Elektrotechnika i elektronika (konspekt)
|
|
- Danuta Marek
- 9 lat temu
- Przeglądów:
Transkrypt
1 Elektrotechnika i elektronika (konspekt) Franciszek Gołek (golek@ifd.uni.wroc.pl) Wykład 10 Tranzystory bipolarne.
2 Niezwykle ważne dla wynalezienia tranzystora były: 1) W 1936 r. Mervin Kelly organizuje grupę badawczą dla rozwoju urządzeń elektronicznych na bazie ciał stałych (jak diody krystaliczne, zamiast lamp próżniowych). 2) Inna grupa powołana w 1946 r. przez M. Kelly ego, której kierownikiem został Bill Shockley decyduje aby zająć się najprostszymi półprzewodnikami: germanem i krzemem. 3) Bardeen i Brattain, na podstawie prac z Purdue University szybko orientują się, że głównym problemem uzyskania efektu polowego (zmiany oporności wymuszane zewnętrznym polem elektrycznym) są stany powierzchniowe. 4) Wcześniejsze wynalezienie lamp elektronowych, których wady (straty mocy na grzanie katod i koszty produkcji) należało wyeliminować a pozostawić zaletę; efekt wzmacniania sygnałów elektrycznych.
3 Lampy próżniowe Lampa trioda Tranzystor jest elementem, który zmieniając swoją oporność może wzmacniać sygnały elektryczne w sprzęcie audio albo jako tzw. 0-1 przełącznik realizować funkcje logiczne w obwodach cyfrowych. Znacznie wcześniej przed powstaniem tranzystora wynaleziono Lampę (J.A. Fleming 1904 dioda próżniowa oparta na efekcie Edisona, Lee De Forest 1906 trioda próżniowa, I. Langmiur wysokopróżniowe lampy radiowe). Poczynając od lampy triody, złożonej z katody, anody oraz umieszczonej między nimi siatki, stało się możliwe sterowanie prądem anoda-katoda przy pomocy pola elektrycznego siatki i małego prądu siatkakatoda. Ten swoisty zawór (w którym potencjał siatki przymyka prąd anodowy) zapewnił efekt wzmacniania sygnałów elektrycznych. Dla wielu badaczy efekt wzmocnienia sygnału sterującego triodą był inspiracją w pracach nad otrzymaniem tranzystora. CHAP-4A.html %20characteristic%20equations.pdf
4 Wzmacnianie sygnałów elektrycznych na zasadzie dzielnika napięcia zawierającego jeden sterowalny, zmienny rezystor. Rozważmy układ szeregowo połączonych: sterowanego rezystora zmiennego Rz i rezystora stałego odbiornika Ro połączonych z zasilaczem tak jak dzielnik napięcia. Mamy tu U Ro = Ro U/(Ro + Rz) napięcie na Ro U Rz = Rz U/(Ro + Rz) napięcie na Rz. Przy zmianie Rz od wartości Rz>>Ro do Rz <<Ro moc wydzielana w Ro zmieni się w przybliżeniu od P min 0 do P max U2 /Ro. Zatem impuls mocy wyjściowej wydzielanej w odbiorniku osiągnie wartość P wy P max U 2 /Ro. Jeżeli moc sygnału sterującego Ps, który pokręcił rezystorem Rz była mniejsza od P max to otrzymaliśmy wzmocnienie sygnału K P = P wy /P s. Taki trick można wykonać zarówno przy pomocy lampy jak i tranzystora. Zdolność wpływania sygnału elektrycznego na inny sygnał elektryczny to podstawowa cecha tzw. elementów aktywnych. Obecnie w układach elektronicznych elementy aktywne w postaci tranzystorów występują wyjątkowo obficie.
5 Trioda jako element dzielnika napięcia dającego wzmocnienie sygnału elektrycznego. Dzięki dużej przeźroczystości siatki S wielokrotnie mniej elektronów trafia w siatkę niż zostaje przez nią przepuszczonych do anody co stanowi wzmocnienie prądowe I a >I S. Z rodziny charakterystyk statycznych na poniższym rysunku widać, że U S < U a (8V<90V) co daje wzmocnienia napięciowe. Mamy: I a >I S oraz I a > I S co w rezultacie daje znaczne wzmocnienie mocy. U a I a >> U S I S P Ra >> P Moc sterująca
6 Parametry lampy. Oznaczenia: Ua - Napięcie anodowe względem uziemionej katody. Ia - Prąd anodowy, Us - Napięcie siatka katoda, symbol małej zmiany (przyrostu), R a - rezystor anodowy (obciążenie). r a (lub ρ a ) - dynamiczna rezystancja anodowa: r a = U a / I a przy stałym napięciu siatki U S g m - transkonduktancja (lub S a - nachylenie charakterystyki): g m = I a / U S przy stałym napięciu anody U a. µ (lub k a ) - współczynnik amplifikacji: µ = I U a / U S I przy stałym prądzie anodowym I a. Między współczynnikiem amplifikacji µ, rezystancją dynamiczną anodową r a i transkonduktancją g m (nachyleniem charakterystyki S a ) występuje związek : µ = r a g m (lub k a = ρ a S a ) Wzmocnienie napięciowe k U = µ R a /( r a +R a ), lub k U = k a R a /(ρ a +R a )
7 Zanim przejdziemy do omawiania tranzystora warto wspomnieć, oprócz triody, o takich lampach jak tetroda czy pentoda. Trioda jest lampą trójelektrodową i najprostszą zapewniającą efekt wzmocnienia. Poprawiając charakterystyki wzmacniacza w lampie dodano drugą siatkę (o stałym potencjale dodatnim) aby zmniejszyć pojemność pasożytniczą między anodą a siatką pierwszą sterującą tak powstała tetroda. Tetroda miała jednak poważną wadę polegającą na tym, że część elektronów wtórnych, wybijanych z anody była przechwytywana przez dodaną siatkę drugą. Taki efekt, zwany dynatronowym, powodował wklęśnięcia na charakterystykach anodowych lampy I a =I a (U a ) a przez to poważne zniekształcenia wzmacnianego sygnału. Aby tego uniknąć dodano jeszcze jedną, trzecią siatkę tak powstała pentoda. Siatka trzecia w pentodzie zwykle ma potencjał zerowy (czyli jest zwarta z katodą) i dzięki temu stanowi barierę dla elektronów wtórnych z anody. Elektrony wtórne są zawracane do anody i efekt dynatronowy tu nie występuje. Oprócz pentod z siatką zerową (antydynatronową) stosowane były również pentody z podwójnym sterowaniem, tzw. pentody mieszające. W takich pentodach siatka trzecia była drugą siatką sterującą. Takie pentody można było stosować w układach koincydencyjnych i antykoincydencyjnych jak również do przemiany częstotliwości (czy modulacji sygnałów w.cz.). Ich wadą znowu była duża pojemność między anodą a siatką trzecią (S3) ograniczając od góry częstotliwość sygnałów doprowadzanych do siatki S3. W heptodzie mamy dwie dodatkowe siatki ekranujące (S1 i S3 sterujące a S2 i S4 ekranujące albo S1 i S4 sterujące a S3 i S5 ekranujące z S2 jako specjalnej siatki-anody dla heterodyny lokalnego generatora).
8 TRANZYSTORY W 1926r. Julius Lilienfeld (autor wielu patentów) opatentował ideę, że słabo przewodzący materiał umieszczany w polu elektrycznym będzie zmieniał swoje przewodnictwo pozwalając na uzyskanie efektu wzmocnienia (i być może też efektu przełączenia). Poszukiwania realizacji tej idei trwały wiele lat. Przemysł telekomunikacyjny stosował w tym czasie niedogodne lampy próżniowe i przełączniki mechaniczne. Po wojnie w roku 1946 Mervin Kelly dyrektor laboratoriów Bell a powołał grupę badawczą dla opracowania stałociałowych substytutów lamp i przełączników. Członkowie tej grupy w 1947 roku, wynaleźli tranzystor ostrzowy a po kilku miesiącach tranzystor złączowy. Tranzystory polowe, realizujące ideę Lilienfelda, pojawiają się od 1953 roku jako tranzystory typu JFET, i po 1960 roku jako tranzystory MOSFET. Już w 1954 roku sprzedano tranzystorowych radioodbiorników a laboratoria Bell a wykonały komputer z 700 tranzystorami dla sił powietrznych USA.
9 Tranzystor to wynalazek, który wywarł i nadal wywiera wielki wpływ na człowieka i jego otoczenie. Wynalezienie tranzystora było jednym z wielu pożytecznych wyników szerokiego programu badawczego poświęconego półprzewodnikom, w którym brali udział fizycy, chemicy, metalurdzy i elektronicy. Wiele lat przed wynalezieniem tranzystora wiadomo było, że przewodność półprzewodnika zmienia się pod wpływem temperatury oraz pod wpływem oświetlenia (przewodność rośnie z temperaturą odwrotnie niż w metalach, przewodność rośnie też przy oświetlaniu). Oczywistym jest, że przewodność zależy od ilości nośników ładunku w jednostce objętości oraz od ruchliwości tych nośników. Ruchliwość to stosunek prędkości dryfu nośników ładunku v d w polu elektrycznym E do natężenia tego pola. Ruchliwość nośników ładunku decyduje o szybkości działania i przełączania tranzystorów. Wzrost temperatury obniża ruchliwość w metalach i półprzewodnikach ale gwałtownie zwiększa ilości nośników ładunku i przewodność tylko w półprzewodnikach. Efekty te wyjaśnia pasmowa teoria ciał stałych zapoczątkowana przez A.H. Wilsona w 1931r. Już na początku XX wieku jako odbiorczy układ radiowy wykorzystywano, nie rozumiejąc jego działania, detektor kryształowy (inaczej dioda ostrzowa) w postaci złącza bardzo cienkiego drutu stalowego z kryształkiem galeny (PbS). Układy z detektorem kryształowym były stopniowo wypierane przez układy lampowe, a te już w drugiej połowie XX wieku przez układy tranzystorowe. Oczywiście to fizycy wynaleźli tranzystor i fizycy znajdują kolejne jego udoskonalenia. William Bradford Shockley w roku 1938 rozpoczął poszukiwanie sposobu zmiany detektora krystalicznego na wzmacniacz sygnału elektrycznego. Poszukiwania te przerwane przez wojnę kontynuował od roku 1945 kierując grupą, w której byli między innymi Brattain i Bardeen (wynalazcy tranzystora ostrzowego).
10 W budowie tego pierwszego tranzystora trudnym było umieścić dwa ostrza (emiter i kolektor) w odległości około 0,1 mm od siebie na czystej powierzchni kryształu Ge.
11 Tranzystory złączowe bipolarne Znak + w n + i p + oznacza silniejsze domieszkowanie; emiter jest domieszkowany bardziej niż kolektor. Tranzystor ma tylko 3 końcówki!
12
13 Dzięki tranzystorom możemy: 1) budować układy wzmacniające iloczyn napięcia i prądu czyli moc sygnału elektrycznego, 2) budować przełączniki i układy zerojedynkowe. Podobne możliwości stwarzały lampy ale przy większych kosztach i stratach energii na grzanie katod. Ponadto dzięki tranzystorom dokonuje się rewolucja, w której dotychczasowy nośnik informacji - papier zastępowany jest nośnikami elektronicznymi i powstaje inteligencja z elektronicznymi mózgami i sensorami daleko bardziej sprawnymi od naszych biologicznych. W nazwie tranzystora słowo bipolarne bierze się z tego, że w mechanizmie działania takich tranzystorów istotną rolę odgrywają nośniki ładunku obu znaków. Tranzystory te składają się z dwóch złączy pn, które razem stanowią układ typu npn albo pnp. Takie układy nazywamy odpowiednio tranzystorami typu npn lub pnp. W obu przypadkach środkowa warstwa półprzewodnika, zwana bazą B, jest bardzo cienka. Jej grubość jest porównywalna ze średnią drogą swobodną nośników ładunku wstrzykiwanych do niej z emitera, tak aby zapewnić sam efekt tranzystorowy polegający na przechwytywaniu tychże nośników przez kolektor. Prąd kolektora jest niemal równy prądowi emitera. Tylko drobna część nośników (około 1%), które ulegną rekombinacji w cienkiej bazie stanowią prąd bazy. Brzegowe warstwy tranzystora mają nazwy odpowiednio: emiter E i kolektor C. Nazwa tranzystor pochodzi od angielskiego opisu efektu: TRANsferable resistor, w którym rezystancja między kolektorem a emiterem może być zmieniana przez sygnał podany między bazę a emiter.
14 Modele diodowe ułatwiają sprawdzenie i rozpoznanie tranzystora przy pomocy multimetru. Multimetry zwykle dysponują funkcją dioda, która daje stały prąd od zacisku czerwonego do tzw. wspólnego. Sprawdzając tą funkcją złącza BE i BC, stwierdzimy, że U CB < U BE co jest zgodne z faktem silniejszego domieszkowania emitera niś colektora. Tranzystor połączony szeregowo swoimi zaciskami emitera i kolektora z opornikiem i włączony do zasilania napięciem U CC stanowi swoisty dzielnik napięcia! Złącze BE jest polaryzowane sygnałem sterującym. Otwierając złącze BE powodujemy, że z emitera wprowadzane są mobilne nośniki ładunku w obszar cienkiej bazy a tym samym w pobliże złącza BC. Około 99% tych nośników jest porywane przez kolektor (rys. na następnym slajdzie). Tylko około 1% nośników trafia w obszarze bazy na nośniki przeciwnego znaku i rekombinuje z nimi. W tranzystorze npn elektrony wstrzyknięte z emitera do bazy rekombinują z dziurami nośnikami większościowymi w bazie. Na miejsce każdej znikającej dziury, w procesie rekombinacji, z zacisku bazy wchodzi następna dziura stanowiąc część prądu bazy. Najprostszy model intuicyjny mówi, że sygnałem o małej amplitudzie mocy, za pomocą bazy (zaworu), dokonuje się zamykanie i otwieranie przepływu dużego ładunku (o dużej amplitudzie mocy) między kolektorem i emiterem. Czasem tranzystor nazywany jest triodą półprzewodnikową.
15 Źródło sterujące złączem BE pracuje z małym prądem ale decyduje o prądzie o natężeniu o dwa rzędy wielkości większym w obwodzie emiter-kolektor-opornik-zasilacz dużej mocy. Cechą charakterystyczną tranzystora jest to, że prąd kolektora I C jest proporcjonalny do prądu bazy I B. Stosunek ß st = I C /I B nazywa się statycznym (stałoprądowym) współczynnikiem wzmocnienia prądowego (inne oznaczenie: h 21E = I C / I B ). Prąd emitera rozgałęzia się na prąd bazy i prąd kolektora: I E = I C + I B. Zatem I E jest h 21E +1 razy większy od I B.
16 Cieczowy model spolaryzowanego otwartego i zamkniętego tranzystora npn
17 Modele tranzystora bipolarnego Tranzystory bipolarne pracujące jako wzmacniacze traktuje się zwykle jako elementy sterowane prądowo (sterowane prądem bazy), choć stosowane są też modele w postaci źródeł napięcia lub prądu sterowanych napięciem. µ - jest współczynnikiem proporcjonalności.
18 Modele tranzystora bipolarnego Tranzystory bipolarne mogą też pracować jako elementy przełączające (nieliniowe, on/off). Wtedy można je traktować jako przełączniki sterowane prądem (rys. a) albo przełączniki sterowane napięciem (rys. b).
19 Przykład. Wyznaczyć wzmocnienie K u = u o /u s układu, którego model przedstawia rysunek obok. Rozw. u in = u s r i /(r i + R s ), i napięcie wyjściowe sterowanego źródła napięcia wynosi: µu in = µ u s r i /(r i + R s ), napięcie wyjściowe układu (z zasady działania dzielnika napięcia) wynosi: u o = µ u s r i /(r i + R s ) R o /(r out + R o ) K u = u o /u s = µ r i /(r i + R s ) R o /(r out + R o ) Z wyrażenia na k u widać, że wzmocnienie układu jest mniejsze od µ (wzmocnienia samego tranzystora) i zależy od względnej wartości rezystancji wejściowej r i i rezystancji źródła R s oraz rezystancji obciążenia R o i rezystancji wyjściowej r out. Wzmocnienie staje się bliskie wartości µ gdy r i >> R s i R o >> r out.
20 Prosty model tranzystora mówi, że: I C = βi B, gdzie 10<β<1000. Każdy tranzystor charakteryzuje się maksymalnymi (dopuszczalnymi) wartościami I C, I B i U CE. Ważną wielkością charakteryzującą tranzystor jest częstotliwość graniczna f T określana jako ta, przy której współczynnik wzmocnienia prądowego maleje do jedności
21 Tzw. prosty model tranzystora jako wzmacniacza prądowego mówi, że z dobrym przybliżeniem prąd kolektora jest proporcjonalny do prądu bazy: I C = β st I B (w rzeczywistości β zależy od: natężenia prądu kolektora, napięcia kolektor-emiter, temperatury, a nawet od egzemplarza tego samego typu tranzystora). Ponadto w modelu prostym przyjmujemy, że U BE = const. = 0.6V, tranzystor sterowany jest prądowo, I E =I C +I B =I B (1+ β). Gdy tranzystor pracuje jako wzmacniacz, złącze baza-emiter jest polaryzowane w kierunku przewodzenia. Bariera potencjału na tym złączu jest zredukowana. W efekcie mamy znaczny prąd w elementach: emiter - bardzo cienka baza (rzędu µm) - kolektor. W obwodzie bazy płynie znikomy prąd gdyż prawie wszystkie nośniki ładunku wstrzykiwane z emitera do bazy szybko znajdują się w obszarze złącza baza-kolektor i tu są przyspieszane do kolektora. Dzięki temu, że w cienkiej bazie prawdopodobieństwo rekombinacji i rozproszenia nośników jest małe, około 99% prądu emitera przechwytuje kolektor. Pozostałe około 1% prądu emitera stanowi prąd w obwodzie bazy. O wzmocnieniu decyduje fakt, że małe amplitudy U B i I B powodują duże amplitudy U C i I C (bo I C = β st I B a U C = R C I C ). Czyli mała amplituda mocy w obwodzie bazy wywołuje dużą (wzmocnioną) amplitudę mocy w obwodzie kolektora!
22 Przykład. Wiedząc, że woltomierze w podanym układzie pokazały napięcia: V 1 = U B = 2 V, V 2 = U E = 1,3 V oraz V 3 = U C = 6 V wykazać, że tranzystor jest otwarty i obliczyć wartość wzmocnienia prądowego β. Rozw. Stan otwarcia tranzystora wynika z faktu, że U BE = U B U E 2-1,3 = 0,7 V. Stan otwarcia wynika też faktu, że napięcie kolektora jest znacznie niższe od U CC co wskazuje na znaczny prąd kolektora (i spadek napięcia na R C ). β = I C /I B, I B = (U BB U B )/R B = (4 2)/50000 = 40 µa, I C = (U CC U C )/R C = (12 6)/1000 = 6 ma, β = I C /I B = (6 ma)/(40 µa) = 150. Gdyby U BB obniżyć z 4 V do poniżej 0,7 V tranzystor przeszedłby do stanu odcięcia (nie przewodzenia prądy bazy i kolektora zbliżyłyby się do zera). Gdyby natomiast woltomierz V 3 wykazał niskie napięcie np. V 3 = U C = 1,6 V to U CE = U C U E = 0,3 V, ta (graniczna) wartość U CE oznaczałaby stan nasycenia tranzystora.
23 Uproszczony model Ebersa-Molla mówi, że: I C = I S [exp(u BE /U T ) 1] Poprawniejszym modelem tranzystora bipolarnego jako elementu transkonduktancyjnego jest model Ebersa-Molla. W tym modelu wykorzystujemy zależność prądu kolektora od napięcia między bazą a emiterem U BE : I C = I S [exp(u BE /U T ) - 1] (jest to uproszczone równanie Ebersa- Molla, w dalszym uproszczeniu składnik -1 jest pomijany gdy I C >> I S ). gdzie: U T = kt/q (= 25.3mV w temperaturze pokojowej), I S prąd wsteczny nasycenia zależny od danego egzemplarza tranzystora i jego temperatury. Ta zależność jest tak silna, że I C rośnie o 9% przy wzroście temperatury o 1 C i niezmienionym napięciu U BE (pomimo tego, że U T = kt/q). Model Ebersa-Molla jest bardziej przydatny do opisu dynamiki przełączania tranzystora w elektronice cyfrowej (dwustanowej). Przy pomocy modelu E-M można oszacować niektóre parametry tranzystora niezależne od typu.
24 Przykładowa rodzina charakterystyk tranzystora bipolarnego Efekt Early ego: niezerowy wpływ napięcia U CE na prąd kolektora przy stałym napięciu U BE. Powoduje to odchylenia od idealnego źródła prądowego. (U BE też zależy od U CE przy stałym I C ). U BE U CE
25 . Widać, że opór dynamiczny r E ma małą wartość i głównie zależy od natężenia prądu I C. Zależność r E od temperatury ukryta jest w wartości U T. Uwaga. W odróżnieniu od oporników czy kondensatorów zwanych dwójnikami, tranzystory podobnie jak wiele układów (np. filtry) zaliczamy do czwórników. Dla czwórników wyróżniamy dwie wielkości wejściowe U1 i I1 oraz dwie wyjściowe: U2 i I2. Zauważmy, że przyłożenie napięcia do jakiegoś układu wymaga dwóch zacisków. Podobnie jest z odebraniem np. wzmocnionego napięcia. Fakt ten w naturalny sposób przyczynia się do stosowania teorii czwórników w elektronice a w szczególności do opisu wzmacniaczy. Symbol: h 21E to właśnie element tzw. macierzy H e.
26 Również w przybliżeniu liniowym (małe otoczenie punktu spoczynkowego Q - quiescent point) stosowane są tzw. parametry hybrydowe:
27 Proste układy tranzystorowe Źródło prądowe Negator Wyłącznik żarówki Suma napięć: stałego 5.6 V 5V na we. daje W przełączniku i spadku napięcia na R E 0.3 V na wy. Zaś mamy prąd o dwa polaryzują złącze BE. Zatem poniżej 0.6V na rzędy wielkości R E realizuje tzw. ujemne we. daje 5V na wy. mniejszy od prądu sprzężenie zwrotne stabilizujące prąd obciążenia. żarówki. Oszczędzamy przełącznik.
28 Charakterystyka przejściowa tranzystora I C =I C (U BE ) --> Charakterystyka przejściowa układu U wy = U wy (U we ).
29 Rodzina charakterystyk wyjściowych tranzystora bipolarnego npn i ograniczenie wyboru obciążenia R C. Prosta obciążenia I C = (U CC - U CE )/R C powinna leżeć poniżej hiperboli P max = I C U CE. linia odcięcia oba złącza nie przewodzą. Linia nasycenia gwałtowny spadek wsp. β i utrata liniowości przy minimalnym napięciu U CE.
30 Parametry i charakterystyki tranzystorów bipolarnych Od współczynnika β st należy odróżniać współczynnik małosygnałowy β. β = I C / I B przy U CE = const. natomiast β st = I C /I B Gdy tranzystor pracuje z małymi sygnałami, np. w układzie wzmacniacza liniowego wówczas charakterystyki w otoczeniu punktu pracy mogą być zastąpione stycznymi, zwanymi parametrami małosygnałowymi lub różniczkowymi. Oto kilka przykładów: 1. Transkonduktancja: g m = I C / U BE = ( I C / I BE )( I B / U BE ) = h fe /h ie (w przybliżeniu g m = I C /U T =I C /25mV, dla I C =2,5mA g m 0,1S). 2. Różniczkowa (dynamiczna) rezystancja wyjściowa: r CE = U CE / I C przy U BE = const. 3. Różniczkowa (dynamiczna) rezystancja wejściowa: r BE = U BE / I B przy U CE = const.
31 Wzmacniacze Wzmacniacze są urządzeniami, w których energia ze źródeł zasilania (zasilaczy) jest zamieniana na energię sygnału wyjściowego przy pomocy sygnału sterującego. Zwykle do wejścia wzmacniacza podawana jest suma składowej stałej i składowej zmiennej: u(t) = U 0 + U ZMIeNNE, i(t) = I 0 + I ZMIENNE. Składowa zmienna jako sygnał wzmacniany zwykle jest znacznie mniejsza od składowej stałej. Składowa stała pełni tylko rolę pomocniczą wyznaczając punkt pracy wzmacniacza tranzystorowego. Wyróżniamy trzy typy wzmacniaczy: WE, WB WK. Wzmacniacz o wspólnym emiterze (WE) jest dzielnikiem napięcia utworzonym przez impedancję obciążenia i sterowaną (a zatem zmieniającą się) impedancję tranzystora między kolektorem a emiterem. Wyrażenie : wspólny emiter oznacza, że emiter jest wspólną dla wejścia i dla wyjścia (uziemioną) elektrodą tranzystora. Sygnałem wyjściowym (wzmocnionym) jest napięcie i prąd kolektora. Zmienna składowa napięcia kolektora (określanego względem zerowego potencjału masy i uziemionego emitera) ma fazę przeciwną (tj. odwróconą o 180 o ) do fazy sygnału sterującego - wejściowego. Wzrostowi potencjału na bazie (dodatnia amplituda składowej zmiennej sygnału sterującego u BE ) odpowiada zmniejszenie impedancji tranzystora i napięcia na kolektorze u CE. Wzmocnienie prądowe wynosi h 21E = β. Przy znacznym wzmocnieniu napięciowym (zależnym od obciążenia) wzmocnienie mocy jest rzędu β 2.
32 Wzmacniacz o wspólnym kolektorze (WK). Układy WK często zwane są wtórnikami emiterowymi. Kolektor jest tu elektrodą wspólna dla składowych zmiennych ponieważ jest zwarty z ziemia poprzez dużą pojemność zasilacza (stałość napięcia U CC ). To znaczy, że na kolektorze jest tylko stały potencjał brak składowej zmiennej. Obciążenie znajduje się między emiterem a ziemią i wraz z tranzystorem stanowi dzielnik napięcia. Istotne jest, że ten układ nie odwraca fazy, powtarza zmiany napięcia wejściowego i powiększa prąd wejściowy β-razy (wzmocnienie mocy też wynosi β). Brak wzmocnienia napięciowego ( U wy / U we jest o włos mniejsze od 1 bo r E nie jest = 0) wyjaśnia nazwę: wtórnik emiterowy układ powtarza napięcie zmienne. Potencjał na bazie jest cały czas większy od potencjału na emiterze o około 0.6 V (0.6 do 0.7 V) ponieważ tranzystor jest cały czas otwarty. Zatem potencjał emitera wędruje za potencjałem bazy cały czas będąc przesuniętym o 0.6 V - potrzebne do otwarcia złącza BE. Ponieważ U BE =U we -U Robc mamy do czynienia z ujemnym sprzężeniem zwrotnym redukującym wzmocnienie napięciowe. Bardzo ważnym jest, że R we = βr obc, gdyż prąd wyjściowy jest β-krotnie większy od prądu wejściowego. Dzięki temu układ WK jest swoistym transformatorem impedancji i pozwala na dopasowanie małej impedancji obciążenia do dużej impedancji źródła sygnału sterującego (wzmacnianego prądowo).
33 Wzmacniacz o wspólnej bazie WB. W tym układzie potencjał bazy jest stały a sygnałem sterującym (wzmacnianym) zmieniany jest potencjał emitera. Układ ten nie zmienia fazy sygnału wzmacnianego przy niskich częstotliwościach. Tj. wyjściowy sygnał ma fazę zgodną z sygnałem wejściowym. Wzmocnienie prądowe wynosi prawie 1 (jest około 1% mniejsze od 1). Wzmocnienie napięciowe jest duże i zależy od R C. Istotną zaletą tego układu jest mała pojemność (pasożytnicza) C we-wy = C EC, która faworyzuje go przy wzmacnianiu sygnałów o wysokich częstotliwościach. Wadą jest mała rezystancja wejściowa (I E jest β + 1 razy większy od I B ). Układ ten mając dużą impedancję wyjściową może dopasowywać (przeciwnie do układu WK) dużą impedancję obciążenia do małej impedancji źródła. Uwaga. Przy doborze tranzystora katalogowa graniczna częstotliwość tranzystora f t powinna być około 100 razy większa niż przewidywana granica pasma przenoszenia wzmacniacza WE. W przypadku wzmacniaczy WK i WB wymagania są znacznie mniejsze i f t może być nawet porównywalna z f g.
34 Wzmacniacz o wspólnym emiterze (WE). Rezystory R1 i R2 stanowią dzielnik napięcia zapewniający spoczynkowy punkt pracy układu (określają potencjał bazy). C1 i C3 są pojemnościami sprzęgającymi przekazującymi tylko składową zmienną sygnału pomiędzy kolejnymi stopniami układu. C1 jest kondensatorem wejściowym a C3 wyjściowym dla naszego układu. R E i C E zapewniają silne ujemne sprzężenie zwrotna dla najniższych częstotliwości stabilizując tym sposobem pracę układu. R C jest opornikiem kolektora na którym odkłada się zmienny spadek napięcia o amplitudzie wielokrotnie większej (efekt wzmocnienia) od amplitudy sygnału podawanego na bazę. Faza tego sygnału jest przesunięta o 180 o (bo wyższy potencjał na bazie wymusza większy prąd kolektora i przez to większy spadek U na R C i niższy potencjał na kolektorze). Przed wykonaniem wzmacniacza należy wybrać tranzystor i poznać jego parametry z odpowiedniego katalogu. Znając parametry dobieramy wartości Ucc i Ic (Ic = I spoczynkowe ). Rc dobieramy tak aby Ic Rc = Ucc/2. R E dobieramy tak aby Ic R E = około 1V (dla stabilności temperaturowej). R1 i R2 dobieramy tak aby: U B =V E +0,6V 1,6V oraz R T (R Thevenina) tego dzielnika nie była większa od 0,1 R we tj. R T < 0,1 β R E. czyli R 1 0,1 β R E. O doborze pojemności decyduje pasmo częstotliwości wzmacnianych sygnałów.
35 Efekt Millera Polega na tym, że pojemność między wejściem a wyjściem dowolnego odwracającego fazę wzmacniacza jest elementem ujemnego sprzężenia zwrotnego. Takie pojemnościowe ujemne sprzężenie zwrotne osłabia, a dla wyższych częstotliwości nawet eliminuje wzmocnienie. We wzmacniaczu o wspólnym emiterze pojemność C CB osłabia wzmocnienie w takim stopniu jak pojemność wejściowa o wartości: C wej. = C CB (1+k U ) (która z opornością wewnętrzną źródła stanowi filtr dolnoprzepustowy). Sposoby eliminacji efektu Millera Jednowejściowy wzmacniacz różnicowy
36 Przykład. Wyznaczyć rezystancję rezystora Rc oraz zakres zmian napięcia wyjściowego w układzie z termometru diodowego. Dane; Ucc = 12 V, β = 180; U BE = 0,7V R S = 500 Ω R B = 10 k Ω. Zakres zmian U D 0,92 1,26 V przy zmianie T C. Rozw. Musimy tak dobrać elementy układu aby dla środkowej wartości zmian napięcia diody 1,1V wyjściowe napięcie wynosiło też środkową wartość napięć kolektora czyli 6 V: połowę z 12 V (dla minimalnych zniekształceń). Obliczamy parametry punktu spoczynkowego Q: I BQ = (U DQ U BEQ )/R B = = (1,1-0,7)/10000 = 40 µa. Stąd I CQ = β I BQ = = 7,2 ma, zatem R C = (U CC U )/I CEQ CQ = (12 V 6 V)/7,2 ma = 0,833 kω. U out gr1 = U CC R C βi Bgr1 = ((1,26-0,7)/10000 = 3,6 V U out gr2 = U CC R C βi Bgr2 = ((0,92-0,7)/10000 = 8,7 V Odp. R C = 833 Ω, Zakres napięć wyjściowych: 3,6 8,7 V. Rezystancja wewnętrzna woltomierza jest duża (zwykle więcej niż 1 MΩ) zatem wpływ tej rezystancji na wskazania woltomierza jest do zaniedbania.
37 Przykładowe dane techniczne tranzystora
38
39 Wartości graniczne
40
41
42
43 Elektronika lista zadań 10 1) Oblicz wzmocnienie napięciowe k U układu przedstawionego na rys. wiedząc, że R s = 1 Ω, r i = 24 Ω, r w = 100 Ω, R o = 5 kω a µ = Wiedząc, że woltomierze pokazały napięcia: V 1 = 2 V, V 2 = 1,3 V i V 3 = 8 V. Oblicz wartość wzmocnienia prądowego β. 3. Oblicz spoczynkowe wartości I B, I C, oraz U CE. Dane: wzmocnienie prądowe β = 100, R 1 = 100 kω, R 2 = 50 kω, R C = 5 kω, R E = 3kΩ, U CC = 15 V, U BE = 0,7 V. 4. Mając dane triody: ρ a = 200 Ω, µ a = 100 oraz wartość R a = 1,8 kω oblicz wzmocnienie napięciowe układu k U :
Elektronika (konspekt)
Elektronika (konspekt) Franciszek Gołek (golek@ifd.uni.wroc.pl) www.pe.ifd.uni.wroc.pl Wykład 07 Elementy aktywne, lampy elektronowe i tranzystory. Lampy próżniowe i tranzystory Lampa trioda Tranzystor
Tranzystory bipolarne elementarne układy pracy i polaryzacji
Tranzystory bipolarne elementarne układy pracy i polaryzacji Ryszard J. Barczyński, 2010 2014 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego
Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych
Tranzystorowe wzmacniacze OE OB OC na tranzystorach bipolarnych Wzmacniacz jest to urządzenie elektroniczne, którego zadaniem jest : proporcjonalne zwiększenie amplitudy wszystkich składowych widma sygnału
Zasada działania tranzystora bipolarnego
Tranzystor bipolarny Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Zasada działania tranzystora bipolarnego
Tranzystory bipolarne elementarne układy pracy i polaryzacji
Tranzystory bipolarne elementarne układy pracy i polaryzacji Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Układy
TRANZYSTORY BIPOLARNE ZŁĄCZOWE
TRANZYSTORY IPOLARN ZŁĄCZO ipolar Junction Transistor - JT Tranzystor bipolarny to odpowiednie połączenie dwóch złącz pn p n p n p n kolektor baza emiter kolektor baza emiter udowa tranzystora w technologii
Wiadomości podstawowe
Wiadomości podstawowe Tranzystory są urządzeniami półprzewodnikowymi umożliwiającymi sterowanie przepływem dużego prądu, za pomocą prądu znacznie mniejszego. Wykorzystuje się je do wzmacniania małych sygnałów
Badanie charakterystyk elementów półprzewodnikowych
Badanie charakterystyk elementów półprzewodnikowych W ramach ćwiczenia student poznaje praktyczne właściwości elementów półprzewodnikowych stosowanych w elektronice przez badanie charakterystyk diody oraz
III. TRANZYSTOR BIPOLARNY
1. TRANZYSTOR BPOLARNY el ćwiczenia: Wyznaczenie charakterystyk statycznych tranzystora bipolarnego Zagadnienia: zasada działania tranzystora bipolarnego. 1. Wprowadzenie Nazwa tranzystor pochodzi z języka
Elektrotechnika elektronika miernictwo
Elektrotechnika elektronika miernictwo Franciszek Gołek (golek@ifd.uni.wroc.pl) www.pe.ifd.uni.wroc.pl Wykład 8 Tranzystory bipolarne. Wzmacniacze. Co przyczyniło się do wynalezienia tranzystora? 1) W
Wykład VIII TRANZYSTOR BIPOLARNY
Wykład VIII TRANZYSTOR BIPOLARNY Tranzystor Trójkońcówkowy półprzewodnikowy element elektroniczny, posiadający zdolność wzmacniania sygnału elektrycznego. Nazwa tranzystor pochodzi z angielskiego zwrotu
Wykład X TRANZYSTOR BIPOLARNY
Wykład X TRANZYSTOR BIPOLARNY Tranzystor Trójkoocówkowy półprzewodnikowy element elektroniczny, posiadający zdolnośd wzmacniania sygnału elektrycznego. Nazwa tranzystor pochodzi z angielskiego zwrotu "transfer
Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska
Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska 1947 r. pierwszy tranzystor ostrzowy John Bradeen (z lewej), William Shockley (w środku) i Walter Brattain (z prawej) (Bell Labs) Zygmunt Kubiak
Opracowane przez D. Kasprzaka aka 'master' i D. K. aka 'pastakiller' z Technikum Elektronicznego w ZSP nr 1 w Inowrocławiu.
Opracowane przez D. Kasprzaka aka 'master' i D. K. aka 'pastakiller' z Technikum Elektronicznego w ZSP nr 1 w Inowrocławiu. WZMACNIACZ 1. Wzmacniacz elektryczny (wzmacniacz) to układ elektroniczny, którego
Politechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA 2 (EZ1C500 055) BADANIE DIOD I TRANZYSTORÓW Białystok 2006
Politechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA EKS1A300024 BADANIE TRANZYSTORÓW BIAŁYSTOK 2015 1. CEL I ZAKRES
Tranzystory bipolarne. Małosygnałowe parametry tranzystorów.
ĆWICZENIE 3 Tranzystory bipolarne. Małosygnałowe parametry tranzystorów. I. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie małosygnałowych parametrów tranzystorów bipolarnych na podstawie ich charakterystyk
Elementy elektroniczne Wykłady 5,6: Tranzystory bipolarne
lementy elektroniczne Wykłady 5,6: Tranzystory bipolarne Wprowadzenie Złacze PN spolaryzowane zaporowo: P N U - + S S U SAT =0.1...0.2V U S q D p L p p n D n n L n p gdzie: D p,n współczynniki dyfuzji
Ćwiczenie 2 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH
LABORATORIUM LKTRONIKI Ćwiczenie Parametry statyczne tranzystorów bipolarnych el ćwiczenia Podstawowym celem ćwiczenia jest poznanie statycznych charakterystyk tranzystorów bipolarnych oraz metod identyfikacji
Ćwiczenie - 4. Podstawowe układy pracy tranzystorów
LABORATORIM ELEKTRONIKI Spis treści Ćwiczenie - 4 Podstawowe układy pracy tranzystorów 1 Cel ćwiczenia 1 2 Podstawy teoretyczne 2 2.1 Podstawowe układy pracy tranzystora........................ 2 2.2 Wzmacniacz
Tranzystory bipolarne. Właściwości wzmacniaczy w układzie wspólnego kolektora.
I. Cel ćwiczenia ĆWICZENIE 6 Tranzystory bipolarne. Właściwości wzmacniaczy w układzie wspólnego kolektora. Badanie właściwości wzmacniaczy tranzystorowych pracujących w układzie wspólnego kolektora. II.
Laboratorium Elektroniki
Wydział Mechaniczno-Energetyczny Laboratorium Elektroniki Badanie wzmacniaczy tranzystorowych i operacyjnych 1. Wstęp teoretyczny Wzmacniacze są bardzo często i szeroko stosowanym układem elektronicznym.
Tranzystory bipolarne. Właściwości dynamiczne wzmacniaczy w układzie wspólnego emitera.
ĆWICZENIE 5 Tranzystory bipolarne. Właściwości dynamiczne wzmacniaczy w układzie wspólnego emitera. I. Cel ćwiczenia Badanie właściwości dynamicznych wzmacniaczy tranzystorowych pracujących w układzie
PODSTAWY ELEKTRONIKI I TECHNIKI CYFROWEJ
1 z 9 2012-10-25 11:55 PODSTAWY ELEKTRONIKI I TECHNIKI CYFROWEJ opracowanie zagadnieo dwiczenie 1 Badanie wzmacniacza ze wspólnym emiterem POLITECHNIKA KRAKOWSKA Wydział Inżynierii Elektrycznej i Komputerowej
Ćwiczenie - 3. Parametry i charakterystyki tranzystorów
Spis treści Ćwiczenie - 3 Parametry i charakterystyki tranzystorów 1 Cel ćwiczenia 1 2 Podstawy teoretyczne 2 2.1 Tranzystor bipolarny................................. 2 2.1.1 Charakterystyki statyczne
Temat i cel wykładu. Tranzystory
POLTECHNKA BAŁOSTOCKA Temat i cel wykładu WYDZAŁ ELEKTRYCZNY Tranzystory Celem wykładu jest przedstawienie: konstrukcji i działania tranzystora bipolarnego, punktu i zakresów pracy tranzystora, konfiguracji
Wzmacniacze operacyjne
Wzmacniacze operacyjne Cel ćwiczenia Celem ćwiczenia jest badanie podstawowych układów pracy wzmacniaczy operacyjnych. Wymagania Wstęp 1. Zasada działania wzmacniacza operacyjnego. 2. Ujemne sprzężenie
5. Tranzystor bipolarny
5. Tranzystor bipolarny Tranzystor jest to trójkońcówkowy element półprzewodnikowy zdolny do wzmacniania sygnałów prądu stałego i zmiennego. Każdy tranzystor jest zatem wzmacniaczem. Definicja wzmacniacza:
Tranzystor. C:\Program Files (x86)\cma\coach6\full.en\cma Coach Projects\PTSN Coach 6 \Elektronika\Tranzystor_cz2b.cmr
Tranzystor Program: Coach 6 Projekt: komputer H : C:\Program Files (x86)\cma\coach6\full.en\cma Coach Projects\PTSN Coach 6 \Elektronika\Tranzystor_cz1.cmr C:\Program Files (x86)\cma\coach6\full.en\cma
Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych Laboratorium Przyrządów Półprzewodnikowych. Ćwiczenie 2
Ćwiczenie 2 Cel ćwiczenia Celem ćwiczenia jest poznanie statycznych charakterystyk tranzystorów bipolarnych oraz metod identyfikacji parametrów odpowiadających im modeli małosygnałowych, poznanie metod
Ćwiczenie 5. Zastosowanie tranzystorów bipolarnych cd. Wzmacniacze MOSFET
Ćwiczenie 5 Zastosowanie tranzystorów bipolarnych cd. Wzmacniacze MOSFET Układ Super Alfa czyli tranzystory w układzie Darlingtona Zbuduj układ jak na rysunku i zaobserwuj dla jakiego położenia potencjometru
Tranzystor bipolarny. przykłady zastosowań
Tranzystor bipolarny przykłady zastosowań Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Publikacja współfinansowana
IV. TRANZYSTOR POLOWY
1 IV. TRANZYSTOR POLOWY Cel ćwiczenia: Wyznaczenie charakterystyk statycznych tranzystora polowego złączowego. Zagadnienia: zasada działania tranzystora FET 1. Wprowadzenie Nazwa tranzystor pochodzi z
Politechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA 2 Kod: ES1C400 026 BADANIE WYBRANYCH DIOD I TRANZYSTORÓW BIAŁYSTOK
Budowa. Metoda wytwarzania
Budowa Tranzystor JFET (zwany też PNFET) zbudowany jest z płytki z jednego typu półprzewodnika (p lub n), która stanowi tzw. kanał. Na jego końcach znajdują się styki źródła (ang. source - S) i drenu (ang.
Liniowe układy scalone w technice cyfrowej
Liniowe układy scalone w technice cyfrowej Wykład 6 Zastosowania wzmacniaczy operacyjnych: konwertery prąd-napięcie i napięcie-prąd, źródła prądowe i napięciowe, przesuwnik fazowy Konwerter prąd-napięcie
PRACOWNIA ELEKTRONIKI
PRACOWNIA ELEKTRONIKI Ćwiczenie nr 4 Temat ćwiczenia: Badanie wzmacniacza UNIWERSYTET KAZIMIERZA WIELKIEGO W BYDGOSZCZY INSTYTUT TECHNIKI 1. 2. 3. Imię i Nazwisko 1 szerokopasmowego RC 4. Data wykonania
Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Katedra Elektroniki
Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Na podstawie instrukcji Wtórniki Napięcia,, Laboratorium układów Elektronicznych Opis badanych układów Spis Treści 1. CEL ĆWICZENIA... 2 2.
Część 3. Przegląd przyrządów półprzewodnikowych mocy. Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 51
Część 3 Przegląd przyrządów półprzewodnikowych mocy Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 51 Budowa przyrządów półprzewodnikowych Struktura składa się z warstw Warstwa
Tranzystor bipolarny. przykłady zastosowań cz. 1
Tranzystor bipolarny przykłady zastosowań cz. 1 Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Wzmacniacz prądu
Elementy półprzewodnikowe. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego.
Elementy półprzewodnikowe Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Elementy elektroniczne i ich zastosowanie. Elementy stosowane w elektronice w większości
1. Zarys właściwości półprzewodników 2. Zjawiska kontaktowe 3. Diody 4. Tranzystory bipolarne
Spis treści Przedmowa 13 Wykaz ważniejszych oznaczeń 15 1. Zarys właściwości półprzewodników 21 1.1. Półprzewodniki stosowane w elektronice 22 1.2. Struktura energetyczna półprzewodników 22 1.3. Nośniki
Systemy i architektura komputerów
Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Systemy i architektura komputerów Laboratorium nr 4 Temat: Badanie tranzystorów Spis treści Cel ćwiczenia... 3 Wymagania... 3 Przebieg ćwiczenia...
płytka montażowa z tranzystorami i rezystorami, pokazana na rysunku 1. płytka montażowa do badania przerzutnika astabilnego U CC T 2 masa
Tranzystor jako klucz elektroniczny - Ćwiczenie. Cel ćwiczenia Zapoznanie się z podstawowymi układami pracy tranzystora bipolarnego jako klucza elektronicznego. Bramki logiczne realizowane w technice RTL
ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI
1 ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 15.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie podstawowych właściwości wzmacniaczy mocy małej częstotliwości oraz przyswojenie umiejętności
Ćwiczenie 10 Temat: Własności tranzystora. Podstawowe własności tranzystora Cel ćwiczenia
Ćwiczenie 10 Temat: Własności tranzystora. Podstawowe własności tranzystora Cel ćwiczenia Poznanie podstawowych własności tranzystora. Wyznaczenie prądów tranzystorów typu n-p-n i p-n-p. Czytanie schematów
Tranzystory bipolarne. Podstawowe układy pracy tranzystorów.
ĆWICZENIE 4 Tranzystory bipolarne. Podstawowe układy pracy tranzystorów. I. Cel ćwiczenia Zapoznanie się z układami zasilania tranzystorów. Wybór punktu pracy tranzystora. Statyczna prosta pracy. II. Układ
LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH
LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 Parametry statyczne tranzystorów polowych złączowych Cel ćwiczenia Podstawowym celem ćwiczenia jest poznanie statycznych charakterystyk tranzystorów polowych złączowych
Ćwiczenie nr 4 Tranzystor bipolarny (npn i pnp)
Ćwiczenie nr 4 Tranzystor bipolarny (npn i pnp) Tranzystory są to urządzenia półprzewodnikowe, które umożliwiają sterowanie przepływem dużego prądu, za pomocą prądu znacznie mniejszego. Tranzystor bipolarny
Dioda półprzewodnikowa
mikrofalowe (np. Gunna) Dioda półprzewodnikowa Dioda półprzewodnikowa jest elementem elektronicznym wykonanym z materiałów półprzewodnikowych. Dioda jest zbudowana z dwóch różnie domieszkowanych warstw
BADANIE PRZERZUTNIKÓW ASTABILNEGO, MONOSTABILNEGO I BISTABILNEGO
Ćwiczenie 11 BADANIE PRZERZUTNIKÓW ASTABILNEGO, MONOSTABILNEGO I BISTABILNEGO 11.1 Cel ćwiczenia Celem ćwiczenia jest poznanie rodzajów, budowy i właściwości przerzutników astabilnych, monostabilnych oraz
Ćwiczenie 4- tranzystor bipolarny npn, pnp
Ćwiczenie 4- tranzystor bipolarny npn, pnp Tranzystory są to urządzenia półprzewodnikowe, które umożliwiają sterowanie przepływem dużego prądu, za pomocą prądu znacznie mniejszego. Tranzystor bipolarny
Tranzystor bipolarny
Tranzystor bipolarny 1. zas trwania: 6h 2. ele ćwiczenia adanie własności podstawowych układów wykorzystujących tranzystor bipolarny. 3. Wymagana znajomość pojęć zasada działania tranzystora bipolarnego,
SYMBOLE GRAFICZNE. Tyrystory. Struktura Charakterystyka Opis
SYMBOLE GRAFICZNE y Nazwa triasowy blokujący wstecznie SCR asymetryczny ASCR Symbol graficzny Struktura Charakterystyka Opis triasowy blokujący wstecznie SCR ma strukturę czterowarstwową pnpn lub npnp.
ĆWICZENIE 4 CHARAKTERYSTYKI STATYCZNE TRANZYSTORA BIPOLARNEGO
LAORATORIUM LKTRONIKI ĆWIZNI 4 HARAKTRYSTYKI STATYZN TRANZYSTORA IPOLARNGO K A T D R A S Y S T M Ó W M I K R O L K T R O N I Z N Y H 1. L ĆWIZNIA elem ćwiczenia jest zapoznanie się z podstawowymi charakterystykami
Przyrządy półprzewodnikowe część 4
Przyrządy półprzewodnikowe część 4 Dr inż. Bogusław Boratyński Wydział Elektroniki Mikrosystemów i Fotoniki Politechnika Wrocławska 2011 Literatura i źródła rysunków G. Rizzoni, Fundamentals of Electrical
Gdy wzmacniacz dostarcz do obciążenia znaczącą moc, mówimy o wzmacniaczu mocy. Takim obciążeniem mogą być na przykład...
Ryszard J. Barczyński, 2010 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Gdy wzmacniacz dostarcz do obciążenia znaczącą moc, mówimy
PARAMETRY MAŁOSYGNAŁOWE TRANZYSTORÓW BIPOLARNYCH
L B O R T O R I U M ELEMENTY ELEKTRONICZNE PRMETRY MŁOSYGNŁOWE TRNZYSTORÓW BIPOLRNYCH REV. 1.0 1. CEL ĆWICZENI - celem ćwiczenia jest zapoznanie się z metodami pomiaru i wyznaczania parametrów małosygnałowych
Ćwiczenie 4. Parametry statyczne tranzystorów polowych JFET i MOSFET
Ćwiczenie 4 Parametry statyczne tranzystorów polowych JFET i MOSFET Cel ćwiczenia Podstawowym celem ćwiczenia jest poznanie charakterystyk statycznych tranzystorów polowych złączowych oraz z izolowaną
TRANZYSTORY BIPOLARNE ZŁĄCZOWE
TRANZYSTORY POLARN ZŁĄZOW ipolar Junction Transistor - JT Tranzystor bipolarny to odpowiednie połączenie dwóch złącz pn p n p n p n kolektor baza emiter kolektor baza emiter udowa tranzystora w technologii
TRANZYSTORY MOCY. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi tranzystorami i ich charakterystykami.
12 Ć wiczenie 2 TRANZYSTORY MOCY Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi tranzystorami i ich charakterystykami. 1. Wiadomości wstępne Tranzystory są to trójelektrodowe przyrządy
Instrukcja nr 5. Wzmacniacz różnicowy Stabilizator napięcia Tranzystor MOSFET
Instrukcja nr 5 Wzmacniacz różnicowy Stabilizator napięcia Tranzystor MOSFET AGH Zespół Mikroelektroniki Układy Elektroniczne J. Ostrowski, P. Dorosz Lab 5.1 Wzmacniacz różnicowy Wzmacniacz różnicowy jest
Tranzystory. 1. Tranzystory bipolarne 2. Tranzystory unipolarne. unipolarne. bipolarny
POLTEHNKA AŁOSTOKA Tranzystory WYDZAŁ ELEKTYZNY 1. Tranzystory bipolarne 2. Tranzystory unipolarne bipolarny unipolarne Trójkońcówkowy (czterokońcówkowy) półprzewodnikowy element elektroniczny, posiadający
Ćwiczenie 7 PARAMETRY MAŁOSYGNAŁOWE TRANZYSTORÓW BIPOLARNYCH
Ćwiczenie 7 PRMETRY MŁOSYGNŁO TRNZYSTORÓW BIPOLRNYCH Wstęp Celem ćwiczenia jest wyznaczenie niektórych parametrów małosygnałowych hybrydowego i modelu hybryd tranzystora bipolarnego. modelu Konspekt przygotowanie
TRANZYSTORY BIPOLARNE ZŁĄCZOWE
TRANZYSTORY POLARN ZŁĄCZOW ipolar Junction Transistor - JT Tranzystor bipolarny to odpowiednie połączenie dwóch złącz pn: p n p n p n kolektor baza emiter kolektor baza emiter udowa tranzystora w technologii
Politechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA ENS1C300 022 BADANIE TRANZYSTORÓW BIAŁYSTOK 2013 1. CEL I ZAKRES
Tranzystory. bipolarne (NPN i PNP), polowe (MOSFET), fototranzystory
Tranzystory bipolarne (NPN i PNP), polowe (MOSFET), fototranzystory Tranzystory -rodzaje Tranzystor to element, który posiada zdolność wzmacniania mocy sygnału elektrycznego. Z uwagi na tą właściwość,
Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE. Badanie tranzystorów unipolarnych typu JFET i MOSFET
Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej TIA ZIENNE LAORATORIM PRZYRZĄÓW PÓŁPRZEWONIKOWYCH Ćwiczenie nr 8 adanie tranzystorów unipolarnych typu JFET i MOFET I. Zagadnienia
Zadania z podstaw elektroniki. Zadanie 1. Wyznaczyć pojemność wypadkową układu (C1=1nF, C2=2nF, C3=3nF):
Zadania z podstaw elektroniki Zadanie 1. Wyznaczyć pojemność wypadkową układu (C1=1nF, C2=2nF, C3=3nF): Układ stanowi szeregowe połączenie pojemności C1 z zastępczą pojemnością równoległego połączenia
Badanie tranzystora bipolarnego
Spis ćwiczeń: Badanie tranzystora bipolarnego Symulacja komputerowa PSPICE 9.1 www.pspice.com 1. Charakterystyka wejściowa tranzystora bipolarnego 2. Wyznaczanie rezystancji wejściowej 3. Rysowanie charakterystyk
Przyrządy półprzewodnikowe część 5 FET
Przyrządy półprzewodnikowe część 5 FET r inż. Bogusław Boratyński Wydział Elektroniki Mikrosystemów i Fotoniki Politechnika Wrocławska 2011 Literatura i źródła rysunków G. Rizzoni, Fundamentals of Electrical
7. Tyrystory. Tyrystor SCR (Silicon Controlled Rectifier)
7. Tyrystory 1 Tyrystory są półprzewodnikowymi przyrządami mocy pracującymi jako łączniki dwustanowe to znaczy posiadające stan włączenia (charakteryzujący się małą rezystancją) i stan wyłączenia (o dużej
Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU
REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU R C E Z w B I Ł G O R A J U LABORATORIUM pomiarów elektronicznych UKŁADÓW ANALOGOWYCH Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza
Temat: Wzmacniacze operacyjne wprowadzenie
Temat: Wzmacniacze operacyjne wprowadzenie.wzmacniacz operacyjny schemat. Charakterystyka wzmacniacza operacyjnego 3. Podstawowe właściwości wzmacniacza operacyjnego bardzo dużym wzmocnieniem napięciowym
Układy zasilania tranzystorów
kłady zasilania tranzystorów Wrocław 2 Punkt pracy tranzystora B BQ Q Q Q BQ B Q Punkt pracy tranzystora Tranzystor unipolarny SS Q Q Q GS p GSQ SQ S opuszczalny obszar pracy (safe operating conditions
Podstawy Elektroniki dla Teleinformatyki. Tranzystory bipolarne
AGH Katedra Elektroniki Podstawy Elektroniki dla Teleinformatyki Tranzystory bipolarne Ćwiczenie 3 2014 r. 1 1. Wstęp. Celem ćwiczenia jest zapoznanie się z działaniem i zastosowaniami tranzystora bipolarnego.
E104. Badanie charakterystyk diod i tranzystorów
E104. Badanie charakterystyk diod i tranzystorów Cele: Wyznaczenie charakterystyk dla diod i tranzystorów. Dla diod określa się zależność I d =f(u d ) prądu od napięcia i napięcie progowe U p. Dla tranzystorów
Prostowniki. Prostownik jednopołówkowy
Prostowniki Prostownik jednopołówkowy Prostownikiem jednopołówkowym nazywamy taki prostownik, w którym po procesie prostowania pozostają tylko te części przebiegu, które są jednego znaku a części przeciwnego
11. Wzmacniacze mocy. Klasy pracy tranzystora we wzmacniaczach mocy. - kąt przepływu
11. Wzmacniacze mocy 1 Wzmacniacze mocy są układami elektronicznymi, których zadaniem jest dostarczenie do obciążenia wymaganej (na ogół dużej) mocy wyjściowej przy możliwie dużej sprawności i małych zniekształceniach
Rys. 1. Oznaczenia tranzystorów bipolarnych pnp oraz npn
Ćwiczenie 4. harakterystyki statyczne tranzystora bipolarnego 1. L ĆWIZNI elem ćwiczenia jest zapoznanie się z podstawowymi charakterystykami statycznymi oraz z najwaŝniejszymi parametrami i modelami tranzystora
3.4 Badanie charakterystyk tranzystora(e17)
152 Elektryczność 3.4 Badanie charakterystyk tranzystora(e17) Celem ćwiczenia jest wyznaczenie charakterystyk tranzystora npn w układzie ze wspólnym emiterem W E. Zagadnienia do przygotowania: półprzewodniki,
Układy nieliniowe - przypomnienie
Układy nieliniowe - przypomnienie Generacja-rekombinacja E γ Na bazie półprzewodników γ E (Si)= 1.14 ev g w.8, p.1 Domieszkowanie n (As): Większościowe elektrony pasmo przewodnictwa swobodne elektrony
PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE, Kraków, PL BUP 14/12
PL 218560 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 218560 (13) B1 (21) Numer zgłoszenia: 393408 (51) Int.Cl. H03F 3/18 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:
WZMACNIACZ NAPIĘCIOWY RC
WZMACNIACZ NAPIĘCIOWY RC 1. WSTĘP Tematem ćwiczenia są podstawowe właściwości jednostopniowego wzmacniacza pasmowego z tranzystorem bipolarnym. Zadaniem ćwiczących jest dokonanie pomiaru częstotliwości
Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7
Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego, poznanie jego charakterystyki przejściowej
ELEMENTY ELEKTRONICZNE TS1C
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki nstrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEMENTY ELEKTRONCZNE TS1C300 018 BAŁYSTOK 013 1. CEL ZAKRES ĆWCZENA LABORATORYJNEGO
Najprostszy mieszacz składa się z elementu nieliniowego, do którego doprowadzone są dwa sygnały. Przykładowy taki układ jest pokazany na rysunku 1.
Mieszacze Najprostszy mieszacz składa się z elementu nieliniowego, do którego doprowadzone są dwa sygnały. Przykładowy taki układ jest pokazany na rysunku 1. Rysunek 1: Najprostszy mieszacz diodowy Elementem
Przykładowe zadanie egzaminacyjne dla kwalifikacji E.20 w zawodzie technik elektronik
1 Przykładowe zadanie egzaminacyjne dla kwalifikacji E.20 w zawodzie technik elektronik Znajdź usterkę oraz wskaż sposób jej usunięcia w zasilaczu napięcia stałego 12V/4A, wykonanym w oparciu o układ scalony
Pracownia pomiarów i sterowania Ćwiczenie 3 Proste przyrządy elektroniczne
Małgorzata Marynowska Uniwersytet Wrocławski, I rok Fizyka doświadczalna II stopnia Prowadzący: dr M. Grodzicki Data wykonania ćwiczenia: 14.04.2015 Pracownia pomiarów i sterowania Ćwiczenie 3 Proste przyrządy
Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE
Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH Ćwiczenie nr 12 Pomiar wartości parametrów małosygnałowych h ije tranzystora
WSTĘP DO ELEKTRONIKI
WSTĘP DO ELEKTRONIKI Część VI Sprzężenie zwrotne Wzmacniacz operacyjny Wzmacniacz operacyjny w układach z ujemnym i dodatnim sprzężeniem zwrotnym Janusz Brzychczyk IF UJ Sprzężenie zwrotne Sprzężeniem
Ćwiczenie E5 WYZNACZANIE CHARAKTERYSTYK TRANZYSTORA WARSTWOWEGO
Laboratorium Podstaw Elektroniki Wiaczesław Szamow Ćwiczenie E5 WYZNACZANIE CHARAKTERYSTYK TRANZYSTORA WARSTWOWEGO opr. tech. Mirosław Maś Krystyna Ługowska Uniwersytet Przyrodniczo - Humanistyczny Siedlce
Wzmacniacz jako generator. Warunki generacji
Generatory napięcia sinusoidalnego Drgania sinusoidalne można uzyskać Poprzez utworzenie wzmacniacza, który dla jednej częstotliwości miałby wzmocnienie równe nieskończoności. Poprzez odtłumienie rzeczywistego
LABORATORIUM ELEKTRONIKI ĆWICZENIE 2. ELEMENTARNE UKŁADY ELEKTRONICZNE (Wzmacniacz i inwerter na tranzystorze bipolarnym)
LAORATORIUM ELEKTRONIKI ĆWIZENIE 2 ELEMENTARNE UKŁADY ELEKTRONIZNE (Wzmacniacz i inwerter na tranzystorze bipolarnym) K A T E D R A S Y S T E M Ó W M I K R O E L E K T R O N I Z N Y H EL ĆWIZENIA elem
ELEMENTY ELEKTRONICZNE. Układy polaryzacji i stabilizacji punktu pracy tranzystora
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEMENTY ELEKTRONICZNE TS1C300 018 Układy polaryzacji i stabilizacji punktu
Państwowa WyŜsza Szkoła Zawodowa w Pile Studia Stacjonarne i niestacjonarne PODSTAWY ELEKTRONIKI rok akademicki 2008/2009
Państwowa WyŜsza Szkoła Zawodowa w Pile Studia Stacjonarne i niestacjonarne PODSTAWY ELEKTRONIKI rok akademicki 008/009 St. Stacjonarne: Semestr III - 45 h wykłady, 5h ćwicz. audytor., 5h ćwicz. lab. St.
Politechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: UKŁADY ELEKTRONICZNE 2 (TS1C500 030) Tranzystor w układzie wzmacniacza
Tranzystory bipolarne
Tranzystory bipolarne Tranzystor jest to element półprzewodnikowy, w zasadzie trójelektrodowy, umożliwiający wzmacnianie mocy sygnałów elektrycznych. Tranzystory są to trójelektrodowe przyrządy półprzewodnikowe
Ćwiczenie 1: Pomiar parametrów tranzystorowego wzmacniacza napięcia w układzie wspólnego emitera REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU
REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU R C E Z w B I Ł G O R A J U LABORATORIUM pomiarów elektronicznych UKŁADÓW ANALOGOWYCH Ćwiczenie 1: Pomiar parametrów tranzystorowego wzmacniacza napięcia
12. Zasilacze. standardy sieci niskiego napięcia tj. sieci dostarczającej energię do odbiorców indywidualnych
. Zasilacze Wojciech Wawrzyński Wykład z przedmiotu Podstawy Elektroniki - wykład Zasilacz jest to urządzenie, którego zadaniem jest przekształcanie napięcia zmiennego na napięcie stałe o odpowiednich