycznej, do produkcji prądu w elektrowniach słonecznych, 2. KONTROLA MATERIAŁÓW DO PRODUKCJI FOTOOGNIW Aby zapewnić możliwie wysoką sprawność produkowanych fotoogniw niezmiernie ważne jest posiadanie możliwości oceny materiałów używanych do ich produkcji. W ostatnich latach zaczęto stosować do badań defektów w krzemie oprócz metody EBIC (Elektron Beam Induced Current) metodę indukcji fotoprądów wiązką światła. Nosi ona nazwę LBIC (Light Beam Induced Current). Pomiar prądu indukowanego wiązką światła pozwala wyznaczyć długość drogi dyfuzji nośników mniejszościowych L oraz gęstość rekombinacji defektowej krzemu γ. Wartości L i γ silnie zależą od gęstości defektów lub poziomu zanieczyszczeń. Nie jest możliwe bezpośrednie wyznaczanie tych wartości z danych pomiarowych. Zwykle do analizy LBIC używa się danych pomiarowych określonych zależnością (1): C ( I I ) / I = (1) o gdzie: I o prąd podłoża, I def prąd mierzony w obszarze defektu. Według modelu matematycznego przedstawionego w pracy [2] współczynnik C dla idealnego defektu można określić wg zależności (2): 86 def o C = f ( γ ) g( w, L) (2) gdzie: w - szerokość warstwy zubożonej, L droga dyfuzji nośników mniejszościowych. Znajomość rozkładu przestrzennego L(x, y) w obszarze defektu pozwala na prawidłową ocenę gęstości rekombinacji defektowej. Mapa L(x, y) zawiera informację o aktywności rekombinacji i jej rozkładzie przestrzennym na płytce Zasady pracy systemu Cechą charakterystyczną próbek, które są badane przy pomocy omawianego stanowiska jest duża wartość rezystancji szeregowej. Uniemożliwia to praktycznie zapełnienie głębokich poziomów za pomocą skokowej zmiany polaryzacji złącza.
6 Najlepszą metodą zapełnienia centrów defektowych jest w tej sytuacji użycie impulsowego przebiegu świetlnego i rejestracja zmian koncentracji nośników ładunków w próbce. Schemat blokowy systemu został przedstawiony na rysunku 5. W jego skład wchodzą następujące podsystemy przeznaczone do realizacji poszczególnych zadań: komputer sterujący, podsystem optyczny, podsystem pomiarowy, podsystem pozycjonowania. Źródło światła białego Zasilacz źródła światła Chopper Sterownik choppera RS 232 (1) RS 232 (2) Monochromator DataScan2 Moduł sterowania silnikami krokowymi optyka zwierciadlana Z Mikromanipulator ostrzowy WY X Wzmacniacz Lock-in WE Y Sygnał referencyjny Sterowanie choppera TTL Sterowanie silnikiem monochromatora Rys. 5. Schemat blokowy sytemu System umożliwia wyznaczenie drogi dyfuzji Ln w ogniwie słonecznym, poprzez pomiar fotoprądu wywołanego zmodulowanym światłem z zakresu 400 nm do 1100nm. Płytka ogniwa, w wybranym miejscu x i, y i, jest oświetlona światłem monochromatycznym zmodulowanym. Modulację światła monochromatycznego zapewnia chopper mechaniczny. Przebieg sterujący chopperem jest również sygnałem referencyjnym wzmacniacza Lock-in. Prąd zwarciowy jest przetwarzany na napięcie przez przetwornik elektrometryczny I/U. Napięcie proporcjonalne do prądu zwarciowego jest wzmacniane we wzmacniaczu Lock-in. Wyniki pomiaru są przetwarzane na wartość cyfrową przez moduł DataScan2. System jest wyposażony w stolik x, y (z silnikami krokowymi) umożliwiający skaning po powierzchni standardowych ogniw o wymiarach 50 mm x 50 mm. Blat stolika umożliwia również pomiar ogniw większych o rozmiarach do 100 mm x 100 mm. Minimalny skok stolika 1mm z rozdzielczością 0.1 mm, maksymalny krok do 10 mm, długość skoku jest programowana Oprogramowanie systemu Możliwe są dwa typy pomiarów: a. pomiar punktowy prądu zwarcia lub odpowiedzi widmowej SR(λ), b. pomiar rozkładu prądu zwarcia lub drogi dyfuzji L n (x, y). 87
7 Pomiar punktowy prądu zwarcia lub współczynnika SR(λ) Zakres zmian długości światła monochromatycznego: 400nm do 1100nm. Przy wyznaczaniu współczynnika SR(λ) pomiary badanego ogniwa są odnoszone do wyników ogniwa wzorcowego. Przykładowe charakterystyki prądu zwarcia ogniwa słonecznego wykonanego z krzemu monokrystalicznego pokazane są na rysunku I [µa] λ [nm] Rys. 6. Prąd zwarcia ogniwa dla różnych skoków λ Pomiar rozkładu prądu zwarcia lub drogi dyfuzji w funkcji współrzędnych x, y Zakres zmian długości światła monochromatycznego: 400 nm do 1100 nm. Do obliczenia Ln(x, y) konieczne jest wprowadzenie przez użytkownika współczynnika odbicia, dla każdej użytej długości fali światła, który jest niezbędny do wykonania obliczeń. Przy pomiarze prądu zwarcia mierzony jest prąd fotoogniwa. W obu wypadkach wyniki przetwarzania są przedstawione w postaci kolorowej mapy płaskiej. Przykładowe rozkłady prądu zwarcia pokazane są na rysunkach 7 i 8. Rys. 7. Rozkład prądu pomiar I Rys. 8. Rozkład prądu pomiar II Oprogramowanie systemu pracuje pod kontrolą systemu operacyjnego Windows98. Komunikacja urządzeń zewnętrznych jest realizowana za pośrednictwem 88
8 interfejsu RS232. Wymagane są dwa takie interfejsy. Jeden dla podsystemu pozycjonowania a drugi dla podsystemu pomiarowego. 3. WNIOSKI System został opracowany w Przemysłowym Instytucie Elektroniki. Został on uruchomiony we wrześniu 2001 w Laboratorium fotowoltaicznym PAN w Kozach i jest wykorzystywany do realizacji tematu "Rozwój fotowoltaiki celem uzyskiwania energii elektrycznej w warunkach krajowych. Dużą zaletą użytej metody jest bardzo dobra rozdzielczość przestrzenna, która umożliwia tworzenie dwuwymiarowych map elektrofizycznych właściwości płytek krzemowych służących do produkcji fotoogniw. LITERARURA 1. Stemmer M., Martinuzzi S.: Mapping of local minority carrier diffusion length applied to multicrystaline silicon cells. 11th EC Photovoltaic solar energy conference. 2. Emery K., Dunlavy D., Field H., Moriarty T.: Photovoltaic spectral responsivity measurements. Natinal Renevable Energy Laboratory. 3. Jaint S. C., Tsao J., Kerwin W. J.: The spectral response and efficiency of heavily doped emitters in silicon photovoltaic devices. Solid State Electronics Vol. 30 No. 9 pp , Mills T. B.: The phase locked loop IC as a communication system building block. National Semicondactor Application Note 46. ECOLOGICAL SOURCES OF ENERGY In article became talked over problems connected with transformation of solar energy in electric energy. Talked over became also measuring - system intended to qualifying qualities of used materials at production of solar cell. Examined sample is lighted up monochrome - light. For different lengths of wave of radiation system measured current of short-circuit solar cell. On this to base enumerated way of diffusion. Method permits rate of thickness of defects and level of impurity in investigated examined sample. 89
Sprawozdanie z laboratorium proekologicznych źródeł energii
P O L I T E C H N I K A G D A Ń S K A Sprawozdanie z laboratorium proekologicznych źródeł energii Temat: Wyznaczanie charakterystyk prądowo-napięciowych modułu ogniw fotowoltaicznych i sprawności konwersji
BADANIA MODELOWE OGNIW SŁONECZNYCH
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 70 Electrical Engineering 2012 Bartosz CERAN* BADANIA MODELOWE OGNIW SŁONECZNYCH W artykule przedstawiono model matematyczny modułu fotowoltaicznego.
Badanie baterii słonecznych w zależności od natężenia światła
POLITECHNIKA WARSZAWSKA Instytut Elektroenergetyki, Zakład Elektrowni i Gospodarki Elektroenergetycznej Przemiany energii laboratorium Ćwiczenie Badanie baterii słonecznych w zależności od natężenia światła
Fotowoltaika i sensory w proekologicznym rozwoju Małopolski
Fotowoltaika i sensory w proekologicznym rozwoju Małopolski Photovoltaic and Sensors in Environmental Development of Malopolska Region ZWIĘKSZANIE WYDAJNOŚCI SYSTEMÓW FOTOWOLTAICZNYCH Plan prezentacji
Ćwiczenie E17 BADANIE CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH MODUŁU OGNIW FOTOWOLTAICZNYCH I SPRAWNOŚCI KONWERSJI ENERGII PADAJĄCEGO PROMIENIOWANIA
Ćwiczenie E17 BADANIE CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH MODUŁU OGNIW FOTOWOLTAICZNYCH I SPRAWNOŚCI KONWERSJI ENERGII PADAJĄCEGO PROMIENIOWANIA Cel: Celem ćwiczenia jest zbadanie charakterystyk prądowo
Ćwiczenie 3 WPŁYW NASŁONECZNIENIA I TECHNOLOGII PRODUKCJI KRZEMOWYCH OGNIW FOTOWOLTAICZNYCH NA ICH WŁASNOŚCI EKSPLOATACYJNE
Ćwiczenie WPŁYW NASŁONECZNIENIA I TECHNOLOGII PRODUKCJI KRZEMOWYCH OGNIW FOTOWOLTAICZNYCH NA ICH WŁASNOŚCI EKSPLOATACYJNE Opis stanowiska pomiarowego Stanowisko do wyznaczania charakterystyk prądowo napięciowych
PL B1. Johnson Peter Herbert, Solvesborg, SE BUP 18/10. PETER HERBERT JOHNSON, Solvesborg, SE
PL 220819 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 220819 (13) B1 (21) Numer zgłoszenia: 387368 (51) Int.Cl. H01L 25/00 (2006.01) H01L 31/00 (2006.01) Urząd Patentowy Rzeczypospolitej
Rys.2. Schemat działania fotoogniwa.
Ćwiczenie E16 BADANIE NATĘŻENIA PRĄDU FOTOELEKTRYCZNEGO W ZALEŻNOŚCI OD ODLEGŁOŚCI ŹRÓDŁA ŚWIATŁA Cel: Celem ćwiczenia jest zbadanie zależności natężenia prądu generowanego światłem w fotoogniwie od odległości
Ogniwa fotowoltaiczne
Ogniwa fotowoltaiczne Systemy fotowoltaiczne wykorzystują zjawisko konwersji energii słonecznej na energię elektryczną. Wykonane są z głównie z krzemu. Gdy na ogniwo padają promienie słoneczne pomiędzy
Energia emitowana przez Słońce
Energia słoneczna i ogniwa fotowoltaiczne Michał Kocyła Problem energetyczny na świecie Przewiduje się, że przy obecnym tempie rozwoju gospodarczego i zapotrzebowaniu na energię, paliw kopalnych starczy
Dr inż. Wiesław Madej Katedra Systemów Cyfrowego Przetwarzania Sygnałów Wydział Elektroniki i Informatyki Politechniki.
Analiza teoretyczna i doświadczalna możliwości zautomatyzowania oraz zastosowania metod fototermicznych i rekombinacyjnych do badań wybranych półprzewodników i struktur półprzewodnikowych Dr inż. Wiesław
POLITECHNIKA WARSZAWSKA Wydział Elektryczny Instytut Elektroenergetyki Zakład Elektrowni i Gospodarki Elektroenergetycznej
POLITECHNIKA WARSZAWSKA Wydział Elektryczny Instytut Elektroenergetyki Zakład Elektrowni i Gospodarki Elektroenergetycznej INSTRUKCJA DO ĆWICZENIA: BADANIE BATERII SŁONECZNYCH W ZALEśNOŚCI OD NATĘśENIA
108 Rozwiązania materiałowe, konstrukcyjne i eksploatacyjne ogniw fotowoltaicznych
108 Rozwiązania materiałowe, konstrukcyjne i eksploatacyjne ogniw fotowoltaicznych Rys. 4.6. Panel fotowoltaiczny z ogniw polikrystalicznych w parku ITER na Teneryfie Rys. 4.7. Wybrane etapy ewolucji sprawności
FOTOWOLTAIKA - wytwarzanie energii elektrycznej ze światła
FOTOWOLTAIKA - wytwarzanie energii elektrycznej ze światła Energetyka słoneczna z roku na rok cieszy się rosnącym zainteresowaniem inwestorów. Każda wyprodukowana ze słońca kilowatogodzina pozwala ograniczyć
Instalacje fotowoltaiczne
Instalacje fotowoltaiczne mgr inż. Janusz Niewiadomski Eurotherm Technika Grzewcza Energia słoneczna - parametry 1 parametr : Promieniowanie słoneczne całkowite W/m 2 1000 W/m 2 700 W/m 2 300 W/m 2 50
BADANIE OGNIWA FOTOWOLTAICZNEGO
BADANIE OGNIWA FOTOWOLTAICZNEGO Wiadomości wprowadzające 1. Efekt fotoelektryczny Energia promieniowania elektromagnetycznego E przenoszona przez pojedynczy foton wyraża się w dżulach wzorem: E = c h/
LABORATORIUM INŻYNIERII MATERIAŁOWEJ
Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM INŻYNIERII MATERIAŁOWEJ Protokół
IV. Wyznaczenie parametrów ogniwa słonecznego
1 V. Wyznaczenie parametrów ogniwa słonecznego Cel ćwiczenia: 1.Zbadanie zależności fotoprądu zwarcia i fotonapięcia zwarcia od natężenia oświetlenia. 2. Wyznaczenie sprawności energetycznej baterii słonecznej.
!!!DEL są źródłami światła niespójnego.
Dioda elektroluminescencyjna DEL Element czynny DEL to złącze p-n. Gdy zostanie ono spolaryzowane w kierunku przewodzenia, to w obszarze typu p, w warstwie o grubości rzędu 1µm, wytwarza się stan inwersji
Ćwiczenie 2 WSPÓŁPRACA JEDNAKOWYCH OGNIW FOTOWOLTAICZNYCH W RÓŻNYCH KONFIGURACJACH POŁĄCZEŃ. Opis stanowiska pomiarowego. Przebieg ćwiczenia
Ćwiczenie WSPÓŁPRACA JEDNAKOWYCH OGNIW FOTOWOLTAICZNYCH W RÓŻNYCH KONFIGURACJACH POŁĄCZEŃ Opis stanowiska pomiarowego Stanowisko do analizy współpracy jednakowych ogniw fotowoltaicznych w różnych konfiguracjach
Co to jest fotowoltaika? Okiem praktyka.
Co to jest fotowoltaika? Okiem praktyka. Fotowoltaika greckie słowo photos światło nazwisko włoskiego fizyka Allessandro Volta odkrywcy elektryczności Zjawisko pozyskiwania energii z przetworzonego światła
Ogniwa fotowoltaiczne wykorzystanie w OZE
Ogniwa fotowoltaiczne wykorzystanie w OZE Fizyka IV Michał Trojgo, gr 1.3 Energia Słońca Do górnych warstw atmosfery Ziemi dociera promieniowanie słoneczne o natężeniu napromieniowania 1366,1 W/m². Oznacza
E12. Wyznaczanie parametrów użytkowych fotoogniwa
1/5 E12. Wyznaczanie parametrów użytkowych fotoogniwa Celem ćwiczenia jest poznanie podstaw zjawiska konwersji energii świetlnej na elektryczną, zasad działania fotoogniwa oraz wyznaczenie jego podstawowych
Stanowisko do pomiaru fotoprzewodnictwa
Stanowisko do pomiaru fotoprzewodnictwa Kraków 2008 Układ pomiarowy. Pomiar czułości widmowej fotodetektorów polega na pomiarze fotoprądu w funkcji długości padającego na detektor promieniowania. Stanowisko
FOTOOGNIWA SŁONECZNE. Rys. 1 Moduł fotowoltaiczny cienkowarstwowy CIS firmy Sulfurcell typu STP SCG 50 HV (Powierzchnia ok.
FOTOOGNIWA SŁONECZNE Nasz ośrodek wyposaŝony jest w dwa typy fotoogniw fotowoltaicznych moduł fotowoltaiczny monokrystaliczny firmy Suntech Power typu STP 180S 24/AC (przedstawiony na Rys. 1) oraz moduł
Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych.
Politechnika Łódzka Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych Niekonwencjonalne źródła energii Laboratorium Ćwiczenie 1
Wykład 5 Fotodetektory, ogniwa słoneczne
Wykład 5 Fotodetektory, ogniwa słoneczne 1 Generacja optyczna swobodnych nośników Fotoprzewodnictwo σ=e(µ e n+µ h p) Fotodioda optyczna generacja par elektron-dziura pole elektryczne złącza rozdziela parę
IA. Fotodioda. Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody.
1 A. Fotodioda Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody. Zagadnienia: Efekt fotowoltaiczny, złącze p-n Wprowadzenie Fotodioda jest urządzeniem półprzewodnikowym w którym zachodzi
MOBILNE STANOWISKO DO BADAŃ EFEKTYWNOSCI MODUŁÓW PV.
MOBILNE STANOWISKO DO BADAŃ EFEKTYWNOSCI MODUŁÓW PV www.oze.utp.edu.pl MOBILNE STANOWISKO DO BADAŃ EFEKTYWNOSCI MODUŁÓW PV Prezentacja stanowiska łącznie z mobilnym układem instalacji solarnej z kolektorem
Cienkowarstwowe ogniwa słoneczne: przegląd materiałów, technologii i sytuacji rynkowej
Cienkowarstwowe ogniwa słoneczne: przegląd materiałów, technologii i sytuacji rynkowej Przez ostatnie lata, rynek fotowoltaiki rozwijał się, wraz ze sprzedażą niemal zupełnie zdominowaną przez produkty
Część 1. Wprowadzenie. Przegląd funkcji, układów i zagadnień
Część 1 Wprowadzenie Przegląd funkcji, układów i zagadnień Źródło energii w systemie fotowoltaicznym Ogniwo fotowoltaiczne / słoneczne photovoltaic / solar cell pojedynczy przyrząd półprzewodnikowy U 0,5
SOLARNA. Moduły fotowoltaiczne oraz kompletne systemy przetwarzające energię słoneczną. EKOSERW BIS Sp. j. Mirosław Jedrzejewski, Zbigniew Majchrzak
Moduły fotowoltaiczne oraz kompletne systemy przetwarzające energię słoneczną ENERGIA SOLARNA Fotowoltaika Do Ziemi dociera promieniowanie słoneczne zbliżone widmowo do promieniowania ciała doskonale czarnego
Fotoelementy. Symbole graficzne półprzewodnikowych elementów optoelektronicznych: a) fotoogniwo b) fotorezystor
Fotoelementy Wstęp W wielu dziedzinach techniki zachodzi potrzeba rejestracji, wykrywania i pomiaru natężenia promieniowania elektromagnetycznego o różnych długościach fal, w tym i promieniowania widzialnego,
Ćwiczenie Nr 5. Badanie różnych konfiguracji modułów fotowoltaicznych
Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych Laboratorium Fotowoltaiki Ćwiczenie Nr 5 Badanie różnych konfiguracji modułów fotowoltaicznych I. Cel ćwiczenia Celem ćwiczenia jest zapoznanie
TEHACO Sp. z o.o. ul. Barniewicka 66A 80-299 Gdańsk. Ryszard Dawid
TEHACO Sp. z o.o. ul. Barniewicka 66A 80-299 Gdańsk Ryszard Dawid Olsztyn, Konferencja OZE, 23 maja 2012 Firma TEHACO Sp. z o.o. została założona w Gdańsku w 1989 roku -Gdańsk - Bielsko-Biała - Bydgoszcz
Instytut Technologii Materiałów Elektronicznych
WPŁYW TRAWIENIA CHEMICZNEGO NA PARAMETRY ELEKTROOPTYCZNE KRAWĘDZIOWYCH OGNIW FOTOWOLTAICZNYCH Joanna Kalbarczyk, Marian Teodorczyk, Elżbieta Dąbrowska, Konrad Krzyżak, Jerzy Sarnecki kontakt srebrowy kontakt
Spis treści. Wykaz ważniejszych oznaczeń i jednostek 13 Przedmowa 17 Wstęp Odnawialne źródła energii 72
Spis treści Wykaz ważniejszych oznaczeń i jednostek 13 Przedmowa 17 Wstęp 19 1_ Charakterystyka obecnego stanu środowiska 21.1. Wprowadzenie 21.2. Energetyka konwencjonalna 23.2.1. Paliwa naturalne, zasoby
Wykład 5 Fotodetektory, ogniwa słoneczne
Wykład 5 Fotodetektory, ogniwa słoneczne 1 Generacja optyczna swobodnych nośników Fotoprzewodnictwo σ=e(µ e n+µ h p) Fotodioda optyczna generacja par elektron-dziura pole elektryczne złącza rozdziela parę
fotowoltaika Katalog produktów
fotowoltaika Katalog produktów Fotowoltaika: efektywne wytwarzanie prądu i ciepła Fotowoltaika, technologia umożliwiająca przemianę promieniowania słonecznego bezpośrednio na energię elektryczną, jest
Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja
Rekapitulacja Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje: czwartek
Ćwiczenie 134. Ogniwo słoneczne
Ćwiczenie 134 Ogniwo słoneczne Cel ćwiczenia Zapoznanie się z różnymi rodzajami półprzewodnikowych ogniw słonecznych. Wyznaczenie charakterystyki prądowo-napięciowej i sprawności przetwarzania energii
Ćwiczenie nr 3. Badanie instalacji fotowoltaicznej DC z akumulatorem
Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych Laboratorium Fotowoltaiki Ćwiczenie nr 3 Badanie instalacji fotowoltaicznej DC z akumulatorem OPIS STANOWISKA ORAZ INSTALACJI OGNIW SŁONECZNYCH.
BADANIE CHARAKTERYSTYK FOTOELEMENTU
Ćwiczenie E7 BADANIE CHARAKTERYSTYK FOTOELEMENTU Przyrzady: Przyrząd do badania zjawiska fotoelektrycznego, płytki absorbenta suwmiarka, fotoelementy (fotoopór, fotodioda, lub fototranzystor). Zjawisko
Wprowadzenie do energii słonecznej i fotowoltaiki
Czyste Energie Wykład 1 Wprowadzenie do energii słonecznej i fotowoltaiki dr inż. Janusz Teneta C-3 pok. 8 (parter), e-mail: romus@agh.edu.pl Wydział EAIiE Katedra Automatyki AGH Kraków 2010 Geometria
Które panele wybrać? Europe Solar Production sp. z o.o. Opracował : Sławomir Suski
Które panele wybrać? Europe Solar Production sp. z o.o. Opracował : Sławomir Suski Rodzaje modułów fotowoltaicznych Rodzaj modułu fotowoltaicznego Monokrystaliczny Polikrystaliczny Amorficzny A- Si - Amorphous
Instalacje fotowoltaiczne / Bogdan Szymański. Wyd. 6. Kraków, Spis treści
Instalacje fotowoltaiczne / Bogdan Szymański. Wyd. 6. Kraków, 2017 Spis treści 1. MODUŁY FOTOWOLTAICZNE 10 1.1. MODUŁ FOTOWOLTAICZNY - DEFINICJA I BUDOWA 10 1.2. PODZIAŁ OGNIW I MODUŁÓW FOTOWOLTAICZNYCH
Projektowanie systemów PV. Produkcja modułu fotowoltaicznego (PV)
Projektowanie systemów PV Wykład 3 Produkcja modułu fotowoltaicznego (PV) dr inż. Janusz Teneta C-3 pok. 8 (parter), e-mail: romus@agh.edu.pl Wydział EAIiIB Katedra Automatyki i Inżynierii Biomedycznej
Marek Lipiński WPŁYW WŁAŚCIWOŚCI FIZYCZNYCH WARSTW I OBSZARÓW PRZYPOWIERZCHNIOWYCH NA PARAMETRY UŻYTKOWE KRZEMOWEGO OGNIWA SŁONECZNEGO
Marek Lipiński WPŁYW WŁAŚCIWOŚCI FIZYCZNYCH WARSTW I OBSZARÓW PRZYPOWIERZCHNIOWYCH NA PARAMETRY UŻYTKOWE KRZEMOWEGO OGNIWA SŁONECZNEGO Instytut Metalurgii i Inżynierii Materiałowej im. Aleksandra Krupkowskiego
Wyznaczanie parametrów baterii słonecznej
Wyznaczanie parametrów baterii słonecznej Obowiązkowa znajomość zagadnień Działanie ogniwa fotowoltaicznego. Złącze p-n. Parametry charakteryzujące ogniwo fotowoltaiczne. Zastosowanie ogniw fotowoltaicznych.
Lokalne systemy energetyczne
2. Układy wykorzystujące OZE do produkcji energii elektrycznej: elektrownie wiatrowe, ogniwa fotowoltaiczne, elektrownie wodne (MEW), elektrownie i elektrociepłownie na biomasę. 2.1. Wiatrowe zespoły prądotwórcze
Ćwiczenie 1 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH
LABORAORUM ELEKRONK Ćwiczenie 1 Parametry statyczne diod półprzewodnikowych Cel ćwiczenia Celem ćwiczenia jest poznanie statycznych charakterystyk podstawowych typów diod półprzewodnikowych oraz zapoznanie
LASERY I ICH ZASTOSOWANIE
LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 13 Temat: Biostymulacja laserowa Istotą biostymulacji laserowej jest napromieniowanie punktów akupunkturowych ciągłym, monochromatycznym
PL B1. WOJSKOWY INSTYTUT MEDYCYNY LOTNICZEJ, Warszawa, PL BUP 23/13
PL 222455 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 222455 (13) B1 (21) Numer zgłoszenia: 399143 (51) Int.Cl. H02M 5/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:
Stanowisko do badania zjawiska tłumienia światła w ośrodkach materialnych
Stanowisko do badania zjawiska tłumienia światła w ośrodkach materialnych Na rys. 3.1 przedstawiono widok wykorzystywanego w ćwiczeniu stanowiska pomiarowego do badania zjawiska tłumienia światła w ośrodkach
Ćwiczenie nr 34. Badanie elementów optoelektronicznych
Ćwiczenie nr 34 Badanie elementów optoelektronicznych 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z elementami optoelektronicznymi oraz ich podstawowymi parametrami, a także doświadczalne sprawdzenie
Model układu z diodami LED na potrzeby sygnalizacji świetlnej. Czujniki zasolenia przegląd dostepnych rozwiązań
Model układu z diodami LED na potrzeby sygnalizacji świetlnej Projekt i wykonanie modelu sygnalizacji świetlnej na bazie diod LED. Program sterujący układem diod LED na potrzeby sygnalizacji świetlnej
Badanie wyspowej instalacji fotowoltaicznej
LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 6 Badanie wyspowej instalacji fotowoltaicznej Cel ćwiczenia: Zapoznanie studentów z działaniem wyspowej instalacji fotowoltaicznej. Badane elementy: Laboratoryjna
E12. Wyznaczanie parametrów użytkowych fotoogniwa
E12. Wyznaczanie parametrów użytkowych fotoogniwa 1/5 E12. Wyznaczanie parametrów użytkowych fotoogniwa Celem ćwiczenia jest zapoznanie z podstawami zjawiska konwersji energii świetlnej na elektryczną,
Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7
Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego, poznanie jego charakterystyki przejściowej
Ćwiczenie 2a. Pomiar napięcia z izolacją galwaniczną Doświadczalne badania charakterystyk układów pomiarowych CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE
Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych 90-924 Łódź, ul. Wólczańska 221/223, bud. B18 tel. 42 631 26 28 faks 42 636 03 27 e-mail secretary@dmcs.p.lodz.pl http://www.dmcs.p.lodz.pl
Ćwiczenie Nr 4. Badanie instalacji fotowoltaicznej AC o parametrach sieciowych
Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych Laboratorium Fotowoltaiki Ćwiczenie Nr 4 Badanie instalacji fotowoltaicznej AC o parametrach sieciowych 1. OPIS STANOWISKA SERWISOWO POMIAROWEGO
Zał. nr 4 do ZW 33/2012 WYDZIAŁ PPT
Zał. nr do ZW 33/01 WYDZIAŁ PPT KARTA PRZEDMIOTU Nazwa w języku polskim: Ogniwa Fotowoltaiczne Nazwa w języku angielskim: Solar cells Kierunek studiów: Fizyka Specjalność: FOZE Stopień studiów i forma:
12. FOTOWOLTAIKA IMMERGAS EFEKTYWNE WYTWARZANIE PRĄDU I CIEPŁA
12. FOTOWOLTAIKA IMMERGAS EFEKTYWNE WYTWARZANIE PRĄDU I CIEPŁA 266 www.immergas.com.pl FOTOWOLTAIKA IMMERGAS NOWOCZESNE SYSTEMY GRZEWCZE 12. Nowoczesna fotowoltaika Immergas - efektywne wytwarzanie prądu
PANELE I FARMY FOTOWOLTAICZNE (SOLARNE)
JAK CZERPAĆ ENERGIĘ ZE SŁOŃCA? PANELE I FARMY FOTOWOLTAICZNE (SOLARNE) Produkcja energii pochodzącej ze źródeł odnawialnych nie jest już dziś kaprysem jest ekonomiczną i ekologiczną koniecznością. Kto
Źródła energii nieodnawialne, czyli surowce energetyczne, tj. węgiel kamienny, węgiel brunatny, ropa naftowa, gaz ziemny, torf, łupki i piaski
Źródła Źródła energii energii nieodnawialne, czyli surowce energetyczne, tj. węgiel kamienny, węgiel brunatny, ropa naftowa, gaz ziemny, torf, łupki i piaski bitumiczne, pierwiastki promieniotwórcze (uran,
Zasada działania. 2. Kolektory słoneczne próżniowe
Kolektory słoneczne służą do zamiany energii promieniowania słonecznego na energie cieplną w postaci ciepłej wody. Taka metoda przetwarzania energii słonecznej uważana jest za szczególnie wydajna i funkcjonalną.
Przedsiębiorstwo. Klient. Projekt
Przedsiębiorstwo SIG Energia Ul.Przemyska 24 E 38-500 Sanok Polska Osoba kontaktowa: Adam Mazur Klient Projekt 3D, Instalacja PV podłączona do sieci - Pełne zasilanie Dane klimatyczne Moc generatora PV
Tematy prac dyplomowych na kierunku Energetyka
Tematy prac dyplomowych na kierunku Energetyka Lp. 1. 2. Temat Wykorzystanie kolejowej sieci energetycznej SN jako źródło zasilania obiektu wielkopowierzchniowego o przeznaczeniu handlowo usługowym Zintegrowany
ZAŁĄCZNIK NR 10 Symulacja uzysku rocznego dla budynku stacji transformatorowej
ZAŁĄCZNIK NR 10 Symulacja uzysku rocznego dla budynku stacji transformatorowej Podłączona do sieci instalacja fotowoltaiczna (PV) Dane klimatyczne Warszawa, POL (1991-2010) Moc generatora PV 9,57 kwp Powierzchnia
UNIWERSYTET SZCZECIŃSKI INSTYTUT FIZYKI ZAKŁAD FIZYKI CIAŁA STAŁEGO. Ćwiczenie laboratoryjne Nr.2. Elektroluminescencja
UNIWERSYTET SZCZECIŃSKI INSTYTUT FIZYKI ZAKŁAD FIZYKI CIAŁA STAŁEGO Ćwiczenie laboratoryjne Nr.2 Elektroluminescencja SZCZECIN 2002 WSTĘP Mianem elektroluminescencji określamy zjawisko emisji spontanicznej
Czy mamy szansę wygrać walkę ze smogiem?...
Czy mamy szansę wygrać walkę ze smogiem?... pewnie że TAK tylko jak? 1 Czy mamy szansę wygrać walkę ze smogiem? Odnawialne źródła energii OZE Odnawialne źródło energii źródło wykorzystujące w procesie
Laboratorium Systemów Fotowoltaicznych. Ćwiczenie 3
Ćwiczenie 3 Badania autonomicznego systemu fotowoltaicznego współpracującego z regulatorami ładowania oraz układem zabezpieczającym magazyn energii przed rozładowaniem Celem ćwiczenia jest zapoznanie się
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) (13) B1
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 174002 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 300055 (22) Data zgłoszenia: 12.08.1993 (5 1) IntCl6: H01L21/76 (54)
Instalacja fotowoltaiczna o mocy 36,6 kw na dachu oficyny ratusza w Żywcu.
Przedsiębiorstwo VOTRE Projekt Sp. z o.o. Henryka Pobożnego 1/16 Strzelce Opolskie Polska Osoba kontaktowa: Kamil Brudny Telefon: 533-161-381 E-mail: k.brudny@votreprojekt.pl Klient Urząd Miast Żywiec
Ćwiczenie 16. Temat: Wzmacniacz w układzie Darlingtona. Cel ćwiczenia
Temat: Wzmacniacz w układzie Darlingtona. Cel ćwiczenia Ćwiczenie 16 1. Poznanie zasady pracy układu Darlingtona. 2. Pomiar parametrów układu Darlingtona i użycie go w różnych aplikacjach sterowania. INSTRUKCJA
ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI
1 ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 15.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie podstawowych właściwości wzmacniaczy mocy małej częstotliwości oraz przyswojenie umiejętności
Schemat układu zasilania diod LED pokazano na Rys.1. Na jednej płytce połączone są różne diody LED, które przełącza się przestawiając zworkę.
Ćwiczenie 3. Parametry spektralne detektorów. Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z podstawowymi parametrami detektorów i ich podstawowych parametrów. Poznanie zależności związanych z oddziaływaniem
Akumulator Seria NP Nr produktu
INSTRUKCJA OBSŁUGI Akumulator Seria NP1.2-12 Nr produktu 000250812 Strona 1 z 9 Niezawodność to bezpieczeństwo Akumulatory Yuasa NP, NPC i NPH. Stosując najnowszą, zaawansowaną technologię rekombinacji
zasada działania, prawidłowy dobór wielkości instalacji, usytuowanie instalacji, produkcja energii w cyklu rocznym dr inż. Andrzej Wiszniewski
Fotowoltaika w teorii zasada działania, prawidłowy dobór wielkości instalacji, usytuowanie instalacji, produkcja energii w cyklu rocznym dr inż. Andrzej Wiszniewski Technicznie dostępny potencjał energii
INSTRUKCJA LABORATORYJNA NR 10-PV MODUŁ FOTOWOLTAICZNY
LABORATORIUM ODNAWIALNYCH ŹRÓDEŁ ENERGII Katedra Aparatury i Maszynoznawstwa Chemicznego Wydział Chemiczny Politechniki Gdańskiej INSTRUKCJA LABORATORYJNA NR 10-PV MODUŁ FOTOWOLTAICZNY 1. Cel i zakres
Czujniki. Czujniki służą do przetwarzania interesującej nas wielkości fizycznej na wielkość elektryczną łatwą do pomiaru. Najczęściej spotykane są
Czujniki Ryszard J. Barczyński, 2010 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Czujniki Czujniki służą do przetwarzania interesującej
Budowa. Metoda wytwarzania
Budowa Tranzystor JFET (zwany też PNFET) zbudowany jest z płytki z jednego typu półprzewodnika (p lub n), która stanowi tzw. kanał. Na jego końcach znajdują się styki źródła (ang. source - S) i drenu (ang.
Proekologiczne odnawialne źródła energii : kompendium / Witold M. Lewandowski, Ewa Klugmann-Radziemska. Wyd. 1 (WN PWN). Warszawa, cop.
Proekologiczne odnawialne źródła energii : kompendium / Witold M. Lewandowski, Ewa Klugmann-Radziemska. Wyd. 1 (WN PWN). Warszawa, cop. 2017 Spis treści Wykaz ważniejszych oznaczeń i jednostek 13 Przedmowa
Stosowanie wieloźródłowych systemów bioenergetycznych w celu osiągnięcia efektu synergicznego
Stosowanie wieloźródłowych systemów bioenergetycznych w celu osiągnięcia efektu synergicznego mgr inż. Jakub Lenarczyk Oddział w Poznaniu Zakład Odnawialnych Źródeł Energii Czym są wieloźródłowe systemy
Instrukcja do ćwiczenia laboratoryjnego nr 13
Instrukcja do ćwiczenia laboratoryjnego nr 13 Temat: Charakterystyki i parametry dyskretnych półprzewodnikowych przyrządów optoelektronicznych Cel ćwiczenia. Celem ćwiczenia jest poznanie budowy, zasady
Produkcja modułu fotowoltaicznego (PV)
Czyste energie Wykład 3 Produkcja modułu fotowoltaicznego (PV) dr inż. Janusz Teneta C-3 pok. 8 (parter), e-mail: romus@agh.edu.pl Wydział EAIiIB Katedra Automatyki i Inżynierii Biomedycznej AGH Kraków
Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE. Wpływ oświetlenia na półprzewodnik oraz na złącze p-n
Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDA DZENNE LABORATORUM PRZYRZĄDÓW PÓŁPRZEWODNKOWYCH Ćwiczenie nr 5 Wpływ oświetlenia na półprzewodnik oraz na złącze p-n. Zagadnienia
LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH
Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE Ćwiczenie nr 8 Wpływ oświetlenia na półprzewodnik oraz na złącze p-n I. Zagadnienia do samodzielnego przygotowania
Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych.
Politechnika Łódzka Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych Niekonwencjonalne źródła energii Laboratorium Ćwiczenie 3
LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH
LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 Parametry statyczne tranzystorów polowych złączowych Cel ćwiczenia Podstawowym celem ćwiczenia jest poznanie statycznych charakterystyk tranzystorów polowych złączowych
FOTOWOLTAIKA KATALOG PRODUKTÓW
FOTOWOLTAIKA KATALOG PRODUKTÓW 2 20 LAT DOŚWIADCZENIA FOTOWOLTAIKA: EFEKTYWNE WYTWARZANIE PRĄDU I CIEPŁA Fotowoltaika, technologia umożliwiająca przemianę promieniowania słonecznego bezpośrednio na energię
ZAŁĄCZNIK NR 09 Symulacja uzysku rocznego dla budynku garażowo-magazynowego
ZAŁĄCZNIK NR 09 Symulacja uzysku rocznego dla budynku garażowo-magazynowego Podłączona do sieci instalacja fotowoltaiczna (PV) Dane klimatyczne Warszawa, POL (1991-2010) Moc generatora PV 18,48 kwp Powierzchnia
INSTRUKCJA LABORATORYJNA NR 4-EW ELEKTROWNIA WIATROWA
LABORATORIUM ODNAWIALNYCH ŹRÓDEŁ ENERGII Katedra Aparatury i Maszynoznawstwa Chemicznego Wydział Chemiczny Politechniki Gdańskiej INSTRUKCJA LABORATORYJNA NR 4-EW ELEKTROWNIA WIATROWA ELEKTROWNIA WIATROWA
Wyjścia analogowe w sterownikach, regulatorach
Wyjścia analogowe w sterownikach, regulatorach 1 Sygnały wejściowe/wyjściowe w sterowniku PLC Izolacja galwaniczna obwodów sterownika Zasilanie sterownika Elementy sygnalizacyjne Wejścia logiczne (dwustanowe)
LABORATORIUM PRZEMIAN ENERGII
LABORATORIUM PRZEMIAN ENERGII BADANIE OGNIWA PALIWOWEGO TYPU PEM I. Wstęp Ćwiczenie polega na badaniu ogniwa paliwowego typu PEM. Urządzenia tego typy są obecnie rozwijane i przystosowywane do takich aplikacji
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Struktura pasmowa ciał stałych. 2. Klasyfikacja ciał stałych w oparciu o teorię
Elementy optoelektroniczne. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego.
Elementy optoelektroniczne Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Półprzewodnikowe elementy optoelektroniczne Są one elementami sterowanymi natężeniem
Instrukcja do ćwiczenia laboratoryjnego nr 6a
Instrukcja do ćwiczenia laboratoryjnego nr 6a Temat: Charakterystyki i parametry półprzewodnikowych przyrządów optoelektronicznych. Cel ćwiczenia: Zapoznać z budową, zasadą działania, charakterystykami
Możliwości zastosowania technologii fotowoltaicznej w Polsce północnej w szczególności w domowych instalacjach autonomicznych.
Możliwości zastosowania technologii fotowoltaicznej w Polsce północnej w szczególności w domowych instalacjach autonomicznych. Tomasz Karaś 1. Wykorzystanie zjawiska fotowoltaiki czyli wytwarzania napięcia
Komputerowe systemy pomiarowe. Dr Zbigniew Kozioł - wykład Mgr Mariusz Woźny - laboratorium
Komputerowe systemy pomiarowe Dr Zbigniew Kozioł - wykład Mgr Mariusz Woźny - laboratorium 1 - Cel zajęć - Orientacyjny plan wykładu - Zasady zaliczania przedmiotu - Literatura Klasyfikacja systemów pomiarowych