Dorota Ponczek, Karolina Wej Agnieszka Kamińska. MATeMAtyka. Plan wynikowy. Zakres podstawowy i rozszerzony

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Dorota Ponczek, Karolina Wej Agnieszka Kamińska. MATeMAtyka. Plan wynikowy. Zakres podstawowy i rozszerzony"

Transkrypt

1 Dorota onczek, arolina Wej Agnieszka amińska MATeMAtyka lan wynikowy Zakres podstawowy i rozszerzony

2 Oznaczenia: wymagania konieczne; wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające 1. LICZBY RZECZYWISTE 1. Liczby naturalne definicja dzielnika liczby naturalnej definicja liczby pierwszej cechy podzielności liczb naturalnych definicja liczby parzystej i nieparzystej rozkład liczby naturalnej na czynniki pierwsze znajdowanie NWD i NWW twierdzenie o rozkładzie liczby naturalnej na czynniki pierwsze 2. Liczby całkowite. Liczby wymierne definicja liczby całkowitej definicja liczby wymiernej oś liczbowa kolejność wykonywania działań podaje przykłady liczb pierwszych, parzystych i nieparzystych podaje dzielniki danej liczby naturalnej przedstawia liczbę naturalną w postaci iloczynu liczb pierwszych oblicza NWD i NWW dwóch liczb naturalnych przeprowadza dowody twierdzeń dotyczących podzielności liczb, np. Wykaż, że dla każdej liczby naturalnej n liczba n 2 + n jest parzysta rozpoznaje liczby całkowite i liczby wymierne wśród podanych liczb podaje przykłady liczb całkowitych i wymiernych odczytuje z osi liczbowej współrzędną danego punktu i odwrotnie: zaznacza punkt o podanej współrzędnej na osi liczbowej wykonuje działania na liczbach wymiernych R D W 2

3 3. Liczby niewymierne definicja liczby niewymiernej konstruowanie odcinków o długościach niewymiernych 4. Rozwinięcie dziesiętne liczby rzeczywistej 5. ierwiastek z liczby nieujemnej postać dziesiętna liczby rzeczywistej metoda przedstawiania ułamków zwykłych w postaci dziesiętnej metoda przedstawiania ułamków dziesiętnych w postaci ułamków zwykłych definicja pierwiastka kwadratowego z liczby nieujemnej definicja pierwiastka trzeciego stopnia z liczby nieujemnej definicja pierwiastka dowolnego stopnia z liczby nieujemnej działania na pierwiastkach wskazuje liczb liczby niewymierne wśród podanych konstruuje odcinki o długościach niewymiernych zaznacza na osi liczbowej punkt odpowiadający liczbie niewymiernej wykazuje, dobierając odpowiednio przykłady, że suma, różnica, iloczyn oraz iloraz liczb niewymiernych nie musi być liczbą niewymierną dowodzi niewymierności liczby 2 dowodzi niewymierności innych liczb, np. 3, 3 1 wskazuje liczby wymierne oraz niewymierne wśród liczb podanych w postaci dziesiętnej wyznacza rozwinięcie dziesiętne ułamków zwykłych zamienia skończone rozwinięcia dziesiętne na ułamki zwykłe przedstawia ułamki dziesiętne okresowe w postaci ułamków zwykłych oblicza wartość pierwiastka drugiego i trzeciego stopnia z liczby nieujemnej oblicza wartość pierwiastka dowolnego stopnia z liczby nieujemnej wyłącza czynnik przed znak pierwiastka włącza czynnik pod znak pierwiastka wyznacza wartości wyrażeń arytmetycznych zawierających pierwiastki, stosując prawa działań na pierwiastkach R W 3

4 6. ierwiastek nieparzystego stopnia z liczby rzeczywistej 7. otęga o wykładniku całkowitym definicja pierwiastka trzeciego stopnia z liczby rzeczywistej definicja pierwiastka nieparzystego stopnia z liczby rzeczywistej działania na pierwiastkach definicja potęgi o wykładniku naturalnym definicja potęgi o wykładniku całkowitym ujemnym twierdzenia o działaniach na potęgach 8. Notacja wykładnicza definicja notacji wykładniczej sposób zapisywania małych i dużych liczb w notacji wykładniczej działania na liczbach zapisanych w notacji wykładniczej 9. rzybliżenia reguła zaokrąglania przybliżanie z nadmiarem i z niedomiarem błąd przybliżenia oblicza wartość pierwiastka trzeciego stopnia z liczby rzeczywistej oblicza wartość pierwiastka nieparzystego stopnia z liczby rzeczywistej wyznacza wartości wyrażeń arytmetycznych zawierających pierwiastki nieparzystego stopnia z liczb rzeczywistych, stosując prawa działań na pierwiastkach oblicza wartość potęgi liczby o wykładniku naturalnym i całkowitym ujemnym stosuje twierdzenia o działaniach na potęgach do obliczania wartości wyrażeń stosuje twierdzenia o działaniach na potęgach do upraszczania wyrażeń algebraicznych zapisuje i odczytuje liczbę w notacji wykładniczej wykonuje działania na liczbach zapisanych w notacji wykładniczej zaokrągla liczbę z podaną dokładnością oblicza błąd przybliżenia danej liczby oraz ocenia, czy jest to przybliżenie z nadmiarem, czy z niedomiarem szacuje wyniki działań 4

5 10. rocenty pojęcie procentu pojęcie punktu procentowego 11. owtórzenie wiadomości 12. raca klasowa i jej omówienie 2. JĘZY MATEMATYI 1. Zbiory sposoby opisywania zbiorów zbiory skończone i nieskończone zbiór pusty definicja podzbioru relacja zawierania zbiorów zapis symboliczny zbioru oblicza procent danej liczby interpretuje pojęcia procentu i punktu procentowego oblicza, jakim procentem jednej liczby jest druga liczba wyznacza liczbę, gdy dany jest jej procent zmniejsza i zwiększa liczbę o dany procent stosuje obliczenia procentowe w zadaniach praktycznych stosuje obliczenia procentowe w zadaniach praktycznych dotyczących płac, podatków, rozliczeń bankowych posługuje się pojęciami: zbiór, podzbiór, zbiór pusty, zbiór skończony, zbiór nieskończony wymienia elementy danego zbioru oraz elementy do niego nienależące opisuje słownie i symbolicznie dany zbiór określa relację zawierania zbiorów D 5

6 2. Działania na zbiorach iloczyn zbiorów suma zbiorów różnica zbiorów dopełnienie zbioru 3. rzedziały określenie przedziałów: otwartego, domkniętego, lewostronnie domkniętego, prawostronnie domkniętego, nieograniczonego zapis symboliczny przedziałów 4. Działania na przedziałach iloczyn, suma, różnica przedziałów posługuje się pojęciami: iloczyn, suma oraz różnica zbiorów wyznacza iloczyn, sumę oraz różnicę danych zbiorów przedstawia na diagramie zbiór, który jest wynikiem działań na trzech dowolnych zbiorach wyznacza dopełnienie zbioru formułuje i uzasadnia hipotezy dotyczące praw działań na zbiorach rozróżnia pojęcia: przedział otwarty, domknięty, lewostronnie domknięty, prawostronnie domknięty, nieograniczony zapisuje przedział i zaznacza go na osi liczbowej odczytuje i zapisuje symbolicznie przedział zaznaczony na osi liczbowej wyznacza przedział opisany podanymi nierównościami wymienia liczby należące do przedziału spełniające zadane warunki wyznacza iloczyn, sumę i różnicę przedziałów oraz zaznacza je na osi liczbowej wyznacza iloczyn, sumę i różnicę różnych zbiorów liczbowych oraz zapisuje je symbolicznie R W 6

7 5. Rozwiązywanie nierówności 6. Wzory skróconego mnożenia 7. Zastosowanie przekształceń algebraicznych nierówności pierwszego stopnia z jedną niewiadomą nierówności równoważne wzory skróconego mnożenia (a b)² oraz a² b² wzory skróconego mnożenia (a b)³ oraz a³ b³ zastosowanie przekształceń algebraicznych do przekształcania równoważnego równań i nierówności usuwanie niewymierności z mianownika sprawdza, czy dana liczba rzeczywista jest rozwiązaniem nierówności rozwiązuje nierówności pierwszego stopnia z jedną niewiadomą zapisuje zbiór rozwiązań nierówności w postaci przedziału stosuje nierówności pierwszego stopnia z jedną niewiadomą do rozwiązywania zadań osadzonych w kontekście praktycznym stosuje odpowiedni wzór skróconego mnożenia do wyznaczenia kwadratu sumy lub różnicy oraz różnicy kwadratów przekształca wyrażenie algebraiczne z zastosowaniem wzorów skróconego mnożenia stosuje wzory skróconego mnożenia do wykonywania działań na liczbach postaci a b c wyprowadza wzory skróconego mnożenia usuwa niewymierność z mianownika ułamka stosuje przekształcenia algebraiczne do przekształcenia równoważnego równań oraz nierówności usuwa niewymierność z mianownika ułamka R R R 7

8 8. Wartość bezwzględna definicja wartości bezwzględnej interpretacja geometryczna wartości bezwzględnej 9. Własności wartości bezwzględnej 10. Równania i nierówności z wartością bezwzględną 11. Błąd bezwzględny i błąd względny 12. owtórzenie wiadomości 13. raca klasowa i jej omówienie oblicza wartość bezwzględną danej liczby upraszcza wyrażenia z wartością bezwzględną rozwiązuje, stosując interpretację geometryczną, elementarne równania i nierówności z wartością bezwzględną własności wartości bezwzględnej stosuje podstawowe własności wartości bezwzględnej korzystając z własności wartości bezwzględnej, rozwiązuje proste równania i nierówności z wartością bezwzględną korzystając z własności wartości bezwzględnej, upraszcza wyrażenia z wartością bezwzględną metody rozwiązywania równań i nierówności z wartością bezwzględną określenie błędu bezwzględnego i błędu względnego przybliżenia rozwiązuje równania i nierówności z wartością bezwzględną, stosując interpretację geometryczną rozwiązuje równania i nierówności z wartością bezwzględną, stosując definicję oraz własności wartości bezwzględnej rozróżnia pojęcia: błąd bezwzględny, błąd względny przybliżenia oblicza błąd bezwzględny oraz błąd względny przybliżenia liczby D R 8

9 3. FUNCJA LINIOWA 1. Sposoby opisu funkcji definicja funkcji sposoby opisywania funkcji definicja miejsca zerowego 2. Wykres funkcji liniowej definicja funkcji liniowej wykres funkcji liniowej interpretacja geometryczna współczynników występujących we wzorze funkcji liniowej pojęcia: pęk prostych, środek pęku stosuje pojęcia: funkcja, argument, dziedzina, wartość funkcji, wykres funkcji, miejsce zerowe funkcji rozpoznaje wśród danych przyporządkowań te, które opisują funkcje podaje przykłady funkcji opisuje funkcję różnymi sposobami rozpoznaje funkcję liniową, mając dany jej wzór oraz szkicuje jej wykres interpretuje współczynniki występujące we wzorze funkcji liniowej i wskazuje wśród danych wzorów funkcji liniowych te, których wykresy są równoległe podaje własności funkcji liniowej danej wzorem wyznacza wzór funkcji liniowej, której wykres spełnia zadane warunki, np. jest równoległy do wykresu danej funkcji liniowej R R R 9

10 3. Własności funkcji liniowej 4. Równanie prostej na płaszczyźnie 5. Współczynnik kierunkowy prostej własności funkcji liniowej równanie kierunkowe prostej równanie ogólne prostej współczynnik kierunkowy prostej przechodzącej przez dwa dane punkty interpretacja geometryczna współczynnika kierunkowego wyznacza miejsce zerowe i określa monotoniczność funkcji liniowej danej wzorem wyznacza współrzędne punktów, w których wykres funkcji liniowej przecina osie układu współrzędnych oraz podaje, w których ćwiartkach układu znajduje się wykres wyznacza wartości parametrów, dla których funkcja ma określone własności podaje równanie kierunkowe i ogólne prostej zamienia równanie ogólne prostej, która nie jest równoległa do osi OY, na równanie w postaci kierunkowej wyznacza równanie prostej przechodzącej przez dwa dane punkty rysuje prostą opisaną równaniem ogólnym wyznacza wartości parametru, dla których prosta spełnia określone warunki oblicza współczynnik kierunkowy prostej, mając dane współrzędne dwóch punktów należących do tej prostej szkicuje prostą, wykorzystując interpretację współczynnika kierunkowego odczytuje wartość współczynnika kierunkowego, mając dany wykres; w przypadku wykresu zależności drogi od czasu w ruchu jednostajnym podaje wartość prędkości wyprowadza równanie prostej przechodzącej przez dwa punkty R D 10

11 6. Warunek prostopadłości prostych 7. Układy równań liniowych 8. Interpretacja geometryczna układu równań liniowych warunek prostopadłości prostych o równaniach kierunkowych wyznaczanie równania prostej prostopadłej do danej prostej metody algebraiczne rozwiązywania układów równań liniowych definicja układu równań oznaczonego, sprzecznego, nieoznaczonego interpretacja geometryczna układu oznaczonego, sprzecznego i nieoznaczonego podaje warunek prostopadłości prostych o równaniach kierunkowych wyznacza równanie prostej prostopadłej do danej prostej i przechodzącej przez dany punkt wyznacza wartości parametru, dla których proste są prostopadłe uzasadnia warunek prostopadłości prostych o równaniach kierunkowych rozwiązuje układ równań metodą podstawiania i przeciwnych współczynników określa typ układu równań (czy dany układ równań jest układem oznaczonym, nieoznaczanym, czy sprzecznym) układa i rozwiązuje układ równań do zadania z treścią rozwiązuje układ trzech równań z trzema niewiadomymi interpretuje geometrycznie układ równań rozwiązuje układ równań metodą graficzną wykorzystuje związek między liczbą rozwiązań układu równań a położeniem prostych rozwiązuje układ równań z parametrem oraz określa jego typ w zależności od wartości parametru rozwiązuje graficznie układ równań z wartością bezwzględną D R W D 11

12 9. Układy nierówności liniowych 10. Funkcja liniowa zastosowania 11. owtórzenie wiadomości 12. raca klasowa i jej omówienie interpretacja geometryczna nierówności z dwiema niewiadomymi pojęcie półpłaszczyzny otwartej i domkniętej ilustracja geometryczna układu nierówności tworzenie modelu matematycznego opisującego przedstawione zagadnienie praktyczne interpretuje geometrycznie nierówności z dwiema niewiadomymi oraz pojęcie półpłaszczyzny otwartej i domkniętej zaznacza w układzie współrzędnych zbiór punktów, których współrzędne spełniają układ nierówności liniowych z dwiema niewiadomymi zapisuje układ nierówności opisujący zbiór punktów przedstawionych w układzie współrzędnych rozwiązuje graficznie układ kilku nierówności z dwiema niewiadomymi wyznacza w układzie współrzędnych iloczyn, sumę i różnicę zbiorów punktów opisanych nierównościami liniowymi z dwiema niewiadomymi przeprowadza analizę zadania z treścią, a następnie zapisuje odpowiednie równanie, nierówność liniową lub wzór funkcji liniowej rozwiązuje ułożone przez siebie równanie, nierówność lub analizuje własności funkcji liniowej przeprowadza analizę wyniku i podaje odpowiedź D 12

13 4. FUNCJE 1. Dziedzina i miejsca zerowe funkcji 2. Szkicowanie wykresu funkcji dziedzina funkcji opisanej wzorem definicja miejsca zerowego funkcji wykres funkcji 3. Monotoniczność funkcji definicje: funkcji rosnącej, malejącej i stałej pojęcie monotoniczności funkcji definicje: funkcji nierosnącej i niemalejącej pojęcie funkcji przedziałami monotonicznej 4. Odczytywanie własności funkcji z wykresu 5. rzesuwanie wykresu wzdłuż osi OY zbiór wartości funkcji interpretacja geometryczna miejsca zerowego funkcji największa i najmniejsza wartość funkcji znak wartości funkcji metoda otrzymywania wykresów funkcji y = f(x) + q dla q > 0 oraz y = f(x) q dla q > 0 wyznacza dziedzinę funkcji opisanej wzorem wyznacza miejsca zerowe funkcji opisanej wzorem szkicuje wykres funkcji określonej nieskomplikowanym wzorem szkicuje wykres funkcji przedziałami liniowej stosuje pojęcie funkcji monotonicznej (rosnącej, malejącej, stałej, niemalejącej, nierosnącej) na podstawie wykresu funkcji określa jej monotoniczność rysuje wykres funkcji o zadanych kryteriach monotoniczności bada na podstawie definicji monotoniczność funkcji określonej wzorem stosuje pojęcia: zbiór wartości funkcji, największa i najmniejsza wartość funkcji odczytuje z wykresu funkcji jej dziedzinę, zbiór wartości, miejsca zerowe; argumenty, dla których funkcja przyjmuje wartości ujemne; argumenty, dla których funkcja przyjmuje wartości dodatnie; przedziały monotoniczności funkcji, najmniejszą i największą wartość funkcji rysuje wykresy funkcji: y = f(x) + q dla q > 0 oraz y = f(x) q dla q 0 R D D R 13

14 6. rzesuwanie wykresu wzdłuż osi OX 7. Wektory w układzie współrzędnych 8. rzesuwanie wykresu o wektor 9. rzekształcanie wykresu przez symetrię względem osi układu współrzędnych 10. Inne przekształcenia wykresu metoda otrzymywania wykresów funkcji y = f(x p) dla p 0 oraz y = f(x + p) dla p 0 pojęcie wektora wektor przeciwny do danego współrzędne wektora i ich interpretacja geometryczna metoda otrzymywania wykresu funkcji y = f(x p) + q metoda otrzymywania wykresu funkcji y = f(x) metoda otrzymywania wykresu funkcji y = f( x) metoda otrzymywania wykresu funkcji y = f(x) i y = f( x ) rysuje wykresy funkcji: y = f(x p) dla p > 0 oraz y = f(x + p) dla p > 0 posługuje się pojęciem wektora i wektora przeciwnego oblicza współrzędne wektora wyznacza współrzędne początku lub końca wektora, mając dane współrzędne wektora i współrzędne jednego z punktów znajduje obraz figury w przesunięciu o dany wektor szkicuje wykres funkcji y = f(x p) + q zapisuje wzór funkcji otrzymanej w wyniku danego przesunięcia szkicuje wykresy funkcji y = f(x) na podstawie wykresu funkcji y = f(x) szkicuje wykresy funkcji y = f( x) na podstawie wykresu funkcji y = f(x) na podstawie wykresu funkcji y = f(x) szkicuje wykresy funkcji y = f(x) i y = f( x ) na podstawie wykresu funkcji y = f(x) szkicuje wykres funkcji będący efektem wykonania kilku operacji R R R 14

15 11. Funkcje zastosowania funkcje w sytuacjach praktycznych 12. owtórzenie wiadomości 13. raca klasowa i jej omówienie 5. FUNCJA WADRATOWA 1. Wykres funkcji wykres i własności funkcji f(x) = ax 2 f(x) = ax 2, gdzie a 0 2. rzesunięcie wykresu funkcji f(x) = ax 2 o wektor metoda otrzymywania wykresów funkcji: 2 f ( x) ax q, f ( x) 2 2 a x p, f ( x) a x p q 2 własności funkcji: f ( x) ax q, f ( x) 2 2 a x p, f ( x) a x p q współrzędne wierzchołka paraboli rozpoznaje zależność funkcyjną umieszczoną w kontekście praktycznym, określa dziedzinę oraz zbiór wartości takiej funkcji przedstawia zależności opisane w zadaniach z treścią w postaci wzoru lub wykresu szkicuje wykres funkcji f(x) = ax 2 podaje własności funkcji f(x) = ax 2 stosuje własności funkcji f(x) = ax 2 do rozwiązywania zadań 2 szkicuje wykresy funkcji: f ( x) ax q, f ( x) 2 2 a x p, f x) a x p q ( i podaje ich własności 2 stosuje własności funkcji: f ( x) ax q, f ( x) zadań 2 2 a x p, f x) a x p q ( do rozwiązywania R 15

16 3. ostać kanoniczna i postać ogólna funkcji kwadratowej postać ogólna funkcji kwadratowej postać kanoniczna funkcji kwadratowej trójmian kwadratowy współrzędne wierzchołka paraboli rysowanie wykresu funkcji kwadratowej postaci 2 f ( x) ax bx c wyróżnik trójmianu kwadratowego 4. Równania kwadratowe metoda rozwiązywania równań przez rozkład na czynniki zależność między znakiem wyróżnika a liczbą rozwiązań równania kwadratowego wzory na pierwiastki równania kwadratowego interpretacja geometryczna rozwiązań równania kwadratowego podaje wzór funkcji kwadratowej w postaci ogólnej i kanonicznej oblicza współrzędne wierzchołka paraboli przekształca postać ogólną funkcji kwadratowej do postaci kanonicznej (z zastosowaniem uzupełniania do kwadratu lub wzoru na współrzędne wierzchołka paraboli) i szkicuje jej wykres przekształca postać kanoniczną funkcji kwadratowej do postaci ogólnej wyznacza wzór ogólny funkcji kwadratowej mając dane współrzędne wierzchołka i innego punktu jej wykresu wyprowadza wzory na współrzędne wierzchołka paraboli stosuje wzory skróconego mnożenia oraz zasadę wyłączania wspólnego czynnika przed nawias do przedstawienia wyrażenia w postaci iloczynu rozwiązuje równanie kwadratowe przez rozkład na czynniki rozwiązuje równania kwadratowe, korzystając z poznanych wzorów interpretuje geometrycznie rozwiązania równania kwadratowego stosuje poznane wzory przy szkicowaniu wykresu funkcji kwadratowej R R 16

17 5. ostać iloczynowa funkcji kwadratowej 6. Równania sprowadzalne do równań kwadratowych 7. Nierówności kwadratowe definicja postaci iloczynowej funkcji kwadratowej twierdzenie o postaci iloczynowej funkcji kwadratowej rozwiązywanie równań metodą podstawiania metoda rozwiązywania nierówności kwadratowych definiuje postać iloczynową funkcji kwadratowej i warunek jej istnienia zapisuje funkcję kwadratową w postaci iloczynowej odczytuje wartości pierwiastków trójmianu podanego w postaci iloczynowej przekształca postać iloczynową funkcji kwadratowej do postaci ogólnej wykorzystuje postać iloczynową funkcji kwadratowej do rozwiązywania zadań rozpoznaje równania, które można sprowadzić do równań kwadratowych wprowadza niewiadomą pomocniczą, podaje odpowiednie założenia i rozwiązuje równanie kwadratowe z niewiadomą pomocniczą podaje rozwiązanie równania pierwotnego rozumie związek między rozwiązaniem nierówności kwadratowej a znakiem wartości odpowiedniego trójmianu kwadratowego rozwiązuje nierówność kwadratową wyznacza na osi liczbowej iloczyn, sumę i różnicę zbiorów rozwiązań kilku nierówności kwadratowych R 17

18 8. Układy równań sposoby rozwiązywania układów równań drugiego stopnia 9. Wzory Viète a wzory Viète a określenie znaku pierwiastków równania kwadratowego bez ich wyznaczania 10. Równania kwadratowe z parametrem 11. Funkcja kwadratowa zastosowania rozwiązywanie równań i nierówności kwadratowych z parametrem najmniejsza i największa wartość funkcji kwadratowej w przedziale domkniętym rozwiązuje algebraicznie i graficznie układy równań, z których co najmniej jedno jest równaniem paraboli stosuje układy równań drugiego stopnia do rozwiązywania zadań z geometrii analitycznej zaznacza w układzie współrzędnych obszar opisany układem nierówności stosuje wzory Viète a do wyznaczania sumy oraz iloczynu pierwiastków równania kwadratowego (o ile istnieją) określa znaki pierwiastków równania kwadratowego, wykorzystując wzory Viète a stosuje wzory Viète a do obliczania wartości wyrażeń zawierających sumę i iloczyn pierwiastków trójmianu kwadratowego wyprowadza wzory Viète a przeprowadza analizę zadań z parametrem zapisuje założenia, aby zachodziły warunki podane w treści zadania wyznacza te wartości parametru, dla których są spełnione warunki zadania stosuje pojęcie najmniejszej i największej wartości funkcji wyznacza wartość najmniejszą i największą funkcji kwadratowej w przedziale domkniętym stosuje własności funkcji kwadratowej do rozwiązywania zadań optymalizacyjnych D W W D D 18

19 12. owtórzenie wiadomości 13. raca klasowa i jej omówienie 6. LANIMETRIA 1. Miary kątów w trójkącie klasyfikacja trójkątów twierdzenie o sumie miar kątów w trójkącie 2. Trójkąty przystające definicja trójkątów przystających cechy przystawania trójkątów nierówność trójkąta 3. Trójkąty podobne definicja wielokątów podobnych cechy podobieństwa trójkątów skala podobieństwa klasyfikuje trójkąty ze względu na miary ich kątów stosuje twierdzenie o sumie miar kątów wewnętrznych trójkąta do rozwiązywania zadań przeprowadza dowód twierdzenia o sumie miar kątów w trójkącie podaje definicję trójkątów przystających oraz cechy przystawania trójkątów wskazuje trójkąty przystające stosuje nierówność trójkąta do rozwiązywania zadań podaje cechy podobieństwa trójkątów sprawdza, czy dane trójkąty są podobne oblicza długości boków trójkąta podobnego do danego w danej skali układa odpowiednią proporcję, aby wyznaczyć długości brakujących boków trójkątów podobnych wykorzystuje podobieństwo trójkątów do rozwiązywania zadań R D R R W 19

20 4. Wielokąty podobne zależność między polami i obwodami wielokątów podobnych a skalą podobieństwa 5. Twierdzenie Talesa twierdzenie Talesa twierdzenie odwrotne do twierdzenia Talesa 6.Trójkąty prostokątne twierdzenie itagorasa i twierdzenie odwrotne do twierdzenia itagorasa wzory na długość przekątnej kwadratu i długość wysokości trójkąta równobocznego rozumie pojęcie figur podobnych oblicza długości boków w wielokątach podobnych wykorzystuje zależności między polami i obwodami wielokątów podobnych a skalą podobieństwa do rozwiązywania zadań podaje twierdzenie Talesa i twierdzenie odwrotne do twierdzenia Talesa wykorzystuje twierdzenie Talesa do rozwiązywania zadań wykorzystuje twierdzenie Talesa do podziału odcinka w podanym stosunku przeprowadza dowód twierdzenia Talesa podaje twierdzenie itagorasa i twierdzenie odwrotne do twierdzenia itagorasa oraz wzory na długość przekątnej kwadratu i długość wysokości trójkąta równobocznego stosuje twierdzenie itagorasa do rozwiązywania zadań korzystając z twierdzenia itagorasa, wyprowadza zależności ogólne, np. dotyczące długości przekątnej kwadratu i wysokości trójkąta równobocznego R D D W 20

21 7. Funkcje trygonometryczne kąta ostrego 8. Trygonometria zastosowania 9. Rozwiązywanie trójkątów prostokątnych 10. Związki między funkcjami trygonometrycznymi definicje funkcji trygonometrycznych kąta ostrego wartości funkcji trygonometrycznych kątów 30º, 45º, 60º odczytywanie wartości funkcji trygonometrycznych kątów w tablicach odczytywanie miary kąta, dla którego dana jest wartość funkcji trygonometrycznej rozwiązywanie trójkątów prostokątnych podstawowe tożsamości trygonometryczne wzory na: sin(90º α), cos(90º α), tg(90º α), ctg(90º α) podaje definicje funkcji trygonometrycznych kąta ostrego w trójkącie prostokątnym podaje wartości funkcji trygonometrycznych kątów 30º, 45º, 60º wyznacza wartości funkcji trygonometrycznych kątów ostrych danego trójkąta prostokątnego wyznacza wartości funkcji trygonometrycznych kątów ostrych w bardziej złożonych sytuacjach odczytuje wartości funkcji trygonometrycznych danego kąta w tablicach lub wartości kąta na podstawie wartości funkcji trygonometrycznych stosuje funkcje trygonometryczne do rozwiązywania zadań praktycznych rozwiązuje trójkąty prostokątne podaje związki między funkcjami trygonometrycznymi tego samego kąta wyznacza wartości pozostałych funkcji trygonometrycznych, gdy dana jest jedna z nich stosuje poznane związki do upraszczania wyrażeń zawierających funkcje trygonometryczne uzasadnia związki między funkcjami trygonometrycznymi D 21

22 11. ole trójkąta wzory na pole trójkąta 1 1 ( ah, ab sin γ, wzór Herona) 2 2 wzór na pole trójkąta równobocznego podaje różne wzory na pole trójkąta oblicza pole trójkąta, dobierając odpowiedni wzór do sytuacji wykorzystuje umiejętność wyznaczania pól trójkątów do obliczania pól innych wielokątów 12. ole czworokąta wzory na pole równoległoboku, rombu, trapezu podaje wzory na pole równoległoboku, rombu, trapezu wykorzystuje funkcje trygonometryczne do wyznaczania pól czworokątów 13. owtórzenie wiadomości 14. raca klasowa i jej omówienie 7. GEOMERTRIA ANALITYCZNA 1. Odległość między punktami w układzie współrzędnych. Środek odcinka wzór na odległość między punktami w układzie współrzędnych wzór na współrzędne środka odcinka oblicza odległość punktów w układzie współrzędnych wyznacza współrzędne środka odcinka, mając dane współrzędne jego końców oblicza obwód wielokąta, mając dane współrzędne jego wierzchołków stosuje wzór na odległość między punktami do rozwiązywania zadań dotyczących równoległoboków D 22

23 2.Odległość punktu od prostej 3. Okrąg w układzie współrzędnych 4. Wzajemne położenie dwóch okręgów 5. Wzajemne położenie okręgu i prostej wzór na odległość punktu od prostej współczynnik kierunkowy prostej równanie okręgu okręgi styczne, przecinające się i rozłączne styczna do okręgu sieczna okręgu oblicza odległość punktu od prostej oblicza odległość między prostymi równoległymi stosuje wzór na odległość punktu od prostej w zadaniach z geometrii analitycznej stosuje związek między współczynnikiem kierunkowym a kątem nachylenia prostej do osi OX wyznacza kąt między prostymi wyprowadza wzór na odległość punktu od prostej sprawdza, czy punkt należy do danego okręgu wyznacza środek i promień okręgu, mając jego równanie opisuje równaniem okrąg o danym środku i przechodzący przez dany punkt sprawdza, czy dane równanie jest równaniem okręgu wyznacza wartość parametru tak, aby równanie opisywało okrąg stosuje równanie okręgu w zadaniach określa wzajemne położenie dwóch okręgów, obliczając odległości ich środków oraz na podstawie rysunku dobiera tak wartość parametru, aby dane okręgi były styczne określa wzajemne położenie okręgu i prostej, porównując odległość jego środka od prostej z długością promienia okręgu korzysta z własności stycznej do okręgu wyznacza punkty wspólne prostej i okręgu W R R R R 23

24 6. Układy równań drugiego stopnia 7. oło w układzie współrzędnych sposoby rozwiązywania układów równań drugiego stopnia nierówność opisująca koło 8. Działania na wektorach pojęcie wektora swobodnego i zaczepionego dodawanie i odejmowanie wektorów mnożenie wektora przez liczbę interpretacja geometryczna działań na wektorach długość wektora pojęcie wektora zerowego i jednostkowego rozwiązuje algebraicznie i graficznie układy równań, z których co najmniej jedno jest drugiego stopnia stosuje układy równań drugiego stopnia do rozwiązywania zadań z geometrii analitycznej sprawdza, czy dany punkt należy do danego koła opisuje w układzie współrzędnych koło podaje geometryczną interpretację rozwiązania układu nierówności stopnia drugiego opisuje układem nierówności przedstawiony podzbiór płaszczyzny zaznacza w układzie współrzędnych zbiory spełniające określone warunki wykonuje działania na wektorach sprawdza, czy wektory mają ten sam kierunek i zwrot stosuje działania na wektorach i ich interpretację geometryczną w zadaniach 9. Wektory zastosowania zastosowanie działań na wektorach stosuje działania na wektorach do badania współliniowości punktów stosuje działania na wektorach do podziału odcinka stosuje wektory do rozwiązywania zadań wykorzystuje działania na wektorach do dowodzenia twierdzeń W 24

25 10. Jednokładność definicja jednokładności pojęcie figur jednokładnych twierdzenie o podobieństwie figur 11. Symetria osiowa definicja symetrii osiowej figury osiowosymetryczne symetria osiowa w układzie współrzędnych 12. Symetria środkowa definicja symetrii środkowej figury środkowo symetryczne symetria środkowa w układzie współrzędnych 13. owtórzenie wiadomości 14. raca klasowa i jej omówienie konstruuje figury jednokładne wyznacza współrzędne punktów w danej jednokładności stosuje własności jednokładności w zadaniach wskazuje figury osiowosymetryczne wyznacza współrzędne punktów w symetrii względem danej prostej stosuje własności symetrii osiowej w zadaniach wskazuje figury środkowosymetryczne wyznacza współrzędne punktów w symetrii względem danego punktu stosuje własności symetrii środkowej w zadaniach R R R R 25

26 Oznaczenia: wymagania konieczne; wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające 1. WIELOMIANY 1. Stopień i współczynniki wielomianu 2. Dodawanie i odejmowanie wielomianów definicja jednomianu, dwumianu, wielomianu pojęcie stopnia jednomianu i stopnia wielomianu pojęcie współczynników wielomianu i wyrazu wolnego pojęcie wielomianu zerowego dodawanie wielomianów odejmowanie wielomianów stopień sumy i różnicy wielomianów rozróżnia wielomian, określa jego stopień i podaje wartości jego współczynników zapisuje wielomian określonego stopnia o danych współczynnikach zapisuje wielomian w sposób uporządkowany oblicza wartość wielomianu dla danego argumentu sprawdza, czy dany punkt należy do wykresu danego wielomianu wyznacza współczynniki wielomianu, mając dane warunki wyznacza sumę wielomianów wyznacza różnicę wielomianów określa stopień sumy i różnicy wielomianów szkicuje wykres wielomianu będącego sumą jednomianów stopnia pierwszego i drugiego 26

27 3. Mnożenie wielomianów mnożenie wielomianów stopień iloczynu wielomianów porównywanie wielomianów wielomian dwóch (trzech) zmiennych 4. Rozkład wielomianu na czynniki (1) rozkład wielomianu na czynniki: wyłączanie wspólnego czynnika przed nawias, rozkład trójmianu kwadratowego na czynniki zastosowanie wzorów skróconego mnożenia: kwadratu sumy i różnicy oraz wzoru na różnicę kwadratów twierdzenie o rozkładzie wielomianu na czynniki określa stopień iloczynu wielomianów bez wykonywania mnożenia wyznacza iloczyn danych wielomianów podaje współczynnik przy najwyższej potędze oraz wyraz wolny iloczynu wielomianów bez wykonywania mnożenia wielomianów oblicza wartość wielomianu dwóch (trzech) zmiennych dla danych argumentów stosuje wielomian do opisania pola powierzchni prostopadłościanu i określa jego dziedzinę porównuje wielomiany dane w postaci iloczynu innych wielomianów stosuje wielomiany wielu zmiennych w zadaniach różnych typów wyłącza wskazany czynnik przed nawias stosuje wzory na kwadrat sumy i różnicy oraz wzór na różnicę kwadratów do rozkładu wielomianu na czynniki zapisuje wielomian w postaci iloczynu czynników możliwie najniższego stopnia stosuje rozkład wielomianu na czynniki w zadaniach różnych typów R R R D 27

28 5. Rozkład wielomianu na czynniki (2) 6. Równania wielomianowe zastosowanie wzorów skróconego mnożenia: sumy i różnicy sześcianów metoda grupowania wyrazów pojęcie pierwiastka wielomianu równanie wielomianowe 7. Dzielenie wielomianów algorytm dzielenia wielomianów podzielność wielomianów twierdzenie o rozkładzie wielomianu stosuje metodę grupowania wyrazów i wyłączania wspólnego czynnika przed nawias do rozkładu wielomianów na czynniki stosuje wzory na sumę i różnicę sześcianów do rozkładu wielomianu na czynniki rozkłada dany wielomian na czynniki, stosując metodę podaną w przykładzie rozwiązuje równania wielomianowe wyznacza punkty przecięcia się wykresu wielomianu i prostej podaje przykład wielomianu, znając jego stopień i pierwiastki dzieli wielomian przez dwumian x a zapisuje wielomian w postaci w( x) p( x) q( x) r sprawdza poprawność wykonanego dzielenia dzieli wielomian przez inny wielomian i zapisuje go w postaci w( x) p( x) q( x) r( x) 8. Równość wielomianów wielomiany równe wyznacza wartości parametrów tak, aby wielomiany były równe D D D D R 28

29 9. Twierdzenie Bézouta twierdzenie o reszcie twierdzenie Bézouta dzielenie wielomianu przez wielomian stopnia drugiego 10. ierwiastki całkowite i pierwiastki wymierne wielomianu twierdzenie o pierwiastkach całkowitych wielomianu twierdzenie o pierwiastkach wymiernych wielomianu sprawdza podzielność wielomianu przez dwumian x a bez wykonywania dzielenia wyznacza resztę z dzielenia wielomianu przez dwumian x a sprawdza, czy dana liczba jest pierwiastkiem wielomianu i wyznacza pozostałe pierwiastki wyznacza wartość parametru tak, aby wielomian był podzielny przez dany dwumian sprawdza podzielność wielomianu przez wielomian (x p)(x q) bez wykonywania dzielenia wyznacza resztę z dzielenia wielomianu, mając określone warunki przeprowadza dowód twierdzenia Bézouta określa, które liczby mogą być pierwiastkami całkowitymi wielomianu określa, które liczby mogą być pierwiastkami wymiernymi wielomianu rozwiązuje równania wielomianowe z wykorzystaniem twierdzeń o pierwiastkach całkowitych i wymiernych wielomianu stosuje twierdzenia o pierwiastkach całkowitych i wymiernych wielomianu w zadaniach różnych typów przeprowadza dowody twierdzeń o pierwiastkach całkowitych i wymiernych wielomianu W W 29

30 11. ierwiastki wielokrotne definicja pierwiastka k-krotnego twierdzenie o liczbie pierwiastków wielomianu stopnia n 12. Wykres wielomianu pojęcie wykresu wielomianu (wykres wielomianu stopnia pierwszego, wykres wielomianu stopnia drugiego powtórzenie) znak wielomianu w przedziale a ; zmiana znaku wielomianu wyznacza pierwiastki wielomianu i podaje ich krotność, mając dany wielomian w postaci iloczynowej bada, czy wielomian ma inne pierwiastki oraz określa ich krotność, znając stopień wielomianu i jego pierwiastek rozwiązuje równanie wielomianowe, mając dany jego jeden pierwiastek i znając jego krotność podaje przykłady wielomianów, znając ich stopień oraz pierwiastki i ich krotność rozwiązuje zadania z parametrem dotyczące pierwiastków wielokrotnych szkicuje wykresy wielomianów stopnia pierwszego i drugiego szkicuje wykres wielomianu, mając daną jego postać iloczynową dobiera wzór wielomianu do szkicu wykresu podaje wzór wielomianu, mając dany współczynnik przy najwyższej potędze oraz szkic wykresu szkicuje wykres danego wielomianu, wyznaczając jego pierwiastki 30

31 13. Nierówności wielomianowe wartości dodatnie i ujemne funkcji nierówności wielomianowe siatka znaków wielomianu rozwiązuje nierówności wielomianowe, korzystając ze szkicu wykresu rozwiązuje nierówności wielomianowe, wykorzystując postać iloczynową wielomianu (dowolną metodą: szkicując wykres lub tworząc siatkę znaków) rozwiązuje nierówność wielomianową, gdy dany jest wzór ogólny wielomianu stosuje nierówności wielomianowe do wyznaczenia dziedziny funkcji zapisanej za pomocą pierwiastka wykonuje działania na zbiorach określonych nierównościami wielomianowymi stosuje nierówności wielomianowe w zadaniach z parametrem 14. Wielomiany zastosowania zastosowanie wielomianów do rozwiązywania zadań tekstowych opisuje wielomianem zależności dane w zadaniu i wyznacza jego dziedzinę rozwiązuje zadania tekstowe 15. owtórzenie wiadomości 16. raca klasowa i jej omówienie 31

32 2. FUNCJE WYMIERNE 1. roporcjonalność określenie proporcjonalności odwrotnej odwrotna wielkości odwrotnie proporcjonalne współczynnik proporcjonalności 2. Wykres funkcji a f ( x) x a hiperbola wykres funkcji f ( x), gdzie x a 0 asymptoty poziome i pionowe wykresu funkcji a własności funkcji f ( x), gdzie a 0 x wyznacza współczynnik proporcjonalności wskazuje wielkości odwrotnie proporcjonalne podaje wzór proporcjonalności odwrotnej, znając współrzędne punktu należącego do wykresu rozwiązuje zadania tekstowe, stosując proporcjonalność odwrotną a szkicuje wykres funkcji f ( x), gdzie a 0 i podaje jej x własności (dziedzinę, zbiór wartości, przedziały monotoniczności) wyznacza asymptoty wykresu powyższej funkcji a szkicuje wykres funkcji f ( x), gdzie a 0, w podanym x zbiorze wyznacza współczynnik a tak, aby funkcja spełniała podane warunki f ( x) a x R 32

33 3. rzesunięcie wykresu a funkcji f ( x) o wektor x przesunięcie wykresu funkcji p, q osie symetrii hiperboli środek symetrii hiperboli a f ( x) o wektor x 4. Funkcja homograficzna określenie funkcji homograficznej wykres funkcji homograficznej postać kanoniczna funkcji homograficznej asymptoty wykresu funkcji homograficznej a przesuwa wykres funkcji f ( x) o dany wektor, podaje x wzór i określa własności otrzymanej funkcji wyznacza dziedzinę i podaje równania asymptot wykresu a funkcji określonej wzorem f ( x) q x p podaje współrzędne wektora, o jaki należy przesunąć wykres funkcji y f (x), aby otrzymać wykres funkcji a g( x) q x p wyznacza wzór funkcji spełniającej podane warunki wyznacza równania osi symetrii oraz współrzędne środka symetrii hiperboli opisanej danym równaniem rozwiązuje zadania, stosując własności hiperboli przekształca wzór funkcji homograficznej do postaci kanonicznej szkicuje wykresy funkcji homograficznych i określa ich własności wyznacza równania asymptot wykresu funkcji homograficznej rozwiązuje zadania z parametrem dotyczące funkcji homograficznej R R W R W 33

34 5. rzekształcenia wykresu funkcji 6. Mnożenie i dzielenie wyrażeń wymiernych 7. Dodawanie i odejmowanie wyrażeń wymiernych metody szkicowania wykresu funkcji y f (x) i y f ( x ) mnożenie i dzielenie wyrażeń wymiernych dziedzina iloczynu i ilorazu wyrażeń wymiernych dodawanie i odejmowanie wyrażeń wymiernych dziedzina sumy i różnicy wyrażeń wymiernych szkicuje wykres funkcji y f (x), gdzie y f (x) jest funkcją homograficzną i opisuje jej własności szkicuje wykres funkcji y f ( x ), gdzie y f (x) jest funkcją homograficzną i opisuje jej własności szkicuje wykres funkcji y f ( x ), gdzie y f (x) jest funkcją homograficzną i opisuje jej własności wyznacza dziedzinę iloczynu oraz ilorazu wyrażeń wymiernych mnoży wyrażenia wymierne dzieli wyrażenia wymierne wyznacza dziedzinę sumy i różnicy wyrażeń wymiernych dodaje i odejmuje wyrażenia wymierne przekształca wzory, stosując działania na wyrażeniach wymiernych 8. Równania wymierne równania wymierne rozwiązuje równania wymierne i podaje odpowiednie założenia stosuje równania wymierne w zadaniach różnych typów R R R R R 34

35 9. Nierówności wymierne znak ilorazu a znak iloczynu nierówności wymierne 10. Funkcje wymierne funkcja wymierna dziedzina funkcji wymiernej równość funkcji 11. Równania i nierówności z wartością bezwzględną 12. Wyrażenia wymierne zastosowania równania i nierówności z wartością bezwzględną zastosowanie wyrażeń wymiernych do rozwiązywania zadań tekstowych s zastosowanie zależności t v odczytuje z danego wykresu zbiór rozwiązań nierówności wymiernej rozwiązuje nierówności wymierne i podaje odpowiednie założenia stosuje nierówności wymierne do porównywania wartości funkcji homograficznych rozwiązuje graficznie nierówności wymierne rozwiązuje układy nierówności wymiernych określa dziedzinę i miejsce zerowe funkcji wymiernej danej wzorem podaje wzór funkcji wymiernej spełniającej określone warunki rozwiązuje zadania z parametrem dotyczące funkcji wymiernej stosuje własności wartości bezwzględnej do rozwiązywania równań i nierówności wymiernych zaznacza w układzie współrzędnych zbiory punktów spełniających zadane warunki wykorzystuje wyrażenia wymierne do rozwiązywania zadań tekstowych wykorzystuje wielkości odwrotnie proporcjonalne do rozwiązywania zadań tekstowych dotyczących szybkości R D 35

36 13. owtórzenie wiadomości 14. raca klasowa i jej omówienie 3. FUNCJE TRYGONOMETRYCZNE 1. Funkcje trygonometryczne dowolnego kąta kąt w układzie współrzędnych funkcje trygonometryczne dowolnego kąta znaki funkcji trygonometrycznych wartości funkcji trygonometrycznych niektórych kątów 2. ąt obrotu dodatni i ujemny kierunek obrotu wartości funkcji trygonometrycznych kąta k 360, gdzie k C, 0 ; 360 zaznacza kąt w układzie współrzędnych wyznacza wartości funkcji trygonometrycznych kąta, gdy dane są współrzędne punktu leżącego na jego końcowym ramieniu określa znaki funkcji trygonometrycznych danego kąta określa, w której ćwiartce układu współrzędnych leży końcowe ramię kąta, mając dane wartości funkcji trygonometrycznych oblicza wartości funkcji trygonometrycznych szczególnych kątów, np.: 90, 120, 135, 225 wykorzystuje funkcje trygonometryczne do rozwiązywania zadań zaznacza w układzie współrzędnych kąt o danej mierze wyznacza kąt, mając dany punkt należący do jego końcowego ramienia bada, czy punkt należy do końcowego ramienia danego kąta oblicza wartości funkcji trygonometrycznych kątów, mając daną ich miarę stopniową wyznacza kąt, mając daną wartość jego jednej funkcji trygonometrycznej 36

37 3. Miara łukowa kąta miara łukowa kąta zamiana miary stopniowej kąta na miarę łukową i odwrotnie 4. Funkcje okresowe funkcja okresowa okres podstawowy funkcji trygonometrycznych 5. Wykresy funkcji sinus i cosinus 6. Wykresy funkcji tangens i cotangens wykresy funkcji sinus i cosinus środki symetrii wykresu funkcji sinus osie symetrii wykresu funkcji sinus osie symetrii wykresu funkcji cosinus parzystość funkcji wykresy funkcji tangens i cotangens środki symetrii wykresów funkcji tangens i cotangens zamienia miarę stopniową na łukową i odwrotnie oblicza wartości funkcji trygonometrycznych dowolnych kątów, mając daną ich miarę łukową odczytuje okres podstawowy funkcji na podstawie jej wykresu szkicuje wykres funkcji okresowej stosuje okresowość funkcji do wyznaczania jej wartości szkicuje wykresy funkcji sinus i cosinus w danym przedziale określa własności funkcji sinus i cosinus w danym przedziale wykorzystuje własności funkcji sinus i cosinus do obliczenia wartości tej funkcji dla danego kąta rozwiązuje równania typu sin x a i cos x a sprawdza parzystość funkcji szkicuje wykresy funkcji tangens i cotangens w danym przedziale wykorzystuje własności funkcji tangens i cotangens do obliczenia wartości tych funkcji dla danego kąta rozwiązuje równania typu tg x a, ctgx a D W 37

38 7. rzesunięcie wykresu funkcji o wektor 8. rzekształcenia wykresu funkcji (1) 9. rzekształcenia wykresu funkcji (2) 10. rzekształcenia wykresu funkcji (3) metoda otrzymywania wykresu funkcji y f ( x p) r metoda szkicowania wykresu funkcji y af (x), gdzie y f (x) jest funkcją trygonometryczną metoda szkicowania wykresu funkcji y f (ax), gdzie y f (x) jest funkcją trygonometryczną metoda szkicowania wykresów funkcji y f (x) oraz f x, y f x jest funkcją trygonometryczną y gdzie szkicuje wykresy funkcji trygonometrycznych y f ( x p) r i określa ich własności szkicuje wykresy funkcji trygonometrycznych, stosując symetrię względem osi układu współrzędnych oraz symetrię względem początku układu współrzędnych szkicuje wykresy funkcji trygonometrycznych będące efektem wykonania kilku operacji szkicuje wykresy funkcji y af (x), gdzie y f (x) jest funkcją trygonometryczną i określa ich własności szkicuje wykresy funkcji trygonometrycznych będące efektem wykonania kilku operacji oraz określa ich własności szkicuje wykresy funkcji y f (ax), gdzie y f (x) jest funkcją trygonometryczną i określa ich własności szkicuje wykresy funkcji trygonometrycznych będące efektem wykonania kilku operacji oraz określa ich własności szkicuje wykresy funkcji f (x) y f x, gdzie x y oraz y f jest funkcją trygonometryczną i określa ich własności szkicuje wykresy funkcji trygonometrycznych będące efektem wykonania kilku operacji oraz określa ich własności stosuje wykresy funkcji trygonometrycznych do rozwiązywania równań 38

39 11. Tożsamości trygonometryczne 12. Funkcje trygonometryczne sumy i różnicy kątów podstawowe tożsamości trygonometryczne metoda uzasadniania tożsamości trygonometrycznych funkcje trygonometryczne sumy i różnicy kątów stosuje tożsamości trygonometryczne w prostych sytuacjach dowodzi tożsamości trygonometryczne, podając odpowiednie założenia oblicza wartości pozostałych funkcji trygonometrycznych kąta, gdy dana jest jedna z nich wyznacza wartości funkcji trygonometrycznych kątów z zastosowaniem wzorów na funkcje trygonometryczne sumy i różnicy kątów stosuje wzory na funkcje trygonometryczne kąta podwojonego stosuje poznane wzory do przekształcania wyrażeń zawierających funkcje trygonometryczne, w tym również do uzasadniania tożsamości trygonometrycznych 13. Wzory redukcyjne wzory redukcyjne π zapisuje dany kąt w postaci k π, gdzie 0; 2 2 lub k 90, gdzie ( 0; 90 ) wyznacza wartości funkcji trygonometrycznych danych kątów z zastosowaniem wzorów redukcyjnych wyznacza wartości funkcji trygonometrycznych danych kątów z zastosowaniem własności funkcji trygonometrycznych 14. Równania trygonometryczne metody rozwiązywania równań trygonometrycznych wzory na sumę i różnicę sinusów i cosinusów rozwiązuje równania trygonometryczne stosuje wzory na sumę i różnicę sinusów i cosinusów D 39

40 15. Nierówności metody rozwiązywania nierówności trygonometryczne trygonometrycznych 16. owtórzenie wiadomości 17. raca klasowa i jej omówienie 4. CIĄGI 1. ojęcie ciągu pojęcie ciągu wykres ciągu wyraz ciągu 2. Sposoby określania ciągu sposoby określania ciągu rozwiązuje nierówności trygonometryczne wyznacza kolejne wyrazy ciągu, gdy danych jest kilka jego początkowych wyrazów szkicuje wykres ciągu wyznacza wzór ogólny ciągu, mając danych kilka jego początkowych wyrazów wyznacza początkowe wyrazy ciągu określonego wzorem ogólnym wyznacza, które wyrazy ciągu przyjmują daną wartość wyznacza wzór ogólny ciągu spełniającego podane warunki D 40

41 3. Ciągi monotoniczne (1) definicja ciągu rosnącego, malejącego, stałego, niemalejącego i nierosnącego podaje przykłady ciągów monotonicznych, których wyrazy spełniają dane warunki uzasadnia, że dany ciąg nie jest monotoniczny, mając dane jego kolejne wyrazy wyznacza wyraz an 1 ciągu określonego wzorem ogólnym bada monotoniczność ciągu, korzystając z definicji wyznacza wartość parametru tak, aby ciąg był ciągiem monotonicznym dowodzi monotoniczności ciągów określonych wzorami 2 postaci: bn can d oraz b n a n, gdzie ( a n ) jest ciągiem monotonicznym, zaś c, d R 4. Ciągi określone określenie rekurencyjne ciągu rekurencyjnie wyznacza początkowe wyrazy ciągu określonego rekurencyjnie wyznacza wzór rekurencyjny ciągu, mając dany wzór ogólny rozwiązuje zadania o podwyższonym stopniu trudności, związane ze wzorem rekurencyjnym ciągu 5. Ciągi monotoniczne (2) suma, różnica, iloczyn i iloraz ciągów wyznacza wzór ogólny ciągu, będący wynikiem wykonania działań na danych ciągach bada monotoniczność sumy, różnicy, iloczynu i ilorazu ciągów rozwiązuje zadania o podwyższonym stopniu trudności, dotyczące monotoniczności ciągu R W R R W 41

42 6. Ciąg arytmetyczny (1) określenie ciągu arytmetycznego i jego różnicy wzór ogólny ciągu arytmetycznego monotoniczność ciągu arytmetycznego pojęcie średniej arytmetycznej 7. Ciąg arytmetyczny (2) stosowanie własności ciągu arytmetycznego do rozwiązywania zadań 8. Suma początkowych wyrazów ciągu arytmetycznego wzór na sumę n początkowych wyrazów ciągu arytmetycznego podaje przykłady ciągów arytmetycznych wyznacza wyrazy ciągu arytmetycznego, mając dany pierwszy wyraz i różnicę wyznacza wzór ogólny ciągu arytmetycznego, mając dane dowolne dwa jego wyrazy stosuje średnią arytmetyczną do wyznaczania wyrazów ciągu arytmetycznego określa monotoniczność ciągu arytmetycznego sprawdza, czy dany ciąg jest ciągiem arytmetycznym wyznacza wartości zmiennych tak, aby wraz z podanymi wartościami tworzyły ciąg arytmetyczny stosuje własności ciągu arytmetycznego do rozwiązywania zadań oblicza sumę n początkowych wyrazów ciągu arytmetycznego stosuje własności ciągu arytmetycznego do rozwiązywania zadań tekstowych rozwiązuje równania z zastosowaniem wzoru na sumę wyrazów ciągu arytmetycznego 42

43 9. Ciąg geometryczny (1) określenie ciągu geometrycznego i jego ilorazu wzór ogólny ciągu geometrycznego 10. Ciąg geometryczny (2) monotoniczność ciągu geometrycznego pojęcie średniej geometrycznej 11. Suma początkowych wyrazów ciągu geometrycznego 12. Ciągi arytmetyczne i ciągi geometryczne zadania wzór na sumę n początkowych wyrazów ciągu geometrycznego własności ciągu arytmetycznego i geometrycznego 13. rocent składany procent składany kapitalizacja, okres kapitalizacji stopa procentowa: nominalna i efektywna podaje przykłady ciągów geometrycznych wyznacza wyrazy ciągu geometrycznego, mając dany pierwszy wyraz i iloraz wyznacza wzór ogólny ciągu geometrycznego, mając dane dowolne dwa jego wyrazy sprawdza, czy dany ciąg jest ciągiem geometrycznym określa monotoniczność ciągu geometrycznego stosuje średnią geometryczną do rozwiązywania zadań wyznacza wartości zmiennych tak, aby wraz z podanymi wartościami tworzyły ciąg geometryczny oblicza sumę n początkowych wyrazów ciągu geometrycznego stosuje wzór na sumę n początkowych wyrazów ciągu geometrycznego w zadaniach stosuje własności ciągu arytmetycznego i geometrycznego do rozwiązywania zadań oblicza wysokość kapitału przy różnym okresie kapitalizacji oblicza oprocentowanie lokaty określa okres oszczędzania rozwiązuje zadania związane z kredytami 43

44 14. Granica ciągu określenie granicy ciągu pojęcia: ciąg zbieżny, granica właściwa ciągu, prawie wszystkie wyrazy ciągu, ciąg stały n twierdzenia o granicy ciągu a q, gdy q 1 ;1 oraz ciągu a n n 1, gdy k > 0 k n 15. Granica niewłaściwa pojęcia: ciąg rozbieżny, granica niewłaściwa określenie ciągu rozbieżnego do oraz ciągu rozbieżnego do - n twierdzenia o rozbieżności ciągu a q, gdy q > 16. Obliczanie granic ciągów (1) 17. Obliczanie granic ciągów (2) 1 oraz ciągu n k a n, gdy k > 0 twierdzenie o granicach: sumy, różnicy, iloczynu i ilorazu ciągów zbieżnych twierdzenie o własnościach granic ciągów rozbieżnych symbole nieoznaczone twierdzenie o trzech ciągach n bada na podstawie wykresu, czy dany ciąg ma granicę i w przypadku ciągu zbieżnego podaje jego granicę bada, ile wyrazów danego ciągu jest oddalonych od danej liczby o podaną wartość n podaje granicę ciągu q q 1 ;1 oraz ciągu a, gdy n 1 an, gdy k > 0 k n rozpoznaje ciąg rozbieżny na podstawie wykresu i określa, czy ma on granicę niewłaściwą, czy nie ma granicy bada, ile wyrazów danego ciągu jest większych (mniejszych) od danej liczby n k wie, że ciągi an q, gdy q > 1oraz ciągi an n, gdy k > 0 są rozbieżne do oblicza granice ciągów, korzystając z twierdzenia o granicach: sumy, różnicy, iloczynu i ilorazu ciągów zbieżnych oblicza granice niewłaściwe ciągów, korzystając z twierdzenia o własnościach granic ciągów rozbieżnych oblicza granice ciągu, korzystając z twierdzenia o trzech ciągach W 44

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające MATeMAtyka 1 lan wynikowy: Zakres podstawowy i rozszerzony Oznaczenia: wymagania konieczne; wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające Temat lekcji

Bardziej szczegółowo

MATeMAtyka 1. Plan wynikowy: Zakres podstawowy i rozszerzony

MATeMAtyka 1. Plan wynikowy: Zakres podstawowy i rozszerzony MATeMAtyka 1 lan wynikowy: Zakres podstawowy i rozszerzony Oznaczenia: wymagania konieczne; wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające - dopuszczający;

Bardziej szczegółowo

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II POZIOM ROZSZERZONY Równania i nierówności z wartością bezwzględną. rozwiązuje równania i nierówności

Bardziej szczegółowo

Plan wynikowy matematyka w zakresie rozszerzonym w klasie 1b, 2016/2017r.

Plan wynikowy matematyka w zakresie rozszerzonym w klasie 1b, 2016/2017r. Jolanta Pająk Plan wynikowy matematyka w zakresie rozszerzonym w klasie 1b, 016/017r. Ocena dopuszczająca: Temat lekcji Uczeń: Elementy logiki matematycznej rozpoznaje spójniki logiczne, zna wartości logiczne

Bardziej szczegółowo

Plan wynikowy. Zakres podstawowy klasa 1

Plan wynikowy. Zakres podstawowy klasa 1 lan wynikowy Zakres podstawowy klasa MATeMAtyka. lan wynikowy. Z Oznaczenia: wymagania konieczne, wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające, W wymagania wykraczające ogrubieniem

Bardziej szczegółowo

Wymagania dla kl. 1. Zakres podstawowy. podaje przykłady liczb pierwszych, parzystych i nieparzystych cechy podzielności liczb naturalnych

Wymagania dla kl. 1. Zakres podstawowy. podaje przykłady liczb pierwszych, parzystych i nieparzystych cechy podzielności liczb naturalnych Wymagania dla kl. 1 Zakres podstawowy Temat lekcji Zakres treści Osiągnięcia ucznia 1. LICZBY RZECZYWISTE 1. Liczby naturalne definicja dzielnika liczby naturalnej definicja liczby pierwszej podaje przykłady

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy Ia liceum (poziom podstawowy) rok szkolny 2018/2019

Wymagania edukacyjne z matematyki dla klasy Ia liceum (poziom podstawowy) rok szkolny 2018/2019 Wymagania edukacyjne z matematyki dla klasy Ia liceum (poziom podstawowy) rok szkolny 018/019 Oznaczenia: wymagania konieczne, wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające,

Bardziej szczegółowo

Dorota Ponczek, Karolina Wej. MATeMAtyka 1. Plan wynikowy. Zakres podstawowy

Dorota Ponczek, Karolina Wej. MATeMAtyka 1. Plan wynikowy. Zakres podstawowy Dorota onczek, arolina Wej MATeMAtyka lan wynikowy Zakres podstawowy MATeMAtyka. lan wynikowy. Z Oznaczenia: wymagania konieczne, wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające,

Bardziej szczegółowo

Dorota Ponczek, Karolina Wej. MATeMAtyka 1. Szczegółowe wymagania edukacyjne z matematyki w klasie pierwszej. Zakres podstawowy

Dorota Ponczek, Karolina Wej. MATeMAtyka 1. Szczegółowe wymagania edukacyjne z matematyki w klasie pierwszej. Zakres podstawowy Dorota onczek, arolina Wej MATeMAtyka 1 Szczegółowe wymagania edukacyjne z matematyki w klasie pierwszej Zakres podstawowy Oznaczenia: wymagania konieczne, wymagania podstawowe, R wymagania rozszerzające,

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I PODSTAWA Z ROZSZERZENIEM (90 godz.)

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I PODSTAWA Z ROZSZERZENIEM (90 godz.) WYMAGANIA EDUACYJNE Z MATEMATYI LASA I ODSTAWA Z ROZSZERZENIEM (90 godz.) Oznaczenia: wymagania konieczne; wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

Bardziej szczegółowo

Wymagania na ocenę dopuszczającą z matematyki klasa I Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS /02

Wymagania na ocenę dopuszczającą z matematyki klasa I Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS /02 Wymagania na ocenę dopuszczającą z matematyki klasa I Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02 Temat lekcji Zakres treści Osiągnięcia ucznia 1. Liczby naturalne definicja dzielnika

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem

Bardziej szczegółowo

Uczeń: szkicuje wykres funkcji f(x) = ax 2 podaje własności funkcji f(x) = ax 2 stosuje własności funkcji f(x) = ax 2 do rozwiązywania zadań Uczeń:

Uczeń: szkicuje wykres funkcji f(x) = ax 2 podaje własności funkcji f(x) = ax 2 stosuje własności funkcji f(x) = ax 2 do rozwiązywania zadań Uczeń: MATeMAtyka lan wynikowy: Zakres podstawowy i rozszerzony Oznaczenia: wymagania konieczne; wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające - dopuszczający;

Bardziej szczegółowo

Jolanta Pająk Wymagania edukacyjne matematyka w zakresie rozszerzonym w klasie 2f 2018/2019r.

Jolanta Pająk Wymagania edukacyjne matematyka w zakresie rozszerzonym w klasie 2f 2018/2019r. Jolanta Pająk Wymagania edukacyjne matematyka w zakresie rozszerzonym w klasie 2f 2018/2019r. Ocena dopuszczająca: Temat lekcji Stopień i współczynniki wielomianu Dodawanie i odejmowanie wielomianów Mnożenie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy

Bardziej szczegółowo

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające MATeMAtyka lan wynikowy: Zakres podstawowy i rozszerzony Oznaczenia: wymagania konieczne; wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające Temat lekcji

Bardziej szczegółowo

K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające Oznaczenia: *OZNACZONE ZOSTAŁY TEMATY REALIZOWANE NA OZIOMIE ROZSZERZONYM wymagania konieczne; wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające Temat

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I ZAKRES ROZSZERZONY (90 godz.)

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I ZAKRES ROZSZERZONY (90 godz.) WYMAGANIA EDUACYJNE Z MATEMATYI LASA I ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania dopełniające

Bardziej szczegółowo

Plan wynikowy matematyka w zakresie rozszerzonym w klasie 1f. w 2017/2018r.

Plan wynikowy matematyka w zakresie rozszerzonym w klasie 1f. w 2017/2018r. Jolanta Pająk Plan wynikowy matematyka w zakresie rozszerzonym w klasie 1f w 2017/2018r. Ocena dopuszczająca: Temat lekcji Elementy logiki matematycznej Uczeń: rozpoznaje spójniki logiczne, zna wartości

Bardziej szczegółowo

Plan wynikowy matematyka w zakresie rozszerzonym w klasie 1g, 2016/2017r.

Plan wynikowy matematyka w zakresie rozszerzonym w klasie 1g, 2016/2017r. Jolanta Pająk Plan wynikowy matematyka w zakresie rozszerzonym w klasie 1g, 2016/2017r. Ocena dopuszczająca: Temat lekcji Uczeń: Elementy logiki matematycznej rozpoznaje spójniki logiczne, zna wartości

Bardziej szczegółowo

Wymagania kl. 1. Zakres podstawowy i rozszerzony. Uczeń: przedstawia liczbę naturalną w postaci iloczynu liczb pierwszych i nieparzystej

Wymagania kl. 1. Zakres podstawowy i rozszerzony. Uczeń: przedstawia liczbę naturalną w postaci iloczynu liczb pierwszych i nieparzystej Wymagania kl. 1 Zakres podstawowy i rozszerzony Temat lekcji Zakres treści Osiągnięcia ucznia 1. LICZBY RZECZYWISTE 1. Liczby naturalne definicja dzielnika liczby naturalnej definicja liczby pierwszej

Bardziej szczegółowo

K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające Wymagania edukacyjne z matematyki lasa 1 a lo Zakres rozszerzony Oznaczenia: *OZNACZONE ZOSTAŁY TEMATY REALIZOWANE NA OZIOMIE ROZSZERZONYM wymagania konieczne; wymagania podstawowe; R wymagania rozszerzające;

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013 Dział LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE

Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego.

WYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego. WYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego. 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych,

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI / POZIOM ROZSZERZONY /

WYMAGANIA EDUKACYJNE Z MATEMATYKI / POZIOM ROZSZERZONY / WYMAGANIA EDUKACYJNE Z MATEMATYKI / POZIOM ROZSZERZONY / Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem powinny być opanowane przez każdego ucznia.

Bardziej szczegółowo

str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk

str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk str 1 WYMAGANIA EDUKACYJNE (2017-2018) - matematyka - poziom podstawowy Dariusz Drabczyk Klasa 2c: wpisy oznaczone jako: (PI) PLANIMETRIA I, (SA) SUMY ALGEBRAICZNE, (FW) FUNKCJE WYMIERNE, (FWL) FUNKCJE

Bardziej szczegółowo

2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu.

2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu. ZAKRES ROZSZERZONY 1. Liczby rzeczywiste. Uczeń: 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli pierwiastków, potęg); 2)

Bardziej szczegółowo

Wymaganie edukacyjne z matematyki w zakresie rozszerzonym Klasa I

Wymaganie edukacyjne z matematyki w zakresie rozszerzonym Klasa I Wymaganie edukacyjne z matematyki w zakresie rozszerzonym Klasa I UWAGA! W wymaganiach każdej z wyższych ocen zwierają się również wymagania na oceny niższe. Wymagania konieczne (ocena dopuszczająca) Wymagania

Bardziej szczegółowo

Wymagania na poszczególne stopnie z matematyki - poziom rozszerzony klasa I f - rok szkolny 2017/18

Wymagania na poszczególne stopnie z matematyki - poziom rozszerzony klasa I f - rok szkolny 2017/18 Stopień LICZBY RZECZYWISTE podaje przykłady liczb naturalnych, całkowitych, wymiernych, niewymiernych, rzeczywistych, parzystych, nieparzystych; rozpoznaje liczby naturalne, całkowite, wymierne, niewymierne,

Bardziej szczegółowo

Dorota Ponczek, Karolina Wej. MATeMAtyka 1. Szczegółowe wymagania edukacyjne z matematyki w klasie pierwszej. Zakres podstawowy i rozszerzony

Dorota Ponczek, Karolina Wej. MATeMAtyka 1. Szczegółowe wymagania edukacyjne z matematyki w klasie pierwszej. Zakres podstawowy i rozszerzony Dorota onczek, arolina Wej MATeMAtyka 1 Szczegółowe wymagania edukacyjne z matematyki w klasie pierwszej Zakres podstawowy i rozszerzony Oznaczenia: wymagania konieczne; wymagania podstawowe; R wymagania

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk

WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk str 1 Klasa 1d: wpisy oznaczone jako: LICZBY RZECZYWISTE, JĘZYK MATEMATYKI, FUNKCJA LINIOWA, (F) FUNKCJE, FUNKCJA KWADRATOWA. Przypisanie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI / POZIOM PODSTAWOWY /

WYMAGANIA EDUKACYJNE Z MATEMATYKI / POZIOM PODSTAWOWY / WYMAGANIA EDUKACYJNE Z MATEMATYKI / POZIOM PODSTAWOWY / Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem powinny być opanowane przez każdego ucznia. Wymagania

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk

WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk str 1 Klasa 2f: wpisy oznaczone jako: GEOMETRIA ANALITYCZNA (GA), WIELOMIANY (W), FUNKCJE WYMIERNE (FW), FUNKCJE TRYGONOMETRYCZNE

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony Na ocenę dopuszczającą, uczeń: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych

Bardziej szczegółowo

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych

Bardziej szczegółowo

MATeMAtyka klasa II poziom rozszerzony

MATeMAtyka klasa II poziom rozszerzony MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład

Bardziej szczegółowo

Klasa II - zakres podstawowy i rozszerzony

Klasa II - zakres podstawowy i rozszerzony Klasa II - zakres podstawowy i rozszerzony 1. PLANIMETRIA stosuje twierdzenie o sumie miar kątów w trójkącie oraz nierówność trójkąta uzasadnia przystawanie trójkątów, wykorzystując cechy przystawania

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II Ti ZAKRES PODSTAWOWY i ROZSZERZONY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II Ti ZAKRES PODSTAWOWY i ROZSZERZONY . ROZUMOWANIE I ARGUMENTACJA stosuje ogólny zapis liczb naturalnych parzystych, nieparzystych, podzielnych przez 3 itp. wykorzystuje dzielenie z resztą do przedstawienia liczby naturalnej w postaci a k

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne z matematyki w klasie 2c (poziom rozszerzony)

Szczegółowe wymagania edukacyjne z matematyki w klasie 2c (poziom rozszerzony) Szczegółowe wymagania edukacyjne z matematyki w klasie 2c (poziom rozszerzony) Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinny być zatem opanowane

Bardziej szczegółowo

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych

Bardziej szczegółowo

MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY DRUGIEJ

MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY DRUGIEJ MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY 1. SUMY ALGEBRAICZNE DLA KLASY DRUGIEJ 1. Rozpoznawanie jednomianów i sum algebraicznych Obliczanie wartości liczbowych wyrażeń algebraicznych

Bardziej szczegółowo

Poziom wymagań. Temat lekcji Zakres treści Osiągnięcia ucznia 1. WIELOMIANY 1. Stopień i współczynniki wielomianu

Poziom wymagań. Temat lekcji Zakres treści Osiągnięcia ucznia 1. WIELOMIANY 1. Stopień i współczynniki wielomianu Plan wynikowy klasa 2g - Jolanta Pająk Matematyka 2. dla liceum ogólnokształcącego, liceum profilowanego i technikum. ształcenie ogólne w zakresie rozszerzonym rok szkolny 2015/2016 Wymagania edukacyjne

Bardziej szczegółowo

1.. FUNKCJE TRYGONOMETRYCZNE Poziom (K) lub (P)

1.. FUNKCJE TRYGONOMETRYCZNE Poziom (K) lub (P) Wymagania edukacyjne dla klasy IIIc technik informatyk 1.. FUNKCJE TRYGONOMETRYCZNE rok szkolny 2014/2015 zaznacza kąt w układzie współrzędnych, wskazuje jego ramię początkowe i końcowe wyznacza wartości

Bardziej szczegółowo

Plan wynikowy MATeMAtyka 1 Zakres podstawowy i rozszerzony

Plan wynikowy MATeMAtyka 1 Zakres podstawowy i rozszerzony Agnieszka amińska Dorota onczek lan wynikowy MATeMAtyka Zakres podstawowy i rozszerzony Warszawa 09 Oznaczenia: wymagania konieczne; wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające;

Bardziej szczegółowo

Wymagania edukacyjne dla klasy 1 Liceum zakres podstawowy i rozszerzony

Wymagania edukacyjne dla klasy 1 Liceum zakres podstawowy i rozszerzony Wymagania edukacyjne dla klasy Liceum zakres podstawowy i rozszerzony Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: ocena dopuszczająca (K) ocena dostateczna (K) i (P) ocena

Bardziej szczegółowo

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza MATeMAtyka 1 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Klasa pierwsza Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI Szkoła Branżowa I Stopnia

WYMAGANIA EDUKACYJNE Z MATEMATYKI Szkoła Branżowa I Stopnia WYMAGANIA EDUKACYJNE Z MATEMATYKI Szkoła Branżowa I Stopnia KLASA I 1. Liczby rzeczywiste i wyrażenia algebraiczne 1) Liczby naturalne, cechy podzielności stosuje cechy podzielności liczby przez 2, 3,

Bardziej szczegółowo

Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. Kl. I poziom rozszerzony

Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. Kl. I poziom rozszerzony Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. LICZBY RZECZYWISTE Kl. I poziom rozszerzony podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych,

Bardziej szczegółowo

usuwa niewymierność z mianownika wyrażenia typu

usuwa niewymierność z mianownika wyrażenia typu Klasa pierwsza zakres rozszerzony. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje liczbę do odpowiedniego zbioru

Bardziej szczegółowo

MATeMAtyka cz.1. Zakres podstawowy

MATeMAtyka cz.1. Zakres podstawowy MATeMAtyka cz.1 Zakres podstawowy Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania (W). Wymienione

Bardziej szczegółowo

Wymagania edukacyjne

Wymagania edukacyjne Wymagania edukacyjne RZEDMIOT: Matematyka-zakres rozszerzony Oznaczenia: wymagania konieczne (na ocenę dopuszczający); wymagania podstawowe (na ocenę dostateczny); R wymagania rozszerzające (na ocenę dobry);

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga.

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga. Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga. Funkcja liniowa. Uczeń otrzymuje ocenę dopuszczającą, jeśli: - rozpoznaje funkcję liniową

Bardziej szczegółowo

1. LICZBY RZECZYWISTE. Uczeń otrzymuje ocenę dopuszczającą, jeśli:

1. LICZBY RZECZYWISTE. Uczeń otrzymuje ocenę dopuszczającą, jeśli: WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI WYMAGANIA EDUKACYJNE POZIOM PODSTAWOWY KLASA 1 1. LICZBY RZECZYWISTE podaje przykłady

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem powinny być

Bardziej szczegółowo

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych

Bardziej szczegółowo

WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM

WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM Klasa pierwsza A, B, C, D, E, G, H zakres podstawowy. LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą jeśli: podaje

Bardziej szczegółowo

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Marian Łuniewski MATeMAtyka 1 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących

Bardziej szczegółowo

K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające Wymagania edukacyjne z matematyki lasa 2 a lo Zakres rozszerzony Oznaczenia: *OZNACZONE ZOSTAŁY TEMATY REALIZOWANE NA OZIOMIE ROZSZERZONYM wymagania konieczne; wymagania podstawowe; R wymagania rozszerzające;

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa 1

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa 1 Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa 1 Liczby rzeczywiste: Uczeń otrzymuje ocenę ( jeśli rozumie i stosuje podpowiedź nauczyciela)oraz

Bardziej szczegółowo

Dorota Ponczek, Karolina Wej. MATeMAtyka 1. Plan wynikowy. Zakres podstawowy i rozszerzony

Dorota Ponczek, Karolina Wej. MATeMAtyka 1. Plan wynikowy. Zakres podstawowy i rozszerzony Dorota onczek, arolina Wej MATeMAtyka lan wynikowy Zakres podstawowy i rozszerzony MATeMAtyka. lan wynikowy. ZiR Oznaczenia: wymagania konieczne; wymagania podstawowe; R wymagania rozszerzające; D wymagania

Bardziej szczegółowo

MATEMATYKA KL II LO zakres podstawowy i rozszerzony

MATEMATYKA KL II LO zakres podstawowy i rozszerzony MATEMATYKA KL II LO zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania

Bardziej szczegółowo

Klasa 1 technikum. Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:

Klasa 1 technikum. Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: Klasa 1 technikum Przedmiotowy system oceniania wraz z wymaganiami edukacyjnymi Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki klasa I i II ZSZ 2013/2014

Przedmiotowy system oceniania z matematyki klasa I i II ZSZ 2013/2014 I. Liczby rzeczywiste K-2 P-3 R-4 D-5 W-6 Rozpoznaje liczby: naturalne (pierwsze i złożone),całkowite, wymierne, niewymierne, rzeczywiste Stosuje cechy podzielności liczb przez 2, 3,5, 9 Podaje dzielniki

Bardziej szczegółowo

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h)

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony (według podręczników z serii MATeMAtyka) Klasa I (90 h) Temat Liczba godzin 1. Liczby rzeczywiste 15

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach

Bardziej szczegółowo

MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY PIERWSZEJ

MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY PIERWSZEJ MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY 1. LICZBY RZECZYWISTE DLA KLASY PIERWSZEJ 1. Podawanie przykładów liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i

Bardziej szczegółowo

PODSTAWOWY 1. ROZUMOWANIE I ARGUMENTACJA W ZBIORZE LICZB RZECZYWISTYCH

PODSTAWOWY 1. ROZUMOWANIE I ARGUMENTACJA W ZBIORZE LICZB RZECZYWISTYCH 1. ROZUMOWANIE I ARGUMENTACJA W ZBIORZE LICZB RZECZYWISTYCH stosuje ogólny zapis liczb naturalnych parzystych, nieparzystych, podzielnych przez 3 itp. wykorzystuje dzielenie z resztą do przedstawienia

Bardziej szczegółowo

MATEMATYKA - klasa I Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony

MATEMATYKA - klasa I Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony MATEMATYKA - klasa I Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe

Bardziej szczegółowo

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych

Bardziej szczegółowo

Klasa 1 wymagania edukacyjne

Klasa 1 wymagania edukacyjne Klasa wymagania edukacyjne Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program

Bardziej szczegółowo

MATEMATYKA KL I LO zakres podstawowy i rozszerzony

MATEMATYKA KL I LO zakres podstawowy i rozszerzony MATEMATYKA KL I LO zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania

Bardziej szczegółowo

MATeMAtyka 1. wymagania edukacyjne. Zakres podstawowy i rozszerzony. Autorzy Dorota Ponczek, Karolina Wej

MATeMAtyka 1. wymagania edukacyjne. Zakres podstawowy i rozszerzony. Autorzy Dorota Ponczek, Karolina Wej MATeMAtyka wymagania edukacyjne Zakres podstawowy i rozszerzony Autorzy Dorota Ponczek, Karolina Wej Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R),

Bardziej szczegółowo

Matematyka. Wymagania edukacyjne na poszczególne oceny

Matematyka. Wymagania edukacyjne na poszczególne oceny Matematyka Wymagania edukacyjne na poszczególne oceny Klasa I - poziom rozszerzony LICZBY RZECZYWISTE Uczeń podaje przykłady liczb naturalnych, całkowitych, wymiernych, niewymiernych, rzeczywistych, parzystych,

Bardziej szczegółowo

Agnieszka Kamińska Dorota Ponczek. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych MATeMAtyka 1 Zakres podstawowy

Agnieszka Kamińska Dorota Ponczek. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych MATeMAtyka 1 Zakres podstawowy Agnieszka Kamińska Dorota Ponczek Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych MATeMAtyka 1 Zakres podstawowy Warszawa 2019 Wyróżnione zostały następujące wymagania

Bardziej szczegółowo

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres

Bardziej szczegółowo

Plan wynikowy z rozkładem materiału

Plan wynikowy z rozkładem materiału Plan wynikowy z rozkładem materiału Plan wynikowy oraz rozkład materiału nauczania są indywidualnymi dokumentami nauczycielskimi związanymi z realizowanym programem nauczania. Uwzględniają specyfikę danej

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie II A i II B Liceum Plastycznego Zakres podstawowy Przygotowane w oparciu o propozycję wydawnictwa Nowa Era

Wymagania edukacyjne z matematyki w klasie II A i II B Liceum Plastycznego Zakres podstawowy Przygotowane w oparciu o propozycję wydawnictwa Nowa Era Wymagania edukacyjne z matematyki w klasie II A i II B Liceum Plastycznego Zakres podstawowy Przygotowane w oparciu o propozycję wydawnictwa Nowa Era Kryteria Znajomość pojęć, definicji, własności oraz

Bardziej szczegółowo

Dorota Ponczek, Karolina Wej. MATeMAtyka 1. Plan wynikowy. Zakres podstawowy i rozszerzony

Dorota Ponczek, Karolina Wej. MATeMAtyka 1. Plan wynikowy. Zakres podstawowy i rozszerzony Dorota onczek, arolina Wej MATeMAtyka lan wynikowy Zakres podstawowy i rozszerzony MATeMAtyka. lan wynikowy. ZiR Oznaczenia: wymagania konieczne; wymagania podstawowe; R wymagania rozszerzające; D wymagania

Bardziej szczegółowo

MATeMAtyka 1. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony

MATeMAtyka 1. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Dorota Ponczek, Karolina Wej MATeMAtyka Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe:

Bardziej szczegółowo

Matematyka wykaz umiejętności wymaganych na poszczególne oceny

Matematyka wykaz umiejętności wymaganych na poszczególne oceny Matematyka wykaz umiejętności wymaganych na poszczególne oceny KLASA I 1.Liczby rzeczywiste 1. Podawanie przykładów liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz

Bardziej szczegółowo

PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.)

PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.) PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY I. Proste na płaszczyźnie (15 godz.) Równanie prostej w postaci ogólnej Wzajemne połoŝenie dwóch prostych Nierówność liniowa z dwiema niewiadomymi

Bardziej szczegółowo

Wymagania edukacyjne: Matematyka Zasadnicza Szkoła Zawodowa

Wymagania edukacyjne: Matematyka Zasadnicza Szkoła Zawodowa ymagania edukacyjne: Matematyka Zasadnicza Szkoła Zawodowa Oznaczenia: wymagania konieczne (ocena dopuszczająca), wymagania podstawowe (ocena dostateczna), wymagania rozszerzające (ocena dobra) D wymagania

Bardziej szczegółowo

ZAKRES PODSTAWOWY CZĘŚĆ I. Liczby rzeczywiste

ZAKRES PODSTAWOWY CZĘŚĆ I. Liczby rzeczywiste CZĘŚĆ I ZAKRES PODSTAWOWY W nawiasach proponowane oceny: 2 poziom konieczny wymagań edukacyjnych 3 poziom podstawowy wymagań edukacyjnych 4 poziom rozszerzający wymagań edukacyjnych 5 poziom dopełniający

Bardziej szczegółowo

MATeMAtyka 3. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Zakres podstawowy i rozszerzony

MATeMAtyka 3. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Zakres podstawowy i rozszerzony MATeMAtyka 3 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne

Bardziej szczegółowo

KLASA PIERWSZA POLTECHNICZNA

KLASA PIERWSZA POLTECHNICZNA Matematyka Zakres materiału i wymagania edukacyjne, KLASA PIERWSZA POLTECHNICZNA Temat lekcji Zakres treści Osiągnięcia ucznia 1. LICZBY RZECZYWISTE 1. Liczby naturalne definicja dzielnika liczby naturalnej

Bardziej szczegółowo

Kształcenie w zakresie podstawowym. Klasa 2

Kształcenie w zakresie podstawowym. Klasa 2 Kształcenie w zakresie podstawowym. Klasa 2 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII

WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII ROZDZIAŁ I LICZBY 1. rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 2. odczytuje liczby naturalne dodatnie zapisane w

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY I. Funkcja liniowa dopuszczającą jeżeli: wie, jaką zależność między dwiema wielkościami zmiennymi nazywamy

Bardziej szczegółowo

Wymagania edukacyjne z matematyki klasa II technikum

Wymagania edukacyjne z matematyki klasa II technikum Wymagania edukacyjne z matematyki klasa II technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: 1. JĘZYK MATEMATYKI I FUNKCJE LICZBOWE Uczeń otrzymuje ocenę dopuszczającą

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLASY 1LO i 1TI ROK SZKOLNY 2018/2019

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLASY 1LO i 1TI ROK SZKOLNY 2018/2019 PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLASY 1LO i 1TI ROK SZKOLNY 2018/2019 Przedmiotowy system oceniania jest zgodny z Rozporządzeniem Ministra Edukacji Narodowej z dnia 10 czerwca 2015 r. w

Bardziej szczegółowo

Matematyka. Zakres materiału i wymagania edukacyjne, KLASA PIERWSZA. Temat lekcji Zakres treści Osiągnięcia ucznia. Uczeń:

Matematyka. Zakres materiału i wymagania edukacyjne, KLASA PIERWSZA. Temat lekcji Zakres treści Osiągnięcia ucznia. Uczeń: Matematyka Zakres materiału i wymagania edukacyjne, KLASA PIERWSZA Temat lekcji Zakres treści Osiągnięcia ucznia 1. Liczby naturalne definicja dzielnika liczby naturalnej definicja liczby pierwszej cechy

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY. (zakres podstawowy) klasa 2

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY. (zakres podstawowy) klasa 2 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY (zakres podstawowy) klasa 2 1. Funkcja liniowa Tematyka zajęć: Proporcjonalność prosta Funkcja liniowa. Wykres funkcji liniowej Miejsce zerowe funkcji liniowej.

Bardziej szczegółowo

Zakres na egzamin poprawkowy w r. szk. 2013/14 /nauczyciel M.Tatar/ Podręcznik klasa 1 ZAKRES PODSTAWOWY i ROZSZERZONY

Zakres na egzamin poprawkowy w r. szk. 2013/14 /nauczyciel M.Tatar/ Podręcznik klasa 1 ZAKRES PODSTAWOWY i ROZSZERZONY MATEMATYKA Klasa TMB Zakres na egzamin poprawkowy w r. szk. 013/14 /nauczyciel M.Tatar/ Podręcznik klasa 1 ZAKRES PODSTAWOWY i ROZSZERZONY (zakres rozszerzony - czcionką pogrubioną) Hasła programowe Wymagania

Bardziej szczegółowo

RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1

RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1 RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1 Zakres podstawowy Kl. 1-60 h ( 30 h w semestrze) Kl. 2-60 h (30 h w semestrze) Kl. 3-90 h (45 h w semestrze)

Bardziej szczegółowo

MATeMAtyka zakres rozszerzony

MATeMAtyka zakres rozszerzony MATeMAtyka zakres rozszerzony Proponowany rozkład materiału kl. I (160 h) (Na czerwono zaznaczono treści z zakresu rozszerzonego) Temat lekcji Liczba godzin 1. Liczby rzeczywiste 15 1. Liczby naturalne

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym.

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym. Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór

Bardziej szczegółowo