Systemy wbudowane Arduino, AVR

Wielkość: px
Rozpocząć pokaz od strony:

Download "Systemy wbudowane Arduino, AVR"

Transkrypt

1 Warunki zaliczenia Warunki zaliczenia laboratorium: Student otrzymuje punkty na każdych zajęciach za wykonane zadania według scenariusza. Każda nieobecność powoduje utratę możliwości zdobycia punktów (w przypadku okazania zwolnienia lekarskiego student ma możliwość odrobienia zajęć). Warunkiem koniecznym do otrzymania zaliczenia jest obecność na minimum 50% zajęć. Systemy wbudowane Arduino, AVR Warunki zaliczenia przedmiotu: Wersja 2019 Mgr inż. Marek Wilkus Wydział Inżynierii Metali i Informatyki Przemysłowej AGH Kraków Warunkiem otrzymania pozytywnej oceny końcowej z przedmiotu jest uzyskanie zaliczenia z laboratorium. 1 2 Przypomnienie: Prawo Ohma Tematyka zajęć Podstawy elektroniki, Układy cyfrowe, Mikrokontrolery AVR, Arduino, Moc [W] Napięcie [V] Programowanie Arduino, Interfejsy użytkownika dla własnych urządzeń, Rozwiązywanie problemów, Uzyskiwanie informacji z czujników zewnętrznych, Sterowanie różnymi urządzeniami z własnego systemu, Raspberry Pi wykorzystanie możliwości cyfrowych Raspberry Pi wykorzystanie możliwości komputera, Raspberry Pi wejście/wyjście, Rezystancja [Ω] Natężenie [A] Projektowanie układów elektronicznych, Budowa układów elektronicznych. 3 Przypomnienie: I prawo Kirchhoffa 4 Źródło: Katalog ELFA Jak płynie prąd? I=P/U=21/12=1.75A Zasilacz 12V/2A 5 Żarówka 12V/21W R=U 2/P=144/21=~6.85Ω...co i tak się zmienia... 6

2 Jak płynie prąd? Jak czytać schematy? Połączenie przewodów I maksymalne wyczerpanie zdolności zasilacza Skrzyżowanie przewodów Zasilacz 12V/2A Żarówka 12V/21W Zwarcie - R minimalne Magistrala (seria połączeń): Prąd płynie po linii najmniejszego oporu 7 Jak czytać schematy? 8 Elementy elektroniczne: Rezystor Vcc, GND zasilanie, masa Vaa, Vbb, Vcc, - różne napięcia zasilania Ogranicza prąd w obwodzie, Spadek napięcia na nim jest zależny liniowo od prądu przezeń płynącego, Istotna wielkość: Opór elektryczny R, [Ω] (Ohm), Najczęściej wartość zapisana jest w postaci kodu barwnego Szeregowe łączenie: R = R1+R2+R Równoległe łączenie: 9 Szeregi wartości E 10 Elementy elektroniczne: Kondensator Pojemność elektryczna [F] Każda następna wartość jest o tyle samo % większa od poprzedniej zaokrąglając do całkowitej w górę, Dla prądu stałego - magazyn energii (szczególnie kondensatory wysokiej pojemności) Najczęściej można dobrać bliską żądanej wartość w zadanej tolerancji (np. E12 10%) Elementy o wartościach z szeregu są znacznie tańsze niż o wartościach na zamówienie. Dla prądu zmiennego stanowi opór (tym mniejszy im większa pojemność lub f) Stąd ochrona przed zakłóceniami, usuwanie składowej stałej z sygnałów np. audio, filtrowanie przebiegów Istotna wartość: Pojemność (C) [F] Dla elektrolitycznych również rezystancja zastępcza (ESR). Łączenie równoległe: C=C1+C2+C3+ Łączenie szeregowe: Szereg E

3 Elementy elektroniczne: Dioda Elementy elektroniczne: Źródła częstotliwości Rezonator kwarcowy źródło częstotliwości, Generatory scalone większa dokładność wyższa cena, TCXO (Thermally-Coupled Crystal Oscillator) najwyższa dokładność, jednak jeszcze wyższa cena, Przewodzi prąd w jednym kierunku bardziej niż w przeciwnym, Używane jako prostowniki, separatory, stabilizatory (dioda zenera), Sprawne źródła światła (LED), Dioda Schottkyego szybsze działanie, mniejsza oporność w przód, Częstotliwość [Hz] Dokładność [ppm] Istotne prawidłowe podłączenie: Kondensatory, Jak najkrótsze ścieżki do układu! 13 Dioda Zenera przebicie w ściśle ustalonym napięciu wstecznym, Napięcie maksymalne w przód i wstecz, Maksymalne natężenie prądu w przód, Najczęściej stosowane: 1N4148 1N4001, Elementy elektroniczne: Tranzystory Elementy elektroniczne: Układy scalone Różnorodne zastosowania, Wzmacnianie, sterowanie lub przełączanie sygnałów, Działanie: Różnorodne obudowy, w nocie katalogowej układu......mniej istotne również. IB ~β*ib 14!β*IB Przykładowo: IB Atmega328 mikrokontroler, jednostka centralna Arduino, 7805 stabilizator 5V DC, Maksymalny prąd C-E Maksymalne napięcie C-E Prąd B-E dla pełnego otwarcia Wzmocnienie (β) DHT11 czujnik temperatury i wilgotności, ULN2803 Zestaw tranzystorów do sterowania, 74LS00, 74LS04 itp. - układy realizujące funkcje logiczne Warto używać podstawek (niska odporność na ciepło) Źródło wykresu: Scalone układy cyfrowe Najczęściej obudowa DIP (14, 16 pin, rzadziej 18, max 24) lub odpowiednik, Realizują podstawowe funkcje logiczne, bramki, inwertery, liczniki, bufory, przerzutniki, rejestry itp. Najczęściej występujące serie: 74xx (technologia TTL) lub 40xx (technologia CMOS), Możliwe składanie układów realizujących dowolne funkcje logiczne. Układy cyfrowe Jeżeli stosowane są na raz układy technologii CMOS i TTL, często niezbędna jest konwersja poziomów: 1 1!!! W przypadku CMOS->TTL należy użyć bufora (np. 4096) względnie użyć sygnału z kilku wyjść. 17 Źródło grafiki: 18

4 Czego NIE mogą układy cyfrowe? Złącza Wyjścia układów cyfrowych, w tym mikrokontrolerów AVR i Arduino, posiadają bardzo niską wydajność prądową (dla układów TTL ok. 1mA w stanie wysokim i 15-20mA w niskim, przy mikrokontrolerach AVR 20-40mA). NIE mogą bezpośrednio zasilać silników, LEDów mocy, żarówek, tym bardziej pompy czy grzałki. Niezbędne jest w tym wypadku użycie tranzystora. Jeżeli mocny tranzystor nie wystarczy, należy użyć tranzystora i przekaźnika. Dla sygnałów i niskich prądów: Goldpin/IDC/ Złącze ML /SIL, DIL... Większe prądy: Grubsze złącza SIL Na zewnątrz obudowy: Złącza DB/DE szufladowe, Jack Wysokie częstotliwości: Złącza koncentryczne, BNC, Dopuszczalny prąd Maksymalne napięcie Warunki pracy 19 Zworki i przełączniki konfiguracyjne 20 Płytka stykowa Służą do wprowadzenia sprzętowej konfiguracji układu, Niska wytrzymałość prądowa! Niewielka liczba cykli użycia (w łącznikach DIP), Podczas projektowania należy pamiętać o bezpieczeństwie układu. Szybkie wykonanie prototypu, Łączenie pól kabelkami z tzw. goldpin, Możliwość łatwej rekonfiguracji, Nie nadaje się do wysokich prądów 21 Pomiary 22 Metoda Muntza Napięcie w układzie: Woltomierz równolegle do źródła napięcia Pobierany prąd: Amperomierz szeregowo wraz z obciążeniem, Pomiary oporności rezystorów, pojemności kondensatorów: Element do zacisków miernika Istnieje bardzo duża różnica techniczna pomiędzy tym jak układ POWINIEN być zrobiony a tym jak MOŻE być zrobiony, Ta różnica w eksploatacji jest marginalna. Jeżeli znane są punkty pracy układu, można go optymalizować. Wiele elementów jest w typowych zastosowaniach zbędne i układ może działać bez nich ( Muntzing ). Łącząc aplikacje różnych układów często włączamy nadmiarowe elementy, które można bezpiecznie usunąć

5 Na przykład... Gdzie szukać informacji? Literatura o elektronice, np.: Nuhrman D. - Elektronika łatwiejsza niż przypuszczasz Horowitz P., Hill W. - Sztuka Elektroniki Rozdziały teoretyczne w katalogach Darmowe kursy, np.: Talking Electronics: Play-Hookey kurs elektroniki cyfrowej Elportal 25 Noty katalogowe układów, Gotowe projekty w sieci, Badanie istniejących urządzeń, Konstrukcja urządzenia (1) 26 Konstrukcja urządzenia (2) 3. Czy któreś z tych urządzeń wymaga sterowników? 1. Specyfikacja problemu np. Zbieranie i przechowywanie informacji o dostarczonych produktach Odpowiednio dobrany sterownik oszczędza porty I/O Zasilanie urządzeń czy potrzebujemy dodatkowych źródeł zasilania? 2. Jakie urządzenia wejścia i wyjścia są potrzebne? np. Wejście: Czytnik kodów kreskowych, klawiatura, Wyjście: Karta SD, wyświetlacz, beeper, LEDy Czytnik kodów Czytnik kodów LCD LCD rs232 LEDy LEDy Karta SD Klawiatura Klawiatura Dzielnik napięcia Stabilizatory Karta SD Konstrukcja urządzenia (3) Konstrukcja urządzenia (4) 4. Szkielet programu: Definicje, Ustalenie ról wejść/wyjść, założenia programu, podstawowe procedury (+ zaślepki funkcji) #define KEYBOARD A0 3. Wybór platformy systemu, ocena wydajności, możliwości rozbudowy i dostosowywania. #define LED1 A1 Czytnik kodów void store_number() setup pinmode loop... LCD rs232 LEDy Klawiatura Dzielnik napięcia UNO Stabilizatory SD Card I/O Karta SD A0 keyboard in A1..A5 LED out , 6, 7 - LCD 0,1 RS232 for Scanner 30

6 Konstrukcja urządzenia (5) Konstrukcja urządzenia (6) 5. Przedprototyp (płytka stykowa), testowanie, dopełnianie i udoskonalanie programu korzystając z połączenia USB do Arduino. Rysowanie i poprawki schematów częściowych (sterowników poszczególnych urządzeń). 7. Końcowe rozwiązanie kwestii zasilania gotowego urządzenia 8. Projektowanie końcowego schematu. Zaprojektowanie i wykonanie płytki drukowanej łączącej mikrokontroler i niezbędne interfejsy. Końcowe testy i poprawki, umieszczenie układu w obudowie Przejdźmy do zastosowania... Programowanie w pętli Pisząc program dla mikrokontrolera możemy: Sterować stanem: wysoki (ok. 5V) / niski (ok. 0-.5V) na dowolnym wyjściu ( digitalwrite(pin,stan) stan = HIGH, LOW ), Sprawdzić stan na dowolnym wejściu ( digitalread(pin) ), Zamienić pin (wyprowadzenie) z wejścia na wyjście i odwrotnie ( pinmode(pin,stan) stan = INPUT, OUTPUT, INPUL_PULLUP ) Wykorzystać szczególne właściwości wejść/wyjść. Na platformie Arduino wykonujemy to z poziomu języka podobnego do C/C++ Każdy program działający w systemie operacyjnym zaczyna się i kończy. Po zakończeniu programu następuje powrót do systemu operacyjnego. Mikrokontroler systemu operacyjnego nie posiada. Program wykonuje się w nieskończonej pętli. Można tworzyć pod-pętle wprowadzając różne tryby pracy Programowanie w pętli - przykład Zegar z budzikiem: Normalnie działanie: Wyświetlanie aktualnej godziny. Po naciśnięciu przycisku ustawienia godziny: bieżącą godzinę. Programowanie w pętli - przykład.22 : 56 Ust. godziny H+ Ust. alarmu M+ Po naciśnięciu przycisku ustawienia alarmu Wyświetlenie godziny alarmu godzinę alarmu. Główna pętla: Odświeżanie aktualnej godziny, Czy wciśnięty przycisk ust. godziny? Normalnie działanie: Wyświetlanie Odśwież aktualną godzinę aktualnej godziny. Jeżeli wciśnięty H+ - zwiększ zmienną godzin, Po naciśnięciu przycisku Jeżeli wciśnięty M+ zwiększ ustawienia godziny: zmienną minut, Jeżeli wciśnięty inny przycisk bieżącą godzinę. opuść pętlę, Czy wciśnięty przycisk ust. alarmu? Odśwież godzinę alarmu, Jeżeli wciśnięty H+ - zwiększ Po naciśnięciu przycisku godzinę alarmu, ustawienia alarmu Jeżeli wciśnięty M+ zwiększ minutę alarmu, Wyświetlenie godziny alarmu Jeżeli wciśnięty inny przycisk opuść pętlę, Zegar z budzikiem: 35 godzinę alarmu. 36

7 Budowa programu #define ledpin LED Wymagany rezystor obniżający prąd. Vcc=5V Typowy LED 3mm: IF=20mA, VF=2V 13 void setup() pinmode(ledpin, OUTPUT); void main() setup(); while(1) loop(); void loop() digitalwrite(ledpin, HIGH); digitalwrite(ledpin, LOW); R= serialevent(); Vcc-VF IF (5-2) / 0.02 = 150 Ω A w praktyce Ω 37 Wejścia idea rezystora podciągającego Wejścia idea rezystora podciągającego Stan logiczny HIGH to ok. 2..5V. Stan LOW to V. Gdy dołączymy do wejścia stan niski (np. masę), prąd popłynie przez rezystor, a spadek napięcia na nim będzie wystarczający by na wejściu mikrokontrolera pojawił się stan niski. Prąd pobierany przez wejście przy sprawdzaniu stanu (pomiarze) jest minimalny, Wejście niepodłączone - wiszące w powietrzu (także podłączone do otwartego łącznika) - jest podatne na zakłócenia. Stany zmieniają się w nieprzewidywalny sposób. Są to tzw. stany nieustalone, 38 Ponieważ rezystor ma sporą oporność, prąd płynący przez niego będzie zaś niski na tyle, by nie poczynić szkód w układzie. Rezystory podciągające są powszechnie stosowane w układach logicznych. HIGH Niezbędne jest użycie niewielkiego prądu, który zapewniłby wysoki stan logiczny gdy wejście jest Arduino niepodłączone, Prąd ten zapewniany jest przez rezystor podciągający (pull-up resistor) o wartości kilku kω, podłączony do zasilania. Arduino Arduino ma wbudowane rezystory podciągające i nie ma potrzeby używania zewnętrznych! 39 Arduino ma wbudowane rezystory podciągające i nie ma potrzeby używania zewnętrznych! 40 Zmienne i funkcje, wejścia #define ledpin 13 #define resetpin 11 void setup() pinmode(ledpin, OUTPUT); #define ledpin 13 void setup() pinmode(ledpin, OUTPUT); pinmode(resetpin, INPUT); void displayint(int number) void displayint(int number) for (int i=0;i<number;i++) for (int i=0;i<number;i++) digitalwrite(ledpin, HIGH); digitalwrite(ledpin, HIGH); digitalwrite(ledpin, LOW); digitalwrite(ledpin, LOW); LOW if (!digitalread(resetpin)) delay(100); k=0; void loop() k++; displayint(k); digitalwrite(resetpin,high); if (!digitalread(resetpin)) delay(100); k=0; unsigned int k = 0; #define resetpin 11 void loop() k++; displayint(k); digitalwrite(resetpin,high); Zmienne i funkcje, wejścia unsigned int k = 0; pinmode(resetpin, INPUT); LOW 41 INPUT + digitalwrite(high) = INPUT_PULLUP 42

Tematyka zajęć. Przypomnienie: Prawo Ohma. Przypomnienie: I prawo Kirchhoffa. Jak płynie prąd? Jak płynie prąd?

Tematyka zajęć. Przypomnienie: Prawo Ohma. Przypomnienie: I prawo Kirchhoffa. Jak płynie prąd? Jak płynie prąd? Tematyka zajęć Podstawy elektroniki, Układy cyfrowe, Mikrokontrolery AVR, Arduino, Systemy wbudowane Arduino, AVR Wersja 2016-02 Mgr inż. Marek Wilkus http://home.agh.edu.pl/~mwilkus Wydział Inżynierii

Bardziej szczegółowo

Przypomnienie: Prawo Ohma. Przypomnienie: I prawo Kirchhoffa. Warunki zaliczenia. Jak płynie prąd? Tematyka zajęć. Warunki zaliczenia laboratorium:

Przypomnienie: Prawo Ohma. Przypomnienie: I prawo Kirchhoffa. Warunki zaliczenia. Jak płynie prąd? Tematyka zajęć. Warunki zaliczenia laboratorium: Przypomnienie: Prawo Ohma Moc [W] Napięcie [V] Systemy wbudowane Arduino, AVR Wersja 2018 Rezystancja [Ω] Natężenie [A] Mgr inż. Marek Wilkus http://home.agh.edu.pl/~mwilkus Wydział Inżynierii Metali i

Bardziej szczegółowo

Systemy Wbudowane. Arduino - rozszerzanie. Podłączanie wyświetlacza LCD. Podłączanie wyświetlacza LCD. Podłączanie wyświetlacza LCD

Systemy Wbudowane. Arduino - rozszerzanie. Podłączanie wyświetlacza LCD. Podłączanie wyświetlacza LCD. Podłączanie wyświetlacza LCD Wymagania: V, GND Zasilanie LED podswietlenia (opcjonalne) Regulacja kontrastu (potencjometr) Enable Register Select R/W (LOW) bity szyny danych Systemy Wbudowane Arduino - rozszerzanie mgr inż. Marek

Bardziej szczegółowo

Systemy Wbudowane. Arduino, AVR (wersja 2018) Arduino. Arduino. Oprogramowanie. Rys historyczny. Mikrokontroler

Systemy Wbudowane. Arduino, AVR (wersja 2018) Arduino. Arduino. Oprogramowanie. Rys historyczny. Mikrokontroler Mikrokontroler Platforma Mikrokontroler AVR Uno Systemy Wbudowane IDE: Środowisko Preprocesor kodu Terminal Uruchamianie, AVR (wersja 018) mgr inż. Marek Wilkus http://home.agh.edu.pl/~mwilkus Wydział

Bardziej szczegółowo

Systemy Wbudowane. Arduino dołączanie urządzeń Wersja Arduino więcej portów I/O. Układy serii 74. Układy serii 74xx a seria 40xx

Systemy Wbudowane. Arduino dołączanie urządzeń Wersja Arduino więcej portów I/O. Układy serii 74. Układy serii 74xx a seria 40xx Arduino więcej portów I/O Systemy Wbudowane Arduino dołączanie urządzeń Wersja 08 mgr inż. Marek Wilkus Wydział Inżynierii Metali i Informatyki Przemysłowej AGH Kraków Użycie pinów analogowych Liczniki

Bardziej szczegółowo

Systemy Wbudowane. Arduino, AVR (wersja ) Arduino. Arduino. Arduino. Oprogramowanie. Mikrokontroler

Systemy Wbudowane. Arduino, AVR (wersja ) Arduino. Arduino. Arduino. Oprogramowanie. Mikrokontroler Mikrokontroler Platforma Systemy Wbudowane IDE:, AVR (wersja 016-0) mgr inż. Marek Wilkus http://home.agh.edu.pl/~mwilkus Wydział Inżynierii Metali i Informatyki Przemysłowej AGH Kraków Mikrokontroler

Bardziej szczegółowo

Język C. Wykład 9: Mikrokontrolery cz.2. Łukasz Gaweł Chemia C pokój 307

Język C. Wykład 9: Mikrokontrolery cz.2. Łukasz Gaweł Chemia C pokój 307 Język C Wykład 9: Mikrokontrolery cz.2 Łukasz Gaweł Chemia C pokój 307 lukasz.gawel@pg.edu.pl Pierwszy program- powtórka Częstotliwość zegara procesora μc (należy sprawdzić z kartą techniczną μc) Dodaje

Bardziej szczegółowo

Rafał Staszewski Maciej Trzebiński, Dominik Derendarz

Rafał Staszewski Maciej Trzebiński, Dominik Derendarz R Staszewski Rafał Staszewski Maciej Trzebiński, Dominik Derendarz Henryk Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences (IFJ PAN Cracow) Zagraj w Naukę 27 października 2014 1

Bardziej szczegółowo

Systemy Wbudowane. Arduino C. Arduino C - stałe. Arduino C - Stałe. Arduino C - Stałe. Funkcje matematyczne. Arduino C - Stałe

Systemy Wbudowane. Arduino C. Arduino C - stałe. Arduino C - Stałe. Arduino C - Stałe. Funkcje matematyczne. Arduino C - Stałe Arduino C - stałe Systemy Wbudowane Arduino C Wersja 2018 Unikać redefiniowania istniejących stałych. Stosowane dla polepszenia zrozumiałości kodu. Lepiej HIGH niż 0x01 Lepiej INPUT_PULLUP niż 0x2 Uwzględniają

Bardziej szczegółowo

Systemy Wbudowane. Arduino, AVR. Arduino. Arduino. Arduino. Oprogramowanie. Mikrokontroler. Mikrokontroler Platforma Arduino. Arduino IDE: Arduino C:

Systemy Wbudowane. Arduino, AVR. Arduino. Arduino. Arduino. Oprogramowanie. Mikrokontroler. Mikrokontroler Platforma Arduino. Arduino IDE: Arduino C: Mikrokontroler Platforma Systemy Wbudowane IDE:, AVR mgr inż. Marek Wilkus Wydział Inżynierii Metali i Informatyki Przemysłowej AGH Kraków Mikrokontroler AVR Uno Środowisko Terminal Uruchamianie http://home.agh.edu.pl/~mwilkus

Bardziej szczegółowo

Systemy Wbudowane. Arduino, AVR (wersja 2019) Arduino. Arduino. Oprogramowanie. Rys historyczny. Mikrokontroler

Systemy Wbudowane. Arduino, AVR (wersja 2019) Arduino. Arduino. Oprogramowanie. Rys historyczny. Mikrokontroler Mikrokontroler Platforma Mikrokontroler AVR Uno Systemy Wbudowane IDE: Środowisko Preprocesor kodu Terminal Uruchamianie, AVR (wersja 09) mgr inż. Marek Wilkus http://home.agh.edu.pl/~mwilkus Wydział Inżynierii

Bardziej szczegółowo

ZL4PIC. Uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC

ZL4PIC. Uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC ZL4PIC uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC (v.1.0) ZL4PIC Uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC 1 Zestaw jest przeznaczony dla elektroników zajmujących się aplikacjami

Bardziej szczegółowo

STM32 Butterfly. Zestaw uruchomieniowy dla mikrokontrolerów STM32F107

STM32 Butterfly. Zestaw uruchomieniowy dla mikrokontrolerów STM32F107 Zestaw uruchomieniowy dla mikrokontrolerów STM32F107 STM32 Butterfly Zestaw STM32 Butterfly jest platformą sprzętową pozwalającą poznać i przetestować możliwości mikrokontrolerów z rodziny STM32 Connectivity

Bardziej szczegółowo

Liniowe stabilizatory napięcia

Liniowe stabilizatory napięcia . Cel ćwiczenia. Liniowe stabilizatory napięcia Celem ćwiczenia jest praktyczne poznanie właściwości stabilizatora napięcia zbudowanego na popularnym układzie scalonym. Zakres ćwiczenia obejmuje projektowanie

Bardziej szczegółowo

Systemy Wbudowane. Arduino dołączanie urządzeń Wersja Arduino bez płytki Arduino. Czyli... Eliminowanie modułu z projektu. Na płytce...

Systemy Wbudowane. Arduino dołączanie urządzeń Wersja Arduino bez płytki Arduino. Czyli... Eliminowanie modułu z projektu. Na płytce... Arduino bez płytki Arduino Kompletne Arduino Uno jest -x droższe od samego mikrokontrolera, Do danego układu niekoniecznie potrzebne są wszystkie oferowane przez moduł Arduino Uno urządzenia, np. Systemy

Bardziej szczegółowo

Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający

Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający. Cel ćwiczenia. Celem ćwiczenia jest praktyczne poznanie właściwości wzmacniaczy operacyjnych i ich podstawowych

Bardziej szczegółowo

STM32Butterfly2. Zestaw uruchomieniowy dla mikrokontrolerów STM32F107

STM32Butterfly2. Zestaw uruchomieniowy dla mikrokontrolerów STM32F107 Zestaw uruchomieniowy dla mikrokontrolerów STM32F107 STM32Butterfly2 Zestaw STM32Butterfly2 jest platformą sprzętową pozwalającą poznać i przetestować możliwości mikrokontrolerów z rodziny STM32 Connectivity

Bardziej szczegółowo

ZL2AVR. Zestaw uruchomieniowy z mikrokontrolerem ATmega8

ZL2AVR. Zestaw uruchomieniowy z mikrokontrolerem ATmega8 ZL2AVR Zestaw uruchomieniowy z mikrokontrolerem ATmega8 ZL2AVR jest uniwersalnym zestawem uruchomieniowym dla mikrokontrolerów ATmega8 (oraz innych w obudowie 28-wyprowadzeniowej). Dzięki wyposażeniu w

Bardziej szczegółowo

ZL15AVR. Zestaw uruchomieniowy dla mikrokontrolerów ATmega32

ZL15AVR. Zestaw uruchomieniowy dla mikrokontrolerów ATmega32 ZL15AVR Zestaw uruchomieniowy dla mikrokontrolerów ATmega32 ZL15AVR jest uniwersalnym zestawem uruchomieniowym dla mikrokontrolerów ATmega32 (oraz innych w obudowie 40-wyprowadzeniowej). Dzięki wyposażeniu

Bardziej szczegółowo

Porty wejścia/wyjścia w układach mikroprocesorowych i w mikrokontrolerach

Porty wejścia/wyjścia w układach mikroprocesorowych i w mikrokontrolerach 0-- Porty wejścia/wyjścia w układach mikroprocesorowych i w mikrokontrolerach Semestr zimowy 0/0, WIEiK-PK Porty wejścia-wyjścia Input/Output ports Podstawowy układ peryferyjny port wejścia-wyjścia do

Bardziej szczegółowo

GENERATORY KWARCOWE. Politechnika Wrocławska. Instytut Telekomunikacji, Teleinformatyki i Akustyki. Instrukcja do ćwiczenia laboratoryjnego

GENERATORY KWARCOWE. Politechnika Wrocławska. Instytut Telekomunikacji, Teleinformatyki i Akustyki. Instrukcja do ćwiczenia laboratoryjnego Politechnika Wrocławska Instytut Telekomunikacji, Teleinformatyki i Akustyki Zakład Układów Elektronicznych Instrukcja do ćwiczenia laboratoryjnego GENERATORY KWARCOWE 1. Cel ćwiczenia Celem ćwiczenia

Bardziej szczegółowo

E-TRONIX Sterownik Uniwersalny SU 1.2

E-TRONIX Sterownik Uniwersalny SU 1.2 Obudowa. Obudowa umożliwia montaż sterownika na szynie DIN. Na panelu sterownika znajduje się wyświetlacz LCD 16x2, sygnalizacja LED stanu wejść cyfrowych (LED IN) i wyjść logicznych (LED OUT) oraz klawiatura

Bardziej szczegółowo

ZL4PIC uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC (v.1.0) Uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC

ZL4PIC uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC (v.1.0) Uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC 1 ZL4PIC Uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC Zestaw jest przeznaczony dla elektroników zajmujących się aplikacjami mikrokontrolerów PIC. Jest on przystosowany do współpracy z mikrokontrolerami

Bardziej szczegółowo

LABORATORIUM - ELEKTRONIKA Układy mikroprocesorowe cz.2

LABORATORIUM - ELEKTRONIKA Układy mikroprocesorowe cz.2 LABORATORIUM - ELEKTRONIKA Układy mikroprocesorowe cz.2 1. Cel ćwiczenia Celem ćwiczenia jest pokazanie budowy systemów opartych na układach Arduino. W tej części nauczymy się podłączać różne czujników,

Bardziej szczegółowo

LITEcomp. Zestaw uruchomieniowy z mikrokontrolerem ST7FLITE19

LITEcomp. Zestaw uruchomieniowy z mikrokontrolerem ST7FLITE19 LITEcomp Zestaw uruchomieniowy z mikrokontrolerem ST7FLITE19 Moduł LITEcomp to miniaturowy komputer wykonany na bazie mikrokontrolera z rodziny ST7FLITE1x. Wyposażono go w podstawowe peryferia, dzięki

Bardziej szczegółowo

Laboratorium Przyrządów Półprzewodnikowych test kompetencji zagadnienia

Laboratorium Przyrządów Półprzewodnikowych test kompetencji zagadnienia Wrocław, 21.03.2017 r. Laboratorium Przyrządów Półprzewodnikowych test kompetencji zagadnienia Podczas testu kompetencji studenci powinni wykazać się znajomością zagadnień określonych w kartach kursów

Bardziej szczegółowo

ZL4PIC. Uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC

ZL4PIC. Uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC ZL4PIC uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC (v.1.0) ZL4PIC Uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC 1 Zestaw jest przeznaczony dla elektroników zajmujących się aplikacjami

Bardziej szczegółowo

Uczeń/Uczennica po zestawieniu połączeń zgłasza nauczycielowi gotowość do sprawdzenia układu i wszystkich połączeń.

Uczeń/Uczennica po zestawieniu połączeń zgłasza nauczycielowi gotowość do sprawdzenia układu i wszystkich połączeń. Nazwa implementacji: Termometr cyfrowy - pomiar temperatury z wizualizacją pomiaru na wyświetlaczu LCD Autor: Krzysztof Bytow Opis implementacji: Wizualizacja działania elementu zestawu modułu-interfejsu

Bardziej szczegółowo

Uniwersytet Pedagogiczny

Uniwersytet Pedagogiczny Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej w Krakowie Laboratorium elektroniki Ćwiczenie nr 5 Temat: STABILIZATORY NAPIĘCIA Rok studiów Grupa Imię i nazwisko Data Podpis Ocena 1. Cel ćwiczenia

Bardziej szczegółowo

Systemy Wbudowane. Arduino rozszerzanie Wersja Plan. Biblioteka EPROM Arduino bez płytki Arduino. Czyli... Co musimy mieć, aby uruchomić chip?

Systemy Wbudowane. Arduino rozszerzanie Wersja Plan. Biblioteka EPROM Arduino bez płytki Arduino. Czyli... Co musimy mieć, aby uruchomić chip? Plan 1. EPROM 2. Arduino na samym mikrokontrolerze budowa własnych urządzeń. 3. Więcej portów w Arduino, 4. Sterowanie urządzeniami, 5. Sterowanie z komputera Systemy Wbudowane Arduino rozszerzanie Wersja

Bardziej szczegółowo

UNO R3 Starter Kit do nauki programowania mikroprocesorów AVR

UNO R3 Starter Kit do nauki programowania mikroprocesorów AVR UNO R3 Starter Kit do nauki programowania mikroprocesorów AVR zestaw UNO R3 Starter Kit zawiera: UNO R3 (Compatible Arduino) x1szt. płytka stykowa 830 pól x1szt. zestaw 75 sztuk kabli do płytek stykowych

Bardziej szczegółowo

AVREVB1. Zestaw uruchomieniowy dla mikrokontrolerów AVR. Zestawy uruchomieniowe www.evboards.eu

AVREVB1. Zestaw uruchomieniowy dla mikrokontrolerów AVR. Zestawy uruchomieniowe www.evboards.eu AVREVB1 Zestaw uruchomieniowy dla mikrokontrolerów AVR. 1 Zestaw AVREVB1 umożliwia szybkie zapoznanie się z bardzo popularną rodziną mikrokontrolerów AVR w obudowach 40-to wyprowadzeniowych DIP (układy

Bardziej szczegółowo

ZL16AVR. Zestaw uruchomieniowy dla mikrokontrolerów ATmega8/48/88/168

ZL16AVR. Zestaw uruchomieniowy dla mikrokontrolerów ATmega8/48/88/168 ZL16AVR Zestaw uruchomieniowy dla mikrokontrolerów ATmega8/48/88/168 ZL16AVR jest uniwersalnym zestawem uruchomieniowym dla mikrokontrolerówavr w obudowie 28-wyprowadzeniowej (ATmega8/48/88/168). Dzięki

Bardziej szczegółowo

SML3 październik

SML3 październik SML3 październik 2005 24 100_LED8 Moduł zawiera 8 diod LED dołączonych do wejść za pośrednictwem jednego z kilku możliwych typów układów (typowo jest to układ typu 563). Moduł jest wyposażony w dwa złącza

Bardziej szczegółowo

W semestrze letnim studenci kierunku Aplikacje Internetu Rzeczy podczas ćwiczeń z programowania CAD/CAM

W semestrze letnim studenci kierunku Aplikacje Internetu Rzeczy podczas ćwiczeń z programowania CAD/CAM Pracownia Elektroniki Cyfrowej Programowanie CAD/CAM W semestrze letnim studenci kierunku Aplikacje Internetu Rzeczy podczas ćwiczeń z programowania CAD/CAM projektowali modele 3d. Wykorzystywali do tego

Bardziej szczegółowo

SDD287 - wysokoprądowy, podwójny driver silnika DC

SDD287 - wysokoprądowy, podwójny driver silnika DC SDD287 - wysokoprądowy, podwójny driver silnika DC Własności Driver dwóch silników DC Zasilanie: 6 30V DC Prąd ciągły (dla jednego silnika): do 7A (bez radiatora) Prąd ciągły (dla jednego silnika): do

Bardziej szczegółowo

Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa. Katedra Architektury Komputerów i Telekomunikacji

Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa. Katedra Architektury Komputerów i Telekomunikacji Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Elektronika Laboratorium nr 1 Temat: Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa Katedra Architektury Komputerów i Telekomunikacji

Bardziej szczegółowo

ZL15AVR. Zestaw uruchomieniowy dla mikrokontrolerów ATmega32

ZL15AVR. Zestaw uruchomieniowy dla mikrokontrolerów ATmega32 ZL15AVR Zestaw uruchomieniowy dla mikrokontrolerów ATmega32 ZL15AVR jest uniwersalnym zestawem uruchomieniowym dla mikrokontrolerów ATmega32 (oraz innych w obudowie 40-wyprowadzeniowej). Dzięki wyposażeniu

Bardziej szczegółowo

Technika Mikroprocesorowa

Technika Mikroprocesorowa Technika Mikroprocesorowa Dariusz Makowski Katedra Mikroelektroniki i Technik Informatycznych tel. 631 2648 dmakow@dmcs.pl http://neo.dmcs.p.lodz.pl/tm 1 System mikroprocesorowy? (1) Magistrala adresowa

Bardziej szczegółowo

Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego El ektroni ka cyfrow a Aut orpr ogr amuz aj ęć: mgri nż.mar ci njuki ewi cz Pr oj ektwspół f i nansowanyześr odkówuni ieur opej ski ejwr amacheur opej ski egofunduszuspoł ecznego Spis treści Zajęcia 1:

Bardziej szczegółowo

Generatory kwarcowe Generator kwarcowy Colpittsa-Pierce a z tranzystorem bipolarnym

Generatory kwarcowe Generator kwarcowy Colpittsa-Pierce a z tranzystorem bipolarnym 1. Cel ćwiczenia Generatory kwarcowe Celem ćwiczenia jest zapoznanie się z zagadnieniami dotyczącymi generacji przebiegów sinusoidalnych w podstawowych strukturach generatorów kwarcowych. Ponadto ćwiczenie

Bardziej szczegółowo

Ćwiczenie 4 Pomiar prądu i napięcia stałego

Ćwiczenie 4 Pomiar prądu i napięcia stałego Ćwiczenie 4 Pomiar prądu i napięcia stałego Instrukcja do ćwiczenia laboratoryjnego opracowali: Łukasz Śliwczyński Witold Skowroński Karol Salwik ver. 3, 05.2019 1. Cel ćwiczenia Zapoznanie się z metodami

Bardziej szczegółowo

Touch button module. Moduł przycisku dotykowy z podświetleniem LED

Touch button module. Moduł przycisku dotykowy z podświetleniem LED Touch button module Moduł przycisku dotykowy z podświetleniem LED 1 S t r o n a 1. Opis ogólny Moduł dotykowy został zaprojektowany jako tania alternatywa dostępnych przemysłowych przycisków dotykowych.

Bardziej szczegółowo

Wyniki (prawie)końcowe - Elektroniczne warcaby

Wyniki (prawie)końcowe - Elektroniczne warcaby Wyniki (prawie)końcowe - Elektroniczne warcaby Zbigniew Duszeńczuk 14 czerwca 2008 Spis treści 1 Stan realizacji projektu na dzień 14 czerwca 2008 2 2 Najważniejsze cechy projektu 2 2.1 Użyte elementy..............................

Bardziej szczegółowo

Spis treści. Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Spis treści. Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego El ektroni ka cyfrow a Aut orpr ogr amuz aj ęć: mgri nż.mar ci njuki ewi cz Pr oj ektwspół f i nansowanyześr odkówuni ieur opej ski ejwr amacheur opej ski egofunduszuspoł ecznego Spis treści Zajęcia 1:

Bardziej szczegółowo

Cyfrowy regulator temperatury

Cyfrowy regulator temperatury Cyfrowy regulator temperatury Atrakcyjna cena Łatwa obsługa Szybkie próbkowanie Precyzyjna regulacja temperatury Bardzo dokładna regulacja temperatury Wysoka dokładność wyświetlania wartości temperatury

Bardziej szczegółowo

MSA-1 Mikroprocesorowy sterownik do przełącznika antenowego

MSA-1 Mikroprocesorowy sterownik do przełącznika antenowego MSA-1 Mikroprocesorowy sterownik do przełącznika antenowego Instrukcja obsługi Autor projektu: Grzegorz Wołoszun SP8NTH Wstęp Sterownik MSA-1 powstał w odpowiedzi na zapotrzebowanie rynku krótkofalarskiego

Bardziej szczegółowo

ZL28ARM. Zestaw uruchomieniowy dla mikrokontrolerów AT91SAM7XC

ZL28ARM. Zestaw uruchomieniowy dla mikrokontrolerów AT91SAM7XC ZL28ARM Zestaw uruchomieniowy dla mikrokontrolerów AT91SAM7XC Zestaw ZL28ARM jest uniwersalnym zestawem uruchomieniowym dla mikrokontrolerów AT91SAM7XC. Dzięki wyposażeniu w szeroką gamę układów peryferyjnych

Bardziej szczegółowo

ZL8AVR. Płyta bazowa dla modułów dipavr

ZL8AVR. Płyta bazowa dla modułów dipavr ZL8AVR Płyta bazowa dla modułów dipavr Zestaw ZL8AVR to płyta bazowa dla modułów dipavr (np. ZL7AVR z mikrokontrolerem ATmega128 lub ZL12AVR z mikrokontrolerem ATmega16. Wyposażono ją w wiele klasycznych

Bardziej szczegółowo

Projektowanie urządzeń mikroprocesorowych cz. 2 Wykład 4

Projektowanie urządzeń mikroprocesorowych cz. 2 Wykład 4 Projektowanie urządzeń mikroprocesorowych cz. 2 Wykład 4 Etapy projektowania Proste urządzenie mikroprocesorowe 2 Zasilanie mikrokontrolera W zależności od potrzeb można wykorzystać wariant podstawowy

Bardziej szczegółowo

Kod produktu: MP01105

Kod produktu: MP01105 MODUŁ INTERFEJSU KONTROLNO-POMIAROWEGO DLA MODUŁÓW Urządzenie stanowi bardzo łatwy do zastosowania gotowy interfejs kontrolno-pomiarowy do podłączenia modułów takich jak czujniki temperatury, moduły przekaźnikowe,

Bardziej szczegółowo

Sprzęt i architektura komputerów

Sprzęt i architektura komputerów Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Sprzęt i architektura komputerów Laboratorium Temat:Pomiary podstawowych wielkości elektryczych: prawa Ohma i Kirchhoffa Katedra Architektury

Bardziej szczegółowo

Porty wejścia/wyjścia w układach mikroprocesorowych i w mikrokontrolerach

Porty wejścia/wyjścia w układach mikroprocesorowych i w mikrokontrolerach Porty wejścia/wyjścia w układach mikroprocesorowych i w mikrokontrolerach Semestr zimowy 2012/2013, E-3, WIEiK-PK 1 Porty wejścia-wyjścia Input/Output ports Podstawowy układ peryferyjny port wejścia-wyjścia

Bardziej szczegółowo

AVR DRAGON. INSTRUKCJA OBSŁUGI (wersja 1.0)

AVR DRAGON. INSTRUKCJA OBSŁUGI (wersja 1.0) AVR DRAGON INSTRUKCJA OBSŁUGI (wersja 1.0) ROZDZIAŁ 1. WSTĘP... 3 ROZDZIAŁ 2. ROZPOCZĘCIE PRACY Z AVR DRAGON... 5 ROZDZIAŁ 3. PROGRAMOWANIE... 8 ROZDZIAŁ 4. DEBUGOWANIE... 10 ROZDZIAŁ 5. SCHEMATY PODŁĄCZEŃ

Bardziej szczegółowo

Cyfrowe Elementy Automatyki. Bramki logiczne, przerzutniki, liczniki, sterowanie wyświetlaczem

Cyfrowe Elementy Automatyki. Bramki logiczne, przerzutniki, liczniki, sterowanie wyświetlaczem Cyfrowe Elementy Automatyki Bramki logiczne, przerzutniki, liczniki, sterowanie wyświetlaczem Układy cyfrowe W układach cyfrowych sygnały napięciowe (lub prądowe) przyjmują tylko określoną liczbę poziomów,

Bardziej szczegółowo

Opis dydaktycznych stanowisk pomiarowych i przyrządów w lab. EE (paw. C-3, 302)

Opis dydaktycznych stanowisk pomiarowych i przyrządów w lab. EE (paw. C-3, 302) Opis dydaktycznych stanowisk pomiarowych i przyrządów w lab. EE (paw. C-3, 302) 1. Elementy elektroniczne stosowane w ćwiczeniach Elementy elektroniczne będące przedmiotem pomiaru, lub służące do zestawienia

Bardziej szczegółowo

Ile wynosi całkowite natężenie prądu i całkowita oporność przy połączeniu równoległym?

Ile wynosi całkowite natężenie prądu i całkowita oporność przy połączeniu równoległym? Domowe urządzenia elektryczne są często łączone równolegle, dzięki temu każde tworzy osobny obwód z tym samym źródłem napięcia. Na podstawie poszczególnych rezystancji, można przewidzieć całkowite natężenie

Bardziej szczegółowo

Podstawy elektroniki cz. 2 Wykład 2

Podstawy elektroniki cz. 2 Wykład 2 Podstawy elektroniki cz. 2 Wykład 2 Elementarne prawa Trzy elementarne prawa 2 Prawo Ohma Stosunek natężenia prądu płynącego przez przewodnik do napięcia pomiędzy jego końcami jest stały R U I 3 Prawo

Bardziej szczegółowo

AP3.8.4 Adapter portu LPT

AP3.8.4 Adapter portu LPT AP3.8.4 Adapter portu LPT Instrukcja obsługi PPH WObit mgr inż. Witold Ober 61-474 Poznań, ul. Gruszkowa 4 tel.061/8350-620, -800 fax. 061/8350704 e-mail: wobit@wobit.com.pl Instrukcja AP3.8.4 1 23 październik

Bardziej szczegółowo

Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego El ektroni ka cyfrow a Aut orpr ogr amuz aj ęć: mgri nż.mar ci njuki ewi cz Pr oj ektwspół f i nansowanyześr odkówuni ieur opej ski ejwr amacheur opej ski egofunduszuspoł ecznego Spis treści Zajęcia 1:

Bardziej szczegółowo

Systemy i architektura komputerów

Systemy i architektura komputerów Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Systemy i architektura komputerów Laboratorium nr 4 Temat: Badanie tranzystorów Spis treści Cel ćwiczenia... 3 Wymagania... 3 Przebieg ćwiczenia...

Bardziej szczegółowo

SCL > Pin 21 SDA > Pin 20 VCC > 5V GND > GND

SCL > Pin 21 SDA > Pin 20 VCC > 5V GND > GND Nazwa implementacji: Budowa RTC w oparciu o DS1307 Autor: Krzysztof Bytow Opis implementacji: Układ DS1307 jest to zegar czasu rzeczywistego (Real Time Clock) służy do odliczania czasu niezależnie od stanu

Bardziej szczegółowo

Uwaga: dioda na wyjściu 13 świeci gdy na wyjście podamy 0.

Uwaga: dioda na wyjściu 13 świeci gdy na wyjście podamy 0. Podstawowe funkcje sterowania pinami cyfrowymi pinmode(8, OUTPUT); //ustawienie końcówki jako wyjście pinmode(8, INPUT); // ustawienie końcówki jako wejście pinmode(8, INPUT_PULLUP); // ustawienie końcówki

Bardziej szczegółowo

ZL9AVR. Płyta bazowa dla modułów ZL7AVR (ATmega128) i ZL1ETH (RTL8019)

ZL9AVR. Płyta bazowa dla modułów ZL7AVR (ATmega128) i ZL1ETH (RTL8019) ZL9AVR Płyta bazowa dla modułów ZL7AVR (ATmega128) i ZL1ETH (RTL8019) ZL9AVR to płyta bazowa umożliwiająca wykonywanie różnorodnych eksperymentów związanych z zastosowaniem mikrokontrolerów AVR w aplikacjach

Bardziej szczegółowo

Skrócony opis dostępnych na stanowiskach studenckich makiet laboratoryjnych oraz zestawu elementów do budowy i badań układów elektronicznych

Skrócony opis dostępnych na stanowiskach studenckich makiet laboratoryjnych oraz zestawu elementów do budowy i badań układów elektronicznych POLITECHNIKA WROCŁAWSKA Wydział Elektryczny Katedra Maszyn, Napędów i Pomiarów Elektrycznych Laboratorium Podstaw Elektroniki bud. A-5 s.211 (a,b) Skrócony opis dostępnych na stanowiskach studenckich makiet

Bardziej szczegółowo

Poradnik programowania procesorów AVR na przykładzie ATMEGA8

Poradnik programowania procesorów AVR na przykładzie ATMEGA8 Poradnik programowania procesorów AVR na przykładzie ATMEGA8 Wersja 1.0 Tomasz Pachołek 2017-13-03 Opracowanie zawiera opis podstawowych procedur, funkcji, operatorów w języku C dla mikrokontrolerów AVR

Bardziej szczegółowo

PRACOWNIA ELEKTRONIKI

PRACOWNIA ELEKTRONIKI PRACOWNIA ELEKTRONIKI Ćwiczenie nr 4 Temat ćwiczenia: Badanie wzmacniacza UNIWERSYTET KAZIMIERZA WIELKIEGO W BYDGOSZCZY INSTYTUT TECHNIKI 1. 2. 3. Imię i Nazwisko 1 szerokopasmowego RC 4. Data wykonania

Bardziej szczegółowo

Immobilizer samochodowy otwierający dostęp poprzez kod czteroznakowy.

Immobilizer samochodowy otwierający dostęp poprzez kod czteroznakowy. Uniwersytet Warszawski Wydział Fizyki sierpień 2015 Projekt Zaliczeniowy przedmiotu Programowanie Mikrokontrolerów Immobilizer samochodowy otwierający dostęp poprzez kod czteroznakowy. Autor: Marcin Cybulski

Bardziej szczegółowo

Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech. Elektronika. Laboratorium nr 3. Temat: Diody półprzewodnikowe i elementy reaktancyjne

Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech. Elektronika. Laboratorium nr 3. Temat: Diody półprzewodnikowe i elementy reaktancyjne Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Elektronika Laboratorium nr 3 Temat: Diody półprzewodnikowe i elementy reaktancyjne SPIS TREŚCI Spis treści... 2 1. Cel ćwiczenia... 3 2. Wymagania...

Bardziej szczegółowo

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Laboratorium Elektryczne Montaż Maszyn i Urządzeń Elektrycznych Instrukcja Laboratoryjna: Badanie ogniwa galwanicznego. Opracował: mgr inż.

Bardziej szczegółowo

SDD287 - wysokoprądowy, podwójny driver silnika DC

SDD287 - wysokoprądowy, podwójny driver silnika DC SDD287 - wysokoprądowy, podwójny driver silnika DC Własności Driver dwóch silników DC Zasilanie: 6 30V DC Prąd ciągły (dla jednego silnika): do 7A (bez radiatora) Prąd ciągły (dla jednego silnika): do

Bardziej szczegółowo

ZL25ARM. Płyta bazowa dla modułów diparm z mikrokontrolerami STR912. [rdzeń ARM966E-S]

ZL25ARM. Płyta bazowa dla modułów diparm z mikrokontrolerami STR912. [rdzeń ARM966E-S] ZL25ARM Płyta bazowa dla modułów diparm z mikrokontrolerami STR912 [rdzeń ARM966E-S] ZL25ARM to płyta bazowa umożliwiająca wykonywanie różnorodnych eksperymentów z mikrokontrolerami STR912 (ARM966E-S).

Bardziej szczegółowo

Politechnika Wrocławska

Politechnika Wrocławska Politechnika Wrocławska Instytut Cybernetyki Technicznej Wizualizacja Danych Sensorycznych Projekt Kompas Elektroniczny Prowadzący: dr inż. Bogdan Kreczmer Wykonali: Tomasz Salamon Paweł Chojnowski Wrocław,

Bardziej szczegółowo

Kod produktu: MP01105T

Kod produktu: MP01105T MODUŁ INTERFEJSU DO POMIARU TEMPERATURY W STANDARDZIE Właściwości: Urządzenie stanowi bardzo łatwy do zastosowania gotowy interfejs do podłączenia max. 50 czujników temperatury typu DS18B20 (np. gotowe

Bardziej szczegółowo

ZASADA DZIAŁANIA miernika V-640

ZASADA DZIAŁANIA miernika V-640 ZASADA DZIAŁANIA miernika V-640 Zasadniczą częścią przyrządu jest wzmacniacz napięcia mierzonego. Jest to układ o wzmocnieniu bezpośred nim, o dużym współczynniku wzmocnienia i dużej rezystancji wejściowej,

Bardziej szczegółowo

PRZEDWZMACNIACZ PASYWNY Z SELEKTOREM WEJŚĆ. dokumentacja. (wersja 1.1

PRZEDWZMACNIACZ PASYWNY Z SELEKTOREM WEJŚĆ. dokumentacja. (wersja 1.1 PRZEDWZMACNIACZ PASYWNY Z SELEKTOREM WEJŚĆ dokumentacja (wersja 1.1 damian@unisonus.com) 1 PŁYTKA STEROWNIKA Tryb nauki kodów pilota Oprogramowanie sterownika współpracuje z dowolnym pilotem pracującym

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA EKS1A300024 Zastosowania wzmacniaczy operacyjnych w układach

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego

Instrukcja do ćwiczenia laboratoryjnego Instrukcja do ćwiczenia laboratoryjnego adanie parametrów statycznych i dynamicznych ramek Logicznych Opracował: mgr inż. ndrzej iedka Wymagania, znajomość zagadnień: 1. Parametry statyczne bramek logicznych

Bardziej szczegółowo

4 Adres procesora Zworkami A0, A1 i A2 umieszczonymi pod złączem Z7 ustalamy adres (numer) procesora. Na rysunku powyżej przedstawiono układ zworek dl

4 Adres procesora Zworkami A0, A1 i A2 umieszczonymi pod złączem Z7 ustalamy adres (numer) procesora. Na rysunku powyżej przedstawiono układ zworek dl 1 Wstęp...1 2 Nie zamontowane elementy...1 3 Złącza...1 4 Adres procesora...2 5 Zasilanie...2 6 Podłączenie do komputera...3 7 Proste połączenie kilku modułów z komputerem i wspólnym zasilaniem...3 8 Wejścia

Bardziej szczegółowo

Otwór w panelu WYMIAR MINIMALNIE OPTYMALNIE MAKSYMALNIE A 71(2,795) 71(2,795) 71,8(2,829) B 29(1,141) 29(1,141) 29,8(1,173)

Otwór w panelu WYMIAR MINIMALNIE OPTYMALNIE MAKSYMALNIE A 71(2,795) 71(2,795) 71,8(2,829) B 29(1,141) 29(1,141) 29,8(1,173) EVK401 Cyfrowy Termoregulator ogólnego zastosowania z pojedynczym wyjściem 1. WSTĘP 1.1 Ważne Przed montażem i użytkowaniem należy uważnie przeczytać następującą instrukcję, ściśle stosować się do dodatkowych

Bardziej szczegółowo

Konstrukcja mostka mocy typu "H" opartego o układ HIP4081A Robert Szlawski

Konstrukcja mostka mocy typu H opartego o układ HIP4081A Robert Szlawski Na prawach rękopisu Raport 22/02/2008 Konstrukcja mostka mocy typu "H" opartego o układ HIP4081A Robert Szlawski Słowa kluczowe: napęd elektryczny, sterownik. Wrocław 2008, rev.a Spis treści 1 Wstęp 3

Bardziej szczegółowo

ZL29ARM. Zestaw uruchomieniowy dla mikrokontrolerów STM32F107

ZL29ARM. Zestaw uruchomieniowy dla mikrokontrolerów STM32F107 ZL29ARM Zestaw uruchomieniowy dla mikrokontrolerów STM32F107 Zestaw ZL29ARM jest platformą sprzętową pozwalającą poznać i przetestować możliwości mikrokontrolerów z rodziny STM32 Connectivity Line (STM32F107).

Bardziej szczegółowo

SML3 październik

SML3 październik SML3 październik 2005 16 06x_EIA232_4 Opis ogólny Moduł zawiera transceiver EIA232 typu MAX242, MAX232 lub podobny, umożliwiający użycie linii RxD, TxD, RTS i CTS interfejsu EIA232 poprzez złącze typu

Bardziej szczegółowo

KAmduino UNO. Rev Źródło:

KAmduino UNO. Rev Źródło: KAmduino UNO Rev. 20170811113756 Źródło: http://wiki.kamami.pl/index.php?title=kamduino_uno Spis treści Podstawowe cechy i parametry... 2 Wyposażenie standardowe... 3 Schemat elektryczny... 4 Mikrokontroler

Bardziej szczegółowo

Programator ZL2PRG jest uniwersalnym programatorem ISP dla mikrokontrolerów, o budowie zbliżonej do STK200/300 (produkowany przez firmę Kanda).

Programator ZL2PRG jest uniwersalnym programatorem ISP dla mikrokontrolerów, o budowie zbliżonej do STK200/300 (produkowany przez firmę Kanda). ZL2PRG Programator ISP dla mikrokontrolerów AVR firmy Atmel Programator ZL2PRG jest uniwersalnym programatorem ISP dla mikrokontrolerów, o budowie zbliżonej do STK200/300 (produkowany przez firmę Kanda).

Bardziej szczegółowo

Schemat blokowy architektury AVR

Schemat blokowy architektury AVR Schemat blokowy architektury AVR Rejestry procesora AVR dostępne programowo Rejestry procesora AVR związane z pobraniem i wykonaniem rozkazu Schemat blokowy procesora ATMega 2560 ATMEL ATMEGA328P MEMORY

Bardziej szczegółowo

Podstawy budowy robotów

Podstawy budowy robotów Podstawy budowy robotów Kamil Rosiński KoNaR 15.10.2015 Kamil Rosiński (KoNaR) Podstawy budowy robotów 15.10.2015 1 / 18 Spis treści 1 Przepisy Konkurencja Line Follower Light 2 Budowa robota Istotne szczegóły

Bardziej szczegółowo

STABILIZATORY NAPIĘCIA I PRĄDU STAŁEGO O DZIAŁANIU CIĄGŁYM Instrukcja do ćwiczeń laboratoryjnych

STABILIZATORY NAPIĘCIA I PRĄDU STAŁEGO O DZIAŁANIU CIĄGŁYM Instrukcja do ćwiczeń laboratoryjnych STABILIZATORY NAPIĘCIA I PRĄDU STAŁEGO O DZIAŁANIU CIĄGŁYM Instrukcja do ćwiczeń laboratoryjnych Wstęp Celem ćwiczenia jest zapoznanie się z problemami związanymi z projektowaniem, realizacją i pomiarami

Bardziej szczegółowo

Instrukcja obsługi AP3.8.4 Adapter portu LPT

Instrukcja obsługi AP3.8.4 Adapter portu LPT Instrukcja obsługi AP3.8.4 Adapter portu LPT P.P.H. WObit E.K.J. Ober s.c. 62-045 Pniewy, Dęborzyce 16 tel.48 61 22 27 422, fax. 48 61 22 27 439 e-mail: wobit@wobit.com.pl www.wobit.com.pl SPIS TREŚCI

Bardziej szczegółowo

Elektrolityczny kondensator filtrujący zasilanie stabilizatora U12 po stronie sterującej

Elektrolityczny kondensator filtrujący zasilanie stabilizatora U12 po stronie sterującej Designator Part Type Description AM2 DC/DC QDC2WSIL 5V Przetwornica DC/DC 12V/5V zasilanie logiki AM3 DC/DC QDC2WSIL 5V Przetwornica DC/DC 12V/5V ujemne zasilanie drivera U23 Przetwornica DC/DC 12V/5V

Bardziej szczegółowo

SPECYFIKACJA PRZETWORNIK RÓŻNICY CIŚNIEŃ DPC250; DPC250-D; DPC4000; DPC4000-D

SPECYFIKACJA PRZETWORNIK RÓŻNICY CIŚNIEŃ DPC250; DPC250-D; DPC4000; DPC4000-D SPECYFIKACJA PRZETWORNIK RÓŻNICY CIŚNIEŃ DPC250; DPC250-D; DPC4000; DPC4000-D 1. Wprowadzenie...3 1.1. Funkcje urządzenia...3 1.2. Charakterystyka urządzenia...3 1.3. Warto wiedzieć...3 2. Dane techniczne...4

Bardziej szczegółowo

Ćwiczenie 5 Zegar czasu rzeczywistego na mikrokontrolerze AT90S8515

Ćwiczenie 5 Zegar czasu rzeczywistego na mikrokontrolerze AT90S8515 Laboratorium Techniki Mikroprocesorowej Informatyka studia dzienne Ćwiczenie 5 Zegar czasu rzeczywistego na mikrokontrolerze AT90S8515 Cel ćwiczenia Celem ćwiczenia jest poznanie możliwości nowoczesnych

Bardziej szczegółowo

Ćwiczenie 24 Temat: Układy bramek logicznych pomiar napięcia i prądu. Cel ćwiczenia

Ćwiczenie 24 Temat: Układy bramek logicznych pomiar napięcia i prądu. Cel ćwiczenia Ćwiczenie 24 Temat: Układy bramek logicznych pomiar napięcia i prądu. Cel ćwiczenia Poznanie własności i zasad działania różnych bramek logicznych. Zmierzenie napięcia wejściowego i wyjściowego bramek

Bardziej szczegółowo

BADANIE UKŁADÓW CYFROWYCH. CEL: Celem ćwiczenia jest poznanie właściwości statycznych układów cyfrowych serii TTL. PRZEBIEG ĆWICZENIA

BADANIE UKŁADÓW CYFROWYCH. CEL: Celem ćwiczenia jest poznanie właściwości statycznych układów cyfrowych serii TTL. PRZEBIEG ĆWICZENIA BADANIE UKŁADÓW CYFROWYCH CEL: Celem ćwiczenia jest poznanie właściwości statycznych układów cyfrowych serii TTL. PRZEBIEG ĆWICZENIA 1. OGLĘDZINY Dokonać oględzin badanego układu cyfrowego określając jego:

Bardziej szczegółowo

Ćwiczenie 25 Temat: Interfejs między bramkami logicznymi i kombinacyjne układy logiczne. Układ z bramkami NOR. Cel ćwiczenia

Ćwiczenie 25 Temat: Interfejs między bramkami logicznymi i kombinacyjne układy logiczne. Układ z bramkami NOR. Cel ćwiczenia Ćwiczenie 25 Temat: Interfejs między bramkami logicznymi i kombinacyjne układy logiczne. Układ z bramkami NOR. Cel ćwiczenia Zapoznanie się z techniką połączenia za pośrednictwem interfejsu. Zbudowanie

Bardziej szczegółowo

Systemy wbudowane. Uniwersytet Łódzki Wydział Fizyki i Informatyki Stosowanej. Witold Kozłowski

Systemy wbudowane. Uniwersytet Łódzki Wydział Fizyki i Informatyki Stosowanej. Witold Kozłowski Uniwersytet Łódzki Wydział Fizyki i Informatyki Stosowanej Systemy wbudowane Witold Kozłowski Zakład Fizyki i Technologii Struktur Nanometrowych 90-236 Łódź, Pomorska 149/153 https://std2.phys.uni.lodz.pl/mikroprocesory/

Bardziej szczegółowo

Zbiór zadań z elektroniki - obwody prądu stałego.

Zbiór zadań z elektroniki - obwody prądu stałego. Zbiór zadań z elektroniki - obwody prądu stałego. Zadanie 1 Na rysunku 1 przedstawiono schemat sterownika dwukolorowej diody LED. Należy obliczyć wartość natężenia prądu płynącego przez diody D 2 i D 3

Bardziej szczegółowo

Opis przedmiotu 3 części zamówienia Zestawy ćwiczeń

Opis przedmiotu 3 części zamówienia Zestawy ćwiczeń Opis przedmiotu 3 części zamówienia Zestawy ćwiczeń Załącznik 4c do SIWZ Lp. NAZWA OPIS GŁÓWNYCH PARAMETRÓW TECHNICZNYCH ILOŚĆ (szt.) Zestaw powinien składać się min. z modułu bazowego oraz modułów ćwiczeniowych

Bardziej szczegółowo

KAmduino UNO. Płytka rozwojowa z mikrokontrolerem ATmega328P, kompatybilna z Arduino UNO

KAmduino UNO. Płytka rozwojowa z mikrokontrolerem ATmega328P, kompatybilna z Arduino UNO Płytka rozwojowa z mikrokontrolerem ATmega328P, kompatybilna z Arduino UNO to płytka rozwojowa o funkcjonalności i wymiarach typowych dla Arduino UNO. Dzięki wbudowanemu mikrokontrolerowi ATmega328P i

Bardziej szczegółowo

Badanie charakterystyk elementów półprzewodnikowych

Badanie charakterystyk elementów półprzewodnikowych Badanie charakterystyk elementów półprzewodnikowych W ramach ćwiczenia student poznaje praktyczne właściwości elementów półprzewodnikowych stosowanych w elektronice przez badanie charakterystyk diody oraz

Bardziej szczegółowo