Badanie wysokoenergetycznych mionów kosmicznych w detektorze ICARUS.
|
|
- Eugeniusz Kowal
- 6 lat temu
- Przeglądów:
Transkrypt
1 Badanie wysokoenergetycznych mionów kosmicznych w detektorze ICARUS. Tomasz Palczewski Promotor: Prof. dr hab. Joanna Stepaniak. Warszawska Grupa Neutrinowa. Seminarium Doktoranckie IPJ Warszawa.
2 Plan Seminarium Cele. Wysokoenergetyczne miony pochodzenie, oddziaływania. Metoda pomiaru energii wysokoenergetycznych mionów. Zasada działania detektora ciekłoargonowego opartego na technologii komór projekcji czasowej. Detektor ICARUS T600. Wyniki. Testów oprogramowania. Pomiarów przypadków generowanych MC. Pomiarów przypadków rzeczywistych z testów detektora w laboratorium naziemnym w Pavii. Podsumowanie.
3 Cele Zrozumienie fizycznych przyczyn obserwowanego kształtu widma energii promieniowania kosmicznego. Widmo promieniowania kosmicznego charakteryzuje się stromym potęgowym spadkiem energii dn/de = E γ Obserwujemy dwa rejony przejściowe: tzw. kolano oraz kostka. Gdyby promieniowanie o ultrawysokich energiach pochodziłyby z Wszechświata obserwowałoby się spadek jego natężenia przy energii 6*10 6 GeV ze względu na oddziaływanie protonów z mikrofalowym tłem o temperaturze 2,7 K. Pochodzenie promieni kosmicznych. A.D.Erylkin, A.W.Wolfendale.
4 Rysunek wykonany na podstawie rysunku z pracy: Pochodzenie promieni kosmicznych A.D.Erlykin,A.W.Wolfendale.
5 Cele Umożliwiają sprawdzenia wielu hipotez dla praw fizyki poza modelem standardowym. Znajomość fizyki wysokoenergetycznych mionów jest często potrzebna w różnych badaniach: Oddziaływanie wysokoenergetycznych neutrin. Poszukiwanie cząstek ciemnej materii.(*) (*) Detekcja Cząstek Ciemnej Materii w ciekłym argonie. Piotr. Mijakowski. Praca Magisterska. Uniwersytet Warszawski Wydział fizyki. Warszawa wrzesień 2005.
6 Wysokoenergetyczne miony Stanowią sygnał od oddziaływania neutrin kosmicznych. w wyniku oddziaływania wysokoenergetycznego neutrina powstaje wysokoenergetyczny mion w procesie wymiany prądów naładowanych. Stanowią nie tylko sygnaturę ale także tło dla oddziaływań neutrin kosmicznych. Ze względu na bardzo szerokie spektrum energii mionów prowadziło się, prowadzi się i będzie się prowadziło badania w wielu eksperymentach: Soudan, Casa, Artemis, Wipple, Auger, L3, Cat, Celesta, Macro, Hegra, Nestor, Tibet AS, Superkamiokande
7 Miony - podstawowe informacje. Mion jest leptonem, o spinie ½ obdarzonym ładunkiem elektrycznym równym -1 Mion jest cząstką niestabilną i rozpada się spontanicznie: µ e + + ν + + e µ e + ν + e ν µ ν µ Średni czas życia mionu wynosi 2.2 * 10-6 s. Masa mionu wynosi 105,6 MeV/c 2 Particle Physics Booklet. Particle Data Group. American Institute of Physics.
8 Miony pochodzenie. W skutek oddziaływania pierwotnego promieniowania kosmicznego z atomami i cząsteczkami atmosfery powstają głównie mezony π. Z rozpadów naładowanych π powstają miony: π + µ + + π µ + ν ν µ µ
9 Rozpady Kaonów prowadzące bezpośrednio do powstawania mionów. Proces: stosunek rozgałęzień: % K µ +ν ( µ ν µ ) K π + µ + ν µ ν µ ) 3.2 % 0 K L ( + + π + µ + ν µ ν 27 % Rozpady Kaonów prowadzące pośrednio do powstawania mionów. W wyniku rozpadu powstaje naładowany pion, który następnie rozpada się na mion. Procesy: stosunek rozgałęzień: K π + π 21.2 % K π + π + π 5.6 % K π + π + π 1.73 % π 0 + K S % K ( L π + e + ν e ν e ) 38.6 % % K L ( π µ π + π + ) π
10 Oddziaływania neutrin: Ze względu na bardzo niski przekrój czynny na oddziaływanie neutrin z materią liczba mionów powstałych w wyniku oddziaływania jest znacznie mniejsza od liczby mionów powstałych w wyniku rozpadów hadronowych. W przypadku prowadzenia badań na dużych głębokościach pod powierzchnią ziemi powstawanie mionów z oddziaływań neutrin należy brać pod uwagę, gdyż odcinamy się od składowej mionów atmosferycznych.
11 Rozpraszanie głęboko nieelastyczne: ν µ + N µ + X Rozpraszanie przy dużych energiach i przekazach pędu, możliwe są różne hadronowe stany końcowe.
12 Rozpraszanie głęboko nieelastyczne: Procesy rezonansowe, zdominowane głównie przez produkcję : 1. Gdzie: 2. Gdzie: ) ( ) ( µ ν µ p n ) ( ) ( µ µ ν n p X N + + µ ν µ π n π p + π p 0 + π n
13 Rozpraszanie kwazielastyczne: ν µ + n p + µ ν µ + p n + µ + Odwrotny rozpad mionu: ν µ + e ν e + µ ν e + e + µ µ ν
14
15 Oddziaływanie wysokoenergetycznych mionów z materią Przykład rzeczywistego przypadku mionu z testów detektora w Pavii.
16 Oddziaływanie Wysokoenergetycznych mionów z materią
17
18 Oddziaływanie wysokoenergetycznych mionów z materią Jonizacja: Jonizacja ośrodka następuje oddzielenie elektronów, w wyniku czego powstają także jony dodatnie. Elektrony δ - Gdy w procesie jonizacji powstaje elektron o energii wystarczającej do dalszej jonizacji ośrodka, elektron ten nazywamy elektronem δ.
19 Jonizacja i elektrony delta. ε - minimalna energia przekazana w oddziaływaniu.
20 Oddziaływanie wysokoenergetycznych mionów z materią Procesy radiacyjne: Promieniowanie hamowania jest to proces wypromieniowywania fotonu. Bezpośrednia produkcja pary e + e -.
21 Całkowity przekrój czynny na produkcję pary e+ e- silnie zależy od energii mionu: Całkowity przekrój czynny na produkcję pary e+ e- zależy jak kwadrat logarytmu od energii mionu.
22 Oddziaływanie wysokoenergetycznych mionów z materią Produkcja par mionowych.
23 Oddziaływanie wysokoenergetycznych mionów z materią Nieelastyczne oddziaływanie mionów z jądrami.
24 Średnia strata energii mionów w ciekłym argonie w funkcji energii. On the use of the LA spectrometer Bars for horizontal muon spectrum measurement. S.V.Belikov i inni. Protvino IHEP
25 Wpływ różnych procesów do straty energii mionów w ciekłym argonie dla energii mionu E = 10 TeV.
26 Metoda pomiarowa. Wykorzystując statystyczną metodę największej wiarygodności można uzyskać wzory na energię mionu. Wariant1: Uwzględnia się jedynie liczbę oddziaływań powyżej zadanego progu. Wariant2: Uwzględnia się także energię przekazaną w oddziaływaniu. Theory of the pair meter for high energy muon measurement. R.P.Kokoulin, A.A.Petrukhin. NIM, A263, 468, Pair Meter Technique Measurements of horizontal muon spectrum measurements S.V.Belikov i inni. Protvino IHEP
27 Detektor ICARUS T600
28 Detektor ICARUS T600 Detektor oparty na technologii komór projekcji czasowej (TPC). Materiałem czułym jest ciekły argon (LAr) o łącznej masie około 600 ton. Powstanie sygnału w detektorze: W wyniku przejścia cząstki jonizującej przez materiał czuły detektora powstają jony i elektrony. Pod wpływem przyłożonego pola elektrycznego elektrony dryfują w kierunku systemu zbierania informacji, który w przypadku ICARUSA T600 jest systemem trzech płaszczyzn drutów W ciekłym argonie przy przejściu cząstki jonizującej powstaje także światło scyntylacyjne, które rejestrowane jest przez system fotopowielaczy. Informacje te umożliwiają rekonstrukcję przestrzenną w trzech wymiarach i energetyczną danego przypadku oraz określenie absolutnego czasu zajścia zdarzenia. Koncepcja detektora TPC z zastosowanie ciekłego argonu została przedstawiona w 1977 roku przez C.Rubbie. The Liquid-Argon Time projection Chamber:a new concept for Neutrino Detector,C.Rubbia,CERN-EP /77-08,(1977)
29 ICARUS T600 Dwa bliźniacze moduły o wymiarach 3.6x3.9x19.9 m^3. Wewnątrz modułów znajduje się katoda. System zbierania danych stanowią trzy płaszczyzny drutów. Hala w Gran Sasso (Włochy). Widoczny detektor ICARUS T600
30 Testy detektora w laboratorium naziemnym w Pavii. Ze względu na testowanie detektora na powierzchni ziemi aby analizować przypadki wysokoenergetycznych mionów konieczne było skoncentrowanie się na przypadkach horyzontalnych. Selekcja długich torów: Układ wyzwalania: Dwie zewnętrzne płyty każda składająca się z czterech płyt scyntylatorów.
31 Testy oprogramowania. Do wyznaczania energii mionów konieczne jest zatem narzędzie dobrze wyznaczające energię kaskad elektromagnetycznych. Program Anatra. Testy: Sprawdzenie czy Anatra dobrze wyznacza energię test detektora rozumiany jako przetworzenie informacji z ADC na informację o zdeponowanej energii. Sprawdzenie czy kąt wprowadzenia kaskady do detektora ma wpływ na mierzoną energię. Sprawdzenie czy kaskady produkowane przez fotony i elektrony mają różny charakter.
32
33 Przykładowe histogramy energii wygenerowanych elektronów o energii 100 MeV Przypadek wprowadzony do detektora pod kątem ϕ = 64 o θ = 116 o Przypadek wprowadzony do detektora pod kątem ϕ = 120 o θ = 180 o
34 Testy oprogramowania. Program Anatra potrafi wyznaczyć energię kaskad elektromagnetycznych. Brak zależności wyznaczonej energii od : kąta pod jakim wprowadzamy cząstkę do detektora. miejsca wprowadzenia cząstki do detektora (założenie cała kaskada wewnątrz detektora) Podobieństwo kaskad wywołanych przez elektrony i fotony.
35 Procedura pomiarowa wysokoenergetycznych mionów. Pomiar energii tła Pomiar energii kaskady wraz z tłem, którego nie można odseparować.
36 Przypadki MC. Wygenerowane przypadki za pomocą generatora MC Fluka.: Liczba Przypadków Zadana Energia [ GeV] Na bazie wygenerowanych przypadków sprawdzano rekonstrukcje energii wysokoenergetycznych mionów w zależności od zastosowanej wersji metody pomiarowej.
37 Przypadki Energia mionówmc. 50 GeV. Energia mionów 1000 GeV. 100 GeV 1000 GeV
38 Przypadki MC. Wyznaczona średnia energia dla przypadków o zadanych energiach 50 GeV <E> = ( 66 ± 10 ) GeV Dla 1000 GeV <E> = ( 660 ± 120 ) GeV Z analizy przypadków MC widać, że fluktuacja energii kaskad ma ogromne znaczenie dla wartości wyznaczanej energii. Mimo dużych fluktuacji możliwe jest odróżnienie przypadków z grupy o energiach 50 GeV od przypadków z grupy o energiach 1000 GeV.
39 Wyniki. Przypadki z testów detektora w laboratorium naziemnym w Pavii od 11 czerwca 2001 do 31 lipca 2001 we Włoszech. 40 przypadków wysokoenergetycznych mionów. Najdłuższy tor mionu przechodził przez 15,27 m detektora. Średnia długość analizowanych torów wynosiła 8,47 m.
40 Energia mionów przypadki rzeczywiste GeV 700 GeV
41 Wyniki. Przypadki z testów detektora w laboratorium naziemnym w Pavii od 11 czerwca 2001 do 31 lipca 2001 we Włoszech. Wśród 40 przypadków: Zaobserwowano jeden tor z 3 wysokoenergetycznymi wtórnymi kaskadami na długości 11,1 m którego energie oszacowano na 3800 GeV. Zaobserwowano trzy przypadki, dla których wyznaczone energie przekraczają 1000 GeV. W połowie przypadków oceniono ich energie w granicy GeV Dla 12 przypadków oszacowano energię poniżej 100 GeV.
42 Podsumowanie. Możliwe jest oszacowanie energii wysokoenergetycznych mionów na podstawie analizy ich oddziaływań elektromagnetycznych. Przedstawione metody umożliwiły pełne odróżnienie przypadków o energiach rzędu GeV od przypadków o energiach TeV. Przy braku dobrej metody pomiaru energii wysokoenergetycznych mionów ( > 50GeV), przedstawione metody warto rozwijać i udoskonalać.
43 Dziękuję za uwagę.
44 Warszawska Grupa Neutrinowa. Danuta Kiełczewska czewska,, Tadeusz Kozłowski owski (PII), Piotr Mijakowski,, Tomasz Palczewski, Paweł Przewłocki, Ewa Rondio,, Joanna Stepaniak,, Maria H. Szeptycka,, Joanna Zalipska. UW: Wojciech Dominik, Katarzyna Grzelak, Magdalena Posiadała, a, Justyna Łagoda. PW: Leszek Raczyński, Robert Sulej, Krzysztof Zaremba. neutrino.fuw.edu.pl/
45 Pierwotne promieniowanie kosmiczne. Pierwotne promieniowanie kosmiczne docierające do Ziemskiej atmosfery składa się głównie z: Protonów około 86 %. Cząstek α około 13 %. Elektrony i jądra pierwiastków o liczbie atomowej większej od 3 stanowią około 1 %. >
46 _Powrót_>>
47 >
48 Promieniowanie hamowania >
49 Produkcja par e+ e- >
50 Procesy jądrowe >
51 Ciekły Argon. Badanie oddziaływań neutrin za pomocą komory TPC wypełnionej ciekłym argonem Justyna Łagoda >
52 Badanie oddziaływań neutrin za pomocą komory TPC wypełnionej ciekłym argonem Justyna Łagoda >
Title. Tajemnice neutrin. Justyna Łagoda. obecny stan wiedzy o neutrinach eksperymenty neutrinowe dalszy kierunek badań
Title Tajemnice neutrin Justyna Łagoda obecny stan wiedzy o neutrinach eksperymenty neutrinowe dalszy kierunek badań Cząstki i oddziaływania 3 generacje cząstek 2/3-1/3 u d c s t b kwarki -1 0 e νe µ νµ
Metamorfozy neutrin. Katarzyna Grzelak. Sympozjum IFD Zakład Czastek i Oddziaływań Fundamentalnych IFD UW. K.Grzelak (UW ZCiOF) 1 / 23
Metamorfozy neutrin Katarzyna Grzelak Zakład Czastek i Oddziaływań Fundamentalnych IFD UW Sympozjum IFD 2008 6.12.2008 K.Grzelak (UW ZCiOF) 1 / 23 PLAN Wprowadzenie Oscylacje neutrin Eksperyment MINOS
Wszechświat czastek elementarnych
Wykład 2: prof. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 2: Detekcja Czastek 27 lutego 2008 p.1/36 Wprowadzenie Istota obserwacji w świecie czastek
Wszechświata. Piotr Traczyk. IPJ Warszawa
Ciemna Strona Wszechświata Piotr Traczyk IPJ Warszawa Plan 1)Ciemna strona Wszechświata 2)Z czego składa się ciemna materia 3)Poszukiwanie ciemnej materii 2 Ciemna Strona Wszechświata 3 Z czego składa
Theory Polish (Poland)
Q3-1 Wielki Zderzacz Hadronów (10 points) Przeczytaj Ogólne instrukcje znajdujące się w osobnej kopercie zanim zaczniesz rozwiązywać to zadanie. W tym zadaniu będą rozpatrywane zagadnienia fizyczne zachodzące
Tajemnicze neutrina Agnieszka Zalewska
Tajemnicze neutrina Agnieszka Zalewska Dzień otwarty IFJ, Polecam: Krzysztof Fiałkowski: Opowieści o neutrinach, wydawnictwo Zamiast korepetycji http://wwwlapp.in2p3.fr/neutrinos/aneut.html i strony tam
Przyszłość polskiej fizyki neutrin
Przyszłość polskiej fizyki neutrin Agnieszka Zalewska Instytut Fizyki Jądrowej PAN im. H.Niewodniczańskiego W imieniu Polskiej Grupy Neutrinowej (Katowice, Kraków, Warszawa, Wrocław) (D.Kiełczewska, J.Kisiel,
Podstawy fizyki cząstek III. Eksperymenty nieakceleratorowe Krzysztof Fiałkowski
Podstawy fizyki cząstek III Eksperymenty nieakceleratorowe Krzysztof Fiałkowski Zakres fizyki cząstek a eksperymenty nieakceleratorowe Z relacji nieoznaczoności przestrzenna zdolność rozdzielcza r 0.5fm
Tomasz Szumlak WFiIS AGH 11/04/2018, Kraków
Oddziaływanie Promieniowania Jonizującego z Materią Tomasz Szumlak WFiIS AGH 11/04/2018, Kraków 2 Pomiary jonizacji Nasze piękne równania opisujące straty jonizacyjne mogą zostać użyte do wyznaczenia średniej
Klasyfikacja przypadków w ND280
Klasyfikacja przypadków w ND280 Arkadiusz Trawiński Warszawa, 20 maja 2008 pod opieką: prof Danuta Kiełczewska prof Ewa Rondio 1 Abstrakt Celem analizy symulacji jest bliższe zapoznanie się z możliwymi
Oddziaływanie promieniowania jonizującego z materią
Oddziaływanie promieniowania jonizującego z materią Plan Promieniowanie ( particle radiation ) Źródła (szybkich) elektronów Ciężkie cząstki naładowane Promieniowanie elektromagnetyczne (fotony) Neutrony
Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 2
Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 2 Maria Krawczyk, Wydział Fizyki UW Jak badamy cząstki elementarne? 2010/11(z) Ewolucja Wszech'swiata czas,energia,temperatura Detekcja cząstek
Marek Kowalski
Jak zbudować eksperyment ALICE? (A Large Ion Collider Experiment) Jeszcze raz diagram fazowy Interesuje nas ten obszar Trzeba rozpędzić dwa ciężkie jądra (Pb) i zderzyć je ze sobą Zderzenie powinno być
Tomasz Szumlak WFiIS AGH 03/03/2017, Kraków
Oddziaływanie Promieniowania Jonizującego z Materią Tomasz Szumlak WFiIS AGH 03/03/2017, Kraków Labs Prowadzący Tomasz Szumlak, D11, p. 111 Konsultacje Do uzgodnienia??? szumlak@agh.edu.pl Opis przedmiotu
Badanie oddziaływań neutrin za pomocą komory TPC wypełnionej ciekłym
Badanie oddziaływań neutrin za pomocą komory TPC wypełnionej ciekłym argonem Justyna Łagoda 21.10.2005 Plan obecny stan wiedzy o oscylacjach neutrin krótkie przypomnienie komora projekcji czasowej wypełniona
Detektory cząstek. Procesy użyteczne do rejestracji cząstek Techniki detekcyjne Detektory Przykłady użycia różnych technik detekcyjnych.
Detektory cząstek Procesy użyteczne do rejestracji cząstek Techniki detekcyjne Detektory Przykłady użycia różnych technik detekcyjnych Eksperymenty D. Kiełczewska, wykład 3 1 Przechodzenie cząstek naładowanych
Identyfikacja cząstek
Określenie masy i ładunku cząstek Pomiar prędkości przy znanym pędzie e/ µ/ π/ K/ p czas przelotu (TOF) straty na jonizację de/dx Promieniowanie Czerenkowa (C) Promieniowanie przejścia (TR) Różnice w charakterze
wyniki eksperymentu OPERA Ewa Rondio Narodowe Centrum Badań Jądrowych
wyniki eksperymentu OPERA Ewa Rondio Narodowe Centrum Badań Jądrowych RADA DO SPRAW ATOMISTYKI Warszawa, 1.12.2011 Ú istnienie ν zaproponowano aby uratować zasadę zachowania energii w rozpadzie beta Ú
Promieniowanie jonizujące
Promieniowanie jonizujące Wykład II Promieniotwórczość Fizyka MU, semestr 2 Uniwersytet Rzeszowski, 8 marca 2017 Wykład II Promieniotwórczość Promieniowanie jonizujące 1 / 22 Jądra pomieniotwórcze Nuklidy
Wszechświat czastek elementarnych Detekcja czastek
Wszechświat czastek elementarnych Detekcja czastek Wykład Ogólnouniwersytecki Wydział Fizyki U.W. prof. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych, Instytut Fizyki Doświadczalnej A.F.Żarnecki
2008/2009. Seweryn Kowalski IVp IF pok.424
2008/2009 seweryn.kowalski@us.edu.pl Seweryn Kowalski IVp IF pok.424 Plan wykładu Wstęp, podstawowe jednostki fizyki jądrowej, Własności jądra atomowego, Metody wyznaczania własności jądra atomowego, Wyznaczanie
Promieniowanie jonizujące
Promieniowanie jonizujące Wykład II Krzysztof Golec-Biernat Promieniotwórczość Uniwersytet Rzeszowski, 18 października 2017 Wykład II Krzysztof Golec-Biernat Promieniowanie jonizujące 1 / 23 Jądra pomieniotwórcze
Fizyka 3. Konsultacje: p. 329, Mechatronika
Fizyka 3 Konsultacje: p. 329, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 2 sprawdziany (10 pkt każdy) lub egzamin (2 części po 10 punktów) 10.1 12 3.0 12.1 14 3.5 14.1 16 4.0 16.1 18 4.5 18.1 20 5.0
Detektory cząstek. Procesy użyteczne do rejestracji cząstek Techniki detekcyjne Detektory Eksperymenty. D. Kiełczewska, wykład 3
Detektory cząstek Procesy użyteczne do rejestracji cząstek Techniki detekcyjne Detektory Eksperymenty Przechodzenie cząstek naładowanych przez materię Cząstka naładowana: traci energię przez zderzenia
Zderzenia relatywistyczne
Zderzenia relatywistyczne Fizyka I (B+C) Wykład XVIII: Zderzenia nieelastyczne Energia progowa Rozpady czastek Neutrina Zderzenia relatywistyczne Zderzenia nieelastyczne Zderzenia elastyczne - czastki
Jak działają detektory. Julia Hoffman
Jak działają detektory Julia Hoffman wielki Hadronowy zderzacz Wiązka to pociąg ok. 2800 wagonów - paczek protonowych Każdy wagon wiezie ok.100 mln protonów Energia chemiczna: 80 kg TNT lub 16 kg czekolady
Fizyka cząstek elementarnych warsztaty popularnonaukowe
Fizyka cząstek elementarnych warsztaty popularnonaukowe Spotkanie 3 Porównanie modeli rozpraszania do pomiarów na Wielkim Zderzaczu Hadronów LHC i przyszłość fizyki cząstek Rafał Staszewski Maciej Trzebiński
Jądra o wysokich energiach wzbudzenia
Jądra o wysokich energiach wzbudzenia 1. Utworzenie i rozpad jądra złożonego a) model statystyczny 2. Gigantyczny rezonans dipolowy (GDR) a) w jądrach w stanie podstawowym b) w jądrach w stanie wzbudzonym
WSTĘP DO FIZYKI CZĄSTEK. Julia Hoffman (NCU)
WSTĘP DO FIZYKI CZĄSTEK Julia Hoffman (NCU) WSTĘP DO WSTĘPU W wykładzie zostały bardzo ogólnie przedstawione tylko niektóre zagadnienia z zakresu fizyki cząstek elementarnych. Sugestie, pytania, uwagi:
Neutrina. Elementy fizyki czastek elementarnych. Wykład VII. Historia neutrin Oddziaływania neutrin Neutrina atmosferyczne
Neutrina Wykład VII Historia neutrin Oddziaływania neutrin Neutrina atmosferyczne Elementy fizyki czastek elementarnych Eksperyment Super-Kamiokande Oscylacje neutrin Neutrino elektronowe Zaproponowane
WYKŁAD 8. Wszechświat cząstek elementarnych dla przyrodników. Maria Krawczyk, Wydział Fizyki UW 25.11.2011
Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 8 Maria Krawczyk, Wydział Fizyki UW 25.11.2011 Współczesne eksperymenty Wprowadzenie Akceleratory Zderzacze Detektory LHC Mapa drogowa Współczesne
Badanie schematu rozpadu jodu 128 I
J8 Badanie schematu rozpadu jodu 128 I Celem doświadczenie jest wyznaczenie schematu rozpadu jodu 128 I Wiadomości ogólne 1. Oddziaływanie kwantów γ z materią [1,3] a) efekt fotoelektryczny b) efekt Comptona
Jak działają detektory. Julia Hoffman# Southern Methodist University# Instytut Problemów Jądrowych
Jak działają detektory Julia Hoffman# Southern Methodist University# Instytut Problemów Jądrowych LHC# Wiązka to pociąg ok. 2800 paczek protonowych Każda paczka składa się. z ok. 100 mln protonów 160km/h
Neutrina. Źródła neutrin: NATURALNE Wielki Wybuch gwiazdy atmosfera Ziemska skorupa Ziemska
Neutrina X Źródła neutrin.. Zagadki neutrinowe. Neutrina słoneczne. Neutrina atmosferyczne. Eksperymenty neutrinowe. Interpretacja pomiarów. Oscylacje neutrin. 1 Neutrina Źródła neutrin: NATURALNE Wielki
Rozdział 6 Oscylacje neutrin słonecznych i atmosferycznych. Eksperymenty Superkamiokande, SNO i inne. Macierz mieszania Maki-Nakagawy- Sakaty (MNS)
Rozdział 6 Oscylacje neutrin słonecznych i atmosferycznych. Eksperymenty Superkamiokande, SNO i inne. Macierz mieszania Maki-Nakagawy- Sakaty (MNS) Kilka interesujących faktów Każdy człowiek wysyła dziennie
doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e)
1 doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e) Ilość protonów w jądrze określa liczba atomowa Z Ilość
Badanie schematu rozpadu jodu 128 J
J8A Badanie schematu rozpadu jodu 128 J Celem doświadczenie jest wyznaczenie schematu rozpadu jodu 128 J Wiadomości ogólne 1. Oddziaływanie kwantów γ z materią (1,3) a/ efekt fotoelektryczny b/ efekt Comptona
Fizyka cząstek elementarnych i oddziaływań podstawowych
Fizyka cząstek elementarnych i oddziaływań podstawowych Wykład 1 Wstęp Jerzy Kraśkiewicz Krótka historia Odkrycie promieniotwórczości 1895 Roentgen odkrycie promieni X 1896 Becquerel promieniotwórczość
Optymalizacja kryteriów selekcji dla rozpadu Λ+c pμ+μza pomocą wielowymiarowej analizy danych
Optymalizacja kryteriów selekcji dla rozpadu Λ+c pμ+μza pomocą wielowymiarowej analizy danych Maciej Kościelski Jakub Malczewski opiekunowie prof. dr hab. Mariusz Witek mgr inż. Małgorzata Pikies LHCb
Elementy Fizyki Jądrowej. Wykład 7 Detekcja cząstek
Elementy Fizyki Jądrowej Wykład 7 Detekcja cząstek Detekcja cząstek rejestracja identyfikacja kinematyka Zjawiska towarzyszące przechodzeniu cząstek przez materię jonizacja scyntylacje zjawiska w półprzewodnikach
Detekcja promieniowania elektromagnetycznego czastek naładowanych i neutronów
Detekcja promieniowania elektromagnetycznego czastek naładowanych i neutronów Marcin Palacz Środowiskowe Laboratorium Ciężkich Jonów UW Marcin Palacz Warsztaty ŚLCJ, 21 kwietnia 2009 slide 1 / 30 Rodzaje
Własności jąder w stanie podstawowym
Własności jąder w stanie podstawowym Najważniejsze liczby kwantowe charakteryzujące jądro: A liczba masowa = liczbie nukleonów (l. barionów) Z liczba atomowa = liczbie protonów (ładunek) N liczba neutronów
Zderzenia relatywistyczne
Zderzenia relatywistyczne Fizyka I (B+C) Wykład XIX: Zderzenia nieelastyczne Energia progowa Rozpady czastek Neutrina Zderzenia relatywistyczne Zderzenia elastyczne 2 2 Czastki rozproszone takie same jak
Cząstki elementarne wprowadzenie. Krzysztof Turzyński Wydział Fizyki Uniwersytet Warszawski
Cząstki elementarne wprowadzenie Krzysztof Turzyński Wydział Fizyki Uniwersytet Warszawski Historia badania struktury materii XVII w.: ruch gwiazd i planet, zasady dynamiki, teoria grawitacji, masa jako
Obserwacja Nowej Cząstki o Masie 125 GeV
Obserwacja Nowej Cząstki o Masie 125 GeV Eksperyment CMS, CERN 4 lipca 2012 Streszczenie Na wspólnym seminarium w CERN i na konferencji ICHEP 2012 [1] odbywającej się w Melbourne, naukowcy pracujący przy
Wszechświat Cząstek Elementarnych dla Humanistów Detekcja cząstek
Wszechświat Cząstek Elementarnych dla Humanistów Aleksander Filip Żarnecki Wykład ogólnouniwersytecki Wydział Fizyki Uniwersytetu Warszawskiego 24 października 2017 A.F.Żarnecki WCE Wykład 4 24 października
Promieniowanie jonizujące
Promieniowanie jonizujące Wykład III Krzysztof Golec-Biernat Reakcje jądrowe Uniwersytet Rzeszowski, 8 listopada 2017 Wykład III Krzysztof Golec-Biernat Promieniowanie jonizujące 1 / 12 Energia wiązania
Autorzy: Zbigniew Kąkol, Piotr Morawski
Rodzaje rozpadów jądrowych Autorzy: Zbigniew Kąkol, Piotr Morawski Rozpady jądrowe zachodzą zawsze (prędzej czy później) jeśli jądro o pewnej liczbie nukleonów znajdzie się w stanie energetycznym, nie
Maria Krawczyk, Wydział Fizyki UW
Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 2 14.X.2009 Maria Krawczyk, Wydział Fizyki UW Jak badamy cząstki elementarne I? Cząstka i fale falowe własności cząstek elementarnych Cząstki fundamentalne
Fizyka do przodu w zderzeniach proton-proton
Fizyka do przodu w zderzeniach proton-proton Leszek Adamczyk (KOiDC WFiIS AGH) Seminarium WFiIS March 9, 2018 Fizyka do przodu w oddziaływaniach proton-proton Fizyka do przodu: procesy dla których obszar
cząstki, które trudno złapać Justyna Łagoda
NEUTRINA cząstki, które trudno złapać Justyna Łagoda Plan Historia Jak wykrywać neutrina? Źródła neutrin Oscylacje neutrin Eksperymenty neutrinowe z długą bazą udział grup polskich Co dalej? Historia 3
Wyznaczanie efektywności mionowego układu wyzwalania w CMS metodą Tag & Probe
Wyznaczanie efektywności mionowego układu wyzwalania w CMS metodą Tag & Probe Uniwersytet Warszawski - Wydział Fizyki opiekun: dr Artur Kalinowski 1 Plan prezentacji Eksperyment CMS Układ wyzwalania Metoda
Detektor promieniowania kosmicznego
Detektor promieniowania kosmicznego Kamil Chłopek i Adrian Chochuł Opiekun projektu: dr hab. Krzysztof Woźniak poszukiwanie optymalnej konstrukcji Spis Treści 1. Wprowadzenie do tematyki 2. Projekty CREDO
Maria Krawczyk, Wydział Fizyki UW. Neutrina i ich mieszanie
Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 12 21.12.2010 Maria Krawczyk, Wydział Fizyki UW Neutrina i ich mieszanie Neutrinos: Ghost Particles of the Universe F. Close polecam wideo i audio
Poszukiwania bozonu Higgsa w rozpadzie na dwa leptony τ w eksperymencie CMS
Poszukiwania bozonu Higgsa w rozpadzie na dwa leptony τ w eksperymencie CMS Artur Kalinowski Wydział Fizyki Uniwersytet Warszawski Warszawa, 7 grudnia 2012 DETEKTOR CMS DETEKTOR CMS Masa całkowita : 14
Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA)
Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA) Promieniowaniem X nazywa się promieniowanie elektromagnetyczne o długości fali od około
Oddziaływanie cząstek z materią
Oddziaływanie cząstek z materią Trzy główne typy mechanizmów reprezentowane przez Ciężkie cząstki naładowane (cięższe od elektronów) Elektrony Kwanty gamma Ciężkie cząstki naładowane (miony, p, cząstki
Reakcje jądrowe. X 1 + X 2 Y 1 + Y b 1 + b 2
Reakcje jądrowe X 1 + X 2 Y 1 + Y 2 +...+ b 1 + b 2 kanał wejściowy kanał wyjściowy Reakcje wywołane przez nukleony - mechanizm reakcji Wielkości mierzone Reakcje wywołane przez ciężkie jony a) niskie
SPEKTROMETRIA CIEKŁOSCYNTYLACYJNA
SPEKTROMETRIA CIEKŁOSCYNTYLACYJNA Metoda detekcji promieniowania jądrowego (α, β, γ) Konwersja energii promieniowania jądrowego na promieniowanie w zakresie widzialnym. Zalety metody: Geometria 4π Duża
Atmosfera ziemska w obserwacjach promieni kosmicznych najwyższych energii. Jan Pękala Instytut Fizyki Jądrowej PAN
Atmosfera ziemska w obserwacjach promieni kosmicznych najwyższych energii Jan Pękala Instytut Fizyki Jądrowej PAN Promienie kosmiczne najwyższych energii Widmo promieniowania kosmicznego rozciąga się na
Badanie Gigantycznego Rezonansu Dipolowego wzbudzanego w zderzeniach ciężkich jonów.
Badanie Gigantycznego Rezonansu Dipolowego wzbudzanego w zderzeniach ciężkich jonów. prof. dr hab. Marta Kicińska-Habior Wydział Fizyki UW Zakład Fizyki Jądra Atomowego e-mail: Marta.Kicinska-Habior@fuw.edu.pl
Neutrina najbardziej tajemnicze cząstki we Wszechświecie
Neutrina najbardziej tajemnicze cząstki we Wszechświecie Katarzyna Grzelak i Magdalena Posiadała-Zezula Zakład Cząstek i Oddziaływań Fundamentalnych Wydział Fizyki UW Kampus Ochota 18.06.2016 Wstęp Część
J6 - Pomiar absorpcji promieniowania γ
J6 - Pomiar absorpcji promieniowania γ Celem ćwiczenia jest pomiar współczynnika osłabienia promieniowania γ w różnych absorbentach przy użyciu detektora scyntylacyjnego. Materiał, który należy opanować
Energetyka konwencjonalna odnawialna i jądrowa
Energetyka konwencjonalna odnawialna i jądrowa Wykład 8-27.XI.2018 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Wykład 8 Energia atomowa i jądrowa
Wszechświat czastek elementarnych Detekcja czastek
Wszechświat czastek elementarnych Detekcja czastek Wykład Ogólnouniwersytecki Wydział Fizyki U.W. prof. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych, Instytut Fizyki Doświadczalnej A.F.Żarnecki
Oddziaływania podstawowe
Oddziaływania podstawowe grawitacyjne silne elektromagnetyczne słabe 1 Uwięzienie kwarków (quark confinement). Przykład działania mechanizmu uwięzienia: Próba oderwania kwarka d od neutronu (trzy kwarki
Fizyka współczesna. Jądro atomowe podstawy Odkrycie jądra atomowego: 1911, Rutherford Rozpraszanie cząstek alfa na cienkich warstwach metalu
Odkrycie jądra atomowego: 9, Rutherford Rozpraszanie cząstek alfa na cienkich warstwach metalu Tor ruchu rozproszonych cząstek (fakt, że część cząstek rozprasza się pod bardzo dużym kątem) wskazuje na
Jądra o wysokich energiach wzbudzenia
Jądra o wysokich energiach wzbudzenia 1. Utworzenie i rozpad jądra złożonego a) model statystyczny 2. Gigantyczny rezonans dipolowy (GDR) a) w jądrach w stanie podstawowym b) w jądrach w stanie wzbudzonym
Jak działają detektory. Julia Hoffman
Jak działają detektory Julia Hoffman wielki Hadronowy zderzacz Wiązka to pociąg ok. 2800 wagonów - paczek protonowych Każdy wagon wiezie ok.100 mln protonów Energia chemiczna: 80 kg TNT lub 16 kg czekolady
Naturalne źródła neutrin, czyli neutrina sa
Naturalne źródła neutrin, czyli neutrina sa wszędzie Tomasz Früboes Zakład Czastek i Oddziaływań Fundamentalnych 16 stycznia 2006 Proseminarium fizyki jadra atomowego i czastek elementarnych Tomasz Früboes
1. Wcześniejsze eksperymenty 2. Podstawowe pojęcia 3. Przypomnienie budowy detektora ATLAS 4. Rozpady bozonów W i Z 5. Tło 6. Detekcja sygnału 7.
Weronika Biela 1. Wcześniejsze eksperymenty 2. Podstawowe pojęcia 3. Przypomnienie budowy detektora ATLAS 4. Rozpady bozonów W i Z 5. Tło 6. Detekcja sygnału 7. Obliczenie przekroju czynnego 8. Porównanie
Podstawowe własności jąder atomowych
Podstawowe własności jąder atomowych 1. Ilość protonów i neutronów Z, N 2. Masa jądra M j = M p + M n - B 2 2 Q ( M c ) ( M c ) 3. Energia rozpadu p 0 k 0 Rozpad zachodzi jeżeli Q > 0, ta nadwyżka energii
Zagadki neutrinowe. Deficyt neutrin atmosferycznych w eksperymencie Super-Kamiokande
Zagadki neutrinowe Deficyt neutrin atmosferycznych w eksperymencie Super-Kamiokande Deficyt neutrin słonecznych - w eksperymentach radiochemicznych - w wodnych detektorach Czerenkowa Super-Kamiokande,
Zagadki neutrinowe. Deficyt neutrin atmosferycznych w eksperymencie Super-Kamiokande
Zagadki neutrinowe Deficyt neutrin atmosferycznych w eksperymencie Super-Kamiokande Deficyt neutrin słonecznych - w eksperymentach radiochemicznych - w wodnych detektorach Czerenkowa Super-Kamiokande,
Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X
Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X Oskar Gawlik, Jacek Grela 16 lutego 2009 1 Podstawy teoretyczne 1.1 Liczniki proporcjonalne Wydajność detekcji promieniowania elektromagnetycznego
Elementy Fizyki Jądrowej. Wykład 5 cząstki elementarne i oddzialywania
Elementy Fizyki Jądrowej Wykład 5 cząstki elementarne i oddzialywania atom co jest elementarne? jądro nukleon 10-10 m 10-14 m 10-15 m elektron kwark brak struktury! elementarność... 1897 elektron (J.J.Thomson)
Ćwiczenie nr 5 : Badanie licznika proporcjonalnego neutronów termicznych
Ćwiczenie nr 5 : Badanie licznika proporcjonalnego neutronów termicznych Oskar Gawlik, Jacek Grela 16 lutego 29 1 Teoria 1.1 Licznik proporcjonalny Jest to jeden z liczników gazowych jonizacyjnych, występujący
Energetyka Jądrowa. Wykład 3 14 marca Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
Energetyka Jądrowa Wykład 3 14 marca 2017 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Henri Becquerel 1896 Promieniotwórczość 14.III.2017 EJ
przyziemnych warstwach atmosfery.
Źródła a promieniowania jądrowego j w przyziemnych warstwach atmosfery. Pomiar radioaktywności w powietrzu w Lublinie. Jan Wawryszczuk Radosław Zaleski Lokalizacja monitora skażeń promieniotwórczych rczych
STRUKTURA MATERII PO WIELKIM WYBUCHU
Wykład I STRUKTURA MATERII -- -- PO WIELKIM WYBUCHU Człowiek zajmujący się nauką nigdy nie zrozumie, dlaczego miałby wierzyć w pewne opinie tylko dlatego, że znajdują się one w jakiejś książce. (...) Nigdy
Czy neutrina mogą nam coś powiedzieć na temat asymetrii między materią i antymaterią we Wszechświecie?
Czy neutrina mogą nam coś powiedzieć na temat asymetrii między materią i antymaterią we Wszechświecie? Tomasz Wąchała Zakład Neutrin i Ciemnej Materii (NZ16) Seminarium IFJ PAN, Kraków, 05.12.2013 Plan
Pomiar energii wiązania deuteronu. Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu
J1 Pomiar energii wiązania deuteronu Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu Przygotowanie: 1) Model deuteronu. Własności deuteronu jako źródło informacji o siłach jądrowych [4] ) Oddziaływanie
Β2 - DETEKTOR SCYNTYLACYJNY POZYCYJNIE CZUŁY
Β2 - DETEKTOR SCYNTYLACYJNY POZYCYJNIE CZUŁY I. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z zasadą działania detektorów pozycyjnie czułych poprzez pomiar prędkości światła w materiale scyntylatora
Dostosowywanie programu kierunku Fizyki poprzez opracowanie 30 nowych ćwiczeń na pracowniach fizycznych i pracowni elektronicznej
Zadanie 35 Dostosowywanie programu kierunku Fizyki poprzez opracowanie 30 nowych ćwiczeń na pracowniach fizycznych i pracowni elektronicznej 371. Opracowanie programu ćwiczeń 1 II PRACOWNIA FIZYCZNA Instytut
Oddziaływanie Promieniowania Jonizującego z Materią
Oddziaływanie Promieniowania Jonizującego z Materią Plan Ogólne własności detektora Czułość Rozdzielczość energetyczna Funkcja odpowiedzi Wydajność i czas martwy Tomasz Szumlak AGH-UST Wydział Fizyki i
Dozymetria promieniowania jonizującego
Dozymetria dział fizyki technicznej obejmujący metody pomiaru i obliczania dawek (dóz) promieniowania jonizującego, a także metody pomiaru aktywności promieniotwórczej preparatów. Obecnie termin dawka
Słowniczek pojęć fizyki jądrowej
Słowniczek pojęć fizyki jądrowej atom - najmniejsza ilość pierwiastka jaka może istnieć. Atomy składają się z małego, gęstego jądra, zbudowanego z protonów i neutronów (nazywanych inaczej nukleonami),
NEUTRONOWA ANALIZA AKTYWACYJNA ANALITYKA W KONTROLI JAKOŚCI PODSTAWOWE INFORMACJE O REAKCJACH JĄDROWYCH - NEUTRONOWA ANALIZA AKTYWACYJNA
ANALITYKA W KONTROLI JAKOŚCI WYKŁAD 3 NEUTRONOWA ANALIZA AKTYWACYJNA - PODSTAWOWE INFORMACJE O REAKCJACH JĄDROWYCH - NEUTRONOWA ANALIZA AKTYWACYJNA REAKCJE JĄDROWE Rozpad promieniotwórczy: A B + y + ΔE
Bozon Higgsa oraz SUSY
Bozon Higgsa oraz SUSY Bozon Higgsa Poszukiwania bozonu Higgsa w LEP i Tevatronie - otrzymane ograniczenia na masę H Plany poszukiwań w LHC Supersymetria (SUSY) Zagadkowe wyniki CDF Masy cząstek cząstki
Detekcja cząstek elementarnych. w eksperymencie MINOS. Krzysztof Wojciech Fornalski Wydział Fizyki Politechniki Warszawskiej 2006
Detekcja cząstek elementarnych w eksperymencie MINOS Krzysztof Wojciech Fornalski Wydział Fizyki Politechniki Warszawskiej 2006 Wstęp detektory budowa i typ scyntylatorów światłowody fotopowielacze kalibracja
Zespół Zakładów Fizyki Jądrowej
gluons Zespół Zakładów Fizyki Jądrowej Zakład Fizyki Hadronów Zakład Doświadczalnej Fizyki Cząstek i jej Zastosowań Zakład Teorii Układów Jądrowych QCD Zakład Fizyki Hadronów Badanie struktury hadronów,
Compact Muon Solenoid
Compact Muon Solenoid (po co i jak) Piotr Traczyk CERN Compact ATLAS CMS 2 Muon Detektor CMS był projektowany pod kątem optymalnej detekcji mionów Miony stanowią stosunkowo czysty sygnał Pojawiają się
Wstęp do fizyki cząstek elementarnych
Wstęp do fizyki cząstek elementarnych Ewa Rondio cząstki elementarne krótka historia pierwsze cząstki próby klasyfikacji troche o liczbach kwantowych kolor uwięzienie kwarków obecny stan wiedzy oddziaływania
Struktura porotonu cd.
Struktura porotonu cd. Funkcje struktury Łamanie skalowania QCD Spinowa struktura protonu Ewa Rondio, 2 kwietnia 2007 wykład 7 informacja Termin egzaminu 21 czerwca, godz.9.00 Wiemy już jak wygląda nukleon???
LHC: program fizyczny
LHC: program fizyczny Piotr Traczyk CERN Detektory przy LHC Planowane są 4(+2) eksperymenty na LHC ATLAS ALICE CMS LHCb 2 Program fizyczny LHC Model Standardowy i Cząstka Higgsa Poza Model Standardowy:
J8 - Badanie schematu rozpadu jodu 128 I
J8 - Badanie schematu rozpadu jodu 128 I Celem doświadczenie jest wytworzenie izotopu 128 I poprzez aktywację w źródle neutronów próbki zawierającej 127 I, a następnie badanie schematu rozpadu tego nuklidu
Skad się bierze masa Festiwal Nauki, Wydział Fizyki U.W. 25 września 2005 A.F.Żarnecki p.1/39
Skad się bierze masa Festiwal Nauki Wydział Fizyki U.W. 25 września 2005 dr hab. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Skad się bierze masa Festiwal Nauki,
Wszechświat cząstek elementarnych
Wszechświat cząstek elementarnych Maria Krawczyk i A. Filip Żarnecki Instytut Fizyki Teoretycznej i Instytut Fizyki Doświadczalnej Wydział Fizyki UW semestr letni, rok akad.. 2010/11 http://www www.fuw.edu.pl/~
r. akad. 2008/2009 V. Precyzyjne testy Modelu Standardowego w LEP, TeVatronie i LHC
V. Precyzyjne testy Modelu Standardowego w LEP, TeVatronie i LHC 1 V.1 WYNIKI LEP 2 e + e - Z 0 Calkowity przekroj czynny 3 4 r. akad. 2008/2009 s Q N 3 4 s M s N Q I M 12 s ) M (s s s 2 f C 2 Z C f f
Wszechświat czastek elementarnych Detekcja czastek
Wszechświat czastek elementarnych Detekcja czastek Wykład Ogólnouniwersytecki Wydział Fizyki U.W. prof. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych, Instytut Fizyki Doświadczalnej A.F.Żarnecki