INSTRUKCJA LABORATORYJNA NR 9-OS b BADANIE WPŁYWU CZYNNIKÓW ZEWNĘTRZNYCH NA CHARAKTERYSTYKĘ OGNIW SŁONECZNYCH
|
|
- Michał Kwiatkowski
- 9 lat temu
- Przeglądów:
Transkrypt
1 LABORATORIUM ODNAWIALNYCH ŹRÓDEŁ ENERGII Katedra Aparatury i Maszynoznawstwa Chemicznego Wydział Chemiczny Politechniki Gdańskiej INSTRUKCJA LABORATORYJNA NR 9-OS b BADANIE WPŁYWU CZYNNIKÓW ZEWNĘTRZNYCH NA CHARAKTERYSTYKĘ OGNIW SŁONECZNYCH. Cel i zakres ćwiczenia Ćwiczenie ma na celu zapoznanie studentów z następującymi zagadnieniami: Wpływ zmiennych warunków oświetlenia i temperatury na parametry elektryczne pracy ogniw fotowoltaicznych. Pomiar charakterystyki natężeniowo-napięciowej ogniw fotowoltaicznych. Obliczanie parametrów elektrycznych ogniw fotowoltaicznych w warunkach stałego oświetlenia. Straty mocy elektrycznej wywołane zacienieniem powierzchni fotoczułej.
2 2. Tematyka ćwiczenia Na przebieg krzywej I(U) i wartość mocy maksymalnej decydujący wpływ ma natężenie promieniowania (Rys..). Natężenie prądu zwarcia rośnie wprost proporcjonalnie do wzrostu natężenia promieniowania słonecznego. Sprawność konwersji fotowoltaicznej oblicza się na podstawie charakterystyki prądowo-napięciowej, wyznaczonej w warunkach stałego natężenia promieniowania ze wzoru: η = PMMP/E. S, gdzie E - natężenie promieniowania [W/m 2 ], S - powierzchnia ogniwa/modułu. Rys.. Charakterystyki prądowo-napięciowe instalacji solarnej w różnych warunkach nasłonecznienia Powierzchnia monokrystalicznych krzemowych ogniw fotowoltaicznych umożliwia prawie 9% absorpcję promieniowania i najwyższą sprawność konwersji fotoelektrycznej spośród ogniw krzemowych. Temperatura ogniw i modułów podczas pracy jest zależna od wartości natężenia padającego promieniowania, prędkości wiatru, temperatury powietrza, własności termicznych elementów instalacji i może wzrosnąć powyżej 7 o C już przy natężeniu napromieniowania ponad 75 W/m 2, a 3 o C osiąga typowy zintegrowany z budynkiem system PV umieszczony na dachu już przy temperaturze otoczenia,9 o C i natężeniu promieniowania 38 W/m 2. Za spadek sprawności ogniw/modułów w temperaturach wysokich odpowiada głównie spadek wartości napięcia otwartego obwodu (Rys. 2.). Nieznaczny wzrost prądu zwarcia nie rekompensuje tego spadku i w efekcie wzrostu temperatury ogniw maleje generowana moc elektryczna i sprawność konwersji fotowoltaicznej. Rys. 2. Wpływ temperatury ogniw na charakterystykę prądowo- napięciową modułu fotowoltaicznego 2
3 W warunkach nierównomiernego nasłonecznienia modułu temperatura zacienionego ogniwa może wzrosnąć do takiej wartości, że ulega ono uszkodzeniu i powstaje punkt przegrzania (tzw. hot spot). Przyczyną takiego stanu rzeczy jest przepływ prądu w kierunku przeciwnym przez nieoświetlone ogniwo. Częściowe zacienienie modułu lub instalacji, może być spowodowane przez warunki naturalne takie jak chmury, drzewa, kominy, sąsiednie budynki czy zalegający śnieg. W przypadku kiedy zacienienie obejmuje zaledwie 2% powierzchni modułu (np. zacienienie obejmuje ¾ ogniwa z modułu, składającego się z 36 ogniw), maksymalna moc zostaje zmniejszona o 7%. I sc R pm I[A] P[W] Lokalne maksimum U oc U [V] Rys. 3. Charakterystyka I U oraz I P modułu fotowoltaicznego w warunkach jednomiernego i niejednomiernego oświetlenia Zestaw eksperymentów do wykonania w ramach ćwiczenia: A. Pomiary charakterystyk I-U przy różnych natężeniach oświetlenia. Moc i optymalny punkt pracy jako funkcja natężenia oświetlenia B. Pomiary charakterystyk I-U przy różnych temperaturach pracy ogniw słonecznych. Moc i optymalny punkt pracy układu PV jako funkcja temperatury ogniw C. Pomiary charakterystyk I-U przy ogniwach zacienionych. 3
4 3. Opis stanowiska Natężenie oświetlenia, temperatura i obciążenie elektryczne mają bezpośredni wpływ na parametry elektryczne pracy ogniw fotowoltaicznych. Układ oświetleniowy z regulowanym natężeniem oświetla cztery ogniwa słoneczne, których temperaturę można utrzymywać na stałym poziomie dzięki modułowi Peltiera. Zastosowanie dołączonego zestawu kabli umożliwia połączenie ogniw szeregowo lub/i równolegle za pomocą tablicy połączeń. Opornik elektryczny o zmiennym obciążeniu, wbudowany w tablicę połączeń umożliwia ręczne obliczenia na podstawie zmierzonej krzywej charakterystyki prądowo-napięciowej. Do każdego ogniwa można przyłączyć równolegle diodę w celu zbadania wpływu zacienienia. Pomiary krzywej charakterystyki można wykonać automatycznie przy pomocy wbudowanego układu odpływu prądu sterowanego oprogramowaniem i pozwalającego na ciągłe zmiany obciążenia elektrycznego. Do pomiaru natężenia oświetlenia, natężenia prądu, napięcia elektrycznego i temperatury służy układ czujników wraz z oprogramowaniem. 3A. Oświetlenie Jednostka oświetleniowa zawiera 6 pojedynczych lamp halogenowych do oświetlania ogniw słonecznych. Oświetlenie można regulować za pomocą oprogramowania, wprowadzając określoną wartość wyrażoną w [W/m 2 ]. Po wprowadzeniu wartości należy wyregulować natężenie lampy przy pomocy źródła zasilania jednostki oświetleniowej do momentu osiągnięcia pożądanego oświetlenia. Natężenie oświetlenia jest regulowane w zakresie 2 W/m 2-8 W/m 2. Jeśli uzyskanie wybranej wartości jest niemożliwe, wyświetlony zostanie komunikat o błędzie. 3B. Ogniwa słoneczne W układzie ogniw słonecznych znajdują się cztery monokrystaliczne ogniwa. Przód i tył ogniw słonecznych zostały połączone za pomocą powlekanej cyną taśmy miedzianej. Ze styków ogniw słonecznych poprowadzono kable do gniazd tablicy połączeń. Referencyjne ogniwo słoneczne zamontowano pomiędzy ogniwami. Jego zadaniem jest pomiar natężenia oświetlenia. Wartość mierzona steruje natężeniem lampy. Przewodząca ciepło podstawa montażowa zapewnia przewodnictwo cieplne pomiędzy ogniwami słonecznymi a zamocowanym poniżej modułem chłodniczym/grzewczym Peltiera, który służy do chłodzenia lub podgrzewania ogniw słonecznych w zależności od zadanej temperatury. 3C. Tablica połączeń Tablica połączeniowa umożliwia wykonanie różnych połączeń elektrycznych przy użyciu dołączonych kabli. W celu utworzenia połączeń elektrycznych dostępne są kable czerwone i niebieskie o dwóch różnych długościach, jak również wtyczki zwarciowe. W każdym ogniwie ze styków przednich i tylnych poprowadzono kable do gniazd tablicy połączeniowej. 4
5 3D. Jednostka pomiarowa i sterownicza z automatycznym odpływem prądu Skrzynka rozdzielcza zawiera wszystkie główne komponenty do sterowania i pobierania danych. Podczas pracy nie ma potrzeby jej otwierania. Wykonanie pomiarów możliwe jedynie po podłączeniu poprzez złącze USB komputera, na którym zainstalowano odpowiednie oprogramowanie. Z przodu skrzynki rozdzielczej znajduje się przełącznik główny jednostki oraz przełączniki jednostki oświetleniowej i modułu Peltiera, które można włączyć tylko raz po uruchomieniu oprogramowania, które służy do sterowania wszystkimi funkcjami urządzenia. 3E. Oprogramowanie Oprogramowanie pozwala na odczyt wyników i obserwację wykresów oraz prowadzenie symulacji. Ikony, którymi przełączamy funkcje programowe: Multimetr - wartości mierzone Symulacja Wykres charakterystyki I-U i P-U Przycisk aktywujący moduł szkoleniowy 5
6 4. Przebieg ćwiczenia A. Pomiary charakterystyk I-U przy różnych natężeniach oświetlenia. Moc i optymalny punkt pracy jako funkcja natężenia oświetlenia C. Wykonać wszystkie połączenia kablowe do pomiarów automatycznych na 4 ogniwach słonecznych połączonych szeregowo. C2. Wybrać oświetlenie 2 W/m 2, temperaturę 25 C. C3. Obserwować krzywą charakterystyki natężeniowo-napięciowej po naciśnięciu ikony Wykres Charakterystyki (3 od góry), i powtórzyć pomiar dla 4 W/m 2 i 6 W/m 2. Zapisać dane w plikach odpowiedniej nazwie (file save graph) np. IU_szereg_4_2.dat. Po zakończeniu pomiaru automatycznego należy w trybie manualnym zmierzyć Uoc i Isc (zgodnie z pkt. A4) dla 2 W/m 2, 4 W/m 2 i 6 W/m 2. Rysunek przedstawia wyniki pomiarów dla natężenia prądu zwarcia w funkcji napięcia. Otrzymane wyniki należy skopiować po zakończeniu ćwiczeń z pliku dat do programu EXEL i stworzyć wykres punktowy przedstawiający krzywe charakterystyki prądowo-napięciowej. Natężenie prądu zwarcia jest w przybliżeniu proporcjonalne do oświetlenia. Napięcie otwartego obwodu wykazuje mniejszą zależność od oświetlenia. Natężenie I w A 2,8,6,4,2,8,6 Charakterystyka prądowonapięciowa 2 W/m2 4 W/m2 6 W/m2,5,5 2 2,5 Napięcie U w V C4. Analizując wyniki obliczyć moc maksymalną i współczynnik wypełnienia charakterystyki dla różnych wartości natężenia oświetlenia. C5. Sformułować wnioski. Jak wynika z analizy tabeli, współczynnik wypełnienia spada wraz ze wzrastającym oświetleniem. Efekt ten można wyjaśnić rosnącym wpływem opornika szeregowego. 6
7 B. Pomiary charakterystyk I-U przy różnych temperaturach pracy ogniw słonecznych. Moc i optymalny punkt pracy układu PV jako funkcja temperatury ogniw Nacisnąć ikonę multimetru ( od góry). D. Wykonać wszystkie połączenia zgodnie z rysunkiem. Wybrać oświetlenie W/m 2 i temperaturę 6 C. Odczekać do osiągnięcia temperatury 55 C. D2. Zmniejszyć oświetlenie do 25 W/m 2 i zanotować pierwszą krzywą charakterystyki I-U po wystawieniu ogniwa słonecznego na działanie temperatury 55 C przez ok. 5 minut. D3. Zmniejszyć nastawę temperatury ogniwa o 5 C. D4. Zapisać kolejną krzywą charakterystyki I-U nie wcześniej niż 2 minuty po osiągnięciu nastawy. Podczas chłodzenia należy w trybie manualnym zmierzyć Uoc i Isc (zgodnie z pkt. A4) dla każdej temperatury. D5. Powtórzyć punkty D3 i D4 do osiągnięcia temperatury 25 C. Zapisać dane w plikach odpowiedniej nazwie (file save graph) np. IU_55. Otrzymane wyniki należy skopiować po zakończeniu ćwiczeń z pliku dat do programu EXEL i stworzyć wykres punktowy przedstawiający krzywe charakterystyki prądowo-napięciowej. D6. Wyniki przedstawić na wykresach. Napięcie U w V,6,5,8,6,3 Uoc Isc, Temperatura t w o C Natężenie I w A Natężenie I w A Charakterystyka prądowo-napięciowa,9,8,7,6,5 25oC,3 4oC 55oC,,,3,5,6 Napięcie U w V Wniosek: Obserwuje się niewielki wzrost natężenia prądu zwarcia i znaczny spadek napięcia otwartego obwodu. 7
8 D7. W celu przedstawienia zależności maksymalnej mocy PMPP ogniwa słonecznego od temperatury wykreślić procentowy spadek mocy w funkcji temperatury, przy czym przyjąć moc ogniwa słonecznego jako % w temperaturze 25 C jako wartość referencyjną. D8. Obliczyć liniowy współczynnik temperaturowy maksymalnej mocy wyjściowej [%/K], np.: Spadek mocy w % 5% % 95% 9% 85% 8% P max dpmax dt % =, 65 K 75% Temperatura t w o C 8
9 C. Pomiary charakterystyk I-U przy ogniwach zacienionych. E. Połączyć szeregowo 4 ogniwa słoneczne i aktywować wszystkie diody bocznikowe poprzez włożenie wtyczki zwarciowej. E2. Nastawę sterowania temperaturą modułu Peltiera ustawić na 25 C. Ustawić oświetlenie na 2 W/m 2. E3. Zapisać krzywą charakterystyki I-U ogniw niezacienionych (file save graph). E4. Powtórzyć pomiar po usunięciu wtyczki zwarciowej, co powoduje dezaktywację jednej z diod bocznikowych. E5. Umieścić najmniejszą pokrywkę na ogniwie słonecznym, którego dioda bocznikowa została uprzednio dezaktywowana na tablicy połączeń. Zacienienie powinno objąć około ¼ ogniwa. E6. Zapisać otrzymaną krzywą charakterystyczną I-U. E7. Powtórzyć punkty E5 i E6, stosując większą pokrywkę tak, aby zacienienie objęło ½ i ¾ powierzchni ogniwa. E8. Następnie ponownie przyłączyć kabel połączeniowy diody bocznikowej. Powtórzyć pomiary zawarte w punktach E5 i E7 z podłączoną diodą bocznikową. E9. Zapisać dane w plikach odpowiedniej nazwie (file save graph). Po zakończeniu pomiaru automatycznego należy w trybie manualnym zmierzyć Uoc i Isc (zgodnie z pkt. A4) Otrzymane wyniki należy skopiować po zakończeniu ćwiczeń z pliku dat do programu EXEL i stworzyć wykres punktowy przedstawiający krzywe charakterystyki prądowo-napięciowej. Natężenie I w A,9,8,7,6,5,3, Charakterystyka prądowo-napięciowa A - Krzywa charakterystyki I-U z diodą bocznikową, brak zacienienia B - Krzywa charakterystyki I-U bez diody bocznikowej, brak zacienienia E - Krzywa charakterystyki I-U z diodą bocznikową, zacienienie /2 powierzchni ogniwa F - Krzywa charakterystyki I-U bez diody bocznikowej, zacienienie /2 powierzchni ogniwa A B E F,5,5 2 2,5 Napięcie U w V Sporządzić wykresy I-U dla różnych stopni zacienienia. Wniosek: wpływ zacienienia połowy ogniwa można zaobserwować na krzywych charakterystyki E i F. Dioda bocznikowa nie dopuszcza, aby prąd płynący w odwrotnym kierunku miał wpływ na zacienione ogniwo. Moc P w W,4,2,8,6 Wykres mocy ogniwa A B E F G H E. Sporządzić krzywe zależności mocy od napięcia przy różnych stopniach zacienienia,5,5 2 2,5 Napięcie U w V A - Krzywa charakterystyki P-U z diodą bocznikową, brak zacienienia B - Krzywa charakterystyki P-U bez diody bocznikowej, brak zacienienia E - Krzywa charakterystyki P-U z zacienieniem /2 powierzchni ogniwa, z diodą bocznikową F - Krzywa charakterystyki 9 P-U z zacienieniem /2 powierzchni ogniwa, bez diody bocznikowej G - Krzywa charakterystyki P-U z zacienieniem 3/4 powierzchni ogniwa, z diodą bocznikową H - Krzywa charakterystyki P-U z zacienieniem 3/4 powierzchni ogniwa, bez diody bocznikowej
10 Wnioski: obserwuje się spadek mocy elektrycznej wraz ze wzrostem stopnia zacienienia. W przypadku rzeczywistych systemów fotowoltaicznych wymagane jest śledzenie punktu mocy maksymalnej MPP w celu odróżnienia maksymalnej mocy głównej od istniejący maksymalnych mocy lokalnych na otrzymanej krzywej charakterystyki mocy. 5. Literatura [] Ewa Klugmann-Radziemska, Fotowoltaika w teorii i Praktyce, Wydawnictwo BTC, Warszawa- Legionowo 29 [2] Ewa Klugmann-Radziemska, Odnawialne źródła energii - przykłady obliczeniowe, Wydanie V, Wydawnictwo Politechniki Gdańskiej 25 [3] ET 252 Pomiary na ogniwach słonecznych, G.U.N.T. Gerätebau, Barsbüttel, Germany 25
INSTRUKCJA LABORATORYJNA NR 8-OS a CHARAKTERYSTYKA OGNIW SŁONECZNYCH
LABORATORIUM ODNAWIALNYCH ŹRÓDEŁ ENERGII Katedra Aparatury i Maszynoznawstwa Chemicznego Wydział Chemiczny Politechniki Gdańskiej INSTRUKCJA LABORATORYJNA NR 8-OS a CHARAKTERYSTYKA OGNIW SŁONECZNYCH 1.
INSTRUKCJA LABORATORYJNA NR 10-PV MODUŁ FOTOWOLTAICZNY
LABORATORIUM ODNAWIALNYCH ŹRÓDEŁ ENERGII Katedra Aparatury i Maszynoznawstwa Chemicznego Wydział Chemiczny Politechniki Gdańskiej INSTRUKCJA LABORATORYJNA NR 10-PV MODUŁ FOTOWOLTAICZNY 1. Cel i zakres
Akademia Górniczo Hutnicza im. Stanisława Staszica w Krakowie Wydział IEiT. Ćwiczenie laboratoryjne Badanie modułu fotowoltaicznego
Akademia Górniczo Hutnicza im. Stanisława Staszica w Krakowie Wydział IEiT Katedra Elektroniki Alternatywne Źródła Energii Ćwiczenie laboratoryjne Badanie modułu fotowoltaicznego Opracowanie instrukcji:
Sprawozdanie z laboratorium proekologicznych źródeł energii
P O L I T E C H N I K A G D A Ń S K A Sprawozdanie z laboratorium proekologicznych źródeł energii Temat: Wyznaczanie charakterystyk prądowo-napięciowych modułu ogniw fotowoltaicznych i sprawności konwersji
E12. Wyznaczanie parametrów użytkowych fotoogniwa
1/5 E12. Wyznaczanie parametrów użytkowych fotoogniwa Celem ćwiczenia jest poznanie podstaw zjawiska konwersji energii świetlnej na elektryczną, zasad działania fotoogniwa oraz wyznaczenie jego podstawowych
Ćwiczenie 3 WPŁYW NASŁONECZNIENIA I TECHNOLOGII PRODUKCJI KRZEMOWYCH OGNIW FOTOWOLTAICZNYCH NA ICH WŁASNOŚCI EKSPLOATACYJNE
Ćwiczenie WPŁYW NASŁONECZNIENIA I TECHNOLOGII PRODUKCJI KRZEMOWYCH OGNIW FOTOWOLTAICZNYCH NA ICH WŁASNOŚCI EKSPLOATACYJNE Opis stanowiska pomiarowego Stanowisko do wyznaczania charakterystyk prądowo napięciowych
Ćwiczenie 2 WSPÓŁPRACA JEDNAKOWYCH OGNIW FOTOWOLTAICZNYCH W RÓŻNYCH KONFIGURACJACH POŁĄCZEŃ. Opis stanowiska pomiarowego. Przebieg ćwiczenia
Ćwiczenie WSPÓŁPRACA JEDNAKOWYCH OGNIW FOTOWOLTAICZNYCH W RÓŻNYCH KONFIGURACJACH POŁĄCZEŃ Opis stanowiska pomiarowego Stanowisko do analizy współpracy jednakowych ogniw fotowoltaicznych w różnych konfiguracjach
Konfiguracja modułu fotowoltaicznego
LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 8 Konfiguracja modułu fotowoltaicznego Cel ćwiczenia: Zapoznanie studentów z działaniem modułów fotowoltaicznych, oraz różnymi konfiguracjami połączeń tych modułów.
INSTRUKCJA LABORATORYJNA NR 4-EW ELEKTROWNIA WIATROWA
LABORATORIUM ODNAWIALNYCH ŹRÓDEŁ ENERGII Katedra Aparatury i Maszynoznawstwa Chemicznego Wydział Chemiczny Politechniki Gdańskiej INSTRUKCJA LABORATORYJNA NR 4-EW ELEKTROWNIA WIATROWA ELEKTROWNIA WIATROWA
LABORATORIUM INŻYNIERII MATERIAŁOWEJ
Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM INŻYNIERII MATERIAŁOWEJ Protokół
MOBILNE STANOWISKO DO BADAŃ EFEKTYWNOSCI MODUŁÓW PV.
MOBILNE STANOWISKO DO BADAŃ EFEKTYWNOSCI MODUŁÓW PV www.oze.utp.edu.pl MOBILNE STANOWISKO DO BADAŃ EFEKTYWNOSCI MODUŁÓW PV Prezentacja stanowiska łącznie z mobilnym układem instalacji solarnej z kolektorem
EFEKT FOTOWOLTAICZNY OGNIWO SŁONECZNE
ĆWICZENIE 104 EFEKT FOTOWOLTAICZNY OGNIWO SŁONECZNE Instrukcja wykonawcza 1. Wykaz przyrządów 1. Panel z ogniwami 5. Zasilacz stabilizowany oświetlacza 2. Oświetlacz 3. Woltomierz napięcia stałego 4. Miliamperomierz
IV. Wyznaczenie parametrów ogniwa słonecznego
1 V. Wyznaczenie parametrów ogniwa słonecznego Cel ćwiczenia: 1.Zbadanie zależności fotoprądu zwarcia i fotonapięcia zwarcia od natężenia oświetlenia. 2. Wyznaczenie sprawności energetycznej baterii słonecznej.
SOLARNA. Moduły fotowoltaiczne oraz kompletne systemy przetwarzające energię słoneczną. EKOSERW BIS Sp. j. Mirosław Jedrzejewski, Zbigniew Majchrzak
Moduły fotowoltaiczne oraz kompletne systemy przetwarzające energię słoneczną ENERGIA SOLARNA Fotowoltaika Do Ziemi dociera promieniowanie słoneczne zbliżone widmowo do promieniowania ciała doskonale czarnego
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Struktura pasmowa ciał stałych. 2. Klasyfikacja ciał stałych w oparciu o teorię
BADANIA MODELOWE OGNIW SŁONECZNYCH
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 70 Electrical Engineering 2012 Bartosz CERAN* BADANIA MODELOWE OGNIW SŁONECZNYCH W artykule przedstawiono model matematyczny modułu fotowoltaicznego.
Laboratorium fizyki CMF PŁ
Laboratorium fizyki CMF PŁ dzień godzina _ grupa wydział semestr rok akademicki O2 kod ćwiczenia Badanie charakterystyk baterii słonecznych _ tytuł ćwiczenia _ imię i nazwisko _ imię i nazwisko _ imię
MD-585L. Badanie modułów fotowoltaicznych Stanowisko 1
MD-585L Badanie modułów fotowoltaicznych Stanowisko 1 Spis treści 1. Charakterystyka stanowiska...3 1.1. Wstęp...3 1.2. Specyfikacja stanowiska...3 1.3. Schemat układu pomiarowego...5 2. Obsługa stanowiska...7
Ćw. 0: Wprowadzenie do programu MultiSIM
Ćw. 0: Wprowadzenie do programu MultiSIM Wstęp Celem ćwiczenia jest zapoznanie się z programem MultiSIM przeznaczonym do analiz i symulacji działania układów elektronicznych. Zaznajamianie się z tym programem
Część 1. Wprowadzenie. Przegląd funkcji, układów i zagadnień
Część 1 Wprowadzenie Przegląd funkcji, układów i zagadnień Źródło energii w systemie fotowoltaicznym Ogniwo fotowoltaiczne / słoneczne photovoltaic / solar cell pojedynczy przyrząd półprzewodnikowy U 0,5
STABILIZATORY NAPIĘCIA STAŁEGO O DZIAŁANIU CIĄGŁYM
STABILIZATORY NAPIĘCIA STAŁEGO O DZIAŁANIU CIĄGŁYM Celem ćwiczenia jest zapoznanie się z problemami związanymi z projektowaniem, realizacją i pomiarami wartości parametrów stabilizatorów parametrycznych
Badanie baterii słonecznych w zależności od natężenia światła
POLITECHNIKA WARSZAWSKA Instytut Elektroenergetyki, Zakład Elektrowni i Gospodarki Elektroenergetycznej Przemiany energii laboratorium Ćwiczenie Badanie baterii słonecznych w zależności od natężenia światła
E12. Wyznaczanie parametrów użytkowych fotoogniwa
E12. Wyznaczanie parametrów użytkowych fotoogniwa 1/5 E12. Wyznaczanie parametrów użytkowych fotoogniwa Celem ćwiczenia jest zapoznanie z podstawami zjawiska konwersji energii świetlnej na elektryczną,
Ćwiczenie Nr 5. Badanie różnych konfiguracji modułów fotowoltaicznych
Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych Laboratorium Fotowoltaiki Ćwiczenie Nr 5 Badanie różnych konfiguracji modułów fotowoltaicznych I. Cel ćwiczenia Celem ćwiczenia jest zapoznanie
WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ, Instytut Fizyki
WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ, Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA Ćwiczenie 8 Źródła napięciowe i prądowe Pojęcia i modele
Ćwiczenie: "Rezonans w obwodach elektrycznych"
Ćwiczenie: "Rezonans w obwodach elektrycznych" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia:
LABORATORIUM Z PROEKOLOGICZNYCH ŹRÓDEŁ ENERGII ODNAWIALNEJ
VIII-EW ELEKTROWNIA WIATROWA LABORATORIUM Z PROEKOLOGICZNYCH ŹRÓDEŁ ENERGII ODNAWIALNEJ Katedra Aparatury i Maszynoznawstwa Chemicznego Instrukcja ćwiczenia nr 8. EW 1 8 EW WYZNACZENIE ZAKRESU PRACY I
Stanowisko do badania zjawiska tłumienia światła w ośrodkach materialnych
Stanowisko do badania zjawiska tłumienia światła w ośrodkach materialnych Na rys. 3.1 przedstawiono widok wykorzystywanego w ćwiczeniu stanowiska pomiarowego do badania zjawiska tłumienia światła w ośrodkach
Badanie własności fotodiody
Badanie własności fotodiody Ryszard Kostecki 13 maja 22 Wstęp Celem tego doświadczenia było wykonanie charakterystyki prądowo-napięciowej fotodiody dla różnych wartości natężenia padającego światła, a
LVII Olimpiada Fizyczna (2007/2008)
LVII Olimpiada Fizyczna (2007/2008) Zadanie doświadczalne Masz do dyspozycji: baterię słoneczną, sześć różnych oporników o oporach 100Ω, 500Ω, 1000Ω, 2200Ω, 3000Ω, 4300Ω określonych z dokładnością 5%,
Zakład Zastosowań Elektroniki i Elektrotechniki
Zakład Zastosowań Elektroniki i Elektrotechniki Laboratorium Wytwarzania energii elektrycznej Temat ćwiczenia: Badanie alternatora 52 BADANIE CHARAKTERYSTYK EKSPLOATACYJNYCH ALTERNATORÓW SAMO- CHODOWYCH
Co się stanie, gdy połączymy szeregowo dwie żarówki?
Różne elementy układu elektrycznego można łączyć szeregowo. Z wartości poszczególnych oporów, można wyznaczyć oporność całkowitą oraz całkowite natężenie prądu. Zadania 1. Połącz szeregowo dwie identyczne
Piezorezystancyjny czujnik ciśnienia: pomiar i wyznaczenie parametrów metrologicznych czujnika i przetwornika ciśnienia
MIKROSYSTEMY - laboratorium Ćwiczenie 3 Piezorezystancyjny czujnik ciśnienia: pomiar i wyznaczenie parametrów metrologicznych czujnika i przetwornika ciśnienia Zadania i cel ćwiczenia. W ćwiczeniu zostaną
Laboratorium Systemów Fotowoltaicznych. Ćwiczenie 3
Ćwiczenie 3 Badania autonomicznego systemu fotowoltaicznego współpracującego z regulatorami ładowania oraz układem zabezpieczającym magazyn energii przed rozładowaniem Celem ćwiczenia jest zapoznanie się
Ćwiczenie Nr 2 Dopasowanie modeli symulacyjnych ogniw słonecznych do ich charakterystyk rzeczywistych
Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych Laboratorium Fotowoltaiki Ćwiczenie Nr 2 Dopasowanie modeli symulacyjnych ogniw słonecznych do ich charakterystyk rzeczywistych Wstęp teoretyczny.
WYZNACZANIE CHARAKTERYSTYK ELEKTRYCZNYCH ŹRÓDEŁ ŚWIATŁA
POLITECHNIKA ŁÓDZKA INSTYTUT ELEKTROENERGETYKI Instrukcja do ćwiczenia O9 Temat ćwiczenia WYZNACZANIE CHARAKTERYSTYK ELEKTRYCZNYCH ŹRÓDEŁ ŚWIATŁA Ćwiczenie O9 WYZNACZANIE CHARAKTERYSTYK ELEKTRYCZNYCH ŹRÓDEŁ
LABORATORIUM TERMODYNAMIKI ĆWICZENIE NR 3 L3-1
L3-1 L3-2 L3-3 L3-4 L3-5 L3-6 L3-7 L3-8 L3-9 L3-10 L3-11 L3-12 L3-13 L3-14 L3-15 L3-16 L3-17 L3-18 L3-19 OPIS WYKONYWANIA ZADAŃ Celem pomiarów jest sporządzenie przebiegu charakterystyk temperaturowych
Badanie charakterystyki prądowo-napięciowej opornika, żarówki i diody półprzewodnikowej z wykorzystaniem zestawu SONDa
Badanie charakterystyki prądowo-napięciowej opornika, żarówki i diody półprzewodnikowej z wykorzystaniem zestawu SONDa Celem doświadczenia jest wyznaczenie charakterystyk prądowo-napięciowych oraz zależności
LABORATORIUM OPTOELEKTRONIKI
LABORATORIUM OPTOELEKTRONIKI ĆWICZENIE 1 ŹRÓDŁA ŚWIATŁA Gdańsk 2001 r. ĆWICZENIE 1: ŹRÓDŁA ŚWIATŁA 2 1. Wstęp Zasada działania półprzewodnikowych źródeł światła (LED-ów i diod laserowych LD) jest bardzo
Ile wynosi całkowite natężenie prądu i całkowita oporność przy połączeniu równoległym?
Domowe urządzenia elektryczne są często łączone równolegle, dzięki temu każde tworzy osobny obwód z tym samym źródłem napięcia. Na podstawie poszczególnych rezystancji, można przewidzieć całkowite natężenie
Ćwiczenie: "Właściwości wybranych elementów układów elektronicznych"
Ćwiczenie: "Właściwości wybranych elementów układów elektronicznych" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki.
Możliwości wykorzystania instalacji fotowoltaicznych w Polsce
Możliwości wykorzystania instalacji fotowoltaicznych w Polsce Technologia wytwarzania ogniw fotowoltaicznych Technologia wytwarzania ogniw fotowoltaicznych Metoda Czochralskiego - technika otrzymywania
Instalacja fotowoltaiczna o mocy 36,6 kw na dachu oficyny ratusza w Żywcu.
Przedsiębiorstwo VOTRE Projekt Sp. z o.o. Henryka Pobożnego 1/16 Strzelce Opolskie Polska Osoba kontaktowa: Kamil Brudny Telefon: 533-161-381 E-mail: k.brudny@votreprojekt.pl Klient Urząd Miast Żywiec
I we. F (filtr) U we. Rys. 1. Schemat blokowy układu zasilania odbiornika prądu stałego z sieci energetycznej z zastosowaniem stabilizatora napięcia
22 ĆWICZENIE 3 STABILIZATORY NAPIĘCIA STAŁEGO Wiadomości wstępne Stabilizatory napięcia stałego są to układy elektryczne dostarczające do odbiornika napięcie o stałej wartości niezależnie od zmian w określonych
Wyznaczanie podstawowych parametrów ogniwa paliwowego
Wyznaczanie podstawowych parametrów ogniwa paliwowego Spis ćwiczeń 1. Charakterystyka IU (prądowo-napięciowa) dla zacienionego i oświetlonego modułu solarnego 2. Natężenie prądu w funkcji odległości i
PL B1. Sposób zabezpieczania termiczno-prądowego lampy LED oraz lampa LED z zabezpieczeniem termiczno-prądowym
PL 213343 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 213343 (13) B1 (21) Numer zgłoszenia: 391516 (51) Int.Cl. F21V 29/00 (2006.01) F21S 8/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej
NIEZBĘDNY SPRZĘT LABORATORYJNY
Temat: Układ przełączający. Cel ćwiczenia Ćwiczenie 15 Poznanie zasady pracy tranzystorowego układu przełączającego. Pomiar prądu kolektorowego, gdy tranzystor jest w stanach włączenia i wyłączenia. Czytanie
Instrukcja do ćwiczenia laboratoryjnego nr 13
Instrukcja do ćwiczenia laboratoryjnego nr 13 Temat: Charakterystyki i parametry dyskretnych półprzewodnikowych przyrządów optoelektronicznych Cel ćwiczenia. Celem ćwiczenia jest poznanie budowy, zasady
Wydział Budownictwa i Inżynierii Środowiska Katedra Ciepłownictwa. Instrukcja do zajęć laboratoryjnych
Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska Instrukcja do zajęć laboratoryjnych Temat ćwiczenia: Ćwiczenie nr 2 Laboratorium z przedmiotu: Odnawialne źródła energii Kod: OM1302
Ćwiczenie E17 BADANIE CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH MODUŁU OGNIW FOTOWOLTAICZNYCH I SPRAWNOŚCI KONWERSJI ENERGII PADAJĄCEGO PROMIENIOWANIA
Ćwiczenie E17 BADANIE CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH MODUŁU OGNIW FOTOWOLTAICZNYCH I SPRAWNOŚCI KONWERSJI ENERGII PADAJĄCEGO PROMIENIOWANIA Cel: Celem ćwiczenia jest zbadanie charakterystyk prądowo
Ćwiczenie: "Obwody ze sprzężeniami magnetycznymi"
Ćwiczenie: "Obwody ze sprzężeniami magnetycznymi" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia:
LABORATORIUM ELEKTRONIKA. I. Scalony, trzykońcówkowy stabilizator napięcia II. Odprowadzanie ciepła z elementów półprzewodnikowych
LABORATORIUM ELEKTRONIKA I. Scalony, trzykońcówkowy stabilizator napięcia II. Odprowadzanie ciepła z elementów półprzewodnikowych Opracował: dr inż. Jerzy Sawicki Wymagania, znajomość zagadnień (I): 1.
BADANIE ELEMENTÓW RLC
KATEDRA ELEKTRONIKI AGH L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE BADANIE ELEMENTÓW RLC REV. 1.0 1. CEL ĆWICZENIA - zapoznanie się z systemem laboratoryjnym NI ELVIS II, - zapoznanie się z podstawowymi
Ćwiczenie 1. Parametry statyczne diod LED
Ćwiczenie. Parametry statyczne diod LED. Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z podstawowymi właściwościami i charakterystykami diod LED. Poznanie ograniczeń i sposobu zasilania tego typu
ZAŁĄCZNIK NR 10 Symulacja uzysku rocznego dla budynku stacji transformatorowej
ZAŁĄCZNIK NR 10 Symulacja uzysku rocznego dla budynku stacji transformatorowej Podłączona do sieci instalacja fotowoltaiczna (PV) Dane klimatyczne Warszawa, POL (1991-2010) Moc generatora PV 9,57 kwp Powierzchnia
Wykład: ENERGETYKA SŁONECZNA - FOTOWOLTAIKA
Technologia montażu systemów energetyki odnawialnej(b.21) Wykład: ENERGETYKA SŁONECZNA - FOTOWOLTAIKA Prowadzący: dr inż. Marcin Michalski kontakt: e-mail: energetyka.michalski@gmail.com energetyka.michalski
PL B1. Sposób chłodzenia ogniw fotowoltaicznych oraz urządzenie do chłodzenia zestawów modułów fotowoltaicznych
PL 218032 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 218032 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 389224 (22) Data zgłoszenia: 07.10.2009 (51) Int.Cl.
ZAŁĄCZNIK NR 09 Symulacja uzysku rocznego dla budynku garażowo-magazynowego
ZAŁĄCZNIK NR 09 Symulacja uzysku rocznego dla budynku garażowo-magazynowego Podłączona do sieci instalacja fotowoltaiczna (PV) Dane klimatyczne Warszawa, POL (1991-2010) Moc generatora PV 18,48 kwp Powierzchnia
Instrukcja do ćwiczenia laboratoryjnego nr 13
Instrukcja do ćwiczenia laboratoryjnego nr 13 Temat: Charakterystyki i parametry dyskretnych półprzewodnikowych przyrządów optoelektronicznych Cel ćwiczenia. Celem ćwiczenia jest poznanie budowy, zasady
Badanie ogniw fotowoltaicznych
POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Badanie ogniw fotowoltaicznych Laboratorium Energetyki Rozproszonej i Odnawialnych Źródeł Energii
Ćwiczenie 15 Temat: Zasada superpozycji, twierdzenia Thevenina i Nortona Cel ćwiczenia
Ćwiczenie 15 Temat: Zasada superpozycji, twierdzenia Thevenina i Nortona Cel ćwiczenia Sprawdzenie zasady superpozycji. Sprawdzenie twierdzenia Thevenina. Sprawdzenie twierdzenia Nortona. Czytanie schematów
Instrukcja do ćwiczenia laboratoryjnego nr 4
Instrukcja do ćwiczenia laboratoryjnego nr 4 Temat: Badanie własności przełączających diod półprzewodnikowych Cel ćwiczenia. Celem ćwiczenia jest poznanie własności przełączających złącza p - n oraz wybranych
Badanie transformatora
Ćwiczenie E9 Badanie transformatora E9.1. Cel ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. W ćwiczeniu przykładając zmienne napięcie do uzwojenia pierwotnego
Wyznaczanie krzywej ładowania kondensatora
Ćwiczenie E10 Wyznaczanie krzywej ładowania kondensatora E10.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie przebiegu procesu ładowania kondensatora oraz wyznaczenie stałej czasowej szeregowego układu.
POLITECHNIKA WARSZAWSKA Wydział Elektryczny Instytut Elektroenergetyki Zakład Elektrowni i Gospodarki Elektroenergetycznej
POLITECHNIKA WARSZAWSKA Wydział Elektryczny Instytut Elektroenergetyki Zakład Elektrowni i Gospodarki Elektroenergetycznej INSTRUKCJA DO ĆWICZENIA: BADANIE BATERII SŁONECZNYCH W ZALEśNOŚCI OD NATĘśENIA
Ćwiczenie 16. Temat: Wzmacniacz w układzie Darlingtona. Cel ćwiczenia
Temat: Wzmacniacz w układzie Darlingtona. Cel ćwiczenia Ćwiczenie 16 1. Poznanie zasady pracy układu Darlingtona. 2. Pomiar parametrów układu Darlingtona i użycie go w różnych aplikacjach sterowania. INSTRUKCJA
Sprzęt i architektura komputerów
Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Sprzęt i architektura komputerów Laboratorium Temat:Pomiary podstawowych wielkości elektryczych: prawa Ohma i Kirchhoffa Katedra Architektury
Ć w i c z e n i e 1 POMIARY W OBWODACH PRĄDU STAŁEGO
Ć w i c z e n i e POMIAY W OBWODACH PĄDU STAŁEGO. Wiadomości ogólne.. Obwód elektryczny Obwód elektryczny jest to układ odpowiednio połączonych elementów przewodzących prąd i źródeł energii elektrycznej.
NIEZBĘDNY SPRZĘT LABORATORYJNY
Ćwiczenie 5 Temat: Pomiar napięcia i prądu stałego. Cel ćwiczenia Poznanie zasady pomiaru napięcia stałego. Zapoznanie się z działaniem modułu KL-22001. Obsługa przyrządów pomiarowych. Przestrzeganie przepisów
Ćwiczenie: "Pomiary rezystancji przy prądzie stałym"
Ćwiczenie: "Pomiary rezystancji przy prądzie stałym" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki.
LABORATORIUM ELEKTRONIKI
LABOATOIM ELEKTONIKI ĆWICENIE 1 DIODY STABILIACYJNE K A T E D A S Y S T E M Ó W M I K O E L E K T O N I C N Y C H 21 CEL ĆWICENIA Celem ćwiczenia jest praktyczne zapoznanie się z charakterystykami statycznymi
BADANIE DIOD PÓŁPRZEWODNIKOWYCH
BAANE O PÓŁPZEWONKOWYCH nstytut izyki Akademia Pomorska w Słupsku Cel i ćwiczenia. Celem ćwiczenia jest: - zapoznanie się z przebiegiem charakterystyk prądowo-napięciowych diod różnych typów, - zapoznanie
Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4)
OBWODY JEDNOFAZOWE POMIAR PRĄDÓW, NAPIĘĆ. Obwody prądu stałego.. Pomiary w obwodach nierozgałęzionych wyznaczanie rezystancji metodą techniczną. Metoda techniczna pomiaru rezystancji polega na określeniu
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wyznaczanie ciepła właściwego cieczy metodą kalorymetryczną
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Wyznaczanie ciepła właściwego cieczy metodą kalorymetryczną opracowanie ćwiczenia: dr J. Woźnicka, dr S. Belica ćwiczenie nr 38 Zakres zagadnień obowiązujących
Rys. 1. Układ informacji na wyświetlaczu układu MPPT
Przetwarzanie energii elektrycznej w fotowoltaice Poszukiwanie punktu mocy maksymalnej modułu fotowoltaicznego wer. 1.0.1, 2014 opracowanie: Łukasz Starzak Układ pomiarowy Układ śledzenia punktu mocy maksymalnej
Eksperyment 2.2. Charakterystyka IU elektrolizera. Zadanie. Wykonanie
Eksperyment 2.2 Charakterystyka IU elektrolizera Zadanie Wyznacz charakterystykę IU elektrolizera i zinterpretuj jej kształt. Ten eksperyment najlepiej jest wykonać przy bezpośrednim promieniowaniu słonecznym
Laboratorium. Przetwarzania energii elektrycznej w fotowoltaice. Modelowanie ogniw fotowoltaicznych przy użyciu oprogramowania PSpice
Laboratorium Przetwarzania energii elektrycznej w fotowoltaice Ćwiczenie 1,2 Modelowanie ogniw fotowoltaicznych przy użyciu oprogramowania PSpice Opracowanie instrukcji: Tomasz Torzewicz na podstawie wer.1.1.0
NIEZBĘDNY SPRZĘT LABORATORYJNY
Temat: Własności diody p-n Cel ćwiczenia Ćwiczenie 30 Zrozumienie właściwości diod ze złączem p-n. Poznanie własności diod każdego typu. Nauka testowania parametrów diod każdego typu za pomocą różnych
Ćwiczenie 4. Pomiary rezystancji metodami technicznymi
Ćwiczenie 4 Pomiary rezystancji metodami technicznymi Program ćwiczenia: 1. Techniczna metoda pomiaru rezystancji wyznaczenie charakterystyki =f(u) elementu nieliniowego (żarówka samochodowa) 2. Pomiar
Ćwiczenie 5. Testowanie ogniwa paliwowego wodorowego zasilanego energią pochodzącą z konwersji fotowoltaicznej
Ćwiczenie 5 Testowanie ogniwa paliwowego wodorowego zasilanego energią pochodzącą z konwersji fotowoltaicznej Wstęp Ogniwo paliwowe jest urządzeniem elektrochemicznym, które wytwarza energię użyteczną
PRAWO OHMA DLA PRĄDU PRZEMIENNEGO. Instrukcja wykonawcza
ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Instrukcja wykonawcza 1 Wykaz przyrządów a. Generator AG 1022F. b. Woltomierz napięcia przemiennego. c. Miliamperomierz prądu przemiennego. d. Zestaw składający
Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu
Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Laboratorium Elektryczne Montaż Maszyn i Urządzeń Elektrycznych Instrukcja Laboratoryjna: Badanie ogniwa galwanicznego. Opracował: mgr inż.
LABORATORIUM PODSTAW ELEKTRONIKI PARAMETRYCZNY STABILIZATOR NAPIĘCIA
ZESPÓŁ LABRATRIÓW TELEMATYKI TRANSPRTU ZAKŁAD TELEKMUNIKACJI W TRANSPRCIE WYDZIAŁ TRANSPRTU PLITECHNIKI WARSZAWSKIEJ LABRATRIUM PDSTAW ELEKTRNIKI INSTRUKCJA D ĆWICZENIA NR 6 PARAMETRYCZNY STABILIZATR NAPIĘCIA
WYDZIAŁ.. LABORATORIUM FIZYCZNE
W S E i Z W WASZAWE WYDZAŁ.. LABOATOUM FZYCZNE Ćwiczenie Nr 10 Temat: POMA OPOU METODĄ TECHNCZNĄ. PAWO OHMA Warszawa 2009 Prawo Ohma POMA OPOU METODĄ TECHNCZNĄ Uporządkowany ruch elektronów nazywa się
Możliwości wykorzystania. w Polsce. Targi Energetyki Odnawialnej Bydgoszcz 22-24.03.2013r.
Możliwości wykorzystania instalacji fotowoltaicznych w Polsce Targi Energetyki Odnawialnej Bydgoszcz 22-24.03.2013r. Scentralizowana produkcja w połowie lat 80 Zdecentralizowana produkcja dzisiaj Technologia
Badanie zależności energii generowanej w panelach fotowoltaicznych od natężenia promieniowania słonecznego
POLITECHNIKA BIAŁOSTOCKA Wydział Budownictwa i Inżynierii Środowiska Instrukcja do zajęć laboratoryjnych fotowoltaicznych od natężenia promieniowania słonecznego Ćwiczenie nr 10 Laboratorium z przedmiotu
ELEMENTY ELEKTRONICZNE. Układy polaryzacji i stabilizacji punktu pracy tranzystora
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEMENTY ELEKTRONICZNE TS1C300 018 Układy polaryzacji i stabilizacji punktu
Uwaga. Łącząc układ pomiarowy należy pamiętać o zachowaniu zgodności biegunów napięcia z generatora i zacisków na makiecie przetwornika.
PLANOWANIE I TECHNIKA EKSPERYMENTU Program ćwiczenia Temat: Badanie właściwości statycznych przetworników pomiarowych, badanie właściwości dynamicznych czujników temperatury Ćwiczenie 5 Spis przyrządów
Laboratorium Analogowych Układów Elektronicznych Laboratorium 6
Laboratorium Analogowych Układów Elektronicznych Laboratorium 6 1/5 Stabilizator liniowy Zadaniem jest budowa i przebadanie działania bardzo prostego stabilizatora liniowego. 1. W ćwiczeniu wykorzystywany
DIODY PÓŁPRZEWODNIKOWE
Instrukcja do ćwiczenia laboratoryjnego DIODY PÓŁPRZEWODNIKOWE Instrukcję opracował: dr inż. Jerzy Sawicki Wymagania i wiedza konieczna do wykonania ćwiczenia: 1. Znajomość instrukcji do ćwiczenia, w tym
Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa. Katedra Architektury Komputerów i Telekomunikacji
Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Elektronika Laboratorium nr 1 Temat: Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa Katedra Architektury Komputerów i Telekomunikacji
Instrukcja do ćwiczenia laboratoryjnego nr 6a
Instrukcja do ćwiczenia laboratoryjnego nr 6a Temat: Charakterystyki i parametry półprzewodnikowych przyrządów optoelektronicznych. Cel ćwiczenia: Zapoznać z budową, zasadą działania, charakterystykami
Przedsiębiorstwo. Klient. Projekt
Przedsiębiorstwo MULTITECHNIKA 44-144 Nieborowice ul. Krywałdzka 1 Polska Osoba kontaktowa: Zbyszek Wierzbowki Telefon: 32 332-47-69 E-mail: info@woltaika.com Klient Państwowa Szkoła Muzyczna w Zabrzu
BADANIE CHARAKTERYSTYK FOTOELEMENTU
Ćwiczenie E7 BADANIE CHARAKTERYSTYK FOTOELEMENTU Przyrzady: Przyrząd do badania zjawiska fotoelektrycznego, płytki absorbenta suwmiarka, fotoelementy (fotoopór, fotodioda, lub fototranzystor). Zjawisko
Ćwiczenie 5. Testowanie ogniwa paliwowego wodorowego zasilanego energią pochodzącą z konwersji fotowoltaicznej
Ćwiczenie 5 Testowanie ogniwa paliwowego wodorowego zasilanego energią pochodzącą z konwersji fotowoltaicznej Wstęp Ogniwo paliwowe jest urządzeniem elektrochemicznym, które wytwarza energię użyteczną
Ćwiczenie 01. Temat: Własności diody Zenera Cel ćwiczenia
Temat: Własności diody Zenera Cel ćwiczenia Ćwiczenie 01 Zrozumienie właściwości diod ze złączem p n. Poznanie własności diod każdego typu. Nauka testowania parametrów diod każdego typu za pomocą różnych
Przedsiębiorstwo. Klient. Projekt. Laminer. Wprowadź w Opcje > Dane użytkownika. Laminer
Przedsiębiorstwo Wprowadź w Opcje > Dane użytkownika. Klient Projekt Adres: Data wprowadzenia do eksploatacji: 2017-02-01 Opis projektu: 1 3D, Podłączona do sieci instalacja fotowoltaiczna (PV) Dane klimatyczne
Podstawy Elektroniki dla TeleInformatyki. Diody półprzewodnikowe
AGH Katedra Elektroniki Podstawy Elektroniki dla TeleInformatyki Diody półprzewodnikowe Ćwiczenie 2 2014 r. 1 1. Wstęp. Celem ćwiczenia jest zapoznanie się z działaniem i zastosowaniami diody półprzewodnikowej.
Badanie transformatora
Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne
Katedra Elektrotechniki Teoretycznej i Informatyki
Katedra lektrotechniki Teoretycznej i Informatyki Laboratorium Teorii Obwodów Przedmiot: lektrotechnika teoretyczna Numer ćwiczenia: 1 Temat: Liniowe obwody prądu stałego, prawo Ohma i prawa Kirchhoffa