POLITECHNIKA WARSZAWSKA WYDZIAŁ BUDOWNICTWA, MECHANIKI I PETROCHEMII INSTYTUT INŻYNIERII MECHANICZNEJ

Wielkość: px
Rozpocząć pokaz od strony:

Download "POLITECHNIKA WARSZAWSKA WYDZIAŁ BUDOWNICTWA, MECHANIKI I PETROCHEMII INSTYTUT INŻYNIERII MECHANICZNEJ"

Transkrypt

1 POLITECHNIKA WARSZAWSKA WYDZIAŁ BUDOWNICTWA, MECHANIKI I PETROCHEMII INSTYTUT INŻYNIERII MECHANICZNEJ NAPĘDY I STEROWANIE HYDRAULICZNE I PNEUMATYCZNE Wykład 30 godz. studia stacjonarne 10 godz. studia niestacjonarne dr inż. Jerzy Pietrzyk 2. WIADOMOŚCI WSTĘPNE 2.1. Podstawowe pojęcia Napęd hydrauliczny - zespół mechanizmów i urządzeń służący do zamiany dowolnego rodzaju energii na energię cieczy, która jako nośnik służy do ponownej zamiany tej energii na energię mechaniczną. Napęd hydrostatyczny - napęd, w którym wykorzystywana jest energia ciśnienia cieczy. Napęd hydrokinetyczny - napęd, w którym wykorzystywana jest energia kinetyczna cieczy. Analogicznie można sformułować definicję napędu pneumostatycznego i pneumokinetycznego gdzie nośnikiem energii jest powietrze. Istota napędu hydraulicznego i pneumatycznego wynika z równania Bernouliego: 1

2 p g h 2 v const 2g (2.1) gdzie: h - wysokość położenia, v - prędkość, - ciśnienie, g - przyśpieszenie ziemskie. Postać energetyczna tego równania jest następująca: 2 v g h V pv V const 2 (2.2) energia potencjalna energia ciśnienia energia kinetyczna gdzie: V- objętość cieczy. Do podstawowych podzespołów i elementów najczęściej spotykanych układów hydraulicznych i pneumatycznych zalicza się następujące urządzenia: pompy hydrauliczne (źródła energii), akumulatory hydrauliczne (dodatkowe źródło zgromadzonej wcześniej energii lub tłumik drgań cieczy), urządzenia wykonawcze (siłowniki i silniki hydrauliczne), zawory (regulacja ciśnienia, odcinanie dopływu cieczy, zabezpieczanie przed nadmiernym wzrostem ciśnienia, wymuszenia przepływu), rozdzielacze (kierowanie przepływem), wzmacniacze hydrauliczne (moc robocza jest wielokrotnie większa od mocy sygnału sterującego), filtry (oczyszczanie cieczy roboczej z zanieczyszczeń), zbiorniki (gromadzenie cieczy, odpowietrzanie, odprowadzanie ciepła, oczyszczanie), połączenia (przewody giętkie, rurki, szybkozłącza, łączniki itp.). 2

3 2.2. Zasada funkcjonowania napędu hydrostatycznego Na rysunku 2.1 pokazano ogólny schemat blokowy układu hydraulicznego, obrazujący przekazywanie poszczególnych form energii, mianowicie: dostarczanie energii mechanicznej do układu przez silnik elektryczny, cieplny lub za pomocą napędu ręcznego, zamianę energii mechanicznej na energię ciśnienia lub energię kinetyczną, nazywaną inaczej energią hydrauliczną, zamiana ta zachodzi w pompie hydraulicznej, przekazywanie energii hydraulicznej za pomocą przewodów i elementów sterujących, reagujących na zewnętrzne lub wewnętrzne sygnały sterujące pracą układu, sygnały te mogą mieć różny charakter fizyczny: elektryczny, mechaniczny, hydrauliczny lub pneumatyczny, zamianę energii hydraulicznej na mechaniczną, zamiana ta zachodzi w hydraulicznym silniku obrotowym lub siłowniku hydraulicznym, przekazywanie energii mechanicznej do elementów maszyny roboczej, wykonujących pracę użyteczną. Rys Ogólny schemat blokowy układu hydraulicznego Porównanie napędu hydraulicznego z innymi rodzajami napędów. Obecnie napędy hydrauliczne i pneumatyczne stosowane są powszechnie w wielu dziedzinach techniki. Tak wielka popularność tego rodzaju napędu wynika przede wszystkim z jego zalet, do 3

4 których należy zaliczyć: dużą wydajność energetyczną z jednostki masy lub objętości. Przykładowo w przekładniach wielotłoczkowych osiowych osiąga ona 4 6 [kw/kg] i przewyższa pod tym względem wszelkie znane rodzaje napędów, np. silnik hydrauliczny w porównaniu z silnikiem elektrycznym o tej samej mocy i prędkości obrotowej jest 14 razy lżejszy i zajmuje ok. 26 razy mniejszą przestrzeń, dużą łatwość sterowania podstawowymi parametrami ruchowymi, znacznie wyższą niż układach mechanicznych, a w tym możliwość łatwego uzyskania bardzo dużych wysoko sprawnych przełożeń zmiennych w sposób ciągły, a także dużą łatwość zamiany ruchu obrotowego na prostoliniowy, bardzo małą bezwładność układu, umożliwiającą dokonywanie częstych i gwałtownych zmian prędkości i obciążenia przy dobrych właściwościach tłumienia procesów przejściowych, np. silnik hydrauliczny ma moment bezwładności około 72 razy mniejszy od momentu bezwładności porównywalnego silnika elektrycznego, samo smarowność. W charakterze cieczy roboczej wykorzystuje się najczęściej różne rodzaje olejów, które są jednocześnie czynnikiem smarującym. Odrębnym zagadnieniem jest zastosowanie emulsji, a nawet wody jako czynnika roboczego, łatwość bezpośredniej i ciągłej kontroli obciążenia, a także łatwość ograniczenia tego obciążenia, dużą łatwość przestrzennego usytuowania elementów tworzących układy, wynikającą z możliwości wykonania połączeń za pomocą dowolnie ułożonych przewodów sztywny chlub elastycznych, możliwość komponowania układów przeznaczonych do różnych maszyn i różnych celów z ograniczonej i zunifikowanej liczby elementów typowych, produkowanych przez wyspecjalizowane firmy, łatwość automatyzacji lub zdalnego sterowania, uzyskiwania na drodze elektrohydraulicznej czy elektroniczno-hydraulicznej. Układy hydrostatyczne nie pozbawione są również wad. Do najważniejszych należą: 4

5 duża podatność na zanieczyszczenia cieczy roboczej, prowadząca w następstwie do uszkodzeń. Z tego względu układy hydrostatyczne wymagają odpowiedniego zaprojektowania i wykonania oraz obsługiwania przez pracowników o odpowiednich kwalifikacjach, zmiany właściwości statycznych i dynamicznych, spowodowane zmianami lepkości cieczy roboczej pod wpływem temperatury, duża hałaśliwość wzrastająca wraz z ciśnieniem, poziom hałasu przekracza niejednokrotnie 90 [db] wystarczająco prostych i skutecznych sposobów tłumienia hałasu na razie nie opracowano, trudności w uzyskaniu dokładnej synchronizacji ruchów silników lub siłowników obciążonych w zróżnicowany sposób, występowanie nieuniknionych i brudzących wycieków cieczy roboczej, które są szkodliwe dla środowiska naturalnego i trudne do neutralizacji, duże straty energetyczne (spadki ciśnienia) na długości przewodów (straty liniowe) i w wyniku miejscowych zmian przekroju (straty miejscowe), niebezpieczeństwo w użytkowaniu i mała odporność przeciwpożarowa Przykłady układów hydraulicznych Na rysunku 2.2 przedstawiono przykład układu hydrostatycznego z silnikiem obrotowym, nazywanego inaczej przekładnią hydrostatyczną. Rys Schemat konstrukcyjny układu z silnikiem obrotowym (przekładni hydrostatycznej). 5

6 Oznaczenia do rys. 2.2: 1 - pompa, 2 silnik hydrauliczny, 3 - płyta przyłączeniowa pompy, 4 - płyta przyłączeniowa silnika, 5 - wałek napędowy pompy, 6 - wałek odbiorczy silnika, 7 - zbiornik, 8 - blok elementów sterujących, 9 - zawory maksymalne, 10 filtr spływowy, 11 - rozdzielacz, A-P - przewód tłoczny pompy, B1-B - przewód tłoczny silnika, A-A1 przewód spływowy silnika, T1 - przewód spływowy układu, T2 - przewody odprowadzenia przecieków, S przewód ssawny pompy. Funkcjonowanie przekładni przedstawia się następująco: Pompa 1 napędzana jest za pomocą wałka 5 i zasysa ciecz przewodem ssawnym S ze zbiornika 7. Jednocześnie z innej części pompy ciecz pod wysokim ciśnieniem podawana jest do przyłącza A i przewodem tłocznym A-P do bloku elementów sterujących 8. Rozdzielacz 11 kieruję tę ciecz do przyłącza B1. Następnie ciecz płynie przewodem tłocznym B1-B do silnika hydraulicznego 2. Rozdzielacz 11 kieruję tę ciecz do przyłącza B1. Następnie ciecz płynie przewodem tłocznym B1-B do silnika hydraulicznego 2. Silnik funkcjonuje na odwrotnej zasadzie niż pompa i powoduje, że wałek 6 może pokonać zewnętrzny moment obciążenia z odpowiednią prędkością obrotową. Ciecz, która oddała swoją energię elementom silnika 2 płynie do przyłącza A i wraca przewodem spływowym A-A1 do bloku sterującego 8, a z niego przewodem spływowym T1 przez filtr 10 do zbiornika 7. Zadaniem zaworów maksymalnych 9 jest zabezpieczenie układu przed przeciążeniem, jakie może wystąpić na wałku 6 silnika 2. Działanie zaworów 9 zależne jest od kierunku obrotów silnika, czyli od obecności cieczy pod ciśnieniem w przyłączu B1 lub A1 zawsze działa tylko jeden z zaworów 9 i upuszcza nadmiar cieczy z przewodu tłocznego do spływowego, na przykład z B1 do A1. Zadaniem rozdzielacza 11 jest zmiana kierunku obrotów silnika 2 przez podanie cieczy z przyłącza P do przyłącza A1. Jest to możliwe po przesterowaniu suwaka rozdzielacza 11 za pomocą zewnętrznego sygnału sterującego. 6

7 Takim sygnałem może być przykładowo wychylenie dźwigni sterującej pracą rozdzielacza (nie pokazanej na rysunku), wywołane działaniem operatora sterującego maszyną roboczą. Części elementów układów hydrostatycznych zawsze wykonywane są bardzo precyzyjnie, stosuje się tutaj zawężone tolerancje wykonania, indywidualną selekcję części i w związku z tym w wielu przypadkach rezygnuje się ze stosowania typowych uszczelnień (nie zawsze stosowanie uszczelnień jest możliwe). W takiej sytuacji nieznaczne ilości cieczy wydostające się ze szczelin między współpracującymi częściami tworzą przecieki, które przewodami T2 odprowadzane są do zbiornika 7. Na rysunku 2.3 przedstawiono przykład układu z siłownikiem tłokowym. Funkcjonowanie układu można opisać następująco: Pompa 1 zasysa ciecz ze zbiornika 2 i przez zawór zwrotny 3 podaje ją do rozdzielacza 6. Przewód łączący pompę 1 z rozdzielaczem 6 jest przewodem tłocznym układu. Przewód ten posiada odgałęzienie prowadzące do zaworu maksymalnego 4. Rys Schemat konstrukcyjny układu z siłownikiem tłokowym: 1 - pompa, 2 - zbiornik, 3 - zawór zwrotny, 4 - zawór maksymalny, 5 - siłownik tłokowy, 6 - rozdzielacz, 7 zawór dławiący. 7

8 W sytuacji pokazanej na rysunku rozdzielacz 6 odcina przepływ z pompy 2 do siłownika 5 i wobec tego cała wydajność pompy kierowana jest do zaworu maksymalnego 4, zabezpieczającego układ przed przeciążeniem prowadzącym do uszkodzenia. Ponadto rozdzielacz 6 odcina całkowicie połączenie siłownika 5 z pompą i zbiornikiem, więc tłok siłownika jest unieruchomiony. Jeżeli dźwignia rozdzielacza 6 zostanie wychylona w prawo, to suwak tego rozdzielacza zostanie przesunięty w lewo i spowoduje połączenie lewej komory siłownika 5 z pompą a prawej komory ze zbiornikiem. Tak więc ciecz pod ciśnieniem wytworzonym przez pompę 1 spowoduje wysuw tłoczyska siłownika 5. Jednocześnie ciecz z prawej komory siłownika 5 pod niskim ciśnieniem zostanie odprowadzona do zbiornika 2. Przesterowanie dźwigni rozdzielacza 6 w lewo spowoduje przesunięcie suwaka tego rozdzielacza w prawo i zmianę połączeń siłownika 5 z pompą 1 i zbiornikiem 2, a więc zmianę kierunku ruchu tłoka i związanego z nim tłoczyska. Między lewą komorą siłownika 5 a rozdzielaczem 6 znajduje się zawór dławiący 7. Zadaniem tego zaworu jest nastawianie prędkości ruchu tłoka z tłoczyskiem siłownika 5, mianowicie: w trakcie wysuwu tłoka zawór dławiący 7 przepuszcza do lewej komory siłownika 5 ciecz o natężeniu przepływu wynikającym (między innymi) z nastawienia powierzchni przekroju przepływowego w dławiku tego zaworu, od nastawionego natężenia przepływu zależy prędkość ruchu tłoka; taki sposób usytuowania zaworu dławiącego 7 nosi nazwę dławienia na dopływie lub inaczej na wlocie, w trakcie ruchu powrotnego tłoka zawór dławiący 7 ogranicza wypływ z lewej komory siłownika 5 do wartości nastawionej na dławiku, od nastawionego natężenia przepływu zależy prędkość ruchu tłoka taki sposób usytuowania zaworu dławiącego 7 nosi nazwę dławienia na wypływie lub inaczej na wylocie. Zawór dławiący 7 może tylko zmniejszyć prędkość tłoka w porównaniu z układem bez tego zaworu w takim układzie cała. 8

9 wydajność pompy jest wykorzystywana do wytworzenia prędkości ruchu tłoka. Zatem pompa 1 w układzie z zaworem dławiącym 7 musi dysponować nadwyżką wydajności w stosunku do potrzeb siłownika 5, nadwyżka ta jest odprowadzana do zbiornika za pomocą zaworu maksymalnego 4. Z dotychczasowego opisu działania układu wynika, że zarówno w trakcie bezruchu jak i w trakcie ruchu siłownika, przez zawór maksymalny 4 odprowadzana jest cała wydajność pompy lub jej część. Zawór maksymalny odprowadzający ciecz w sposób ciągły przez cały czas pracy pompy lub część tego czasu nosi nazwę zaworu przelewowego. W układzie znajduje się również zawór zwrotny 3. Zawór ten w trakcie pracy pompy jest zawsze otwarty i praktycznie nic nie wnosi do funkcjonowania układu. Jego rola może uwidocznić się podczas prac remontowych, na przykład gdy zachodzi konieczność podłączenia silnika elektrycznego na kierunek obrotów wymagany przez pompę 1 w przypadku niewłaściwego podłączenia zawór 3 zapobiegnie wysysaniu cieczy z układu, czyli zapobiegnie zapowietrzeniu układu. Tworzenie schematów konstrukcyjnych jest bardzo pracochłonne i czasochłonne z uwagi na zbyt dużą liczbę szczegółów nie zawsze istotnych dla opisu funkcjonowania układów. W związku z tym stosuje się umowne symbole graficzne elementów, analogiczne do symboli używanych na przykład w elektronice. Symbole te pozbawione są szczegółów konstrukcyjnych, a ich celem jest wyłączne przedstawienie cech funkcjonalnych elementów. Stosując zapis symboliczny układu z rysunku 2.3 otrzymamy znacznie prostszy i czytelniejszy schemat funkcjonalny pokazany na rysunku

10 Rys Schemat funkcjonalny (symboliczny, ideowy) układu z siłownikiem tłokowym: 1 - pompa, 2 - zbiornik, 3 - zawór zwrotny, 4 - zawór maksymalny, 5 - siłownik tłokowy, 6 - rozdzielacz, 7 - zawór dławiący. 4. OPORY PRZEPŁYWU CIECZY Straty hydrauliczne w układzie napędowym powstają na skutek oporów przepływu w przewodach prostoliniowych - straty na długości oraz na skutek oporów miejscowych (zawory, kolana, zwężenia przekroju itp.) - straty miejscowe Straty na długości Spadek ciśnienia przy założeniu, że jest to przepływ laminarny (uwarstwiony) można wyznaczyć według następującego wzoru: 2 L v p d 2g (4.1) gdzie: p - spadek ciśnienia, - bezwymiarowy współczynnik oporu, L - długość przewodu, d - średnica wewnętrzna przewodu, v - średnia prędkość przepływu, g - przyśpieszenie ziemskie, - ciężar właściwy cieczy. 10

11 Współczynnik oporu zależy od liczby Reynoldsa, którą wyznacza się według następującego wzoru: gdzie: - lepkość kinematyczna. R e v d (4.2) Dla przepływu laminarnego (R e <2300) współczynnik oporu wyznacza się według następującego wzoru: 64 R e (4.3) Dla przepływu burzliwego (R e >2300) współczynnik oporu można wyznaczyć według wzoru: 0,3164 0,25 R e (4.4) Dla bardzo dużych liczb Reynoldsa współczynnik oporu zależy tylko od stopnia szorstkości ścianek przewodu Straty miejscowe Urządzenia wchodzące w skład instalacji i ich elementy są charakteryzowane z punktu widzenia oporów przepływu współczynnikami wyznaczonymi doświadczalnie. Miejscowe opory przepływu wywołane są przez lokalne odkształcenia i zmiany prędkości strumienia przepływającej cieczy. Miejscowe spadki ciśnienia określić można według zależności: p v 2 2 (4.5) gdzie: - bezwymiarowy współczynnik strat miejscowych, - gęstość cieczy, v - średnia prędkość przepływu. Wartość współczynnika strat miejscowych zależy od rodzaju przeszkody miejscowej związanej z przewodem lub z elementem sterowania albo regulacji układu napędowego. Przykładowe wartości współczynników strat miejscowych dla trójników podano na rys

12 Rys Współczynniki oporu dla trójników Szeregowe łączenie oporów Przy szeregowym łączeniu oporów linowych natężenie przepływu czynnika jest wartością stałą, a całkowita strata energetyczna - przy założeniu całkowitej szczelności wyrazi się sumą spadków ciśnienia dla poszczególnych odcinków przewodu, wyznaczonymi według równania: p n i1 p i (4.6) Ponieważ w układzie występują także różnego rodzaju przeszkody miejscowe, to zakładając niezmienność średnicy przewodu w linii równej średnicy nominalnej elementów - można zapisać: p d l i j v 2 2 (4.7) 4.4. Równoległe łączenie oporów Przy równoległym łączeniu oporów, którego przykładem może być rozgałęzienie przewodu dopływowego, natężenie przepływu w przewodzie dopływowym jest równe sumie natężeń przepływu w obu przewodach odpływowych. Sumaryczny opór hydrauliczny można obliczyć według następującej zależności: 1 p n i1 1 p i (4.8) gdzie: p spadek ciśnienia na przewodzie głównym, [MPa], p i spadki ciśnień na przewodach równoległych, [MPa]. 12

13 4.4. Sprawność hydrauliczna instalacji Na rys. 4.2 przedstawiono schemat prostej przekładni hydrostatycznej z naniesionymi spadkami ciśnień na poszczególnych odcinkach przewodów łączących poszczególne elementy układu. Rys Rozkład ciśnień w układzie przekładni hydrostatycznej. Skuteczna wartość ciśnienia p s, którą silnik może wykorzystać do napędu maszyny roboczej lub mechanizmu, jest różnicą ciśnienia tłoczenia p g ograniczonego zaworem maksymalnym i sumy strat w przewodach, a więc: ps pg p (4.9) gdzie: p - suma spadków ciśnienia w poszczególnych odcinkach przewodu i na przeszkodach miejscowych, [MPa]. Sprawność hydrauliczną instalacji przewodowej można zdefiniować jako: R p p g s p 1 p g (4.10) Im wyższe ciśnienie w instalacji tym sprawność jej jest większa. 5. ELEMENTY NAPĘDÓW I STEROWANIA HYDRAULICZNEGO 5.1. Pompy Ogólna charakterystyka pomp Podstawowym elementem każdego układu hydrostatycznego jest pompa wyporowa. Jej zadaniem jest zamiana energii mechanicznej 13

14 dostarczonej z zewnątrz na energię ciśnienia cieczy roboczej. Zasada funkcjonowania pompy wyporowej polega na przetłaczaniu dawek cieczy z przestrzeni ssawnej do przestrzeni tłocznej za pomocą elementów wyporowych. Wielkość dawki określona jest wymiarami komory wyporowej. Warunkiem koniecznym prawidłowego funkcjonowania pomp wyporowych jest szczelne oddzielenie przestrzeni ssawnej i tłocznej oraz szczelność między komorą a elementem wyporowym. Pompy stosowane w napędach hydrostatycznych powinny spełniać następujące wymagania: uzyskiwanie wysokich ciśnień przy możliwie dużych sprawnościach, uzyskiwanie wysokich i niezmiennych w czasie wydajności, zdolność do samozasysania cieczy roboczej ze zbiornika. Pompy można klasyfikować w różnorodny sposób, na przykład ze względu na: rodzaj ruchu elementów wyporowych, możliwość zmiany wydajności, według liczby niezależnych strumieni cieczy roboczej. Powszechnie przyjętą systematykę pomp przedstawiono poniżej Podział pomp W zależności od rodzaju ruchu elementów wyporowych: rotacyjne, tłoczkowe. W zależności od rodzaju napędu: napędzane silnikiem elektrycznym, napędzane silnikiem spalinowym, z napędem ręcznym. Według liczby strumieni: jednostrumieniowe, wielostrumieniowe. W zależności od sposobu łączenia jednostopniowe, wielostopniowe. Pompy wielostrumieniowe służą do niezależnego zasilania różnych obwodów hydraulicznych lub do zasilania tego samego obwodu w celu uzyskania stopniowanej zmiany prędkości roboczych silnika hydraulicznego lub siłownika. 14

15 Wydajności poszczególnych sekcji mogą być jednakowe lub zróżnicowane. Charakterystyczną cechą pomp wielostrumieniowych jest ich napęd za pomocą jednego silnika i przekazywanie tego napędu między jednostkami. Ze względu na wydajność: o stałej wydajności, o zmiennej wydajności. Na zagadnienie zmiany wydajności można spojrzeć także z innego punktu widzenia dopuszczając zmianę prędkości obrotowej silnika napędzającego pompę. Biorąc pod uwagę stosunkowo łatwą zmianę prędkości obrotowej silników elektrycznych sterowanych falownikami, z każdej pompy możemy w praktyce uczynić jednostkę o zmiennej wydajności. Jest to dopuszczalne pod warunkiem, że zmiana prędkości obrotowej będzie się odbywała w zakresie określonym przez producenta i podawanym w katalogu firmowym. Na rys. 5.1 przedstawiono systematykę podziału pomp wyporowych stosowanych w napędach hydrostatycznych. Rys Systematyka podziału pomp wyporowych. 15

16 Symbole wyrażają funkcje, jakie pompa może spełniać w układzie, nie podając żadnych informacji dotyczących jej konstrukcji. Ta sama zasada odnosi się do wszystkich elementów, z których są zestawiane układy. Tabela 5.1. Wybrane symbole graficzne pomp wyporowych. c.d. tabeli Przykłady rozwiązań konstrukcyjnych pomp wyporowych i zasady ich funkcjonowania Pompy zębate Pompę zębatą tworzą najczęściej dwa zazębione ze sobą czołowe, śrubowe lub daszkowe koła zębate, z których jedno jest napędzane od silnika. Podczas obracania się kół zębatych w kierunku roboczym (rys. 5.4 i 5.5), w komorze ssawnej ciecz wypełnia między zębne wnęki kół i jest przymusowo przemieszczana do komory tłocznej. 16

17 Rys Schemat pompy zębatej o zazębieniu zewnętrznym: 1 - korpus, 2 koło zębate czynne, 3 - koło zębate bierne, 4 - komora między zębna. Rys Przekrój pompy zębatej: 1 - wałek napędowy, 2 - pokrywa przednia, 3 - kadłub, 4 - pokrywa tylna, 5 - koło zębate czynne, 6 - łożysko, 7 koło zębate bierne, 8 śruba. Komorę tłoczną ograniczają ścianki korpusu i zęby współpracujących kół zębatych. Nadciśnienie w komorze tłocznej utrzymuje się wskutek wyciskania cieczy spomiędzy zazębiających się zębów kół. Jednocześnie w wyniku napływania cieczy pomiędzy zęby kół wyzębiające się w komorze ssawnej i jednoczesnego unoszenia z niej cieczy do komory tłocznej, w komorze ssawnej panuje podciśnienie. Podczas pracy pompy zębatej, wskutek istniejącej różnicy ciśnień przemieszczana ciecz częściowo powraca z komory tłocznej poprzez szczeliny pomiędzy wewnętrznymi ściankami korpusu oraz czołami i wierzchołkami zębów do komory ssawnej. Prawidłowe wypełnienie komory ssawnej uzyskuje się tylko wówczas, gdy panujące w niej ciśnienie bezwzględne wynosi co najmniej 300 mm słupa rtęci. Niskociśnieniowe pompy zębate mają na ogół łożyska ślizgowe, a pompy wysokociśnieniowe łożyska tłoczne. Charakterystyczne cechy wysokociśnieniowych pomp zębatych to: wąskie koła, grube wałki, łożyska igłowe oraz łożysko osiowe na wale pędnym. Typową pompę zębatą układu hydraulicznego pokazano na rys

18 Rys Pompa zębata z kompensacją luzów osiowych. Podczas pracy pompy olej między zębami kół ulega sprężaniu, wskutek czego ich łożyska są silnie obciążone i łatwo się przegrzewają, co grozi uszkodzeniem pompy. W celu odciążenia łożysk zastosowano kanaliki odciążające, łączące przestrzeń, w której ciecz jest odcinana między zębami, ze stroną tłoczną pompy. Ze względu na rozszerzalność cieplną materiałów kół zębatych i korpusu między kołami zębatym i a korpusem powinny istnieć odpowiednie luzy osiowe, co najmniej około 0,02 mm. W celu ograniczenia strat spowodowanych przeciekami przez luzy i zmniejszających sprawność pompy, stosowane są urządzenia do samoczynnego zmniejszania luzów osiowych. Pompa zębata może składać się nie tylko z dwóch, lecz także z trzech lub więcej kół zębatych. Pompy zębate wykonywane są również jako bliźniacze (kilka par kół zębatych) w jednej obudowie, zwykle blokowej. Pompy wielostopniowe i z wieloma kołami zębatymi. W celu zwiększenia ciśnienia cieczy stosowane są wielostopniowe pompy zębate. Dzięki szeregowemu lub równoległemu połączeniu w jednym korpusie kilku par kół zębatych można uzyskać wzrost ciśnienia lub kilka autonomicznych linii zasilania albo zwiększyć wydajność. Na rys. 5.7 przedstawiono konstrukcję i schemat trójstopniowej pompy zębatej z szeregowym połączeniem. 18

19 Rys Zębata pompa trójstopniowa. W celu odprowadzenia nadmiaru cieczy każdy stopień ma zawór przelewowy, wyregulowany na odpowiednie ciśnienie. Stosując dwu- i trójstopniowe pompy można praktycznie dwukrotnie lub trzykrotnie zwiększyć ciśnienie, jednakże wówczas obniża się współczynnik sprawności pompy. W celu zwiększenia wydajności lub uzyskania kilku linii zasilania stosowane są również pompy z trzema lub więcej (do siedmiu) kołami zębatymi, rozmieszczonymi naokoło centralnego koła pędnego. Na rys. 5.8 przedstawiono pompę zębatą z trzema kołami zębatymi. Pompy zębate stosowane są zwykle do zasilania układów hydraulicznych o ciśnieniach roboczych do około 100 kg/cm 2. Pompy o samoczynnym ograniczaniu luzów mogą pracować z ciśnieniami roboczymi dochodzącymi do 200 kg/cm 2. Dopuszczalne prędkości obrotowe kół pomp zębatych przeważnie sięgają 2000 obr/min lub rzadziej są jeszcze wyższe, a wydajności zwykle zawierają się w zakresie od kilku do 100 1/min i więcej. Rys Pompa z trzema kołami zębatymi. 19

20 W porównaniu z innymi pompami podobnego przeznaczenia, pompy zębate cechują się prostotą budowy, łatwością obsługi i napraw oraz małymi rozmiarami. Najbardziej zwarte konstrukcyjnie są pompy zębate o uzębieniu wewnętrznym (rys. 5.9). Ważną zaletą tych pomp jest symetryczne usytuowanie wału pędnego względem korpusu. Jednak z uwagi na dość kłopotliwe technologicznie wykonanie i trudności w utrzymaniu należytej szczelności, pompy o uzębieniu wewnętrznym są rzadko stosowane. Rys Pompa zębata (o uzębieniu wewnętrznym) Akumulatory hydrauliczne Akumulatory hydrauliczne (zwane też zasobnikami hydraulicznymi) przeznaczone są do gromadzenia (akumulowania) energii potencjalnej w postaci cieczy pod ciśnieniem. Energię te wykorzystuje się do uruchamiania roboczych urządzeń układu hydraulicznego podczas jego normalnej lub awaryjnej pracy, a ponadto do pokrywania krótkotrwałego zwiększonego zapotrzebowania cieczy pod odpowiednim ciśnieniem Dla ilustracji tego zadania weźmy pod uwagę wykres zapotrzebowania na ciecz układu z pompą o stałej wydajności, pokazany na rysunku Z wykresu wynikają dwa spostrzeżenia: w przypadku stacji zasilającej bez akumulatora wydajność pompy musi być dostosowana do wartości szczytowej Q max, występującej stosunkowo krótko. W pozostałych taktach cyklu wydajność ta nie będzie wykorzystana i stanie się przyczyną dużych strat energetycznych. 20

21 w przypadku stacji z akumulatorem wydajność pompy powinna być dostosowana do wartości średniej Q śr. Jeżeli zapotrzebowanie na ciecz będzie mniejsze od wartości średniej, to nadwyżka wydajności zostanie wykorzystana do ładowania akumulatora. Natomiast w przeciwnym wypadku niedobór wydajności zostanie uzupełniony wskutek rozładowania akumulatora. Rys Bilans zapotrze-bowania na ciecz kilku układów hydraulicznych pracujących w różnych taktach cyklu roboczego maszyny, zasilanych z jednej stacji. Dzięki zastosowaniu akumulatorów hydraulicznych układ może być zasilany przez pompę o stosunkowo małej wydajności. Akumulatory mogą spełniać następujące funkcje w układach hydraulicznych: funkcję zasobnika cieczy pod ciśnieniem, funkcję kompensatora przecieków cieczy, funkcję tłumika pulsacji ciśnienia, funkcję tłumika uderzeń hydraulicznych Zasada funkcjonowania i podział akumulatorów Ciecz robocza gromadzona jest w komorze cieczowej akumulatora pod ciśnieniem, które musi być zrównoważone oddziaływaniem zewnętrznym na ruchomą przegrodę zamykającą komorę cieczową. W zależności od sposobu realizacji tego oddziaływania rozróżniamy: 1. Akumulatory ciężarowe. 2. Akumulatory sprężynowe. 3. Akumulatory gazowe. 21

22 Akumulatory ciężarowe mają postać specyficznego siłownika hydraulicznego, którego tłok jest obciążony masą. W akumulatorach sprężynowych tłok siłownika jest obciążony siłą sprężyny. W akumulatorach gazowych ciśnienie cieczy jest zrównoważone ciśnieniem sprężanego gazu. Z charakterystyk statycznych akumulatorów p=f(v) wynika, że najlepsze właściwości mają akumulatory ciężarowe, gdyż odznaczają się stałością ciśnienia. Mimo to nie znajdują one obecnie zastosowania ze względu na dużą masę i wymiary. Akumulatory sprężynowe mają nieco gorsze charakterystyki od ciężarowych i jednocześnie lepsze od gazowych. Akumulatory te również nie są one stosowane ze względu na niskie ciśnienia robocze i małe pojemności. Obecnie stosuje się prawie wyłącznie akumulatory gazowe, mimo, iż odznaczają się największą zmiennością ciśnienia. Ich powszechne zastosowanie spowodowane jest małymi wymiarami i masą oraz możliwością uzyskiwania dużych pojemności. Do napełnienia przestrzeni gazowej stosuje się najczęściej azot jako czynnik Wszystkie typy akumulatorów stosuje się w zasadzie do ciśnień roboczych sięgających 350 kg/cm2. Przeważnie akumulatory tłokowe mają stosunkowo duże objętości (do 100 l i więcej), a pęcherzowe i przeponowe - małe i umiarkowane. Akumulatory tłokowe Swobodny tłok w akumulatorze tłokowym dzieli jego cylinder na dwie komory-gazową i hydrauliczną. Komory te powinny być od siebie szczelnie oddzielone ponieważ inaczej gaz przenika do cieczy roboczej i układ hydrauliczny ulega tzw. zapowietrzeniu. Wymaganą szczelność tłoka w cylindrze uzyskuje się zaopatrując tłok w gumowe pierścienie uszczelniające - zwykle typu "O", czyli o przekroju okrągłym (rys. 5.38a). Często stosuje się również uszczelnienia złożone, składające się z pierścieni kołnierzowych typu V oraz typu O, (rys. 5.38b). Denka cylindra akumulatora tłokowego na ogół mocuje się stalowymi pierścieniami rozprężnymi. Na rysunku 37c pokazano akumulator którego tłok ma wbudowany zawór tłumiący, stanowiący jednocześnie urządzenie uszczelniające (zamykające). 22

23 Rys Hydrauliczne akumulatory tłokowe. Na rys. 5.38e pokazano akumulator, po rozładowaniu którego w abszarze zamknięcia hydraulicznego wytwarza się ciśnienie wyższe niż ciśnienie powietrza. W tym celu ciecz jest doprowadzana do kanału pierścieniowego na tłoku, umieszczonego między pierścieniem uszczelniającym i pomocniczym tłokiem różnicowym, podlegającym wypadkowemu oddziaływaniu sprężyny i ciśnienia cieczy. Stosowanie takiego akumulatora jest szczególnie celowe w urządzeniach pracujących w niskich temperaturach otoczenia. Akumulatory tłokowe obarczone są istotnymi wadami, jak dość znaczne opory tarcia przeciwstawiające się przesuwaniu tłoka w cylindrze oraz niezupełna szczelność tłoka. Niedogodności wynikające z tych wad pogłębiają się w niskich temperaturach otoczenia. Przykładem konstrukcji akumulatora tłokowego jest akumulator pokazany na rysunku

24 Rys Akumulator tłokowy: 1 - cylinder, 2 - tłok, pakiet uszczelniający, 3 pokrywa górna, 4 - pokrywa dolna, 5 - przyłącze cieczowe, 6 - przyłącze zaworu gazowego, 7, 8 - tuleje mocujące. W cylindrze 1 o dokładnie obrobionej powierzchni wewnętrznej przesuwa się tłok 2 oddzielający przestrzeń gazową od cieczowej. Wybranie tłoka 2, wykonywanego często ze stopów lekkich, znajduje się po stronie gazowej w celu zwiększenia jej objętości. Cylinder 1 zamykają szczelnie pokrywy 3 i 4 mocowane za pomocą gwintowanych tulei 7 i 8. W pokrywie dolnej 4 znajduje się przyłącze cieczowe 5, w pokrywie górnej 3 jest natomiast przyłącze 6 zaworu gazowego. Pakiet uszczelniający 2.1 ma decydujące znaczenie dla poprawnej pracy akumulatora, musi on bowiem realizować dwa sprzeczne wymagania: zapewnienie wysokiej szczelności, minimalizację oporów tarcia. W związku z tym spotyka się dwie odmiany konstrukcyjne tłoka i pakietu uszczelniającego: tłok i pakiet dostosowany do typowych warunków pracy, realizujący w tylko wymaganie pierwsze, 24

25 tłok i pakiet dostosowany do pracy beztarciowej i dużych prędkości oraz dużej częstotliwości włączeń, realizujący wymaganie drugie za cenę ewentualnych nieznacznych przecieków cieczy do komory gazowej. Wymienione wady nie występują w akumulatorach membranowych. Typowy akumulator gazowo-hydrauliczny pokazano na rys Stosunek sprężania gazu wynosi zwykle 5:1, a ciśnienie robocze 210 kg/cm 2 lub niekiedy do 350 kg/cm 2. Akumulatory przeponowe mają objętości do 40 l. Membrana (grubości 1,5 do 3 mm) powinna mieć taki kształt i rozmiary, aby nie fałdowała się i nie ulegała nadmiernym odkształceniom w przypadku całkowitego rozładowania akumulatora. Dotyczy to zwłaszcza akumulatorów użytkowanych w niskich temperaturach otoczenia, kiedy wydatnie zmniejsza się elastyczność gumy. Rys Akumulatory membranowe: a) - spawany, b) - skręcany, 1 przyłącze zaworu gazowego, 2 - zbiornik ciśnieniowy, obejma, 3 - membrana, 4 - zawór płytkowy, 5 - przyłącze cieczowe 25

26 W akumulatorach przeponowych bardziej celowe jest stosowanie azotu niż powietrza, ponieważ wówczas warunki pracy przepony gumowej są znacznie korzystniejsze. Dość szeroko rozpowszechnione są kuliste akumulatory przeponowe, odznaczające się zwartą konstrukcją i stosunkowo małym ciężarem. Akumulator o ciśnieniu roboczym kg/cm 2 składa się zwykle z dwóch jednakowych członów półkolistych, pomiędzy którymi mocuje się przeponę. Akumulator przeponowy o bardzo wysokim ciśnieniu roboczym ma zwykle kulistą obudowę dzieloną nie w przekroju największym, lecz w mniejszym (rys. 5.41a). Rys Akumulatory hydrauliczne wysokiego ciśnienia: a - kulisty, b - z przegrodą w postaci mieszka Membrana i jej mocowanie powinny być wykonane w taki sposób, aby odkształcała się ona bez przeginania, przy czym zmniejszające się promienie krzywizny powinny być jak największe. Z tego względu często stosuje się przepony o zmiennej grubości, najcieńsze w środku, albo też przepony usztywnione dzięki zgrubieniu na powierzchni wewnętrznej - zwykle w postaci pierścieniowego paska gumowego, który jest przyklejony do przepony lub tworzy z nią jedną całość. Jako element oddzielający gaz od cieczy w niektórych konstrukcjach akumulatorów cylindrycznych przeznaczonych do pracy w wysokich temperaturach stosowane są przepony w postaci mieszka sprężystego z nierdzewnej stali (rys. 5.41b). Jednak zastosowanie takiej przegrody powoduje zwiększenie ciężaru i gabarytów akumulatora, a wówczas także obniżenie jego żywotności, która określana jest okresem pracy mieszka sprężystego. Na rys przedstawiono akumulator hydropneumatyczny z tłokiem, przeznaczony do pracy w zakresie temperatur od -40 do +180 C przy ciśnieniu 280 kg/cm 2. 26

27 Rys Schemat akumulatora hydropneumatycznego przeznaczonego do pracy w niskich temperaturach. W celu zmniejszenia wpływu temperatury na węzeł uszczelniający tłoka, cylinder jest oddzielony od korpusu akumulatora. Minimalne ciśnienie w akumulatorze powinno zapewnić zakończenie suwu roboczego najbardziej obciążonego urządzenia wykonawczego układu. Sprężanie lub rozprężanie powietrza w gazowej komorze akumulatora przebiega według politropy zgodnie z zależnością: p m m 1 v1 p2 v2 Jeżeli ładowanie lub wyładowanie akumulatora jest szybkie, jak to przeważnie ma miejsce w rzeczywistości, wówczas politropa ma charakter adiabaty o wykładniku m = 1,4. Kiedy natomiast sprężane lub rozprężanie powietrza w akumulatorze jest powolne, wówczas politropa upodabnia się do izotermy, czyli m = 1. Akumulatory pęcherzowe Spośród akumulatorów gazowych najczęściej stosowane są akumulatory pęcherzowe. Przykładem tego typu konstrukcji jest akumulator pokazany na rysunku Butla 1 wykonana jest ze stali odpornej na korozję. Wewnętrzną powierzchnię butli poddaje się bardzo dokładnej obróbce gładkościowej dla zminimalizowania tarcia pęcherza 2. Pęcherz 2 wykonany jest z akronitrylowego tworzywa sztucznego. W górnej części pęcherza 2 wtopiony jest korpus zaworu napełniania gazem 3. W przyłączu cieczowym 4 znajduje się zawór talerzowy 5, utrzymywany w górnym położeniu za pomocą sprężyny. Zadaniem tego zaworu jest zamknięcie wylotu komory cieczowej 6 podczas 27

28 Rys Akumulator pęcherzowy: 1 - butla (zbiornik ciśnieniowy), 2 - pęcherz, 3 zawór napełniania gazem, 4 - przyłącze cieczowe, 5 zawór talerzowy, 6 - komora cieczowa, 7 - zaślepka przyłącza manometru kontrolnego 28

P O L I T E C H N I K A W A R S Z A W S K A

P O L I T E C H N I K A W A R S Z A W S K A P O L I T E C H N I K A W A R S Z A W S K A WYDZIAŁ BUDOWNICTWA, MECHANIKI I PETROCHEMII INSTYTUT INŻYNIERII MECHANICZNEJ LABORATORIUM NAPĘDÓW I STEROWANIA HYDRAULICZNEGO I PNEUMATYCZNEGO Instrukcja do

Bardziej szczegółowo

Ćwiczenie Nr 2. Temat: Zaprojektowanie i praktyczna realizacja prostych hydraulicznych układów sterujących i napędów

Ćwiczenie Nr 2. Temat: Zaprojektowanie i praktyczna realizacja prostych hydraulicznych układów sterujących i napędów Ćwiczenie Nr 2 Temat: Zaprojektowanie i praktyczna realizacja prostych hydraulicznych układów sterujących i napędów 1. Wprowadzenie Sterowanie prędkością tłoczyska siłownika lub wału silnika hydraulicznego

Bardziej szczegółowo

Wprowadzenie. - Napęd pneumatyczny. - Sterowanie pneumatyczne

Wprowadzenie. - Napęd pneumatyczny. - Sterowanie pneumatyczne Wprowadzenie Pneumatyka - dziedzina nauki i techniki zajmująca się prawami rządzącymi przepływem sprężonego powietrza; w powszechnym rozumieniu także technika napędu i sterowania pneumatycznego. Zastosowanie

Bardziej szczegółowo

Temat /6/: DYNAMIKA UKŁADÓW HYDRAULICZNYCH. WIADOMOŚCI PODSTAWOWE.

Temat /6/: DYNAMIKA UKŁADÓW HYDRAULICZNYCH. WIADOMOŚCI PODSTAWOWE. 1 Temat /6/: DYNAMIKA UKŁADÓW HYDRAULICZNYCH. WIADOMOŚCI PODSTAWOWE. Celem ćwiczenia jest doświadczalne określenie wskaźników charakteryzujących właściwości dynamiczne hydraulicznych układów sterujących

Bardziej szczegółowo

dr inż. Piotr Pawełko / Przed przystąpieniem do realizacji ćwiczenia patrz punkt 6!!!

dr inż. Piotr Pawełko / Przed przystąpieniem do realizacji ćwiczenia patrz punkt 6!!! Laboratorium nr2 Temat: Sterowanie pośrednie siłownikami jednostronnego i dwustronnego działania. 1. Wstęp Sterowanie pośrednie stosuje się do sterowania elementami wykonawczymi (siłownikami, silnikami)

Bardziej szczegółowo

Wprowadzenie. Napędy hydrauliczne są to urządzenia służące do przekazywania energii mechanicznej z miejsca jej wytwarzania do urządzenia napędzanego.

Wprowadzenie. Napędy hydrauliczne są to urządzenia służące do przekazywania energii mechanicznej z miejsca jej wytwarzania do urządzenia napędzanego. Napędy hydrauliczne Wprowadzenie Napędy hydrauliczne są to urządzenia służące do przekazywania energii mechanicznej z miejsca jej wytwarzania do urządzenia napędzanego. W napędach tych czynnikiem przenoszącym

Bardziej szczegółowo

WYKŁAD 11 POMPY I UKŁADY POMPOWE

WYKŁAD 11 POMPY I UKŁADY POMPOWE WYKŁAD 11 POMPY I UKŁADY POMPOWE Historia Czerpak do wody używany w Egipcie ok. 1500 r.p.n.e. Historia Nawadnianie pól w Chinach Historia Koło wodne używane w Rzymie Ogólna klasyfikacja pomp POMPY POMPY

Bardziej szczegółowo

Zajęcia laboratoryjne

Zajęcia laboratoryjne Zajęcia laboratoryjne Napęd Hydrauliczny Instrukcja do ćwiczenia nr 5 Zastosowanie zaworu zwrotnego sterowanego w układach hydraulicznych maszyn roboczych Opracowanie: P. Jędraszczyk, Z. Kudżma, P. Osiński,

Bardziej szczegółowo

Urządzenia nastawcze

Urządzenia nastawcze POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Urządzenia nastawcze Laboratorium automatyki (A-V) Opracował: dr inż. Leszek Remiorz Sprawdził:

Bardziej szczegółowo

Temat: Układy pneumatyczno - hydrauliczne

Temat: Układy pneumatyczno - hydrauliczne Copyright by: Krzysztof Serafin. Brzesko 2007 Na podstawie skryptu 1220 AGH Temat: Układy pneumatyczno - hydrauliczne 1. Siłownik z zabudowanym blokiem sterującym Ten ruch wahadłowy tłoka siłownika jest

Bardziej szczegółowo

Zajęcia laboratoryjne

Zajęcia laboratoryjne Zajęcia laboratoryjne Napęd Hydrauliczny Instrukcja do ćwiczenia nr 9 Sterowanie odbiornikiem hydraulicznym z rozdzielaczem typu Load-sensing Opracowanie: M. Stosiak, K. Towarnicki Wrocław 2016 Wstęp teoretyczny

Bardziej szczegółowo

(12) OPIS PATENTOWY (19) PL (11) (13) B1

(12) OPIS PATENTOWY (19) PL (11) (13) B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 170813 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej Numer zgłoszenia: 299894 (22) Data zgłoszenia: 29.07.1993 (51) IntCl6 F16D 31/04 F16D 25/04

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych. Sterowanie odbiornikiem hydraulicznym z rozdzielaczem typu Load-sensing

Instrukcja do ćwiczeń laboratoryjnych. Sterowanie odbiornikiem hydraulicznym z rozdzielaczem typu Load-sensing Instrukcja do ćwiczeń laboratoryjnych Sterowanie odbiornikiem hydraulicznym z rozdzielaczem typu Load-sensing Wstęp teoretyczny Poprzednie ćwiczenia poświęcone były sterowaniom dławieniowym. Do realizacji

Bardziej szczegółowo

Zajęcia laboratoryjne

Zajęcia laboratoryjne Zajęcia laboratoryjne Napęd Hydrauliczny Instrukcja do ćwiczenia nr 2 Metody sterowania prędkością odbiornika hydraulicznego w układach z pompą stałej wydajności sterowanie dławieniowe Opracowanie: Z.

Bardziej szczegółowo

Laboratorium. Hydrostatyczne Układy Napędowe

Laboratorium. Hydrostatyczne Układy Napędowe Laboratorium Hydrostatyczne Układy Napędowe Instrukcja do ćwiczenia nr Eksperymentalne wyznaczenie charakteru oporów w przewodach hydraulicznych opory liniowe Opracowanie: Z.Kudżma, P. Osiński J. Rutański,

Bardziej szczegółowo

ĆWICZENIE WYZNACZANIE CHARAKTERYSTYK POMPY WIROWEJ

ĆWICZENIE WYZNACZANIE CHARAKTERYSTYK POMPY WIROWEJ ĆWICZENIE WYZNACZANIE CHARAKTERYSTYK POMPY WIROWEJ 1. Cel i zakres ćwiczenia Celem ćwiczenia jest opanowanie umiejętności dokonywania pomiarów parametrów roboczych układu pompowego. Zapoznanie z budową

Bardziej szczegółowo

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie OB-7

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie OB-7 POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN Ćwiczenie OB-7 Temat: BADANIE UKŁADU NAPĘDU I STEROWANIA JEDNOSTKI OBRÓBCZEJ WIERTARSKIEJ Opracował: mgr inż. St. Sucharzewski Zatwierdzał:

Bardziej szczegółowo

Wprowadzenie. Budowa pompy

Wprowadzenie. Budowa pompy 1 Spis treści: 1. Wprowadzenie...str.3 2. Budowa pompy...str.3 3. Budowa oznaczenie pomp zębatych PZ2...str.4 4. Dane techniczne...str.5 5. Pozostałe dane techniczne...str.6 6. Karty katalogowe PZ2-K-6,3;

Bardziej szczegółowo

1. Wstęp. 2. Rozdzielacze hydrauliczne. 3. Przegląd rozwiązań konstrukcyjnych. 4. Obliczenia hydrauliczne przyjętego rozwiązania.

1. Wstęp. 2. Rozdzielacze hydrauliczne. 3. Przegląd rozwiązań konstrukcyjnych. 4. Obliczenia hydrauliczne przyjętego rozwiązania. 1. Wstęp. 2. Rozdzielacze hydrauliczne. 3. Przegląd rozwiązań konstrukcyjnych. 4. Obliczenia hydrauliczne przyjętego rozwiązania. 5. Rysunki konstrukcyjne, zestawienie całości. 6. Warunki techniczne odbioru.

Bardziej szczegółowo

Wydajne wentylatory promieniowe Fulltech o wysokim ciśnieniu statycznym

Wydajne wentylatory promieniowe Fulltech o wysokim ciśnieniu statycznym 1 Wydajne wentylatory promieniowe Fulltech o wysokim ciśnieniu statycznym Wydajne wentylatory promieniowe Fulltech o wysokim ciśnieniu statycznym Wentylatory są niezbędnym elementem systemów wentylacji

Bardziej szczegółowo

Laboratorium. Hydrostatyczne Układy Napędowe

Laboratorium. Hydrostatyczne Układy Napędowe Laboratorium Hydrostatyczne Układy Napędowe Instrukcja do ćwiczenia nr 5 Charakterystyka rozdzielacza hydraulicznego. Opracowanie: Z.Kudźma, P. Osiński J. Rutański, M. Stosiak Wiadomości wstępne Rozdzielacze

Bardziej szczegółowo

BADANIE SPRĘŻARKI TŁOKOWEJ.

BADANIE SPRĘŻARKI TŁOKOWEJ. BADANIE SPRĘŻARKI TŁOKOWEJ. Definicja i podział sprężarek Sprężarkami ( lub kompresorami ) nazywamy maszyny przepływowe, służące do podwyższania ciśnienia gazu w celu zmagazynowania go w zbiorniku. Gaz

Bardziej szczegółowo

Urządzenia do wyposażenia stanowisk smarowniczych w stacjach obsługi pojazdów i maszyn

Urządzenia do wyposażenia stanowisk smarowniczych w stacjach obsługi pojazdów i maszyn Urządzenia do wyposażenia stanowisk smarowniczych w stacjach obsługi pojazdów i maszyn Pompa centralnego smarowania PA 12 i PA12G Pistolet smarowniczy SP 10 i przewód giętki WP 10 Stanowisko do smarowania

Bardziej szczegółowo

Badania wentylatora. Politechnika Lubelska. Katedra Termodynamiki, Mechaniki Płynów. i Napędów Lotniczych. Instrukcja laboratoryjna

Badania wentylatora. Politechnika Lubelska. Katedra Termodynamiki, Mechaniki Płynów. i Napędów Lotniczych. Instrukcja laboratoryjna Politechnika Lubelska i Napędów Lotniczych Instrukcja laboratoryjna Badania wentylatora /. Cel ćwiczenia Celem ćwiczenia jest zapoznanie z budową i metodami badań podstawowych typów wentylatorów. II. Wprowadzenie

Bardziej szczegółowo

- PZ3-III-2 (płyta polska prostokątna, przyłącza gwintowe metryczne)...str wykresy: grupa II (PZ3, sekcja PZW3)...str.12 5c.

- PZ3-III-2 (płyta polska prostokątna, przyłącza gwintowe metryczne)...str wykresy: grupa II (PZ3, sekcja PZW3)...str.12 5c. 1 Spis treści 1. Wprowadzenie...str.3 2. Budowa pompy...str.3 3. Budowa oznaczenia pomp PZ3 (grupa I, II i III)...str.4 4. Dane techniczne 4a. Grupa I...str.5 4b. Grupa II...str.5 4c. Grupa III...str.5

Bardziej szczegółowo

PROCEDURA DOBORU POMP DLA PRZEMYSŁU CUKROWNICZEGO

PROCEDURA DOBORU POMP DLA PRZEMYSŁU CUKROWNICZEGO PROCEDURA DOBORU POMP DLA PRZEMYSŁU CUKROWNICZEGO Wskazujemy podstawowe wymagania jakie muszą być spełnione dla prawidłowego doboru pompy, w tym: dobór układu konstrukcyjnego pompy, parametry pompowanego

Bardziej szczegółowo

PL B1. Siłownik hydrauliczny z układem blokującym swobodne przemieszczenie elementu roboczego siłownika. POLITECHNIKA WROCŁAWSKA, Wrocław, PL

PL B1. Siłownik hydrauliczny z układem blokującym swobodne przemieszczenie elementu roboczego siłownika. POLITECHNIKA WROCŁAWSKA, Wrocław, PL RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 229886 (13) B1 (21) Numer zgłoszenia: 417208 (51) Int.Cl. F15B 15/08 (2006.01) F15B 15/14 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)

Bardziej szczegółowo

PL B1. PYSZNY PIOTR PRO-TECH, Rybnik, PL BUP 13/08. JAKUB PYSZNY, Rybnik, PL WOJCIECH PYSZNY, Rybnik, PL

PL B1. PYSZNY PIOTR PRO-TECH, Rybnik, PL BUP 13/08. JAKUB PYSZNY, Rybnik, PL WOJCIECH PYSZNY, Rybnik, PL RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 210526 (13) B1 (21) Numer zgłoszenia: 381290 (51) Int.Cl. F15B 13/02 (2006.01) E21D 23/16 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)

Bardziej szczegółowo

Wprowadzenie. Budowa pompy

Wprowadzenie. Budowa pompy 1 Spis treści 1. 2. 3. 4. Wprowadzenie...str.3 Budowa pompy...str.3 Budowa oznaczenia pomp PZ3 (grupa I, II i III)...str.4 Dane techniczne 4a. Grupa I...str.5 4b. Grupa II...str.5 4c. Grupa III...str.5

Bardziej szczegółowo

Napd i sterowanie hydrauliczne i pneumatyczne

Napd i sterowanie hydrauliczne i pneumatyczne Napd i sterowanie hydrauliczne i pneumatyczne Hydraulika wykład 2 Moduły stabilizacji jazdy RSM Układ ten pracuje na zasadzie tłumienia przez akumulator o odpowiedniej pojemnoci ruchu dwóch mas łyki z

Bardziej szczegółowo

Ćwiczenia laboratoryjne z przedmiotu : Napędy Elektryczne, Hydrauliczne i Pneumatyczne

Ćwiczenia laboratoryjne z przedmiotu : Napędy Elektryczne, Hydrauliczne i Pneumatyczne Laboratorium nr1 Temat: Sterowanie bezpośrednie siłownikami jednostronnego i dwustronnego działania. 1. Wstęp Sterowanie bezpośrednie pracą aktuatora pneumatycznego (siłownika lub silnika) stosuje się

Bardziej szczegółowo

Lekcja 6. Rodzaje sprężarek. Parametry siłowników

Lekcja 6. Rodzaje sprężarek. Parametry siłowników Lekcja 6. Rodzaje sprężarek. Parametry siłowników Sprężarki wyporowe (tłokowe) Sprężarka, w której sprężanie odbywa sięcyklicznie w zarżniętej przestrzeni zwanej komorąsprężania. Na skutek działania napędu

Bardziej szczegółowo

Zajęcia laboratoryjne

Zajęcia laboratoryjne Zajęcia laboratoryjne Napęd Hydrauliczny Instrukcja do ćwiczenia nr 10 Badania porównawcze układów sterowania i regulacji prędkością odbiornika hydraulicznego Opracowanie: H. Kuczwara, Z. Kudźma, P. Osiński,

Bardziej szczegółowo

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 7 BADANIE POMPY II

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 7 BADANIE POMPY II INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI Laboratorium z mechaniki płynów ĆWICZENIE NR 7 BADANIE POMPY II 2 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z budową i działaniem

Bardziej szczegółowo

MECHANIKA PŁYNÓW LABORATORIUM

MECHANIKA PŁYNÓW LABORATORIUM MECANIKA PŁYNÓW LABORATORIUM Ćwiczenie nr 4 Współpraca pompy z układem przewodów. Celem ćwiczenia jest sporządzenie charakterystyki pojedynczej pompy wirowej współpracującej z układem przewodów, przy różnych

Bardziej szczegółowo

Zajęcia laboratoryjne Napęd Hydrauliczny

Zajęcia laboratoryjne Napęd Hydrauliczny Zajęcia laboratoryjne Napęd Hydrauliczny Instrukcja do ćwiczenia nr 11 Sterowanie objętościowe konwencjonalne Opracowanie: R. Cieślicki, Z. Kudźma, P. Osiński, J. Rutański, M. Stosiak Wrocław 2016 Spis

Bardziej szczegółowo

GUDEPOL katalog produktów strona 3

GUDEPOL katalog produktów strona 3 GUDEPOL katalog produktów strona 3 1 sprężarki tłokowe sprężarki tłokowe z napędem bezpośrednim sprężarki tłokowe z napędem bezpośrednim Te urządzenia mogą być używane jako źródło sprężonego powietrza

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych. Układy rewersyjne

Instrukcja do ćwiczeń laboratoryjnych. Układy rewersyjne Instrukcja do ćwiczeń laboratoryjnych Układy rewersyjne Wstęp Celem ćwiczenia jest budowa różnych układów hydraulicznych pełniących zróżnicowane funkcje. Studenci po odbyciu ćwiczenia powinni umieć porównać

Bardziej szczegółowo

PL B1. POLITECHNIKA ŚLĄSKA, Gliwice, PL BUP 20/10

PL B1. POLITECHNIKA ŚLĄSKA, Gliwice, PL BUP 20/10 PL 213989 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 213989 (13) B1 (21) Numer zgłoszenia: 387578 (51) Int.Cl. E03F 5/22 (2006.01) F04B 23/12 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej

Bardziej szczegółowo

symbol graficzny Kierunek przepływu i oznaczenie czynnika hydraulicznego Kierunek przepływu i oznaczenie czynnika pneumatycznego

symbol graficzny Kierunek przepływu i oznaczenie czynnika hydraulicznego Kierunek przepływu i oznaczenie czynnika pneumatycznego / / Symbole ogólne symbol graficzny opis Kierunek przepływu i oznaczenie czynnika hydraulicznego Kierunek przepływu i oznaczenie czynnika pneumatycznego Zmienność albo nastawialność (pompy, sprężyny, itp.)

Bardziej szczegółowo

Wyszczególnienie parametrów Jedn. Wartości graniczne Temperatura odparowania t o C od 30 do +5 Temperatura skraplania t k C od +20 do +40

Wyszczególnienie parametrów Jedn. Wartości graniczne Temperatura odparowania t o C od 30 do +5 Temperatura skraplania t k C od +20 do +40 CHŁODNICZE typu D58ARS Jednostopniowe agregaty sprężarkowe typu D58 są przeznaczone do pracy w lądowych i morskich urządzeniach chłodniczych w zakresie temperatur wrzenia 35 o C do +10 o C i temperatur

Bardziej szczegółowo

STANOWISKO DO SMAROWANIA WĘZŁÓW TRĄCYCH W ŚRODKACH TRANSPORTOWYCH Typ SA 1 i SA1G

STANOWISKO DO SMAROWANIA WĘZŁÓW TRĄCYCH W ŚRODKACH TRANSPORTOWYCH Typ SA 1 i SA1G STANOWISKO DO SMAROWANIA WĘZŁÓW TRĄCYCH W ŚRODKACH TRANSPORTOWYCH Typ SA 1 i SA1G Stanowisko do smarowania SA 1 Zastosowanie Stanowisko jest przeznaczone do smarowania węzłów trących w podwoziach pojazdów

Bardziej szczegółowo

POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY

POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY AUTOMATYKA CHŁODNICZA TEMAT: Racje techniczne wykorzystania rurki kapilarnej lub dyszy w małych urządzeniach chłodniczych i sprężarkowych pompach ciepła Mateusz

Bardziej szczegółowo

Parametry układu pompowego oraz jego bilans energetyczny

Parametry układu pompowego oraz jego bilans energetyczny Parametry układu pompowego oraz jego bilans energetyczny Układ pompowy Pompa może w zasadzie pracować tylko w połączeniu z przewodami i niezbędną armaturą, tworząc razem układ pompowy. W układzie tym pompa

Bardziej szczegółowo

Zadanie 1. Zadanie 2.

Zadanie 1. Zadanie 2. Zadanie 1. Określić nadciśnienie powietrza panujące w rurociągu R za pomocą U-rurki, w której znajduje się woda. Różnica poziomów wody w U-rurce wynosi h = 100 cm. Zadanie 2. Określić podciśnienie i ciśnienie

Bardziej szczegółowo

Zajęcia laboratoryjne

Zajęcia laboratoryjne Zajęcia laboratoryjne Napęd Hydrauliczny Instrukcja do ćwiczenia nr 1 Charakterystyka zasilacza hydraulicznego Opracowanie: R. Cieślicki, Z. Kudźma, P. Osiński, J. Rutański, M. Stosiak Wrocław 2016 Spis

Bardziej szczegółowo

PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 01/18. WIESŁAW FIEBIG, Wrocław, PL WUP 08/18 RZECZPOSPOLITA POLSKA

PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 01/18. WIESŁAW FIEBIG, Wrocław, PL WUP 08/18 RZECZPOSPOLITA POLSKA RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 229701 (13) B1 (21) Numer zgłoszenia: 419686 (51) Int.Cl. F16F 15/24 (2006.01) F03G 7/08 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)

Bardziej szczegółowo

ROZDZIELACZE I BLOKI ZAWOROWE

ROZDZIELACZE I BLOKI ZAWOROWE ROZDZIELACZE I BLOKI ZAWOROWE Niniejsza część katalogu odnosi się do bloków zaworowych JM-BZF1 i JM-BZF2 oraz rozdzielaczy blokowych JM-RB1, JM-RB2, JM-RB3, JM-RB4 i JM-RB5 produkowanych przez firmę Jammet

Bardziej szczegółowo

SPIS TREŚCI Wprowadzenie...str.3 Budowa oznaczenia...str.4 Dane techniczne pomp PZ4 3a. Grupa I...str.5 3b. Grupa II...str.5 3c. Grupa III...str.

SPIS TREŚCI Wprowadzenie...str.3 Budowa oznaczenia...str.4 Dane techniczne pomp PZ4 3a. Grupa I...str.5 3b. Grupa II...str.5 3c. Grupa III...str. 1 SPIS TREŚCI Wprowadzenie...str.3 Budowa oznaczenia...str.4 Dane techniczne pomp PZ4 3a. Grupa I...str.5 3b. Grupa II...str.5 3c. Grupa III...str.6 Wymiary gabarytowe 4a. Grupa I (geometryczna objętość:

Bardziej szczegółowo

Ćwiczenie 1. Badanie aktuatora elektrohydraulicznego. Sterowanie Napędów Maszyn i Robotów Przemysłowych - laboratorium. Instrukcja laboratoryjna

Ćwiczenie 1. Badanie aktuatora elektrohydraulicznego. Sterowanie Napędów Maszyn i Robotów Przemysłowych - laboratorium. Instrukcja laboratoryjna Sterowanie Napędów Maszyn i Robotów Przemysłowych - laboratorium Ćwiczenie 1 Badanie aktuatora elektrohydraulicznego Instrukcja laboratoryjna Opracował : mgr inż. Arkadiusz Winnicki Warszawa 2010 Badanie

Bardziej szczegółowo

NAPĘD I STEROWANIE HYDRAULICZNE

NAPĘD I STEROWANIE HYDRAULICZNE Akademia Górniczo-Hutnicza im. S. Staszica Wydział Inżynierii Mechanicznej i Robotyki Zenon Jędrzykiewicz, Janusz Pluta, Jerzy Stojek NAPĘD I STEROWANIE HYDRAULICZNE Na prawach rękopisu Kraków, 2004 I

Bardziej szczegółowo

MB /1. Przykłady zastosowań zaworów ciśnieniowych. Przykłady zastosowań zaworów przelewowych

MB /1. Przykłady zastosowań zaworów ciśnieniowych. Przykłady zastosowań zaworów przelewowych Wstęp Zawory ciśnieniowe i przelewowe są armaturą specjalną dla układów dozowania. Stosowane są one w zależności od aplikacji, by zwiększyć dokładność dozowania lub by zabezpieczyć instalację przed zbyt

Bardziej szczegółowo

Zestawy pompowe PRZEZNACZENIE ZASTOSOWANIE OBSZAR UŻYTKOWANIA KONCEPCJA BUDOWY ZALETY

Zestawy pompowe PRZEZNACZENIE ZASTOSOWANIE OBSZAR UŻYTKOWANIA KONCEPCJA BUDOWY ZALETY PRZEZNACZENIE Zestawy pompowe typu z przetwornicą częstotliwości, przeznaczone są do tłoczenia wody czystej nieagresywnej chemicznie o ph=6-8. Wykorzystywane do podwyższania ciśnienia w instalacjach. Zasilane

Bardziej szczegółowo

Zajęcia laboratoryjne

Zajęcia laboratoryjne Zajęcia laboratoryjne Napęd Hydrauliczny Instrukcja do ćwiczenia nr 6 Układy hydrauliczne z prostownikiem i regulatorem przepływu Opracowanie: P. Jędraszczyk, Z. Kudżma, P. Osiński, J. Rutański, M. Stosiak

Bardziej szczegółowo

J. Szantyr Wykład nr 26 Przepływy w przewodach zamkniętych II

J. Szantyr Wykład nr 26 Przepływy w przewodach zamkniętych II J. Szantyr Wykład nr 6 Przepływy w przewodach zamkniętych II W praktyce mamy do czynienia z mniej lub bardziej złożonymi rurociągami. Jeżeli strumień płynu nie ulega rozgałęzieniu, mówimy o rurociągu prostym.

Bardziej szczegółowo

POMPA OLEJOWA WIELOWYLOTOWA Typ PO

POMPA OLEJOWA WIELOWYLOTOWA Typ PO POMPA OLEJOWA WIELOWYLOTOWA Typ PO 62 Zastosowanie Pompa jest przeznaczona do smarowania olejem maszyn i urządzeń wymagających ciągłego podawania środka smarującego w małych ilościach. Doprowadzanie oleju

Bardziej szczegółowo

ROZDZIELACZE - Zawory rozdzielcze

ROZDZIELACZE - Zawory rozdzielcze ROZDZIELACZE - Zawory rozdzielcze Zadaniem rozdzielaczy jest doprowadzenie i odprowadzenie cieczy z gałęzi układu hydrostatycznego, sterowane sygnałem zewnętrznym. Klasyfikacja 1. Ze względu na stosowane

Bardziej szczegółowo

P O L I T E C H N I K A W A R S Z A W S K A

P O L I T E C H N I K A W A R S Z A W S K A P O L I T E C H N I K A W A R S Z A W S K A WYDZIAŁ BUDOWNICTWA, MECHANIKI I PETROCHEMII INSTYTUT INŻYNIERII MECHANICZNEJ LABORATORIUM NAPĘDÓW I STEROWANIA HYDRAULICZNEGO I PNEUMATYCZNEGO Instrukcja do

Bardziej szczegółowo

FABRYKA MASZYN BUDOWLANYCH "BUMAR" Sp. z o.o. Fabryka Maszyn Budowlanych ODLEWY ALUMINIOWE

FABRYKA MASZYN BUDOWLANYCH BUMAR Sp. z o.o. Fabryka Maszyn Budowlanych ODLEWY ALUMINIOWE Fabryka Maszyn Budowlanych BUMAR Sp. z o.o. ul. Fabryczna 6 73-200 CHOSZCZNO ODLEWY ALUMINIOWE 1.PIASKOWE DO 100 KG 2.KOKILOWE DO 30 KG 3.CISNIENIOWE DO 3 KG 1. Zapewniamy atesty i sprawdzenie odlewów

Bardziej szczegółowo

Zajęcia laboratoryjne

Zajęcia laboratoryjne Zajęcia laboratoryjne Napęd Hydrauliczny Instrukcja do ćwiczenia nr 3 Metody ograniczenia strat mocy w układach hydraulicznych Opracowanie: Z. Kudźma, P. Osiński, U. Radziwanowska, J. Rutański, M. Stosiak

Bardziej szczegółowo

PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 02/14. PIOTR OSIŃSKI, Wrocław, PL WUP 10/16. rzecz. pat.

PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 02/14. PIOTR OSIŃSKI, Wrocław, PL WUP 10/16. rzecz. pat. PL 223648 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 223648 (13) B1 (21) Numer zgłoszenia: 404800 (51) Int.Cl. F04C 2/08 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:

Bardziej szczegółowo

Zawór przelewowy typ DB

Zawór przelewowy typ DB Zawór przelewowy typ DB NG,, 0 1,5 MPa do 600 dm /min. WK 49 180 04. 01r Zawory przelewowe typu DB... służą do ograniczania ci śnienia w układzie hydraulicznym lub jego części, natomiast w wykonaniu DBW...

Bardziej szczegółowo

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie H-4

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie H-4 POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN Ćwiczenie H-4 Temat: WYZNACZANIE SPRAWNOŚCI OGÓLNEJ I OBJĘTOŚCIOWEJ WIELOTŁOCZKOWEGO OSIOWEGO SILNIKA HYDRAULICZNEGO. Konsultacja i redakcja:

Bardziej szczegółowo

Hydrostatyczne Układy Napędowe Laboratorium

Hydrostatyczne Układy Napędowe Laboratorium Hydrostatyczne Układy Napędowe Laboratorium Temat: Eksperymentalne wyznaczenie charakteru oporów w przewodach hydraulicznych opory liniowe Opracował: Z. Kudźma, P. Osiński, J. Rutański, M. Stosiak CEL

Bardziej szczegółowo

PL B1. Akademia Górniczo-Hutnicza im. St. Staszica,Kraków,PL BUP 08/04. Zbigniew Szydło,Kraków,PL Bogdan Sapiński,Kraków,PL

PL B1. Akademia Górniczo-Hutnicza im. St. Staszica,Kraków,PL BUP 08/04. Zbigniew Szydło,Kraków,PL Bogdan Sapiński,Kraków,PL RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 197112 (13) B1 (21) Numer zgłoszenia: 356512 (51) Int.Cl. F16F 15/03 (2006.01) F16F 9/53 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)

Bardziej szczegółowo

POMPA CENTRALNEGO SMAROWANIA Typ PD 40

POMPA CENTRALNEGO SMAROWANIA Typ PD 40 POMPA CENTRALNEGO SMAROWANIA Typ PD 40 Zastosowanie Pompa jest przeznaczona do okresowego podawania smaru lub oleju do węzłów trących w maszynach za pośrednictwem dozowników dwuprzewodowych (rozdzielaczy

Bardziej szczegółowo

9.Tylko jedna odpowiedź jest poprawna. 10. Wybierz właściwą odpowiedź i zamaluj kratkę z odpowiadającą jej literą np., gdy wybrałeś odpowiedź A :

9.Tylko jedna odpowiedź jest poprawna. 10. Wybierz właściwą odpowiedź i zamaluj kratkę z odpowiadającą jej literą np., gdy wybrałeś odpowiedź A : 6.Czytaj uważnie wszystkie zadania. 7. Rozwiązania zaznaczaj na KARCIE ODPOWIEDZI długopisem lub piórem z czarnym tuszem/atramentem. 8. Do każdego zadania podane są cztery możliwe odpowiedzi: A, B, C,

Bardziej szczegółowo

PL B1. ZARYCHTA WALDEMAR, Jelenia Góra, PL BUP 08/14. WALDEMAR ZARYCHTA, Jelenia Góra, PL WUP 07/16 RZECZPOSPOLITA POLSKA

PL B1. ZARYCHTA WALDEMAR, Jelenia Góra, PL BUP 08/14. WALDEMAR ZARYCHTA, Jelenia Góra, PL WUP 07/16 RZECZPOSPOLITA POLSKA PL 222351 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 222351 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 401088 (22) Data zgłoszenia: 08.10.2012 (51) Int.Cl.

Bardziej szczegółowo

Więcej niż automatyka More than Automation

Więcej niż automatyka More than Automation Więcej niż automatyka More than Automation SCHŁADZACZE PARY: PIERŚCIENIOWE TYPU SP-1, LANCOWE i TŁOCZKOWE TYPU ST-1 SCHŁADZACZ PIERŚCIENIOWY PARY TYPU SP-1 ZASTOSOWANIE: Dla średnic rurociągów parowych

Bardziej szczegółowo

Zawory liniowe. Zawór zwrotny bliźniaczy sterowany. Zawór zwrotny bliźniaczy sterowany. Opis:

Zawory liniowe. Zawór zwrotny bliźniaczy sterowany. Zawór zwrotny bliźniaczy sterowany. Opis: Zawór zwrotny bliźniaczy sterowany Zawory zwrotne bliźniacze sterowane służą do blokowania odbiornika w obu kierunkach. Przepływ jest swobodny w jednym kierunku a w drugim jest kontrolowany ciśnieniem

Bardziej szczegółowo

Zawór stałej mocy LV 06 Elementy sterowania dla typoszeregu 5 i typoszeregu E/C

Zawór stałej mocy LV 06 Elementy sterowania dla typoszeregu 5 i typoszeregu E/C RL 95546/05.87 Elementy sterowania dla typoszeregu 5 i typoszeregu E/C RL 95546/05.87 Zastąpiono 01.82 Klucz typowielkości Oznaczenia Zawór stałej mocy Wielkość nominalna Wielkość nominalna Wykonanie 1

Bardziej szczegółowo

Praca dyplomowa inżynierska

Praca dyplomowa inżynierska Praca dyplomowa inżynierska PROWADZĄCY PRACĘ: prof. dr hab. inż. Edward Palczak, prof. zw.pwr. AUTOR: Maciej Durko Wrocław 2010 Temat pracy dyplomowej inż. Projekt wstępny rozdzielacza serwomechanizmu

Bardziej szczegółowo

PIOTR ROSIKOWSKI JERZY STOJEK

PIOTR ROSIKOWSKI JERZY STOJEK NOTY O AUTORACH Profesor Zenon Jędrzykiewicz od 1967 roku jest pracownikiem Akademii Górniczo-Hutniczej w Krakowie. W 1992 roku współtworzył Katedrę Automatyzacji Procesów na Wydziale Inżynierii Mechanicznej

Bardziej szczegółowo

Wymagania edukacyjne Technologia napraw zespołów i podzespołów mechanicznych pojazdów samochodowych 723103

Wymagania edukacyjne Technologia napraw zespołów i podzespołów mechanicznych pojazdów samochodowych 723103 Wymagania edukacyjne PRZEDMIOT Technologia napraw zespołów i podzespołów mechanicznych pojazdów samochodowych KLASA II MPS NUMER PROGRAMU NAUCZANIA (ZAKRES) 723103 1. 2. Podstawowe wiadomości o ch spalinowych

Bardziej szczegółowo

NPB. Pompy jednostopniowe normowe ZAOPATRZENIE W WODĘ POMPY JEDNOSTOPNIOWE PRZEZNACZENIE ZASTOSOWANIE ZAKRES UŻYTKOWANIA CECHY KONSTRUKCYJNE

NPB. Pompy jednostopniowe normowe ZAOPATRZENIE W WODĘ POMPY JEDNOSTOPNIOWE PRZEZNACZENIE ZASTOSOWANIE ZAKRES UŻYTKOWANIA CECHY KONSTRUKCYJNE NPB Pompy jednostopniowe normowe PRZEZNACZENIE Normowe pompy blokowe NPB w wykonaniu standardowym przeznaczone są do pompowania wody czystej o temperaturze nie przekraczającej 140 C. Stosowane do cieczy

Bardziej szczegółowo

Wydział Budownictwa i Inżynierii Środowiska Katedra Ciepłownictwa. Instrukcja do zajęć laboratoryjnych

Wydział Budownictwa i Inżynierii Środowiska Katedra Ciepłownictwa. Instrukcja do zajęć laboratoryjnych Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska Katedra Ciepłownictwa Instrukcja do zajęć laboratoryjnych Temat ćwiczenia: Badanie własności statycznych siłowników pneumatycznych Ćwiczenie

Bardziej szczegółowo

odolejacz z układem samoczynnego powrotu oleju do sprężarki,

odolejacz z układem samoczynnego powrotu oleju do sprężarki, CHŁODNICZE typu W92MARS Jednostopniowe agregaty sprężarkowe typu W92M są przeznaczone do pracy w lądowych i morskich urządzeniach chłodniczych w zakresie temperatur wrzenia 35 o C do +5 o C i temperatur

Bardziej szczegółowo

OPIS PATENTOWY (19) PL

OPIS PATENTOWY (19) PL RZECZPOSPOLITA (12) OPIS PATENTOWY (19) PL (11) 182625 POLSKA (13) B1 (21 ) Numer zgłoszenia: 319119 Urząd Patentowy Data zgłoszenia: 21.03.1997 Rzeczypospolitej Polskiej (51) Int.Cl.7 F15B 15/00 (54)

Bardziej szczegółowo

Wprowadzenie. - Napęd pneumatyczny. - Sterowanie pneumatyczne

Wprowadzenie. - Napęd pneumatyczny. - Sterowanie pneumatyczne Wprowadzenie Pneumatyka - dziedzina nauki i techniki zajmująca się prawami rządzącymi przepływem sprężonego powietrza; w powszechnym rozumieniu także technika napędu i sterowania pneumatycznego. Zastosowanie

Bardziej szczegółowo

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2019 CZĘŚĆ PRAKTYCZNA

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2019 CZĘŚĆ PRAKTYCZNA Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu Układ graficzny CKE 2018 Nazwa kwalifikacji: Wykonywanie obsługi liniowej i hangarowej statków powietrznych Oznaczenie kwalifikacji:

Bardziej szczegółowo

Zawór odciążający sterowany pośrednio typ UZOD6

Zawór odciążający sterowany pośrednio typ UZOD6 Zawór odciążający sterowany pośrednio typ UZOD6 WN 6 do 35 MPa 3 do 6 dm /min KARTA KATALOGOWA - INSTRUKCJA OBSŁUGI WK 425 72 3.25 ZASTOSOWANIE Zawór odciążający typ UZOD6 stosowany jest w układach hydraulicznych

Bardziej szczegółowo

WKRĘTAK PNEUMATYCZNY PISTOLETOWY WK507D2/A3 WK605D2/A3

WKRĘTAK PNEUMATYCZNY PISTOLETOWY WK507D2/A3 WK605D2/A3 WKRĘTAK PNEUMATYCZNY PISTOLETOWY WK507D2/A3 WK605D2/A3 Techniczna instrukcja obsługi oryginalna Niniejsza instrukcja ważna jest łącznie z Ogólną instrukcją obsługi: NARZĘDZIA PNEUMATYCZNE Wiertarki, Wkrętaki,

Bardziej szczegółowo

(13) B1 PL B1. (54) Urządzenie zmieniające siłę hamowania BUP 17/93 Tryb., PL

(13) B1 PL B1. (54) Urządzenie zmieniające siłę hamowania BUP 17/93 Tryb., PL RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19)PL (11) 168675 (13) B1 (21) Numer zgłoszenia: 293513 Urząd Patentowy (22) Data zgłoszenia: 15.02.1992 Rzeczypospolitej Polskiej (51) IntCl6: B61H9/02 (54)

Bardziej szczegółowo

BADANIA PNEUMATYCZNEGO SIŁOWNIKA BEZTŁOCZYSKOWEGO

BADANIA PNEUMATYCZNEGO SIŁOWNIKA BEZTŁOCZYSKOWEGO INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN POLITECHNIKI ŁÓDZKIEJ ĆWICZENIE NR P-6 BADANIA PNEUMATYCZNEGO SIŁOWNIKA BEZTŁOCZYSKOWEGO Koncepcja i opracowanie: dr inż. Michał Krępski Łódź, 2011 r. Stanowiska

Bardziej szczegółowo

ĆWICZENIE 18 ANALIZA UKŁADU NAPĘDOWEGO CIĄGNIKA

ĆWICZENIE 18 ANALIZA UKŁADU NAPĘDOWEGO CIĄGNIKA ĆWICZENIE 18 ANALIZA UKŁADU NAPĘDOWEGO CIĄGNIKA 1. Cel ćwiczenia Celem ćwiczenia jest poznanie budowy i zasady działania podzespołów ciągnika oraz poznanie wpływu cech konstrukcyjnych układu napędowego

Bardziej szczegółowo

Siłownik liniowy z serwonapędem

Siłownik liniowy z serwonapędem Siłownik liniowy z serwonapędem Zastosowanie: przemysłowe systemy automatyki oraz wszelkie aplikacje wymagające bardzo dużych prędkości przy jednoczesnym zastosowaniu dokładnego pozycjonowania. www.linearmech.it

Bardziej szczegółowo

Zawór redukcyjny warstwowy typ UZRC6

Zawór redukcyjny warstwowy typ UZRC6 Zawór redukcyjny warstwowy typ UZRC6 WN 6 do 21 MPa do 0 dm /min KARTA KATALOGOWA - INSTRUKCJA OBSŁUGI WK 49 060 05.2015 ZASTOSOWANIE Zawór redukcyjny warstwowy typ UZRC6 przeznaczony jest do utrzymywania

Bardziej szczegółowo

Zawór redukcyjny warstwowy typ UZRC6

Zawór redukcyjny warstwowy typ UZRC6 Zawór redukcyjny warstwowy typ UZRC6 WN6 do 21 MPa do 0 dm /min KARTA KATALOGOWA - INSTRUKCJA OBSŁUGI WK 49 060 10.2018 ZASTOSOWANIE Zawór redukcyjny warstwowy typ UZRC6 przeznaczony jest do utrzymywania

Bardziej szczegółowo

CHŁODNICZE AGREGATY SPRĘŻARKOWE typu W92MARS

CHŁODNICZE AGREGATY SPRĘŻARKOWE typu W92MARS CHŁODNICZE AGREGATY SPRĘŻARKOWE typu W92MARS Dębica 2017 BUDOWA I WYPOSAŻENIE Budowa agregatów oraz szeroki zakres wyposażenia zestawionego fabrycznie umożliwiają prace urządzeń w cyklu ręcznym lub automatycznym,

Bardziej szczegółowo

POMPA SMAROWNICZA TYP MPS 10

POMPA SMAROWNICZA TYP MPS 10 POMPA SMAROWNICZA TYP MPS 10 Zastosowanie Pompa jest przeznaczona do smarowania smarem plastycznym lub olejem maszyn i urządzeń wymagających ciągłego podawania środka smarującego w małych ilościach. Doprowadzenie

Bardziej szczegółowo

SPRĘŻ WENTYLATORA stosunek ciśnienia statycznego bezwzględnego w płaszczyźnie

SPRĘŻ WENTYLATORA stosunek ciśnienia statycznego bezwzględnego w płaszczyźnie DEFINICJE OGÓLNE I WIELKOŚCI CHARAKTERYSTYCZNE WENTYLATORA WENTYLATOR maszyna wirnikowa, która otrzymuje energię mechaniczną za pomocą jednego wirnika lub kilku wirników zaopatrzonych w łopatki, użytkuje

Bardziej szczegółowo

Zawór hamujący sterowany typ UZPHE6

Zawór hamujący sterowany typ UZPHE6 Zawór hamujący sterowany typ UZPHE6 3 WN6 do 35 MPa do 60 dm /min KARTA KATALOGOWA - INSTRUKCJA OBSŁUGI WK 499 943 07.2015 ZASTOSOWANIE Zawór hamujący (zwrotno-przelewowy sterowany) typ UZPHE6 jest stosowany

Bardziej szczegółowo

SEMINARIUM Z AUTOMATYKI CHLODNICZEJ

SEMINARIUM Z AUTOMATYKI CHLODNICZEJ SEMINARIUM Z AUTOMATYKI CHLODNICZEJ TEMAT: Próba uzasadnienia celowości regulacji wydajności chłodniczej w urządzeniach o wydajności zakresu 5 do 10kW. 1. Wstęp 2. Metody regulacji sprężarek 3. Regulacja

Bardziej szczegółowo

WKRĘTAK PNEUMATYCZNY PISTOLETOWY WK410C2/A5

WKRĘTAK PNEUMATYCZNY PISTOLETOWY WK410C2/A5 WKRĘTAK PNEUMATYCZNY PISTOLETOWY WK410C2/A5 Techniczna instrukcja obsługi oryginalna Niniejsza instrukcja ważna jest łącznie z OGÓLNĄ INSTRUKCJĄ OBSŁUGI NARZĘDZI PNEUMATYCZNYCH ARCHIMEDES S.A. ul. Robotnicza

Bardziej szczegółowo

Opis serii: Wilo-DrainLift Box

Opis serii: Wilo-DrainLift Box Opis serii: Wilo-DrainLift Bo H/m Wilo-DrainLift Bo 1 1 Bo /1 Bo 3/ Budowa Urządzenie do przetłaczania wody zanieczyszczonej (instalacja podpodłogowa) Zastosowanie Do instalacji podpodłogowej, możliwość

Bardziej szczegółowo

POMPA CENTRALNEGO SMAROWANIA Typ PD 11, PD 31

POMPA CENTRALNEGO SMAROWANIA Typ PD 11, PD 31 POMPA CENTRALNEGO SMAROWANIA Typ PD 11, PD 31 Pompy Centralnego Smarowania PD11 i PD 31 Zastosowanie Pompa jest przeznaczona do smarowania węzłów trących w maszynach i urządzeniach za pośrednictwem rozdzielaczy

Bardziej szczegółowo

SPRZĘT POWIETRZNY, AUTOMATY ODDECHOWE. Opracowanie Grzegorz Latkiewicz

SPRZĘT POWIETRZNY, AUTOMATY ODDECHOWE. Opracowanie Grzegorz Latkiewicz SPRZĘT POWIETRZNY, AUTOMATY ODDECHOWE Opracowanie Grzegorz Latkiewicz 1 Wyposażenie powietrzne płetwonurka W skład kompletnego samodzielnego aparatu powietrznego wchodzą 1. automat oddechowy 2. zbiornik

Bardziej szczegółowo

Opis urządzeń. Zawór przekaźnikowy Zastosowanie. W przypadku szczególnie dużych objętości siłowników hamulcowych. Cel

Opis urządzeń. Zawór przekaźnikowy Zastosowanie. W przypadku szczególnie dużych objętości siłowników hamulcowych. Cel Zawór przekaźnikowy 973 0.. 973 001 010 0 973 001 020 0 973 011 000 0 Zastosowanie Cel Konserwacja Zalecenie montażowe W przypadku szczególnie dużych objętości siłowników hamulcowych Szybkie napowietrzenie

Bardziej szczegółowo

Nowości prawie w zasięgu ręki. ul. Wyścigowa 38 53-012 Wrocław tel. 71-364 72 88

Nowości prawie w zasięgu ręki. ul. Wyścigowa 38 53-012 Wrocław tel. 71-364 72 88 Nowości prawie w zasięgu ręki ul. Wyścigowa 38 53-012 Wrocław tel. 71-364 72 88 Tematyka prezentacji Kierunki rozwoju automatyki przemysłowej opartej na sprężonym powietrzu, mające na celu: pełne monitorowanie

Bardziej szczegółowo

Struktura manipulatorów

Struktura manipulatorów Temat: Struktura manipulatorów Warianty struktury manipulatorów otrzymamy tworząc łańcuch kinematyczny o kolejnych osiach par kinematycznych usytuowanych pod kątem prostym. W ten sposób w zależności od

Bardziej szczegółowo