1. WPROWADZENIE PRZEBADANE TECHNOLOGIE ŚRODOWISKO BADAWCZE ZAPISYWANIE I ODCZYTYWANIE W OBRĘBIE JEDNEJ INSTANCJI...

Wielkość: px
Rozpocząć pokaz od strony:

Download "1. WPROWADZENIE... 1 2. PRZEBADANE TECHNOLOGIE... 2 3. ŚRODOWISKO BADAWCZE... 3 4. ZAPISYWANIE I ODCZYTYWANIE W OBRĘBIE JEDNEJ INSTANCJI..."

Transkrypt

1 Tytuł dokumentu: Porównanie dokumentowych baz NoSQL na potrzeby sub- projektu agregacji danych Sygnatura projektu: POIG /11, Stworzenie innowacyjnych technologii i narzędzi do budowy portali ogłoszeniowych i aukcyjnych przez Sensi Soft sp. z o. o. Typ dokumentu: Autor: Konrad Szymański, Piotr Zientarski, Przemysław Kamiński, Tomasz Skórski Analityk/Architekt: Konrad Szymański Treść dokumentu: 1. WPROWADZENIE PRZEBADANE TECHNOLOGIE ŚRODOWISKO BADAWCZE ZAPISYWANIE I ODCZYTYWANIE W OBRĘBIE JEDNEJ INSTANCJI... 4 RIAK... 4 RIAK ODCZYTYWANIE DOKUMENTÓW... 4 RIAK ZAPISYWANIE DOKUMENTÓW... 7 CASSANDRA... 8 CASSANDRA ODCZYT... 9 CASSANDRA ZAPIS Wprowadzenie Wraz z rozwojem technologii oraz drastycznym zmniejszaniem się ceny jednostkowej za gigabajt w ciągu ostatnich lat można zaobserwować znaczący rozwój rozwiązań oferujących koncepcję dokumentowego przechowywania treści, w strukturach nazywanych bazami dokumentowymi lub bardziej powszechnie bazami NoSQL.

2 Wykres 1 - Cena gigabajta na przestrzeni czasu od roku 1980 do 2010 (źródło: A History of Storage Cost, Matt Komorowski, per- gigabyte) Rozwiązania takie jak Cassandra, Riak, HBase, Amazon Dynamo, HyperTable, Voldemort, Scalaris, Apache CouchDB czy MonoDB coraz częściej stosowane są w rozwiązaniach, w których kwestie relacji pomiędzy dokumentami nie jest krytyczna, a ilość przechowywanych danych i możliwość ich odczytania ma pierwszorzędne znaczenie. Co więcej, powstające obecnie technologie charakteryzują się bardzo dobrą skalowalnością zarówno wertykalną jak i horyzontalną, co umożliwia dynamicznie dostosowanie ilości zapytań idących do takich baz do zapotrzebowań tworzonych produktów. Warto dodać, że większość dokumentowych baz danych tworzona jest w językach wysokiego poziomu w sposób modułowy, co pozwala na bardzo proste tworzenie modułowych rozszerzeń, ułatwiających integrację z różnorakimi technologiami i środowiskami programistycznymi. Zakres projektu POIG /11 i zastosowane koncepcje jasno wskazują konieczność zastosowania dokumentowych baz danych (szczególnie w projekcie związanych z opracowaniem modelu przechowywania danych z różnych źródeł). Jednocześnie technologiczny rozwój, który miał miejsce pomiędzy złożeniem wniosku a jego rozpoczęciem, powoduje konieczność przebadania aktualnych możliwości technologii NoSQL. 2. Przebadane technologie Na potrzeby przedwstępnego obszaru badawczego analizie zostało poddanych kilkanaście technologii, zaprezentowanych w tabeli poniżej.

3 name python language type distributed medium scaling consistency performance bindings Cassandra YES Java column store PRAWDA disk/memory hash ring paritioning newest timestamp Riak YES Erlang key- value document store PRAWDA disk ring paritioning Vector clocks quite slow but stable, linear speed up with additional nodes HBase NO Java column store N/A disk/memory HDFS (Hadoop there is some Distributed Filesystem) with master Amazon NO? key- value PRAWDA n/a hash ring paritioning Vector clocks Dynamo store HyperTable NO C++ column store PRAWDA disk/memory Voldemort NO Java key- value store PRAWDA disk Vector clocks 10 to 20k reqs/s Scalaris NO Erlang key- value PRAWDA memory chord paritioning atomic ops store ElasticSearch YES Java Key- value PRAWDA Memory/disk ring? n/a MongoDB YES C++ Key- value PRAWDA Memory/disk Tbd. n/a n/a Apache CouchDB YES? document store PRAWDA disk replication master- master Przeprowadzone badania wykazały, że na potrzeby projektu należy dokonać dodatkowy badań wydajnościowych dla następujących rozwiązań: Elasticsearch w wersji Riak w wersji Cassandra w wersji MongoDB w wersji CouchDB w wersji / BigCouch W celu uzyskania reprezentatywnych danych, każda w baz dokumentowych była badana na jednym, czterech i szesnastu wątkach. Badane były możliwości zapisu i odczytu dla każdej z baz danych. W celu zachowania przejrzystości wyników poniżej, wyniki zostaną zaprezentowane dla każdego z rozwiązań. 3. Środowisko badawcze Na potrzeby środowiska badawczego zostały uruchomione cztery maszyny serwerowe typu blade w konfiguracji: Blade DELL PowerEdge M61014 z dwoma sześciordzeniowymi procesorami Xeon(R) CPU E GHz, Dysk twardy 1TB, Pamięć 64GB RAM 1. Testowane systemy były instalowane przy użyciu systemu zarządzania ProxMox I wykorzystywały parawirtualizację OpenVZ. 1 Opis specyfikacji technicznej maszyny Dell Power Edge M610 na stronie producenta: m610/pd

4 4. Zapisywanie i odczytywanie w obrębie jednej instancji W obrębie prac badawczych dla możliwie realistycznego odwzorowanie środowiska produkcyjnego, dla każdego z badanych systemów dokonywane były zapisy testowych treści w ilości 5000 obiektów/paczka i odczytów 1000 obiektów/paczka. Kolejne przedstawione poniżej dane odwzorowują czas potrzebny na zrealizowanie zadań dla każdej paczki. Elementem, który zwiększył poziom realizmu w przeprowadzonym badaniu jest czynnik polegający na uruchomieniu czterech jednoczesnych procesów odczytywania danych i jednego zapisującego. Riak Riak to stabilny (jak na analizowaną domenę tematu) produkt służący do przechowywanych informacji, wykorzystujący tzw. partycjonowanie danych (ang. shard- partition). Riak umożliwia użycie jako backendu przechowującego dane Bitcask, LevelDB i Innostore (opartego o InnoDB), z których Bitcask jest najbardziej dojrzałą implementacją. Opisywany system posiada rówież wbudowaną obsługę modelu MapReduce, natywanie wspiera JavaScript (przy użyciu silnika SpiderMonkey ) i Erlang (w którym został w większości napisany) Riak odczytywanie dokumentów Wnioski z obserwacji: Na podstawie przeprowadzonych kilkukrotnie testów, widać bardzo dobre powtarzalne wyniki czasu odczytu 1000 dokumentów powtarzalne wyniki osiągały wartości na poziomie 0,2 sekundy. Zauważalna była anomalia dla pierwszej paczki danych, która była przetwarzana znacząco (bo dwukrotnie) dłużej niż kolejne dane. Czas odczytu danych jest bardzo satysfakcjonujący i pozwala na rekomendację do użycia aplikacji do dalszych testów i analiz. próbka danych (1000 dokumentów) proces 1 proces 2 proces 3 proces 4 Średnia (s) 1 0, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,1493 0, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

5 14 0, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,1258 0, , , , , , , , , , , , , , , , , , , , ,1353 0, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,1617 0, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

6 54 0, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,2828 0, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

7 94 0, , , , , ,2685 0, , , , , , , , , , , , , , , , , , , , ,3094 0, , , , , , , , średnia: 0, Riak zapisywanie dokumentów Wnioski z obserwacji: Średni czas potrzebny do zapisania 5000 dokumentów do nierelacyjnej bazy danych wynosił 19,3 sekundy. Był to nagorszy czas uzyskany w tym obszarze badawczym (czas zapisu przy jednym wątku w porównianiu do innych baz dokumentowych). Zaprezentowane wyniki pozwalają na wysnucie wniosku, że baza dokumentowa działająca w jednej instancji nie będzie optymalnym rozwiązaniem dla komercyjnego, responsywnego systemu przechowującego miliony danych z racji na nieadekwatność czasu potrzebnego na wprowadzenie informacji do system. próbka danych (5000 dokumentów) proces , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,735012

8 41 19, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , średnia: 72 19, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , Cassandra Apache Cassandra is an open source distributed database management system. It is an Apache Software Foundation top- level project[1] designed to handle very large amounts of data spread out across many commodity servers while providing a highly available service with no single point of failure. It is a NoSQL solution that was initially developed by Facebook and powered their Inbox Search feature until late 2010.[2][3] Jeff Hammerbacher, who led the Facebook Data team at the time, has described Cassandra as a BigTable data model running on an Amazon Dynamo- like infrastructure.[4]

9 Cassandra provides a structured key- value store with tunable consistency.[5] Keys map to multiple values, which are grouped into column families. The column families are fixed when a Cassandra database is created, but columns can be added to a family at any time. Furthermore, columns are added only to specified keys, so different keys can have different numbers of columns in any given family. Cassandra odczyt Wnioski z obserwacji: Przeciętny czas potrzebny na odczytanie przez Cassandrę próbki danych w rozmiarze 1000 dokumentów wynosił 1,2 sekundy. Podobnie jak w przypadku Riaka, pierwsza próbka badanych danych w powtarzalny sposób była procesowana dwukrotnie dłużej niż kolejne próbki badawcze. Wartości będące rezultatem przeprowadzonego badania mają wysoką powtarzalność. Chociaż uzyskane wyniki nie są w pełni satysfakcjonujące, wskazują na potencjał i stanowią rekomendację do dalszej analizy tej nierelacyjnej bazy. próbka danych (1000 dokumentów) proces 1 proces 2 proces 3 proces 4 Średnia (s) 1 3, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

10 28 0, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,1933 1, , , , , , , , , , , , , , , , , ,168 0, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,154171

11 68 1, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , średnia: 1, Cassandra zapis Wnioski z obserwacji: Dane pozyskane w trakcie badania wskazują na satysfakcjonujący, powtarzalny średni czas 4,37 sekundy potrzebny do zapisania w bazie 5000 dokumentów. Można zauważyć duże, przeszło

12 dwukrotne rozbieżności pomiędzy minimalnym a maksymalnym czasem potrzebnym na zapisanie zbliżonej pod względem treści próbki informacji: min. 3,43s max 7.76s. próbka danych (5000 dokumentów) proces 1 1 7, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,677271

13 74 3, , , , , , , , , , , , , , , , średnia: 90 3, , , , , , , , , , , , Mongo MongoDB (od słowa "humongous") to otwarty, nierelacyjny system zarządzania bazą danych napisany w języku C++. Charakteryzuje się dużą skalowalnością, wydajnością oraz brakiem ściśle zdefiniowanej struktury obsługiwanych baz danych. Zamiast tego, dane składowane są jako dokumenty w stylu JSON, co umożliwia aplikacjom bardziej naturalne ich przetwarzanie, przy zachowaniu możliwości tworzenia hierarchii oraz indeksowania. Mongo odczyt Wnioski z obserwacji: Wraz z ładowaniem kolejnych próbek do odczytania, aplikacja miała coraz większe problemy z obsłużeniem i odczytaniem danych. Powtarzalne wyniki wyraźnie wskazują na problemy w testowanej aplikacji dla podstawowej dla nierelacyjnych baz danych czynności odczytywania równocześnie 1000 dokumentów. Jedynym argumentem przemawiającym za dalszymi testami tego rozwiązania są rewelacyjne wyniki w obszarzenie zapisu dokumentów. próbka danych (1000 dokumentów) proces 1 proces 2 proces 3 proces 4 średnia 1 0, , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,122597

14 7 2, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,6123 5, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

15 47 11, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

16 87 27, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , średnia: 15, Mongo zapis Wnioski z obserwacji: próbka danych (5000 dokumentów) proces 1 1 1, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,886903

17 39 0, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , średnia: 72 0, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , Elastic search Elastic search odczyt Wnioski z obserwacji:

18 próbka danych (1000 dokumentów) proces 1 proces 2 proces 3 proces 4 średnia 1 1, , , , , , , , , , , , , , , , , , , , , , , , , , , , ,3644 0, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,2237 0, , , , , , , , , , , , , , , , , ,

19 37 0, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,372 0, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

20 77 0, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , średnia: 0, Elastic search zapis Wnioski z obserwacji: próbka danych (5000 dokumentów) proces 1 1 9, , , , , , , , , , , , , , , ,901205

Bazy danych NoSQL. wprowadzenie. Szymon Francuzik Poznań,

Bazy danych NoSQL. wprowadzenie. Szymon Francuzik Poznań, Bazy danych NoSQL wprowadzenie Szymon Francuzik szymon.francuzik@cs.put.poznan.pl Poznań, 16.05.2012 Szymon Francuzik szymon.francuzik@cs.put.poznan.pl Bazy () danych NoSQL Poznań, 16.05.2012 1 / 37 Plan

Bardziej szczegółowo

Organizacyjnie. Prowadzący: dr Mariusz Rafało (hasło: BIG)

Organizacyjnie. Prowadzący: dr Mariusz Rafało   (hasło: BIG) Big Data Organizacyjnie Prowadzący: dr Mariusz Rafało mrafalo@sgh.waw.pl http://mariuszrafalo.pl (hasło: BIG) Automatyzacja Automatyzacja przetwarzania: Apache NiFi Źródło: nifi.apache.org 4 Automatyzacja

Bardziej szczegółowo

NoSQL & relax with CouchDB

NoSQL & relax with CouchDB NoSQL & relax with PyWaw #23 8 kwiecień 2013 Agenda 1 NoSQL - nierelacyjne systemy baz danych Wprowadzenie do NoSQL Rodzaje i porównanie baz NoSQL Polyglot persistence 2 Projekt w CERN wykorzystujacy 3

Bardziej szczegółowo

Hurtownie danych wykład 5

Hurtownie danych wykład 5 Hurtownie danych wykład 5 dr Sebastian Zając SGH Warszawa 7 lutego 2017 1 Współbieżność i integracja Niezgodność impedancji 2 bazy danych Współbieżność i integracja Niezgodność impedancji Bazy relacyjne

Bardziej szczegółowo

Przetwarzanie danych z wykorzystaniem technologii NoSQL na przykładzie serwisu Serp24

Przetwarzanie danych z wykorzystaniem technologii NoSQL na przykładzie serwisu Serp24 Przetwarzanie danych z wykorzystaniem technologii NoSQL na przykładzie serwisu Serp24 Agenda Serp24 NoSQL Integracja z CMS Drupal Przetwarzanie danych Podsumowanie Serp24 Darmowe narzędzie Ułatwia planowanie

Bardziej szczegółowo

Bazy danych NoSQL. Szymon Francuzik szymon.francuzik@cs.put.poznan.pl. Poznań, 29.10.2012

Bazy danych NoSQL. Szymon Francuzik szymon.francuzik@cs.put.poznan.pl. Poznań, 29.10.2012 Bazy danych NoSQL Szymon Francuzik szymon.francuzik@cs.put.poznan.pl Poznań, 29.10.2012 Szymon Francuzik szymon.francuzik@cs.put.poznan.pl Bazy () danych NoSQL Poznań, 29.10.2012 1 / 45 Plan prezentacji

Bardziej szczegółowo

NoSQL Not Only SQL, CouchDB. I.Wojnicki, NoSQL. Apache CouchDB has started. Time to relax. Igor Wojnicki

NoSQL Not Only SQL, CouchDB. I.Wojnicki, NoSQL. Apache CouchDB has started. Time to relax. Igor Wojnicki 29 października 2014 Igor Wojnicki (AGH, KIS) CouchDB 29 października 2014 1 / 53 NoSQL Not Only SQL, CouchDB Apache CouchDB has started. Time to relax. Igor Wojnicki Katedra Informatyki Stosowanej, Akademia

Bardziej szczegółowo

Hadoop i Spark. Mariusz Rafało

Hadoop i Spark. Mariusz Rafało Hadoop i Spark Mariusz Rafało mrafalo@sgh.waw.pl http://mariuszrafalo.pl WPROWADZENIE DO EKOSYSTEMU APACHE HADOOP Czym jest Hadoop Platforma służąca przetwarzaniu rozproszonemu dużych zbiorów danych. Jest

Bardziej szczegółowo

Definicja. Not Only SQL

Definicja. Not Only SQL Definicja Not Only SQL Baza danych NoSQL to program zapewniający szybki dostęp do danych różniący się w jakiś sposób od stadardowych baz RDBMS. Baza NoSQL to szereg różnych rozwiązań nazwanych jednym określeniem.

Bardziej szczegółowo

Narzędzia i trendy Big Data

Narzędzia i trendy Big Data Narzędzia i trendy Big Data 1 Zamiast wstępu Model relacyjny 1970: podwaliny teoretyczne modelu 1980: SQL hype 1990: upowszechnienie standardu i narzędzi Model map-reduce 1995: koncepcja przetwarzania

Bardziej szczegółowo

Projektowanie rozwiązań Big Data z wykorzystaniem Apache Hadoop & Family

Projektowanie rozwiązań Big Data z wykorzystaniem Apache Hadoop & Family Kod szkolenia: Tytuł szkolenia: HADOOP Projektowanie rozwiązań Big Data z wykorzystaniem Apache Hadoop & Family Dni: 5 Partner merytoryczny Opis: Adresaci szkolenia: Szkolenie jest adresowane do programistów,

Bardziej szczegółowo

Projektowanie rozwiązań Big Data z wykorzystaniem Apache Hadoop & Family

Projektowanie rozwiązań Big Data z wykorzystaniem Apache Hadoop & Family Kod szkolenia: Tytuł szkolenia: HADOOP Projektowanie rozwiązań Big Data z wykorzystaniem Apache Hadoop & Family Dni: 5 Opis: Adresaci szkolenia: Szkolenie jest adresowane do programistów, architektów oraz

Bardziej szczegółowo

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis Machine Learning for Data Science (CS4786) Lecture11 5 Random Projections & Canonical Correlation Analysis The Tall, THE FAT AND THE UGLY n X d The Tall, THE FAT AND THE UGLY d X > n X d n = n d d The

Bardziej szczegółowo

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. dr inż. Adam Piórkowski. Jakub Osiadacz Marcin Wróbel

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. dr inż. Adam Piórkowski. Jakub Osiadacz Marcin Wróbel Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Problem magazynowania i przetwarzania wielkoformatowych map i planów geologicznych. Promotor: dr inż. Adam Piórkowski Autorzy: Jakub Osiadacz

Bardziej szczegółowo

CouchDB. Michał Nowikowski

CouchDB. Michał Nowikowski CouchDB Michał Nowikowski Agenda Wprowadzenie do CouchDB Mój przypadek Wyniki i wnioski Dokumenty CouchDB Format JSON Pary nazwa wartość Możliwe tablice i struktury Załączniki Brak limitów na liczbę i

Bardziej szczegółowo

Nowe technologie baz danych

Nowe technologie baz danych Nowe technologie baz danych Partycjonowanie Partycjonowanie jest fizycznym podziałem danych pomiędzy różne pliki bazy danych Partycjonować można tabele i indeksy bazy danych Użytkownik bazy danych nie

Bardziej szczegółowo

(Apache) CouchDB. Krzysztof Kulewski 2008

(Apache) CouchDB. Krzysztof Kulewski 2008 (Apache) CouchDB Krzysztof Kulewski 2008 Czym CouchDB nie jest? Czym CouchDB nie jest? Relacyjną bazą danych Czym CouchDB nie jest? Relacyjną bazą danych Zamiennikiem dla relacyjnej bazy danych Czym CouchDB

Bardziej szczegółowo

Szkolenie wycofane z oferty. Apache Cassandra - modelowanie, wydajność, analiza danych

Szkolenie wycofane z oferty. Apache Cassandra - modelowanie, wydajność, analiza danych Szkolenie wycofane z oferty Program szkolenia: Apache Cassandra - modelowanie, wydajność, analiza danych Informacje: Nazwa: Kod: Kategoria: Grupa docelowa: Czas trwania: Forma: Apache Cassandra - modelowanie,

Bardziej szczegółowo

Wprowadzenie do Hurtowni Danych

Wprowadzenie do Hurtowni Danych Wprowadzenie do Hurtowni Danych BIG DATA Definicja Big Data Big Data definiowane jest jako składowanie zbiorów danych o tak dużej złożoności i ilości danych, że jest to niemożliwe przy zastosowaniu podejścia

Bardziej szczegółowo

Big Data i 5V Nowe wyzwania w świecie danych Krzysztof Goczyła

Big Data i 5V Nowe wyzwania w świecie danych Krzysztof Goczyła Big Data i 5V Nowe wyzwania w świecie danych Krzysztof Goczyła Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika Gdańska kris@eti.pg.gda.pl Sopot, 10.09.2014 1 O czym będzie? Co to jest Big

Bardziej szczegółowo

Baza danych in-memory. DB2 BLU od środka 2015-11-10. Artur Wrooski

Baza danych in-memory. DB2 BLU od środka 2015-11-10. Artur Wrooski TECHNOLOGIE ANALIZY DANYCH I CHMUROWE W ZASTOSOWANIACH BIZNESOWYCH Poznao, 30 września 2015 DB2 BLU od środka Artur Wrooski Baza danych in-memory Baza danych IN-MEMORY system zarządzania bazami danych,

Bardziej szczegółowo

Wprowadzenie do Apache Spark. Jakub Toczek

Wprowadzenie do Apache Spark. Jakub Toczek Wprowadzenie do Apache Spark Jakub Toczek Epoka informacyjna MapReduce MapReduce Apache Hadoop narodziny w 2006 roku z Apache Nutch open source składa się z systemu plików HDFS i silnika MapReduce napisany

Bardziej szczegółowo

Wprowadzenie do NoSql. Maksymilian Wiesiołek

Wprowadzenie do NoSql. Maksymilian Wiesiołek Wprowadzenie do NoSql Maksymilian Wiesiołek Agenda O mnie, ACID a CAP, wstęp do NoSql PostgreSql, Redis Hbase, MongoDb, Neo4j, Agenda Coherence, Rozwiązania hybrydowe, Na co warto zwrócić uwagę, Zagrożenia,

Bardziej szczegółowo

MongoDB. wprowadzenie. dr inż. Paweł Boiński, Politechnika Poznańska

MongoDB. wprowadzenie. dr inż. Paweł Boiński, Politechnika Poznańska MongoDB wprowadzenie dr inż. Paweł Boiński, Politechnika Poznańska Plan Historia Podstawowe pojęcia: Dokument Kolekcja Generowanie identyfikatora Model danych Dokumenty zagnieżdżone Dokumenty z referencjami

Bardziej szczegółowo

2011-11-04. Instalacja SQL Server Konfiguracja SQL Server Logowanie - opcje SQL Server Management Studio. Microsoft Access Oracle Sybase DB2 MySQL

2011-11-04. Instalacja SQL Server Konfiguracja SQL Server Logowanie - opcje SQL Server Management Studio. Microsoft Access Oracle Sybase DB2 MySQL Instalacja, konfiguracja Dr inŝ. Dziwiński Piotr Katedra InŜynierii Komputerowej Kontakt: piotr.dziwinski@kik.pcz.pl 2 Instalacja SQL Server Konfiguracja SQL Server Logowanie - opcje SQL Server Management

Bardziej szczegółowo

Architektura rozproszonych magazynów danych

Architektura rozproszonych magazynów danych Big data Big data, large data cloud. Rozwiązania nastawione na zastosowanie w wielkoskalowych serwisach, np. webowych. Stosowane przez Google, Facebook, itd. Architektura rozproszonych magazynów danych

Bardziej szczegółowo

Technologie Informacyjne

Technologie Informacyjne Bazy danych Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności November 28, 2016 1 Płaskie pliki 2 Hierarchiczne bazy danych 3 Sieciowe bazy danych 4 Relacyjne bazy danych 5 Kolumnowe Bazy

Bardziej szczegółowo

REFERAT PRACY DYPLOMOWEJ

REFERAT PRACY DYPLOMOWEJ REFERAT PRACY DYPLOMOWEJ Temat pracy: Projekt i implementacja środowiska do automatyzacji przeprowadzania testów aplikacji internetowych w oparciu o metodykę Behavior Driven Development. Autor: Stepowany

Bardziej szczegółowo

Tworzenie partycji i dysków logicznych

Tworzenie partycji i dysków logicznych Tworzenie partycji i dysków logicznych Podstawowe pojęcia Dysk twardy fizyczny napęd, który służy do przechowywania danych Dysk podstawowy zawierają tzw. woluminy podstawowe, takie jak partycje podstawowe

Bardziej szczegółowo

Hbase, Hive i BigSQL

Hbase, Hive i BigSQL Hbase, Hive i BigSQL str. 1 Agenda 1. NOSQL a HBase 2. Architektura HBase 3. Demo HBase 4. Po co Hive? 5. Apache Hive 6. Demo hive 7. BigSQL 1 HBase Jest to rozproszona trwała posortowana wielowymiarowa

Bardziej szczegółowo

Referat Pracy Dyplomowej

Referat Pracy Dyplomowej Referat Pracy Dyplomowej Team Pracy: Projekt i realizacja gry w technologii HTML5 z wykorzystaniem interfejsu programistycznego aplikacji Facebook Autor: Adam Bartkowiak Promotor: dr inż. Roman Simiński

Bardziej szczegółowo

011 ASPEKTY BAZ NOSQL. Prof. dr hab. Marek Wisła

011 ASPEKTY BAZ NOSQL. Prof. dr hab. Marek Wisła 011 ASPEKTY BAZ NOSQL Prof. dr hab. Marek Wisła Transakcje Większość baz nierelacyjnych zaprojektowanych z myślą o skalowalności nie wspiera transakcji spełniających warunki ACID. Brak gwarancji ACID oznacza,

Bardziej szczegółowo

WIELOKROTNE PRZYSPIESZENIE DZIAŁANIA APLIKACJI POPRZEZ ZASTOSOWANIE TECHNOLOGII NIERELACYJNYCH BAZ DANYCH

WIELOKROTNE PRZYSPIESZENIE DZIAŁANIA APLIKACJI POPRZEZ ZASTOSOWANIE TECHNOLOGII NIERELACYJNYCH BAZ DANYCH Łukasz Strobin Adam Niewiadomski Politechnika Łódzka WIELOKROTNE PRZYSPIESZENIE DZIAŁANIA APLIKACJI POPRZEZ ZASTOSOWANIE TECHNOLOGII NIERELACYJNYCH BAZ DANYCH Wprowadzenie Relacyjny model danych został

Bardziej szczegółowo

NoSQL: Riak. dr inż. Sebastian Ernst Katedra Informatyki Stosowanej

NoSQL: Riak. dr inż. Sebastian Ernst Katedra Informatyki Stosowanej NoSQL: Riak dr inż. Sebastian Ernst Katedra Informatyki Stosowanej Twierdzenie CAP W przypadku rozdziału węzłów (partition), możliwe jest zachowanie jednej z dwóch cech: spójności (consistency) wszystkie

Bardziej szczegółowo

*Grafomania z. Neo4j. Praktyczne wprowadzenie do grafowej bazy danych.

*Grafomania z. Neo4j. Praktyczne wprowadzenie do grafowej bazy danych. *Grafomania z Neo4j Praktyczne wprowadzenie do grafowej bazy danych. Jak zamodelować relacyjną bazę danych reprezentującą następujący fragment rzeczywistości: Serwis WWW opisuje pracowników różnych firm

Bardziej szczegółowo

Analiza porównawcza wybranych własności systemów zarządzania bazami danych

Analiza porównawcza wybranych własności systemów zarządzania bazami danych Akademia Górniczo Hutnicza im. Stanisława Staszica w Krakowie Analiza porównawcza wybranych własności systemów zarządzania bazami danych Mirosław Lach Promotor: Prof. dr hab. inŝ. Antoni Ligęza Kraków

Bardziej szczegółowo

010 NOSQL. Prof. dr hab. Marek Wisła

010 NOSQL. Prof. dr hab. Marek Wisła 010 NOSQL Prof. dr hab. Marek Wisła Problem Big Data Przetwarzanie ogromnych ilości danych w bazie relacyjnej może powodować powstanie problemów wynikających z samego modelu relacyjnego, np. łączenie ogromnych

Bardziej szczegółowo

ROZWIĄZANIA PODSTAWOWYCH IDEI BAZ DANYCH TYPU NOSQL W KONTEKŚCIE BEZPIECZEŃSTWA DANYCH

ROZWIĄZANIA PODSTAWOWYCH IDEI BAZ DANYCH TYPU NOSQL W KONTEKŚCIE BEZPIECZEŃSTWA DANYCH STUDIA INFORMATICA 2011 Volume 32 Number 2A (96) Robert BRZESKI Politechnika Śląska, Instytut Informatyki ROZWIĄZANIA PODSTAWOWYCH IDEI BAZ DANYCH TYPU NOSQL W KONTEKŚCIE BEZPIECZEŃSTWA DANYCH Streszczenie.

Bardziej szczegółowo

SQL Server 2016 w świecie Big Data

SQL Server 2016 w świecie Big Data temat prelekcji.. SQL Server 2016 w świecie Big Data prowadzący Bartłomiej Graczyk Data Platform Solution Architect bartlomiej.graczyk@microsoft.com bartek@graczyk.info.pl Agenda Dane na świecie wczoraj,

Bardziej szczegółowo

FORMULARZ OFERTOWY. 8. Społeczeństwo informacyjne zwiększanie innowacyjności gospodarki

FORMULARZ OFERTOWY. 8. Społeczeństwo informacyjne zwiększanie innowacyjności gospodarki FORMULARZ OFERTOWY Projekt Wdrożenie internetowego systemu B2B dla TLC Rental integrującego zarządzanie systemami logistycznymi w zakresie zamówień, dostaw i kontrolingu realizowany w ramach Programu Operacyjnego

Bardziej szczegółowo

Serwer biznesowy o podwójnym zastosowaniu moc obliczeniowa i pamięć masowa w jednej obudowie

Serwer biznesowy o podwójnym zastosowaniu moc obliczeniowa i pamięć masowa w jednej obudowie QNAP TDS-16489U-SB3 66 636,11 PLN brutto 54 175,70 PLN netto Producent: QNAP Firma QNAP rozwija innowacyjność w segmencie serwerów biznesowych i wprowadza do oferty TDS-16489U wydajny podwójny serwer łączący

Bardziej szczegółowo

Zarządzanie sieciami telekomunikacyjnymi

Zarządzanie sieciami telekomunikacyjnymi SNMP Protocol The Simple Network Management Protocol (SNMP) is an application layer protocol that facilitates the exchange of management information between network devices. It is part of the Transmission

Bardziej szczegółowo

DATABASE SNAPSHOT GEEK DIVE. Cezary Ołtuszyk Blog: coltuszyk.wordpress.com

DATABASE SNAPSHOT GEEK DIVE. Cezary Ołtuszyk Blog: coltuszyk.wordpress.com DATABASE SNAPSHOT GEEK DIVE Cezary Ołtuszyk Blog: coltuszyk.wordpress.com Kilka słów o mnie Kierownik Działu Administracji Systemami w firmie BEST S.A. (warstwa bazodanowa i aplikacyjna) Konsultant z zakresu

Bardziej szczegółowo

Narzędzia programistyczne - GIT

Narzędzia programistyczne - GIT Narzędzia programistyczne - GIT Kamil Maraś kamil.maras@gmail.com @KamilMaras Agenda Zintegrowane środowisko programistyczne Systemy kontroli wersji Narzędzia wspomagające wytwarzanie aplikacji Narzędzia

Bardziej szczegółowo

Zaawansowany kurs języka Python

Zaawansowany kurs języka Python DBM, SQL 10 listopada 2011 Rodzaje baz danych Trwałe słowniki Klient-serwer SQL Bekreley DB Gnu dbm (n)dbm Firebird Sqlite Oracle MySQL PostgeSQL DB/2 Plan wykładu 1 Bazy danych DBM 2 3 4 Grafowe bazy

Bardziej szczegółowo

BAZY DANYCH. NIERELACYJNE BAZY DANYCH NoSQL I ASOCJACYJNE STRUKTURY DANYCH. Adrian Horzyk. Akademia Górniczo-Hutnicza

BAZY DANYCH. NIERELACYJNE BAZY DANYCH NoSQL I ASOCJACYJNE STRUKTURY DANYCH. Adrian Horzyk. Akademia Górniczo-Hutnicza BAZY DANYCH NIERELACYJNE BAZY DANYCH NoSQL I ASOCJACYJNE STRUKTURY DANYCH Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki

Bardziej szczegółowo

Tematy projektów Edycja 2014

Tematy projektów Edycja 2014 Tematy projektów Edycja 2014 Robert Wrembel Poznan University of Technology Institute of Computing Science Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Reguły Projekty zespołowe max. 4

Bardziej szczegółowo

Monitorowanie VMware Rafał Szypułka Service Management Solution Architect IBM Software Services for Tivoli

Monitorowanie VMware Rafał Szypułka Service Management Solution Architect IBM Software Services for Tivoli Monitorowanie VMware Rafał Szypułka Service Management Solution Architect IBM Software Services for Tivoli 1 Agenda Monitorowanie środowisk zwirtualizowanych IBM Tivoli Monitoring for Virtual Servers 6.2.3

Bardziej szczegółowo

Zmiany techniczne wprowadzone w wersji Comarch ERP Altum

Zmiany techniczne wprowadzone w wersji Comarch ERP Altum Zmiany techniczne wprowadzone w wersji 2018.2 Copyright 2016 COMARCH SA Wszelkie prawa zastrzeżone Nieautoryzowane rozpowszechnianie całości lub fragmentu niniejszej publikacji w jakiejkolwiek postaci

Bardziej szczegółowo

Instrukcja obsługi User s manual

Instrukcja obsługi User s manual Instrukcja obsługi User s manual Konfigurator Lanberg Lanberg Configurator E-mail: support@lanberg.pl support@lanberg.eu www.lanberg.pl www.lanberg.eu Lanberg 2015-2018 WERSJA VERSION: 2018/11 Instrukcja

Bardziej szczegółowo

ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL

ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL Read Online and Download Ebook ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL DOWNLOAD EBOOK : ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA Click link bellow and free register

Bardziej szczegółowo

Chmura zrzeszenia BPS jako centrum świadczenia usług biznesowych. Artur Powałka Microsoft Services

Chmura zrzeszenia BPS jako centrum świadczenia usług biznesowych. Artur Powałka Microsoft Services Chmura zrzeszenia BPS jako centrum świadczenia usług biznesowych. Artur Powałka Services Tradycyjne podejście do wirtualizacji Business system administrators request infrastructure through email or an

Bardziej szczegółowo

Z-ID-608b Bazy danych typu Big Data Big Data Databases. Specjalnościowy Obowiązkowy Polski Semestr VI

Z-ID-608b Bazy danych typu Big Data Big Data Databases. Specjalnościowy Obowiązkowy Polski Semestr VI KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angieskim Obowiązuje od roku akademickiego 015/016 Z-ID-608b Bazy danych typu Big Data Big Data Databases A. USYTUOWANIE MODUŁU

Bardziej szczegółowo

Instalacja SQL Server Express. Logowanie na stronie Microsoftu

Instalacja SQL Server Express. Logowanie na stronie Microsoftu Instalacja SQL Server Express Logowanie na stronie Microsoftu Wybór wersji do pobrania Pobieranie startuje, przechodzimy do strony z poradami. Wypakowujemy pobrany plik. Otwiera się okno instalacji. Wybieramy

Bardziej szczegółowo

Architektura systemów webowych wysokiej przepustowości. na przykładzie Wikia

Architektura systemów webowych wysokiej przepustowości. na przykładzie Wikia Architektura systemów webowych wysokiej przepustowości na przykładzie Wikia Agenda Czym jest Fandom powered by Wikia Ogólny zarys architektury - warstwy systemu Ścieżka obsługi przykładowego żądania Monolit

Bardziej szczegółowo

Tematy prac dyplomowych inżynierskich

Tematy prac dyplomowych inżynierskich inżynierskich Oferujemy możliwość realizowania poniższych tematów w ramach projektu realizowanego ze środków Narodowego Centrum Badań i Rozwoju. Najlepszym umożliwimy realizację pracy dyplomowej w połączeniu

Bardziej szczegółowo

Bazy danych - ciągłość działania, spójność danych i disaster recovery. Daniel Polek-Pawlak Jarosław Zdebik

Bazy danych - ciągłość działania, spójność danych i disaster recovery. Daniel Polek-Pawlak Jarosław Zdebik Bazy danych - ciągłość działania, spójność danych i disaster recovery Daniel Polek-Pawlak Jarosław Zdebik Plan Prezentacji Wprowadzenie - podstawy. Co oznacza utrata danych dla niedużego sklepu. Czy dostępność

Bardziej szczegółowo

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Robert Respondowski Click here if your download doesn"t start automatically Wojewodztwo Koszalinskie:

Bardziej szczegółowo

Nowy model subskrypcji, dobór produktów Red Hat i JBoss. Grzegorz Niezgoda

Nowy model subskrypcji, dobór produktów Red Hat i JBoss. Grzegorz Niezgoda Nowy model subskrypcji, dobór produktów Red Hat i JBoss Grzegorz Niezgoda AGENDA: RHEL Nowy RHEL Server Wersje i edycje Zasady wykorzystania w środowisku wirtualnym Moduły dodatkowe Wersje specjalne JBoss

Bardziej szczegółowo

CUDA Median Filter filtr medianowy wykorzystujący bibliotekę CUDA sprawozdanie z projektu

CUDA Median Filter filtr medianowy wykorzystujący bibliotekę CUDA sprawozdanie z projektu CUDA Median Filter filtr medianowy wykorzystujący bibliotekę CUDA sprawozdanie z projektu inż. Daniel Solarz Wydział Fizyki i Informatyki Stosowanej AGH 1. Cel projektu. Celem projektu było napisanie wtyczki

Bardziej szczegółowo

Dokument Detaliczny Projektu

Dokument Detaliczny Projektu Dokument Detaliczny Projektu Dla Biblioteki miejskiej Wersja 1.0 Streszczenie Niniejszy dokument detaliczny projektu(ddp) przedstawia szczegóły pracy zespołu projektowego, nad stworzeniem aplikacji bazodanowej

Bardziej szczegółowo

Wst p Model Danych Saklowalno± + replikacja Spójno± Ograniczenia. Cassandra. Paweª Róg. Pozna«, maj 2011

Wst p Model Danych Saklowalno± + replikacja Spójno± Ograniczenia. Cassandra. Paweª Róg. Pozna«, maj 2011 Paweª Róg Pozna«, maj 2011 Agenda 1 2 3 4 5 Agenda 1 2 3 4 5 NoSQL Inne podej±cie do systemu zarz dzania danymi Dane nie wymagaj okre±lonego schematu tabelarycznego Unikaj operacji join Po co? Sªaba skalowalno±c

Bardziej szczegółowo

Przegląd grafowych baz danych. Paweł Bednarz

Przegląd grafowych baz danych. Paweł Bednarz Przegląd grafowych baz danych Paweł Bednarz Porządek prezentacji: Wstęp Po co nam grafowe bazy danych? Reprezentacja danych, interfejsy Do jakich problemów je stosować? Porównanie grafowych baz danych

Bardziej szczegółowo

WYKORZYSTANIE DOKUMENTOWYCH BAZ DANYCH W APLIKACJACH INTERNETOWYCH

WYKORZYSTANIE DOKUMENTOWYCH BAZ DANYCH W APLIKACJACH INTERNETOWYCH STUDIA INFORMATICA 2010 Volume 31 Number 2B (90) Radosław ZATOKA Uniwersytet Ekonomiczny we Wrocławiu, Katedra Systemów Sztucznej Inteligencji WYKORZYSTANIE DOKUMENTOWYCH BAZ DANYCH W APLIKACJACH INTERNETOWYCH

Bardziej szczegółowo

Organizacyjnie. Prowadzący: dr Mariusz Rafało (hasło: BIG)

Organizacyjnie. Prowadzący: dr Mariusz Rafało   (hasło: BIG) Big Data Organizacyjnie Prowadzący: dr Mariusz Rafało mrafalo@sgh.waw.pl http://mariuszrafalo.pl (hasło: BIG) Data Camp Architektura Data Lake Repozytorium służące składowaniu i przetwarzaniu danych o

Bardziej szczegółowo

Konsolidacja wysokowydajnych systemów IT. Macierze IBM DS8870 Serwery IBM Power Przykładowe wdrożenia

Konsolidacja wysokowydajnych systemów IT. Macierze IBM DS8870 Serwery IBM Power Przykładowe wdrożenia Konsolidacja wysokowydajnych systemów IT Macierze IBM DS8870 Serwery IBM Power Przykładowe wdrożenia Mirosław Pura Sławomir Rysak Senior IT Specialist Client Technical Architect Agenda Współczesne wyzwania:

Bardziej szczegółowo

www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part

Bardziej szczegółowo

Krytyczne czynniki sukcesu w zarządzaniu projektami

Krytyczne czynniki sukcesu w zarządzaniu projektami Seweryn SPAŁEK Krytyczne czynniki sukcesu w zarządzaniu projektami MONOGRAFIA Wydawnictwo Politechniki Śląskiej Gliwice 2004 SPIS TREŚCI WPROWADZENIE 5 1. ZARZĄDZANIE PROJEKTAMI W ORGANIZACJI 13 1.1. Zarządzanie

Bardziej szczegółowo

Patients price acceptance SELECTED FINDINGS

Patients price acceptance SELECTED FINDINGS Patients price acceptance SELECTED FINDINGS October 2015 Summary With growing economy and Poles benefiting from this growth, perception of prices changes - this is also true for pharmaceuticals It may

Bardziej szczegółowo

Szkolenie: Testowanie wydajności (Performance Testing)

Szkolenie: Testowanie wydajności (Performance Testing) Szkolenie: Testowanie wydajności (Performance Testing) Testy niefunkcjonalne aplikacji to nieodłączna część pracy dobrego testera. Do tego typu testów zaliczamy między innymi taką właściwość systemu jak

Bardziej szczegółowo

Indeksy w bazach danych. Motywacje. Techniki indeksowania w eksploracji danych. Plan prezentacji. Dotychczasowe prace badawcze skupiały się na

Indeksy w bazach danych. Motywacje. Techniki indeksowania w eksploracji danych. Plan prezentacji. Dotychczasowe prace badawcze skupiały się na Techniki indeksowania w eksploracji danych Maciej Zakrzewicz Instytut Informatyki Politechnika Poznańska Plan prezentacji Zastosowania indeksów w systemach baz danych Wprowadzenie do metod eksploracji

Bardziej szczegółowo

Organizacyjnie. Prowadzący: dr Mariusz Rafało (hasło: BIG)

Organizacyjnie. Prowadzący: dr Mariusz Rafało   (hasło: BIG) Big Data Organizacyjnie Prowadzący: dr Mariusz Rafało mrafalo@sgh.waw.pl http://mariuszrafalo.pl (hasło: BIG) DANE W CZASIE RZECZYWISTYM 3 Tryb analizowania danych 4 Okno analizowania 5 Real-time: Checkpointing

Bardziej szczegółowo

PureSystems zautomatyzowane środowisko aplikacyjne. Emilia Smółko Software IT Architect

PureSystems zautomatyzowane środowisko aplikacyjne. Emilia Smółko Software IT Architect PureSystems zautomatyzowane środowisko aplikacyjne. Emilia Smółko Software IT Architect Wbudowana wiedza specjalistyczna Dopasowane do zadania Optymalizacja do aplikacji transakcyjnych Inteligentne Wzorce

Bardziej szczegółowo

Korporacyjna Magistrala Usług na przykładzie Mule ESB

Korporacyjna Magistrala Usług na przykładzie Mule ESB Kod szkolenia: Tytuł szkolenia: ESB/M Korporacyjna Magistrala Usług na przykładzie Mule ESB Dni: 3 Opis: Adresaci szkolenia Szkolenie adresowane jest do programistów Java, analityków systemowych oraz architektów

Bardziej szczegółowo

Wstęp. Przetwarzanie równoległe. Krzysztof Banaś Obliczenia równoległe 1

Wstęp. Przetwarzanie równoległe. Krzysztof Banaś Obliczenia równoległe 1 Wstęp. Przetwarzanie równoległe. Krzysztof Banaś Obliczenia równoległe 1 Historia i pojęcia wstępne Obliczenia równoległe: dwa lub więcej procesów (wątków) jednocześnie współpracuje (komunikując się wzajemnie)

Bardziej szczegółowo

Piotr Zacharek HP Polska

Piotr Zacharek HP Polska HP Integrity VSE Rozwój bez ograniczeń HP Restricted Piotr Zacharek HP Polska Technology for better business outcomes 2007 Hewlett-Packard Development Company, L.P. The information contained herein is

Bardziej szczegółowo

LANDINGI.COM. Case Study. Klient Landingi.com. Branża IT, marketing i PR. Okres realizacji od grudnia 2013 do chwili obecnej.

LANDINGI.COM. Case Study. Klient Landingi.com. Branża IT, marketing i PR. Okres realizacji od grudnia 2013 do chwili obecnej. Klient Landingi.com Branża IT, marketing i PR Okres realizacji od grudnia 2013 do chwili obecnej Rodzaj usługi doradztwo, hosting, Cloud Computing Amazon Web Services, zarządzanie serwerami Doradztwo Hosting

Bardziej szczegółowo

BAZY DANYCH WYKŁAD 5 NO-SQL DATABASE

BAZY DANYCH WYKŁAD 5 NO-SQL DATABASE BAZY DANYCH WYKŁAD 5 NO-SQL DATABASE CO TO JEST NOSQL NoSQL obejmuje szeroką gamę różnych technologii baz danych, które zostały opracowane w odpowiedzi na wymagania stawiane w budowaniu nowoczesnych aplikacji:

Bardziej szczegółowo

Kostki OLAP i język MDX

Kostki OLAP i język MDX Kostki OLAP i język MDX 24 kwietnia 2015 r. Opis pliku z zadaniami Wszystkie zadania na zajęciach będą przekazywane w postaci plików PDF sformatowanych jak ten. Będą się na nie składały różne rodzaje zadań,

Bardziej szczegółowo

Komputer. Komputer (computer) jest to urządzenie elektroniczne służące do zbierania, przechowywania, przetwarzania i wizualizacji informacji

Komputer. Komputer (computer) jest to urządzenie elektroniczne służące do zbierania, przechowywania, przetwarzania i wizualizacji informacji Komputer Komputer (computer) jest to urządzenie elektroniczne służące do zbierania, przechowywania, przetwarzania i wizualizacji informacji Budowa komputera Drukarka (printer) Monitor ekranowy skaner Jednostka

Bardziej szczegółowo

PRZESTRZENNE BAZY DANYCH WYKŁAD 2

PRZESTRZENNE BAZY DANYCH WYKŁAD 2 PRZESTRZENNE BAZY DANYCH WYKŁAD 2 Baza danych to zbiór plików, które fizycznie przechowują dane oraz system, który nimi zarządza (DBMS, ang. Database Management System). Zadaniem DBMS jest prawidłowe przechowywanie

Bardziej szczegółowo

Stargard Szczecinski i okolice (Polish Edition)

Stargard Szczecinski i okolice (Polish Edition) Stargard Szczecinski i okolice (Polish Edition) Janusz Leszek Jurkiewicz Click here if your download doesn"t start automatically Stargard Szczecinski i okolice (Polish Edition) Janusz Leszek Jurkiewicz

Bardziej szczegółowo

Informacje wstępne Autor Zofia Kruczkiewicz Wzorce oprogramowania 4

Informacje wstępne Autor Zofia Kruczkiewicz Wzorce oprogramowania 4 Utrwalanie danych zastosowanie obiektowego modelu danych warstwy biznesowej do generowania schematu relacyjnej bazy danych Informacje wstępne Autor Zofia Kruczkiewicz Wzorce oprogramowania 4 1. Relacyjne

Bardziej szczegółowo

Architecture Best Practices for Big Data Deployments

Architecture Best Practices for Big Data Deployments GLOBAL SPONSORS Architecture Best Practices for Big Data Deployments Kajetan Mroczek Systems Engineer GLOBAL SPONSORS Rozwój analityki biznesowej EKSPLORACJA DANYCH UCZENIE MASZYNOWE SZTUCZNA INTELIGENCJA

Bardziej szczegółowo

Migracja do PostgreSQL za pomocą narzędzi Enterprise DB

Migracja do PostgreSQL za pomocą narzędzi Enterprise DB Migracja do PostgreSQL za pomocą narzędzi Enterprise DB Przemysław Deć Konsultant IT Linux Polska Sp. z o.o. Cele prezentacji Czym jest Enterprise DB Korzyści migracji do opensource`owej bazy danych Kompatybilność

Bardziej szczegółowo

Macierze All Flash. Czy to jest alternatywa dla macierzy klasy Enterprise? Krzysztof Jamiołkowski HP EG Storage Solutions Architect

Macierze All Flash. Czy to jest alternatywa dla macierzy klasy Enterprise? Krzysztof Jamiołkowski HP EG Storage Solutions Architect Innowacje w przetwarzaniu danych Macierze All Flash Czy to jest alternatywa dla macierzy klasy Enterprise? Krzysztof Jamiołkowski HP EG Storage Solutions Architect Definicja macierzy Enterprise Cechy charakterystyczne

Bardziej szczegółowo

SAS Access to Hadoop, SAS Data Loader for Hadoop Integracja środowisk SAS i Hadoop. Piotr Borowik

SAS Access to Hadoop, SAS Data Loader for Hadoop Integracja środowisk SAS i Hadoop. Piotr Borowik SAS Access to Hadoop, SAS Data Loader for Hadoop Integracja środowisk SAS i Hadoop Piotr Borowik Wyzwania związane z Big Data Top Hurdles with Big data Source: Gartner (Sep 2014), Big Data Investment Grows

Bardziej szczegółowo

Sterowany jakością dostęp do usług składowania danych dla e-nauki

Sterowany jakością dostęp do usług składowania danych dla e-nauki Sterowany jakością dostęp do usług składowania danych dla e-nauki Renata Słota 1,2, Darin Nikolow 1,2, Marek Pogoda 1, Stanisław Polak 2 and Jacek Kitowski 1,2 1 Akademickie Centrum Komputerowe Cyfronet

Bardziej szczegółowo

How to share data from SQL database table to the OPC Server? Jak udostępnić dane z tabeli bazy SQL do serwera OPC? samouczek ANT.

How to share data from SQL database table to the OPC Server? Jak udostępnić dane z tabeli bazy SQL do serwera OPC? samouczek ANT. Jak udostępnić dane z tabeli bazy SQL do serwera OPC? samouczek ANT How to share data from SQL database table to the OPC Server? ANT tutorial Krok 1: Uruchom ANT Studio i dodaj do drzewka konfiguracyjnego

Bardziej szczegółowo

Politechnika Poznańska TWO

Politechnika Poznańska TWO Politechnika Poznańska TWO Data: 2009-11-24 Nr Lab.: I Prowadzący: dr inż. Szymon Wilk Mateusz Jancy Joanna Splitter Zadanie: DZIELENIE RELACYJNE Rok: I Grupa: B Semestr: I Ocena: Cel zadania: Wykonać

Bardziej szczegółowo

Systemy rozproszone danych strukturalnych

Systemy rozproszone danych strukturalnych Systemy rozproszone danych strukturalnych Seminarium Systemy Rozproszone 2010/2011 Marcin Walas 21 kwietnia 2011 NoSQL NoSQL to określenie na systemy zarządzania bazami danych, które różnią się od klasycznych

Bardziej szczegółowo

10 cool things about PostgreSQL Przemysław Deć Linux Polska Sp z o.o.

10 cool things about PostgreSQL Przemysław Deć Linux Polska Sp z o.o. 10 cool things about PostgreSQL Przemysław Deć Linux Polska Sp z o.o. 10 powodów by polubić PostgreSQL Duże obiekty Replikacja NoSql Tabele pamięciowe Upgrade bazy Bezpieczeństwo Rozszerzenia PostGIS SQL/MED

Bardziej szczegółowo

Strojenie systemu Linux pod k¹tem serwera bazy danych Oracle 9i

Strojenie systemu Linux pod k¹tem serwera bazy danych Oracle 9i VI Seminarium PLOUG Warszawa Styczeñ 2003 Strojenie systemu Linux pod k¹tem serwera bazy danych Oracle 9i Marcin Przepiórowski Strojenie systemu Linux pod kątem serwera bazy danych Oracle 9i 7 1. Wstęp

Bardziej szczegółowo

Big Data. Czym jest Big Data?

Big Data. Czym jest Big Data? Big Data Czym jest Big Data? Volume rozmiar danych giga/tera/petabajty Variety różnorodność, często bez struktury np. maile, zdjęcia, Tweety Velocity szybkość przyrastania danych 2 Big Data Jakie możliwości

Bardziej szczegółowo

Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI

Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI O tym, dlaczego warto budować pasywnie, komu budownictwo pasywne się opłaca, a kto się go boi, z architektem, Cezarym Sankowskim, rozmawia

Bardziej szczegółowo

RAPORT Z TESTÓW. Projekt: BAND Bank nasadzeń drzew. Strona domowa projektu:

RAPORT Z TESTÓW. Projekt: BAND Bank nasadzeń drzew. Strona domowa projektu: RAPORT Z TESTÓW Projekt: BAND Bank nasadzeń drzew Strona domowa projektu: http://bandgdansk.com/ Czas realizacji testów: 12.01.2017 09:00 12:00 12.01.2017 13:00 16:00 Środowisko testowe: System operacyjny:

Bardziej szczegółowo

Przetwarzanie danych w chmurze

Przetwarzanie danych w chmurze Materiały dydaktyczne Katedra Inżynierii Komputerowej Przetwarzanie danych w chmurze Podstawy Google App Engine dr inż. Robert Arsoba Robert.Arsoba@weii.tu.koszalin.pl Koszalin 2017 Wersja 1.0 Podstawy

Bardziej szczegółowo

Seminarium Bazy Danych I. BigTable. Piotr Świgoń Uniwersytet Warszawski

Seminarium Bazy Danych I. BigTable. Piotr Świgoń Uniwersytet Warszawski Seminarium Bazy Danych I BigTable Piotr Świgoń Uniwersytet Warszawski Rzędy wielkości Miliardy URL'i i linków, wiele wersji stron Setki milionów użytkowników Tysiące zapytań na sekundę 2.7 3.3 GB rozmiar

Bardziej szczegółowo

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition) Zakopane, plan miasta: Skala ok. 1:15 000 = City map (Polish Edition) Click here if your download doesn"t start automatically Zakopane, plan miasta: Skala ok. 1:15 000 = City map (Polish Edition) Zakopane,

Bardziej szczegółowo