Plan wynikowy matematyka w zakresie rozszerzonym w klasie 1f. w 2017/2018r.

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Plan wynikowy matematyka w zakresie rozszerzonym w klasie 1f. w 2017/2018r."

Transkrypt

1 Jolanta Pająk Plan wynikowy matematyka w zakresie rozszerzonym w klasie 1f w 2017/2018r. Ocena dopuszczająca: Temat lekcji Elementy logiki matematycznej Uczeń: rozpoznaje spójniki logiczne, zna wartości logiczne zdań nie p, p lub q, p i q, jeśli p, to q, p równoważne q Liczby naturalne Liczby całkowite. Liczby wymierne. Liczby niewymierne Rozwinięcie dziesiętne liczby rzeczywistej Pierwiastek z liczby nieujemnej Pierwiastek nieparzystego stopnia z liczby rzeczywistej Potęga o wykładniku całkowitym Notacja wykładnicza Przybliżenia podaje przykłady liczb pierwszych, parzystych i nieparzystych podaje dzielniki danej liczby naturalnej przedstawia liczbę naturalną w postaci iloczynu liczb pierwszych rozpoznaje liczby całkowite i liczby wymierne wśród podanych liczb podaje przykłady liczb całkowitych i wymiernych odczytuje z osi liczbowej współrzędną danego punktu i odwrotnie: zaznacza punkt o podanej współrzędnej na osi liczbowej wykonuje działania na liczbach wymiernych wskazuje liczb liczby niewymierne wśród podanych dowodzi niewymierności liczby 2 wskazuje liczby wymierne oraz niewymierne wśród liczb podanych w postaci dziesiętnej wyznacza rozwinięcie dziesiętne ułamków zwykłych zamienia skończone rozwinięcia dziesiętne na ułamki zwykłe oblicza wartość pierwiastka drugiego i trzeciego stopnia z liczby nieujemnej oblicza wartość pierwiastka dowolnego stopnia z liczby nieujemnej oblicza wartość pierwiastka trzeciego stopnia z liczby rzeczywistej oblicza wartość pierwiastka nieparzystego stopnia z liczby rzeczywistej oblicza wartość potęgi liczby o wykładniku naturalnym i całkowitym ujemnym zapisuje i odczytuje liczbę w notacji wykładniczej zaokrągla liczbę z podaną dokładnością oblicza błąd przybliżenia danej liczby oraz ocenia, czy jest to przybliżenie z nadmiarem, czy z niedomiarem szacuje wyniki działań

2 Procenty Zbiory Działania na zbiorach Przedziały Działania na przedziałach Rozwiązywanie nierówności Wzory skróconego mnożenia Wartość bezwzględna Własności wartości bezwzględnej Równania i nierówności z wartością bezwzględną Błąd bezwzględny i błąd względny Sposoby opisu funkcji Wykres funkcji liniowej Własności funkcji liniowej oblicza procent danej liczby interpretuje pojęcia procentu i punktu procentowego stosuje obliczenia procentowe w zadaniach praktycznych dotyczących płac, podatków, rozliczeń bankowych posługuje się pojęciami: zbiór, podzbiór, zbiór pusty, zbiór skończony, zbiór nieskończony posługuje się pojęciami: iloczyn, suma oraz różnica zbiorów rozróżnia pojęcia: przedział otwarty, domknięty, lewostronnie domknięty, prawostronnie domknięty, nieograniczony zapisuje przedział i zaznacza go na osi liczbowej odczytuje i zapisuje symbolicznie przedział zaznaczony na osi liczbowej wyznacza iloczyn, sumę i różnicę przedziałów oraz zaznacza je na osi liczbowej sprawdza, czy dana liczba rzeczywista jest rozwiązaniem nierówności rozwiązuje nierówności pierwszego stopnia z jedną niewiadomą zapisuje zbiór rozwiązań nierówności w postaci przedziału stosuje odpowiedni wzór skróconego mnożenia do wyznaczenia kwadratu sumy lub różnicy oraz różnicy kwadratów oblicza wartość bezwzględną danej liczby rozwiązuje, stosując interpretację geometryczną, elementarne równania i nierówności z wartością bezwzględną stosuje podstawowe własności wartości bezwzględnej rozwiązuje równania i nierówności z wartością bezwzględną, stosując interpretację geometryczną rozróżnia pojęcia: błąd bezwzględny, błąd względny przybliżenia stosuje pojęcia: funkcja, argument, dziedzina, wartość funkcji, wykres funkcji, miejsce zerowe funkcji rozpoznaje wśród danych przyporządkowań te, które opisują funkcje podaje przykłady funkcji opisuje funkcję różnymi sposobami rozpoznaje funkcję liniową, mając dany jej wzór oraz szkicuje jej wykres interpretuje współczynniki występujące we wzorze funkcji liniowej i wskazuje wśród danych wzorów funkcji liniowych te, których wykresy są równoległe podaje własności funkcji liniowej danej wzorem wyznacza miejsce zerowe i określa monotoniczność funkcji liniowej danej wzorem wyznacza współrzędne punktów, w których wykres funkcji

3 liniowej przecina osie układu współrzędnych oraz podaje, w których ćwiartkach układu znajduje się wykres Równanie prostej na płaszczyźnie podaje równanie kierunkowe i ogólne prostej Współczynnik kierunkowy prostej oblicza współczynnik kierunkowy prostej, mając dane współrzędne dwóch punktów należących do tej prostej szkicuje prostą, wykorzystując interpretację współczynnika kierunkowego Warunek prostopadłości prostych podaje warunek prostopadłości prostych o równaniach kierunkowych Układy równań liniowych rozwiązuje układ równań metodą podstawiania i przeciwnych współczynników określa typ układu równań (czy dany układ równań jest układem oznaczonym, nieoznaczanym, czy sprzecznym) Interpretacja geometryczna układu interpretuje geometrycznie układ równań równań liniowych rozwiązuje układ równań metodą graficzną Układy nierówności liniowych interpretuje geometrycznie nierówności z dwiema niewiadomymi oraz pojęcie półpłaszczyzny otwartej i domkniętej zaznacza w układzie współrzędnych zbiór punktów, których współrzędne spełniają układ nierówności liniowych z dwiema niewiadomymi Szkicowanie wykresu funkcji szkicuje wykres funkcji określonej nieskomplikowanym wzorem Monotoniczność funkcji stosuje pojęcie funkcji monotonicznej (rosnącej, malejącej, stałej, niemalejącej, nierosnącej) na podstawie wykresu funkcji określa jej monotoniczność Odczytywanie własności funkcji stosuje pojęcia: zbiór wartości funkcji, największa z wykresu i najmniejsza wartość funkcji odczytuje z wykresu funkcji jej dziedzinę, zbiór wartości, miejsca zerowe; argumenty, dla których funkcja przyjmuje wartości ujemne; argumenty, dla których funkcja przyjmuje wartości dodatnie; przedziały monotoniczności funkcji, najmniejszą i największą wartość funkcji Przesuwanie wykresu wzdłuż osi OY rysuje wykresy funkcji: y = f( + q dla q > 0 oraz y = f( q dla q 0 Przesuwanie wykresu wzdłuż osi OX rysuje wykresy funkcji: y = f(x p) dla p > 0 oraz y = f(x + p) dla p > 0 Wektory w układzie współrzędnych posługuje się pojęciem wektora i wektora przeciwnego oblicza współrzędne wektora Przekształcanie wykresu przez szkicuje wykresy funkcji y = f( na podstawie wykresu symetrię względem osi układu funkcji y = f( współrzędnych szkicuje wykresy funkcji y = f( na podstawie wykresu funkcji y = f( Funkcje zastosowania rozpoznaje zależność funkcyjną umieszczoną w kontekście praktycznym, określa dziedzinę oraz zbiór wartości takiej funkcji Wykres funkcji f( = ax 2 szkicuje wykres funkcji f( = ax 2 podaje własności funkcji f( = ax Przesunięcie wykresu funkcji f( = szkicuje wykresy funkcji: f ( ax q, f ( a x p,

4 ax 2 2 o wektor f ( a x p q i podaje ich własności Postać kanoniczna podaje wzór funkcji kwadratowej w postaci ogólnej i postać ogólna funkcji kwadratowej i kanonicznej oblicza współrzędne wierzchołka paraboli Równania kwadratowe stosuje wzory skróconego mnożenia oraz zasadę wyłączania wspólnego czynnika przed nawias do przedstawienia wyrażenia w postaci iloczynu rozwiązuje równanie kwadratowe przez rozkład na czynniki rozwiązuje równania kwadratowe, korzystając z poznanych wzorów interpretuje geometrycznie rozwiązania równania kwadratowego Postać iloczynowa funkcji definiuje postać iloczynową funkcji kwadratowej i kwadratowej warunek jej istnienia Równania sprowadzalne do równań rozpoznaje równania, które można sprowadzić do równań kwadratowych kwadratowych Nierówności kwadratowe rozumie związek między rozwiązaniem nierówności kwadratowej a znakiem wartości odpowiedniego trójmianu kwadratowego rozwiązuje nierówność kwadratową Układy równań rozwiązuje algebraicznie i graficznie układy równań, z których co najmniej jedno jest równaniem paraboli Wzory Viète a stosuje wzory Viète a do wyznaczania sumy oraz iloczynu pierwiastków równania kwadratowego (o ile istnieją) Równania kwadratowe z parametrem przeprowadza analizę zadań z parametrem zapisuje założenia, aby zachodziły warunki podane w treści zadania wyznacza te wartości parametru, dla których są spełnione warunki zadania Funkcja kwadratowa zastosowania stosuje pojęcie najmniejszej i największej wartości funkcji Miary kątów w trójkącie klasyfikuje trójkąty ze względu na miary ich kątów stosuje twierdzenie o sumie miar kątów wewnętrznych trójkąta do rozwiązywania zadań Trójkąty przystające podaje definicję trójkątów przystających oraz cechy przystawania trójkątów Trójkąty podobne podaje cechy podobieństwa trójkątów sprawdza, czy dane trójkąty są podobne oblicza długości boków trójkąta podobnego do danego w danej skali Wielokąty podobne rozumie pojęcie figur podobnych oblicza długości boków w wielokątach podobnych wykorzystuje zależności między polami i obwodami wielokątów podobnych a skalą podobieństwa do rozwiązywania zadań Twierdzenie Talesa podaje twierdzenie Talesa i twierdzenie odwrotne do twierdzenia Talesa Trójkąty prostokątne podaje twierdzenie Pitagorasa i twierdzenie odwrotne do twierdzenia Pitagorasa oraz wzory na długość przekątnej

5 Funkcje trygonometryczne kąta ostrego Trygonometria zastosowania Rozwiązywanie trójkątów prostokątnych Związki między funkcjami trygonometrycznymi Pole trójkąta Pole czworokąta Odległość między punktami w układzie współrzędnych. Środek odcinka Odległość punktu od prostej Okrąg w układzie współrzędnych Wzajemne położenie dwóch okręgów Wzajemne położenie okręgu i prostej Układy równań drugiego stopnia Koło w układzie współrzędnych Działania na wektorach Wektory zastosowania Jednokładność Symetria osiowa Symetria środkowa kwadratu i długość wysokości trójkąta równobocznego podaje definicje funkcji trygonometrycznych kąta ostrego w trójkącie prostokątnym wyznacza wartości funkcji trygonometrycznych kątów ostrych danego trójkąta prostokątnego odczytuje wartości funkcji trygonometrycznych danego kąta w tablicach lub wartości kąta na podstawie wartości funkcji trygonometrycznych rozwiązuje trójkąty prostokątne podaje związki między funkcjami trygonometrycznymi tego samego kąta podaje różne wzory na pole trójkąta podaje wzory na pole równoległoboku, rombu, trapezu wykorzystuje funkcje trygonometryczne do wyznaczania pól czworokątów oblicza odległość punktów w układzie współrzędnych wyznacza współrzędne środka odcinka, mając dane współrzędne jego końców oblicza odległość punktu od prostej sprawdza, czy punkt należy do danego okręgu wyznacza środek i promień okręgu, mając jego równanie opisuje równaniem okrąg o danym środku i przechodzący przez dany punkt określa wzajemne położenie dwóch okręgów, obliczając odległości ich środków oraz na podstawie rysunku określa wzajemne położenie okręgu i prostej, porównując odległość jego środka od prostej z długością promienia okręgu rozwiązuje algebraicznie i graficznie układy równań, z których co najmniej jedno jest drugiego stopnia sprawdza, czy dany punkt należy do danego koła opisuje w układzie współrzędnych koło wykonuje działania na wektorach sprawdza, czy wektory mają ten sam kierunek i zwrot stosuje działania na wektorach do badania współliniowości punktów stosuje działania na wektorach do podziału odcinka konstruuje figury jednokładne wskazuje figury osiowosymetryczne wyznacza współrzędne punktów w symetrii względem danej prostej wskazuje figury środkowosymetryczne wyznacza współrzędne punktów w symetrii względem danego punktu Ocena dostateczna:

6 Temat lekcji Elementy logiki matematycznej Uczeń: rozpoznaje spójniki logiczne, zna wartości logiczne zdań nie p, p lub q, p i q, jeśli p, to q, p równoważne q zna metodę 0-1 dowodzenia tautologii Liczby naturalne Liczby całkowite. Liczby wymierne Liczby niewymierne Rozwinięcie dziesiętne liczby rzeczywistej Pierwiastek z liczby nieujemnej Pierwiastek nieparzystego stopnia z liczby rzeczywistej podaje przykłady liczb pierwszych, parzystych i nieparzystych podaje dzielniki danej liczby naturalnej przedstawia liczbę naturalną w postaci iloczynu liczb pierwszych oblicza NWD i NWW dwóch liczb naturalnych rozpoznaje liczby całkowite i liczby wymierne wśród podanych liczb podaje przykłady liczb całkowitych i wymiernych odczytuje z osi liczbowej współrzędną danego punktu i odwrotnie: zaznacza punkt o podanej współrzędnej na osi liczbowej wykonuje działania na liczbach wymiernych wskazuje liczb liczby niewymierne wśród podanych konstruuje odcinki o długościach niewymiernych zaznacza na osi liczbowej punkt odpowiadający liczbie niewymiernej wykazuje, dobierając odpowiednio przykłady, że suma, różnica, iloczyn oraz iloraz liczb niewymiernych nie musi być liczbą niewymierną dowodzi niewymierności liczby 2 wskazuje liczby wymierne oraz niewymierne wśród liczb podanych w postaci dziesiętnej wyznacza rozwinięcie dziesiętne ułamków zwykłych zamienia skończone rozwinięcia dziesiętne na ułamki zwykłe przedstawia ułamki dziesiętne okresowe w postaci ułamków zwykłych oblicza wartość pierwiastka drugiego i trzeciego stopnia z liczby nieujemnej oblicza wartość pierwiastka dowolnego stopnia z liczby nieujemnej wyłącza czynnik przed znak pierwiastka włącza czynnik pod znak pierwiastka wyznacza wartości wyrażeń arytmetycznych zawierających pierwiastki, stosując prawa działań na pierwiastkach rzeczywistej oblicza wartość pierwiastka nieparzystego stopnia z liczby rzeczywistej

7 Potęga o wykładniku całkowitym Notacja wykładnicza Przybliżenia Procenty Zbiory Działania na zbiorach Przedziały Działania na przedziałach Rozwiązywanie nierówności wyznacza wartości wyrażeń arytmetycznych zawierających pierwiastki nieparzystego stopnia z liczb rzeczywistych, stosując prawa działań na pierwiastkach oblicza wartość potęgi liczby o wykładniku naturalnym i całkowitym ujemnym stosuje twierdzenia o działaniach na potęgach do obliczania wartości wyrażeń stosuje twierdzenia o działaniach na potęgach do upraszczania wyrażeń algebraicznych zapisuje i odczytuje liczbę w notacji wykładniczej wykonuje działania na liczbach zapisanych w notacji wykładniczej zaokrągla liczbę z podaną dokładnością oblicza błąd przybliżenia danej liczby oraz ocenia, czy jest to przybliżenie z nadmiarem, czy z niedomiarem szacuje wyniki działań oblicza procent danej liczby interpretuje pojęcia procentu i punktu procentowego oblicza, jakim procentem jednej liczby jest druga liczba wyznacza liczbę, gdy dany jest jej procent zmniejsza i zwiększa liczbę o dany procent stosuje obliczenia procentowe w zadaniach praktycznych stosuje obliczenia procentowe w zadaniach praktycznych dotyczących płac, podatków, rozliczeń bankowych posługuje się pojęciami: zbiór, podzbiór, zbiór pusty, zbiór skończony, zbiór nieskończony wymienia elementy danego zbioru oraz elementy do niego nienależące opisuje słownie i symbolicznie dany zbiór określa relację zawierania zbiorów posługuje się pojęciami: iloczyn, suma oraz różnica zbiorów wyznacza iloczyn, sumę oraz różnicę danych zbiorów rozróżnia pojęcia: przedział otwarty, domknięty, lewostronnie domknięty, prawostronnie domknięty, nieograniczony zapisuje przedział i zaznacza go na osi liczbowej odczytuje i zapisuje symbolicznie przedział zaznaczony na osi liczbowej wyznacza przedział opisany podanymi nierównościami wymienia liczby należące do przedziału spełniające zadane warunki wyznacza iloczyn, sumę i różnicę przedziałów oraz zaznacza je na osi liczbowej sprawdza, czy dana liczba rzeczywista jest rozwiązaniem nierówności rozwiązuje nierówności pierwszego stopnia z jedną niewiadomą zapisuje zbiór rozwiązań nierówności w postaci

8 Wzory skróconego mnożenia Zastosowanie przekształceń algebraicznych Wartość bezwzględna Własności wartości bezwzględnej Równania i nierówności z wartością bezwzględną Błąd bezwzględny i błąd względny Sposoby opisu funkcji Wykres funkcji liniowej Własności funkcji liniowej przedziału stosuje nierówności pierwszego stopnia z jedną niewiadomą do rozwiązywania zadań osadzonych w kontekście praktycznym stosuje odpowiedni wzór skróconego mnożenia do wyznaczenia kwadratu sumy lub różnicy oraz różnicy kwadratów przekształca wyrażenie algebraiczne z zastosowaniem wzorów skróconego mnożenia stosuje wzory skróconego mnożenia do wykonywania działań na liczbach postaci a b c stosuje przekształcenia algebraiczne do przekształcenia równoważnego równań oraz nierówności usuwa niewymierność z mianownika ułamka oblicza wartość bezwzględną danej liczby upraszcza wyrażenia z wartością bezwzględną rozwiązuje, stosując interpretację geometryczną, elementarne równania i nierówności z wartością bezwzględną stosuje podstawowe własności wartości bezwzględnej korzystając z własności wartości bezwzględnej, rozwiązuje proste równania i nierówności z wartością bezwzględną rozwiązuje równania i nierówności z wartością bezwzględną, stosując interpretację geometryczną rozwiązuje równania i nierówności z wartością bezwzględną, stosując definicję oraz własności wartości bezwzględnej rozróżnia pojęcia: błąd bezwzględny, błąd względny przybliżenia oblicza błąd bezwzględny oraz błąd względny przybliżenia liczby stosuje pojęcia: funkcja, argument, dziedzina, wartość funkcji, wykres funkcji, miejsce zerowe funkcji rozpoznaje wśród danych przyporządkowań te, które opisują funkcje podaje przykłady funkcji opisuje funkcję różnymi sposobami rozpoznaje funkcję liniową, mając dany jej wzór oraz szkicuje jej wykres interpretuje współczynniki występujące we wzorze funkcji liniowej i wskazuje wśród danych wzorów funkcji liniowych te, których wykresy są równoległe podaje własności funkcji liniowej danej wzorem wyznacza wzór funkcji liniowej, której wykres spełnia zadane warunki, np. jest równoległy do wykresu danej funkcji liniowej wyznacza miejsce zerowe i określa monotoniczność funkcji liniowej danej wzorem wyznacza współrzędne punktów, w których wykres funkcji

9 Równanie prostej na płaszczyźnie Współczynnik kierunkowy prostej Warunek prostopadłości prostych Układy równań liniowych Interpretacja geometryczna układu równań liniowych Układy nierówności liniowych Funkcja liniowa zastosowania Dziedzina i miejsca zerowe funkcji Szkicowanie wykresu funkcji liniowej przecina osie układu współrzędnych oraz podaje, w których ćwiartkach układu znajduje się wykres wyznacza wartości parametrów, dla których funkcja ma określone własności podaje równanie kierunkowe i ogólne prostej zamienia równanie ogólne prostej, która nie jest równoległa do osi OY, na równanie w postaci kierunkowej wyznacza równanie prostej przechodzącej przez dwa dane punkty rysuje prostą opisaną równaniem ogólnym wyznacza wartości parametru, dla których prosta spełnia określone warunki oblicza współczynnik kierunkowy prostej, mając dane współrzędne dwóch punktów należących do tej prostej szkicuje prostą, wykorzystując interpretację współczynnika kierunkowego odczytuje wartość współczynnika kierunkowego, mając dany wykres; w przypadku wykresu zależności drogi od czasu w ruchu jednostajnym podaje wartość prędkości podaje warunek prostopadłości prostych o równaniach kierunkowych wyznacza równanie prostej prostopadłej do danej prostej i przechodzącej przez dany punkt rozwiązuje układ równań metodą podstawiania i przeciwnych współczynników określa typ układu równań (czy dany układ równań jest układem oznaczonym, nieoznaczanym, czy sprzecznym) interpretuje geometrycznie układ równań rozwiązuje układ równań metodą graficzną wykorzystuje związek między liczbą rozwiązań układu równań a położeniem prostych interpretuje geometrycznie nierówności z dwiema niewiadomymi oraz pojęcie półpłaszczyzny otwartej i domkniętej zaznacza w układzie współrzędnych zbiór punktów, których współrzędne spełniają układ nierówności liniowych z dwiema niewiadomymi zapisuje układ nierówności opisujący zbiór punktów przedstawionych w układzie współrzędnych przeprowadza analizę zadania z treścią, a następnie zapisuje odpowiednie równanie, nierówność liniową lub wzór funkcji liniowej rozwiązuje ułożone przez siebie równanie, nierówność lub analizuje własności funkcji liniowej przeprowadza analizę wyniku i podaje odpowiedź wyznacza dziedzinę funkcji opisanej wzorem wyznacza miejsca zerowe funkcji opisanej wzorem szkicuje wykres funkcji określonej nieskomplikowanym wzorem

10 Monotoniczność funkcji Odczytywanie własności funkcji z wykresu Przesuwanie wykresu wzdłuż osi OY Przesuwanie wykresu wzdłuż osi OX szkicuje wykres funkcji przedziałami liniowej stosuje pojęcie funkcji monotonicznej (rosnącej, malejącej, stałej, niemalejącej, nierosnącej) na podstawie wykresu funkcji określa jej monotoniczność rysuje wykres funkcji o zadanych kryteriach monotoniczności stosuje pojęcia: zbiór wartości funkcji, największa i najmniejsza wartość funkcji odczytuje z wykresu funkcji jej dziedzinę, zbiór wartości, miejsca zerowe; argumenty, dla których funkcja przyjmuje wartości ujemne; argumenty, dla których funkcja przyjmuje wartości dodatnie; przedziały monotoniczności funkcji, najmniejszą i największą wartość funkcji rysuje wykresy funkcji: y = f( + q dla q > 0 oraz y = f( q dla q 0 rysuje wykresy funkcji: y = f(x p) dla p > 0 oraz y = f(x + p) dla p > 0 Wektory w układzie współrzędnych Przesuwanie wykresu o wektor Przekształcanie wykresu przez symetrię względem osi układu współrzędnych Inne przekształcenia wykresu Funkcje zastosowania posługuje się pojęciem wektora i wektora przeciwnego oblicza współrzędne wektora wyznacza współrzędne początku lub końca wektora, mając dane współrzędne wektora i współrzędne jednego z punktów znajduje obraz figury w przesunięciu o dany wektor szkicuje wykres funkcji y = f(x p) + q szkicuje wykresy funkcji y = f( na podstawie wykresu funkcji y = f(szkicuje wykresy funkcji y = f( na podstawie wykresu funkcji y = f( na podstawie wykresu funkcji y = f( szkicuje wykresy funkcji y = f( i y = f( x ) rozpoznaje zależność funkcyjną umieszczoną w kontekście praktycznym, określa dziedzinę oraz zbiór wartości takiej funkcji przedstawia zależności opisane w zadaniach z treścią w postaci wzoru lub wykresu Wykres funkcji f( = ax 2 szkicuje wykres funkcji f( = ax 2 podaje własności funkcji f( = ax 2 Przesunięcie wykresu funkcji f( = ax 2 o wektor Postać kanoniczna i postać ogólna funkcji kwadratowej stosuje własności funkcji f( = ax 2 do rozwiązywania zadań szkicuje wykres funkcji f( = ax 2 podaje własności funkcji f( = ax 2 stosuje własności funkcji f( = ax 2 do rozwiązywania zadań 2 stosuje własności funkcji: f ( ax q, i kanonicznej oblicza współrzędne wierzchołka paraboli przekształca postać ogólną funkcji kwadratowej do postaci kanonicznej (z zastosowaniem uzupełniania do kwadratu

11 Równania kwadratowe Postać iloczynowa funkcji kwadratowej Równania sprowadzalne do równań kwadratowych Nierówności kwadratowe Układy równań lub wzoru na współrzędne wierzchołka paraboli) i szkicuje jej wykres przekształca postać kanoniczną funkcji kwadratowej do postaci ogólnej wyznacza wzór ogólny funkcji kwadratowej mając dane współrzędne wierzchołka i innego punktu jej wykresu stosuje wzory skróconego mnożenia oraz zasadę wyłączania wspólnego czynnika przed nawias do przedstawienia wyrażenia w postaci iloczynu rozwiązuje równanie kwadratowe przez rozkład na czynniki rozwiązuje równania kwadratowe, korzystając z poznanych wzorów interpretuje geometrycznie rozwiązania równania kwadratowego stosuje poznane wzory przy szkicowaniu wykresu funkcji kwadratowej definiuje postać iloczynową funkcji kwadratowej i warunek jej istnienia zapisuje funkcję kwadratową w postaci iloczynowej odczytuje wartości pierwiastków trójmianu podanego w postaci iloczynowej przekształca postać iloczynową funkcji kwadratowej do postaci ogólnej rozpoznaje równania, które można sprowadzić do równań kwadratowych wprowadza niewiadomą pomocniczą, podaje odpowiednie założenia i rozwiązuje równanie kwadratowe z niewiadomą pomocniczą podaje rozwiązanie równania pierwotnego rozumie związek między rozwiązaniem nierówności kwadratowej a znakiem wartości odpowiedniego trójmianu kwadratowego rozwiązuje nierówność kwadratową rozwiązuje algebraicznie i graficznie układy równań, z których co najmniej jedno jest równaniem paraboli stosuje układy równań drugiego stopnia do rozwiązywania zadań z geometrii analitycznej Wzory Viète a stosuje wzory Viète a do wyznaczania sumy oraz iloczynu pierwiastków równania kwadratowego (o ile istnieją) określa znaki pierwiastków równania kwadratowego, wykorzystując wzory Viète a Równania kwadratowe z parametrem przeprowadza analizę zadań z parametrem zapisuje założenia, aby zachodziły warunki podane w treści zadania wyznacza te wartości parametru, dla których są spełnione warunki zadania Funkcja kwadratowa zastosowania stosuje pojęcie najmniejszej i największej wartości funkcji wyznacza wartość najmniejszą i największą funkcji

12 kwadratowej w przedziale domkniętym Miary kątów w trójkącie klasyfikuje trójkąty ze względu na miary ich kątów stosuje twierdzenie o sumie miar kątów wewnętrznych trójkąta do rozwiązywania zadań Trójkąty przystające podaje definicję trójkątów przystających oraz cechy przystawania trójkątów wskazuje trójkąty przystające 3. Trójkąty podobne podaje cechy podobieństwa trójkątów sprawdza, czy dane trójkąty są podobne oblicza długości boków trójkąta podobnego do danego w danej skali układa odpowiednią proporcję, aby wyznaczyć długości brakujących boków trójkątów podobnych Wielokąty podobne rozumie pojęcie figur podobnych oblicza długości boków w wielokątach podobnych wykorzystuje zależności między polami i obwodami wielokątów podobnych a skalą podobieństwa do rozwiązywania zadań Twierdzenie Talesa podaje twierdzenie Talesa i twierdzenie odwrotne do twierdzenia Talesa wykorzystuje twierdzenie Talesa do rozwiązywania zadań wykorzystuje twierdzenie Talesa do podziału odcinka w podanym stosunku Trójkąty prostokątne podaje twierdzenie Pitagorasa i twierdzenie odwrotne do twierdzenia Pitagorasa oraz wzory na długość przekątnej kwadratu i długość wysokości trójkąta równobocznego stosuje twierdzenie Pitagorasa do rozwiązywania zadań Funkcje trygonometryczne kąta podaje definicje funkcji trygonometrycznych kąta ostrego ostrego w trójkącie prostokątnym podaje wartości funkcji trygonometrycznych kątów 30º, 45º, 60º wyznacza wartości funkcji trygonometrycznych kątów ostrych danego trójkąta prostokątnego wyznacza wartości funkcji trygonometrycznych kątów ostrych w bardziej złożonych sytuacjach Trygonometria zastosowania odczytuje wartości funkcji trygonometrycznych danego kąta w tablicach lub wartości kąta na podstawie wartości funkcji trygonometrycznych stosuje funkcje trygonometryczne do rozwiązywania zadań praktycznych Rozwiązywanie trójkątów rozwiązuje trójkąty prostokątne prostokątnych Związki między funkcjami trygonometrycznymi Pole trójkąta podaje związki między funkcjami trygonometrycznymi tego samego kąta wyznacza wartości pozostałych funkcji trygonometrycznych, gdy dana jest jedna z nich stosuje poznane związki do upraszczania wyrażeń zawierających funkcje trygonometryczne podaje różne wzory na pole trójkąta

13 Pole czworokąta Odległość między punktami w układzie współrzędnych. Środek odcinka Odległość punktu od prostej Okrąg w układzie współrzędnych Wzajemne położenie dwóch okręgów Wzajemne położenie okręgu i prostej Układy równań drugiego stopnia Koło w układzie współrzędnych Działania na wektorach Wektory zastosowania Jednokładność Symetria osiowa oblicza pole trójkąta, dobierając odpowiedni wzór do sytuacji podaje wzory na pole równoległoboku, rombu, trapez wykorzystuje funkcje trygonometryczne do wyznaczania pól czworokątów wyznacza współrzędne środka odcinka, mając dane współrzędne jego końców oblicza obwód wielokąta, mając dane współrzędne jego wierzchołków oblicza odległość punktu od prostej oblicza odległość między prostymi równoległymi stosuje wzór na odległość punktu od prostej w zadaniach z geometrii analitycznej stosuje związek między współczynnikiem kierunkowym a kątem nachylenia prostej do osi OX sprawdza, czy punkt należy do danego okręgu wyznacza środek i promień okręgu, mając jego równanie opisuje równaniem okrąg o danym środku i przechodzący przez dany punkt określa wzajemne położenie dwóch okręgów, obliczając odległości ich środków oraz na podstawie rysunku dobiera tak wartość parametru, aby dane okręgi były styczne określa wzajemne położenie okręgu i prostej, porównując odległość jego środka od prostej z długością promienia okręgu korzysta z własności stycznej do okręgu wyznacza punkty wspólne prostej i okręgu rozwiązuje algebraicznie i graficznie układy równań, z których co najmniej jedno jest drugiego stopnia stosuje układy równań drugiego stopnia do rozwiązywania zadań z geometrii analitycznej sprawdza, czy dany punkt należy do danego koła opisuje w układzie współrzędnych koło podaje geometryczną interpretację rozwiązania układu nierówności stopnia drugiego wykonuje działania na wektorach sprawdza, czy wektory mają ten sam kierunek i zwrot stosuje działania na wektorach i ich interpretację geometryczną w zadaniach stosuje działania na wektorach do badania współliniowości punktów stosuje działania na wektorach do podziału odcinka stosuje wektory do rozwiązywania zadań konstruuje figury jednokładne wyznacza współrzędne punktów w danej jednokładności stosuje własności jednokładności w zadaniach wskazuje figury osiowosymetryczne wyznacza współrzędne punktów w symetrii względem

14 Symetria środkowa Ocena dobra: Temat lekcji Elementy logiki matematycznej danej prostej stosuje własności symetrii osiowej w zadaniach wskazuje figury środkowosymetryczne wyznacza współrzędne punktów w symetrii względem danego punktu stosuje własności symetrii środkowej w zadaniach Uczeń rozpoznaje spójniki logiczne, zna wartości logiczne zdań nie p, p lub q, p i q, jeśli p, to q, p równoważne q zna metodę 0-1 dowodzenia tautologii zna wybrane tautologie Liczby naturalne Liczby całkowite. Liczby wymierne Liczby niewymierne Rozwinięcie dziesiętne liczby rzeczywistej Pierwiastek z liczby nieujemnej podaje przykłady liczb pierwszych, parzystych i nieparzystych podaje dzielniki danej liczby naturalnej przedstawia liczbę naturalną w postaci iloczynu liczb pierwszych oblicza NWD i NWW dwóch liczb naturalnych rozpoznaje liczby całkowite i liczby wymierne wśród podanych liczb podaje przykłady liczb całkowitych i wymiernych odczytuje z osi liczbowej współrzędną danego punktu i odwrotnie: zaznacza punkt o podanej współrzędnej na osi liczbowej wykonuje działania na liczbach wymiernych wskazuje liczb liczby niewymierne wśród podanych konstruuje odcinki o długościach niewymiernych zaznacza na osi liczbowej punkt odpowiadający liczbie niewymiernej wykazuje, dobierając odpowiednio przykłady, że suma, różnica, iloczyn oraz iloraz liczb niewymiernych nie musi być liczbą niewymierną dowodzi niewymierności liczby 2 wskazuje liczby wymierne oraz niewymierne wśród liczb podanych w postaci dziesiętnej wyznacza rozwinięcie dziesiętne ułamków zwykłych zamienia skończone rozwinięcia dziesiętne na ułamki zwykłe przedstawia ułamki dziesiętne okresowe w postaci ułamków zwykłych oblicza wartość pierwiastka drugiego i trzeciego stopnia z liczby nieujemnej oblicza wartość pierwiastka dowolnego stopnia z liczby

15 Pierwiastek nieparzystego stopnia z liczby rzeczywistej Potęga o wykładniku całkowitym Notacja wykładnicza Przybliżenia Procenty Zbiory Działania na zbiorach Przedziały nieujemnej wyłącza czynnik przed znak pierwiastka włącza czynnik pod znak pierwiastka wyznacza wartości wyrażeń arytmetycznych zawierających pierwiastki, stosując prawa działań na pierwiastkach oblicza wartość pierwiastka trzeciego stopnia z liczby rzeczywistej oblicza wartość pierwiastka nieparzystego stopnia z liczby rzeczywistej wyznacza wartości wyrażeń arytmetycznych zawierających pierwiastki nieparzystego stopnia z liczb rzeczywistych, stosując prawa działań na pierwiastkach oblicza wartość potęgi liczby o wykładniku naturalnym i całkowitym ujemnym stosuje twierdzenia o działaniach na potęgach do obliczania wartości wyrażeń stosuje twierdzenia o działaniach na potęgach do upraszczania wyrażeń algebraicznych zapisuje i odczytuje liczbę w notacji wykładniczej wykonuje działania na liczbach zapisanych w notacji wykładniczej zaokrągla liczbę z podaną dokładnością oblicza błąd przybliżenia danej liczby oraz ocenia, czy jest to przybliżenie z nadmiarem, czy z niedomiarem szacuje wyniki działań oblicza procent danej liczby interpretuje pojęcia procentu i punktu procentowego oblicza, jakim procentem jednej liczby jest druga liczba wyznacza liczbę, gdy dany jest jej procent zmniejsza i zwiększa liczbę o dany procent stosuje obliczenia procentowe w zadaniach praktycznych stosuje obliczenia procentowe w zadaniach praktycznych dotyczących płac, podatków, rozliczeń bankowych posługuje się pojęciami: zbiór, podzbiór, zbiór pusty, zbiór skończony, zbiór nieskończony wymienia elementy danego zbioru oraz elementy do niego nienależące opisuje słownie i symbolicznie dany zbiór określa relację zawierania zbiorów posługuje się pojęciami: iloczyn, suma oraz różnica zbiorów wyznacza iloczyn, sumę oraz różnicę danych zbiorów rozróżnia pojęcia: przedział otwarty, domknięty, lewostronnie domknięty, prawostronnie domknięty, nieograniczony zapisuje przedział i zaznacza go na osi liczbowej odczytuje i zapisuje symbolicznie przedział zaznaczony na osi liczbowej

16 Działania na przedziałach Rozwiązywanie nierówności Wzory skróconego mnożenia Zastosowanie przekształceń algebraicznych Wartość bezwzględna Własności wartości bezwzględnej Równania i nierówności z wartością bezwzględną Błąd bezwzględny i błąd względny Sposoby opisu funkcji Wykres funkcji liniowej wyznacza przedział opisany podanymi nierównościami wymienia liczby należące do przedziału spełniające zadane warunki wyznacza iloczyn, sumę i różnicę przedziałów oraz zaznacza je na osi liczbowej sprawdza, czy dana liczba rzeczywista jest rozwiązaniem nierówności rozwiązuje nierówności pierwszego stopnia z jedną niewiadomą zapisuje zbiór rozwiązań nierówności w postaci przedziału stosuje nierówności pierwszego stopnia z jedną niewiadomą do rozwiązywania zadań osadzonych w kontekście praktycznym stosuje odpowiedni wzór skróconego mnożenia do wyznaczenia kwadratu sumy lub różnicy oraz różnicy kwadratów przekształca wyrażenie algebraiczne z zastosowaniem wzorów skróconego mnożenia stosuje wzory skróconego mnożenia do wykonywania działań na liczbach postaci a b c stosuje przekształcenia algebraiczne do przekształcenia równoważnego równań oraz nierówności usuwa niewymierność z mianownika ułamka oblicza wartość bezwzględną danej liczby upraszcza wyrażenia z wartością bezwzględną rozwiązuje, stosując interpretację geometryczną, elementarne równania i nierówności z wartością bezwzględną stosuje podstawowe własności wartości bezwzględnej korzystając z własności wartości bezwzględnej, rozwiązuje proste równania i nierówności z wartością bezwzględną rozwiązuje równania i nierówności z wartością bezwzględną, stosując interpretację geometryczną rozwiązuje równania i nierówności z wartością bezwzględną, stosując definicję oraz własności wartości bezwzględnej rozróżnia pojęcia: błąd bezwzględny, błąd względny przybliżenia oblicza błąd bezwzględny oraz błąd względny przybliżenia liczby stosuje pojęcia: funkcja, argument, dziedzina, wartość funkcji, wykres funkcji, miejsce zerowe funkcji rozpoznaje wśród danych przyporządkowań te, które opisują funkcje podaje przykłady funkcji opisuje funkcję różnymi sposobami rozpoznaje funkcję liniową, mając dany jej wzór oraz szkicuje jej wykres interpretuje współczynniki występujące we wzorze funkcji

17 Własności funkcji liniowej Równanie prostej na płaszczyźnie Współczynnik kierunkowy prostej Warunek prostopadłości prostych Układy równań liniowych Interpretacja geometryczna układu równań liniowych Układy nierówności liniowych liniowej i wskazuje wśród danych wzorów funkcji liniowych te, których wykresy są równoległe podaje własności funkcji liniowej danej wzorem wyznacza wzór funkcji liniowej, której wykres spełnia zadane warunki, np. jest równoległy do wykresu danej funkcji liniowej wyznacza miejsce zerowe i określa monotoniczność funkcji liniowej danej wzorem wyznacza współrzędne punktów, w których wykres funkcji liniowej przecina osie układu współrzędnych oraz podaje, w których ćwiartkach układu znajduje się wykres wyznacza wartości parametrów, dla których funkcja ma określone własności podaje równanie kierunkowe i ogólne prostej zamienia równanie ogólne prostej, która nie jest równoległa do osi OY, na równanie w postaci kierunkowej wyznacza równanie prostej przechodzącej przez dwa dane punkty rysuje prostą opisaną równaniem ogólnym wyznacza wartości parametru, dla których prosta spełnia określone warunki oblicza współczynnik kierunkowy prostej, mając dane współrzędne dwóch punktów należących do tej prostej szkicuje prostą, wykorzystując interpretację współczynnika kierunkowego odczytuje wartość współczynnika kierunkowego, mając dany wykres; w przypadku wykresu zależności drogi od czasu w ruchu jednostajnym podaje wartość prędkości podaje warunek prostopadłości prostych o równaniach kierunkowych wyznacza równanie prostej prostopadłej do danej prostej i przechodzącej przez dany punkt wyznacza wartości parametru, dla których proste są prostopadłe rozwiązuje układ równań metodą podstawiania i przeciwnych współczynników określa typ układu równań (czy dany układ równań jest układem oznaczonym, nieoznaczanym, czy sprzecznym) układa i rozwiązuje układ równań do zadania z treścią rozwiązuje układ trzech równań z trzema niewiadomymi interpretuje geometrycznie układ równań rozwiązuje układ równań metodą graficzną wykorzystuje związek między liczbą rozwiązań układu równań a położeniem prostych rozwiązuje układ równań z parametrem oraz określa jego typ w zależności od wartości parametru interpretuje geometrycznie nierówności z dwiema niewiadomymi oraz pojęcie półpłaszczyzny otwartej i domkniętej

18 Funkcja liniowa zastosowania Dziedzina i miejsca zerowe funkcji Szkicowanie wykresu funkcji Monotoniczność funkcji Odczytywanie własności funkcji z wykresu zaznacza w układzie współrzędnych zbiór punktów, których współrzędne spełniają układ nierówności liniowych z dwiema niewiadomymi zapisuje układ nierówności opisujący zbiór punktów przedstawionych w układzie współrzędnych rozwiązuje graficznie układ kilku nierówności z dwiema niewiadomymi przeprowadza analizę zadania z treścią, a następnie zapisuje odpowiednie równanie, nierówność liniową lub wzór funkcji liniowej rozwiązuje ułożone przez siebie równanie, nierówność lub analizuje własności funkcji liniowej przeprowadza analizę wyniku i podaje odpowiedź wyznacza dziedzinę funkcji opisanej wzorem wyznacza miejsca zerowe funkcji opisanej wzorem szkicuje wykres funkcji określonej nieskomplikowanym wzorem szkicuje wykres funkcji przedziałami liniowej stosuje pojęcie funkcji monotonicznej (rosnącej, malejącej, stałej, niemalejącej, nierosnącej) na podstawie wykresu funkcji określa jej monotoniczność rysuje wykres funkcji o zadanych kryteriach monotoniczności stosuje pojęcia: zbiór wartości funkcji, największa i najmniejsza wartość funkcji odczytuje z wykresu funkcji jej dziedzinę, zbiór wartości, miejsca zerowe; argumenty, dla których funkcja przyjmuje wartości ujemne; argumenty, dla których funkcja przyjmuje wartości dodatnie; przedziały monotoniczności funkcji, najmniejszą i największą wartość funkcji Przesuwanie wykresu wzdłuż osi OY rysuje wykresy funkcji: y = f( + q dla q > 0 oraz y = f( q dla q 0 Przesuwanie wykresu wzdłuż osi OX rysuje wykresy funkcji: y = f(x p) dla p > 0 oraz y = f(x + p) dla p > 0 Wektory w układzie współrzędnych posługuje się pojęciem wektora i wektora przeciwnego oblicza współrzędne wektora wyznacza współrzędne początku lub końca wektora, mając dane współrzędne wektora i współrzędne jednego z punktów znajduje obraz figury w przesunięciu o dany wektor Przesuwanie wykresu o wektor Przekształcanie wykresu przez symetrię względem osi układu współrzędnych Inne przekształcenia wykresu szkicuje wykres funkcji y = f(x p) + q zapisuje wzór funkcji otrzymanej w wyniku danego przesunięcia szkicuje wykresy funkcji y = f( na podstawie wykresu funkcji y = f( szkicuje wykresy funkcji y = f( na podstawie wykresu funkcji y = f( na podstawie wykresu funkcji y = f( szkicuje wykresy funkcji y = f( i y = f( x )

19 na podstawie wykresu funkcji y = f( szkicuje wykres funkcji będący efektem wykonania kilku operacji Funkcje zastosowania rozpoznaje zależność funkcyjną umieszczoną w kontekście praktycznym, określa dziedzinę oraz zbiór wartości takiej funkcji przedstawia zależności opisane w zadaniach z treścią w postaci wzoru lub wykresu Wykres funkcji szkicuje wykres funkcji f( = ax 2 f( = ax 2 podaje własności funkcji f( = ax 2 stosuje własności funkcji f( = ax 2 do rozwiązywania Przesunięcie wykresu funkcji f( = ax 2 o wektor Postać kanoniczna i postać ogólna funkcji kwadratowej Równania kwadratowe Postać iloczynowa funkcji kwadratowej Równania sprowadzalne do równań kwadratowych zadań 2 2 szkicuje wykresy funkcji: f ( ax q, f ( a x p, 2 f ( a x p q i podaje ich własności 2 2 stosuje własności funkcji: f ( ax q, f ( a x p, 2 f ( a x p q do rozwiązywania zadań podaje wzór funkcji kwadratowej w postaci ogólnej i kanonicznej oblicza współrzędne wierzchołka paraboli przekształca postać ogólną funkcji kwadratowej do postaci kanonicznej (z zastosowaniem uzupełniania do kwadratu lub wzoru na współrzędne wierzchołka paraboli) i szkicuje jej wykres przekształca postać kanoniczną funkcji kwadratowej do postaci ogólnej wyznacza wzór ogólny funkcji kwadratowej mając dane współrzędne wierzchołka i innego punktu jej wykresu wyprowadza wzory na współrzędne wierzchołka paraboli stosuje wzory skróconego mnożenia oraz zasadę wyłączania wspólnego czynnika przed nawias do przedstawienia wyrażenia w postaci iloczynu rozwiązuje równanie kwadratowe przez rozkład na czynniki rozwiązuje równania kwadratowe, korzystając z poznanych wzorów interpretuje geometrycznie rozwiązania równania kwadratowego stosuje poznane wzory przy szkicowaniu wykresu funkcji kwadratowej definiuje postać iloczynową funkcji kwadratowej i warunek jej istnienia zapisuje funkcję kwadratową w postaci iloczynowej odczytuje wartości pierwiastków trójmianu podanego w postaci iloczynowej przekształca postać iloczynową funkcji kwadratowej do postaci ogólnej wykorzystuje postać iloczynową funkcji kwadratowej do rozwiązywania zadań rozpoznaje równania, które można sprowadzić do równań kwadratowych

20 wprowadza niewiadomą pomocniczą, podaje odpowiednie założenia i rozwiązuje równanie kwadratowe z niewiadomą pomocniczą podaje rozwiązanie równania pierwotnego Nierówności kwadratowe rozumie związek między rozwiązaniem nierówności kwadratowej a znakiem wartości odpowiedniego trójmianu kwadratowego rozwiązuje nierówność kwadratową wyznacza na osi liczbowej iloczyn, sumę i różnicę zbiorów rozwiązań kilku nierówności kwadratowych Układy równań rozwiązuje algebraicznie i graficznie układy równań, z których co najmniej jedno jest równaniem paraboli stosuje układy równań drugiego stopnia do rozwiązywania zadań z geometrii analitycznej Wzory Viète a stosuje wzory Viète a do wyznaczania sumy oraz iloczynu pierwiastków równania kwadratowego (o ile istnieją) określa znaki pierwiastków równania kwadratowego, wykorzystując wzory Viète a stosuje wzory Viète a do obliczania wartości wyrażeń zawierających sumę i iloczyn pierwiastków trójmianu kwadratowego Równania kwadratowe z parametrem przeprowadza analizę zadań z parametrem zapisuje założenia, aby zachodziły warunki podane w treści zadania wyznacza te wartości parametru, dla których są spełnione warunki zadania Funkcja kwadratowa zastosowania stosuje pojęcie najmniejszej i największej wartości funkcji wyznacza wartość najmniejszą i największą funkcji kwadratowej w przedziale domkniętym stosuje własności funkcji kwadratowej do rozwiązywania zadań optymalizacyjnych Miary kątów w trójkącie klasyfikuje trójkąty ze względu na miary ich kątów stosuje twierdzenie o sumie miar kątów wewnętrznych trójkąta do rozwiązywania zadań Trójkąty przystające podaje definicję trójkątów przystających oraz cechy przystawania trójkątów wskazuje trójkąty przystające stosuje nierówność trójkąta do rozwiązywania zadań 3. Trójkąty podobne podaje cechy podobieństwa trójkątów sprawdza, czy dane trójkąty są podobne oblicza długości boków trójkąta podobnego do danego w danej skali układa odpowiednią proporcję, aby wyznaczyć długości brakujących boków trójkątów podobnych wykorzystuje podobieństwo trójkątów do rozwiązywania zadań Wielokąty podobne rozumie pojęcie figur podobnych oblicza długości boków w wielokątach podobnych wykorzystuje zależności między polami i obwodami

21 Twierdzenie Talesa Trójkąty prostokątne Funkcje trygonometryczne kąta ostrego Trygonometria zastosowania Rozwiązywanie trójkątów prostokątnych Związki między funkcjami trygonometrycznymi Pole trójkąta Pole czworokąta Odległość między punktami w układzie współrzędnych. Środek odcinka wielokątów podobnych a skalą podobieństwa do rozwiązywania zadań podaje twierdzenie Talesa i twierdzenie odwrotne do twierdzenia Talesa wykorzystuje twierdzenie Talesa do rozwiązywania zadań wykorzystuje twierdzenie Talesa do podziału odcinka w podanym stosunku podaje twierdzenie Pitagorasa i twierdzenie odwrotne do twierdzenia Pitagorasa oraz wzory na długość przekątnej kwadratu i długość wysokości trójkąta równobocznego stosuje twierdzenie Pitagorasa do rozwiązywania zadań korzystając z twierdzenia Pitagorasa, wyprowadza zależności ogólne, np. dotyczące długości przekątnej kwadratu i wysokości trójkąta równobocznego podaje definicje funkcji trygonometrycznych kąta ostrego w trójkącie prostokątnym podaje wartości funkcji trygonometrycznych kątów 30º, 45º, 60º wyznacza wartości funkcji trygonometrycznych kątów ostrych danego trójkąta prostokątnego wyznacza wartości funkcji trygonometrycznych kątów ostrych w bardziej złożonych sytuacjach odczytuje wartości funkcji trygonometrycznych danego kąta w tablicach lub wartości kąta na podstawie wartości funkcji trygonometrycznych stosuje funkcje trygonometryczne do rozwiązywania zadań praktycznych rozwiązuje trójkąty prostokątne podaje związki między funkcjami trygonometrycznymi tego samego kąta wyznacza wartości pozostałych funkcji trygonometrycznych, gdy dana jest jedna z nich stosuje poznane związki do upraszczania wyrażeń zawierających funkcje trygonometryczne uzasadnia związki między funkcjami trygonometrycznymi podaje różne wzory na pole trójkąta oblicza pole trójkąta, dobierając odpowiedni wzór do sytuacji wykorzystuje umiejętność wyznaczania pól trójkątów do obliczania pól innych wielokątów podaje wzory na pole równoległoboku, rombu, trapezu wykorzystuje funkcje trygonometryczne do wyznaczania pól czworokątów oblicza odległość punktów w układzie współrzędnych wyznacza współrzędne środka odcinka, mając dane współrzędne jego końców oblicza obwód wielokąta, mając dane współrzędne jego wierzchołków

22 Odległość punktu od prostej Okrąg w układzie współrzędnych Wzajemne położenie dwóch okręgów Wzajemne położenie okręgu i prostej Układy równań drugiego stopnia Koło w układzie współrzędnych Działania na wektorach Wektory zastosowania Jednokładność stosuje wzór na odległość między punktami do rozwiązywania zadań dotyczących równoległoboków oblicza odległość punktu od prostej oblicza odległość między prostymi równoległymi stosuje wzór na odległość punktu od prostej w zadaniach z geometrii analitycznej stosuje związek między współczynnikiem kierunkowym a kątem nachylenia prostej do osi OX wyznacza kąt między prostymi sprawdza, czy punkt należy do danego okręgu wyznacza środek i promień okręgu, mając jego równanie opisuje równaniem okrąg o danym środku i przechodzący przez dany punkt sprawdza, czy dane równanie jest równaniem okręgu wyznacza wartość parametru tak, aby równanie opisywało okrąg stosuje równanie okręgu w zadaniach określa wzajemne położenie dwóch okręgów, obliczając odległości ich środków oraz na podstawie rysunku dobiera tak wartość parametru, aby dane okręgi były styczne określa wzajemne położenie okręgu i prostej, porównując odległość jego środka od prostej z długością promienia okręgu korzysta z własności stycznej do okręgu wyznacza punkty wspólne prostej i okręgu rozwiązuje algebraicznie i graficznie układy równań, z których co najmniej jedno jest drugiego stopnia stosuje układy równań drugiego stopnia do rozwiązywania zadań z geometrii analitycznej sprawdza, czy dany punkt należy do danego koła opisuje w układzie współrzędnych koło podaje geometryczną interpretację rozwiązania układu nierówności stopnia drugiego opisuje układem nierówności przedstawiony podzbiór płaszczyzny zaznacza w układzie współrzędnych zbiory spełniające określone warunki wykonuje działania na wektorach sprawdza, czy wektory mają ten sam kierunek i zwrot stosuje działania na wektorach i ich interpretację geometryczną w zadaniach stosuje działania na wektorach do badania współliniowości punktów stosuje działania na wektorach do podziału odcinka stosuje wektory do rozwiązywania zadań konstruuje figury jednokładne wyznacza współrzędne punktów w danej jednokładności stosuje własności jednokładności w zadaniach

23 Symetria osiowa Symetria środkowa Ocena bardzo dobra: Temat lekcji Elementy logiki matematycznej wskazuje figury osiowosymetryczne wyznacza współrzędne punktów w symetrii względem danej prostej stosuje własności symetrii osiowej w zadaniach wskazuje figury środkowosymetryczne wyznacza współrzędne punktów w symetrii względem danego punktu stosuje własności symetrii środkowej w zadaniach Uczeń rozpoznaje spójniki logiczne, zna wartości logiczne zdań nie p, p lub q, p i q, jeśli p, to q, p równoważne q zna metodę 0-1 dowodzenia tautologii zna wybrane tautologie, stosuje negację implikacji, zna kwadrat logiczny twierdzeń Liczby naturalne Liczby całkowite. Liczby wymierne Liczby niewymierne Rozwinięcie dziesiętne liczby rzeczywistej podaje przykłady liczb pierwszych, parzystych i nieparzystych podaje dzielniki danej liczby naturalnej przedstawia liczbę naturalną w postaci iloczynu liczb pierwszych oblicza NWD i NWW dwóch liczb naturalnych przeprowadza dowody twierdzeń dotyczących podzielności liczb, np. Wykaż, że dla każdej liczby naturalnej n liczba n 2 + n jest parzysta rozpoznaje liczby całkowite i liczby wymierne wśród podanych liczb podaje przykłady liczb całkowitych i wymiernych odczytuje z osi liczbowej współrzędną danego punktu i odwrotnie: zaznacza punkt o podanej współrzędnej na osi liczbowej wykonuje działania na liczbach wymiernych wskazuje liczb liczby niewymierne wśród podanych konstruuje odcinki o długościach niewymiernych zaznacza na osi liczbowej punkt odpowiadający liczbie niewymiernej wykazuje, dobierając odpowiednio przykłady, że suma, różnica, iloczyn oraz iloraz liczb niewymiernych nie musi być liczbą niewymierną dowodzi niewymierności liczby 2 wskazuje liczby wymierne oraz niewymierne wśród liczb podanych w postaci dziesiętnej

Plan wynikowy matematyka w zakresie rozszerzonym w klasie 1b, 2016/2017r.

Plan wynikowy matematyka w zakresie rozszerzonym w klasie 1b, 2016/2017r. Jolanta Pająk Plan wynikowy matematyka w zakresie rozszerzonym w klasie 1b, 016/017r. Ocena dopuszczająca: Temat lekcji Uczeń: Elementy logiki matematycznej rozpoznaje spójniki logiczne, zna wartości logiczne

Bardziej szczegółowo

Wymagania dla kl. 1. Zakres podstawowy. podaje przykłady liczb pierwszych, parzystych i nieparzystych cechy podzielności liczb naturalnych

Wymagania dla kl. 1. Zakres podstawowy. podaje przykłady liczb pierwszych, parzystych i nieparzystych cechy podzielności liczb naturalnych Wymagania dla kl. 1 Zakres podstawowy Temat lekcji Zakres treści Osiągnięcia ucznia 1. LICZBY RZECZYWISTE 1. Liczby naturalne definicja dzielnika liczby naturalnej definicja liczby pierwszej podaje przykłady

Bardziej szczegółowo

Wymagania na ocenę dopuszczającą z matematyki klasa I Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS /02

Wymagania na ocenę dopuszczającą z matematyki klasa I Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS /02 Wymagania na ocenę dopuszczającą z matematyki klasa I Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02 Temat lekcji Zakres treści Osiągnięcia ucznia 1. Liczby naturalne definicja dzielnika

Bardziej szczegółowo

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające MATeMAtyka 1 lan wynikowy: Zakres podstawowy i rozszerzony Oznaczenia: wymagania konieczne; wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające Temat lekcji

Bardziej szczegółowo

MATeMAtyka 1. Plan wynikowy: Zakres podstawowy i rozszerzony

MATeMAtyka 1. Plan wynikowy: Zakres podstawowy i rozszerzony MATeMAtyka 1 lan wynikowy: Zakres podstawowy i rozszerzony Oznaczenia: wymagania konieczne; wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające - dopuszczający;

Bardziej szczegółowo

Wymagania na poszczególne stopnie z matematyki - poziom rozszerzony klasa I f - rok szkolny 2017/18

Wymagania na poszczególne stopnie z matematyki - poziom rozszerzony klasa I f - rok szkolny 2017/18 Stopień LICZBY RZECZYWISTE podaje przykłady liczb naturalnych, całkowitych, wymiernych, niewymiernych, rzeczywistych, parzystych, nieparzystych; rozpoznaje liczby naturalne, całkowite, wymierne, niewymierne,

Bardziej szczegółowo

Wymagania kl. 1. Zakres podstawowy i rozszerzony. Uczeń: przedstawia liczbę naturalną w postaci iloczynu liczb pierwszych i nieparzystej

Wymagania kl. 1. Zakres podstawowy i rozszerzony. Uczeń: przedstawia liczbę naturalną w postaci iloczynu liczb pierwszych i nieparzystej Wymagania kl. 1 Zakres podstawowy i rozszerzony Temat lekcji Zakres treści Osiągnięcia ucznia 1. LICZBY RZECZYWISTE 1. Liczby naturalne definicja dzielnika liczby naturalnej definicja liczby pierwszej

Bardziej szczegółowo

Dorota Ponczek, Karolina Wej. MATeMAtyka 1. Szczegółowe wymagania edukacyjne z matematyki w klasie pierwszej. Zakres podstawowy

Dorota Ponczek, Karolina Wej. MATeMAtyka 1. Szczegółowe wymagania edukacyjne z matematyki w klasie pierwszej. Zakres podstawowy Dorota onczek, arolina Wej MATeMAtyka 1 Szczegółowe wymagania edukacyjne z matematyki w klasie pierwszej Zakres podstawowy Oznaczenia: wymagania konieczne, wymagania podstawowe, R wymagania rozszerzające,

Bardziej szczegółowo

Plan wynikowy. Zakres podstawowy klasa 1

Plan wynikowy. Zakres podstawowy klasa 1 lan wynikowy Zakres podstawowy klasa MATeMAtyka. lan wynikowy. Z Oznaczenia: wymagania konieczne, wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające, W wymagania wykraczające ogrubieniem

Bardziej szczegółowo

Dorota Ponczek, Karolina Wej. MATeMAtyka 1. Plan wynikowy. Zakres podstawowy

Dorota Ponczek, Karolina Wej. MATeMAtyka 1. Plan wynikowy. Zakres podstawowy Dorota onczek, arolina Wej MATeMAtyka lan wynikowy Zakres podstawowy MATeMAtyka. lan wynikowy. Z Oznaczenia: wymagania konieczne, wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające,

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I PODSTAWA Z ROZSZERZENIEM (90 godz.)

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I PODSTAWA Z ROZSZERZENIEM (90 godz.) WYMAGANIA EDUACYJNE Z MATEMATYI LASA I ODSTAWA Z ROZSZERZENIEM (90 godz.) Oznaczenia: wymagania konieczne; wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE

Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013 Dział LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego.

WYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego. WYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego. 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych,

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony Na ocenę dopuszczającą, uczeń: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I ZAKRES ROZSZERZONY (90 godz.)

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I ZAKRES ROZSZERZONY (90 godz.) WYMAGANIA EDUACYJNE Z MATEMATYI LASA I ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania dopełniające

Bardziej szczegółowo

K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające Oznaczenia: *OZNACZONE ZOSTAŁY TEMATY REALIZOWANE NA OZIOMIE ROZSZERZONYM wymagania konieczne; wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające Temat

Bardziej szczegółowo

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI / POZIOM PODSTAWOWY /

WYMAGANIA EDUKACYJNE Z MATEMATYKI / POZIOM PODSTAWOWY / WYMAGANIA EDUKACYJNE Z MATEMATYKI / POZIOM PODSTAWOWY / Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem powinny być opanowane przez każdego ucznia. Wymagania

Bardziej szczegółowo

Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. Kl. I poziom rozszerzony

Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. Kl. I poziom rozszerzony Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. LICZBY RZECZYWISTE Kl. I poziom rozszerzony podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych,

Bardziej szczegółowo

usuwa niewymierność z mianownika wyrażenia typu

usuwa niewymierność z mianownika wyrażenia typu Klasa pierwsza zakres rozszerzony. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje liczbę do odpowiedniego zbioru

Bardziej szczegółowo

Dorota Ponczek, Karolina Wej. MATeMAtyka 1. Szczegółowe wymagania edukacyjne z matematyki w klasie pierwszej. Zakres podstawowy i rozszerzony

Dorota Ponczek, Karolina Wej. MATeMAtyka 1. Szczegółowe wymagania edukacyjne z matematyki w klasie pierwszej. Zakres podstawowy i rozszerzony Dorota onczek, arolina Wej MATeMAtyka 1 Szczegółowe wymagania edukacyjne z matematyki w klasie pierwszej Zakres podstawowy i rozszerzony Oznaczenia: wymagania konieczne; wymagania podstawowe; R wymagania

Bardziej szczegółowo

K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające Wymagania edukacyjne z matematyki lasa 1 a lo Zakres rozszerzony Oznaczenia: *OZNACZONE ZOSTAŁY TEMATY REALIZOWANE NA OZIOMIE ROZSZERZONYM wymagania konieczne; wymagania podstawowe; R wymagania rozszerzające;

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki klasa I i II ZSZ 2013/2014

Przedmiotowy system oceniania z matematyki klasa I i II ZSZ 2013/2014 I. Liczby rzeczywiste K-2 P-3 R-4 D-5 W-6 Rozpoznaje liczby: naturalne (pierwsze i złożone),całkowite, wymierne, niewymierne, rzeczywiste Stosuje cechy podzielności liczb przez 2, 3,5, 9 Podaje dzielniki

Bardziej szczegółowo

MATeMAtyka cz.1. Zakres podstawowy

MATeMAtyka cz.1. Zakres podstawowy MATeMAtyka cz.1 Zakres podstawowy Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania (W). Wymienione

Bardziej szczegółowo

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza MATeMAtyka 1 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Klasa pierwsza Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe

Bardziej szczegółowo

Matematyka. Zakres materiału i wymagania edukacyjne, KLASA PIERWSZA. Temat lekcji Zakres treści Osiągnięcia ucznia. Uczeń:

Matematyka. Zakres materiału i wymagania edukacyjne, KLASA PIERWSZA. Temat lekcji Zakres treści Osiągnięcia ucznia. Uczeń: Matematyka Zakres materiału i wymagania edukacyjne, KLASA PIERWSZA Temat lekcji Zakres treści Osiągnięcia ucznia 1. Liczby naturalne definicja dzielnika liczby naturalnej definicja liczby pierwszej cechy

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem powinny być

Bardziej szczegółowo

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Marian Łuniewski MATeMAtyka 1 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących

Bardziej szczegółowo

Wymaganie edukacyjne z matematyki w zakresie rozszerzonym Klasa I

Wymaganie edukacyjne z matematyki w zakresie rozszerzonym Klasa I Wymaganie edukacyjne z matematyki w zakresie rozszerzonym Klasa I UWAGA! W wymaganiach każdej z wyższych ocen zwierają się również wymagania na oceny niższe. Wymagania konieczne (ocena dopuszczająca) Wymagania

Bardziej szczegółowo

Plan wynikowy z rozkładem materiału

Plan wynikowy z rozkładem materiału Plan wynikowy z rozkładem materiału Plan wynikowy oraz rozkład materiału nauczania są indywidualnymi dokumentami nauczycielskimi związanymi z realizowanym programem nauczania. Uwzględniają specyfikę danej

Bardziej szczegółowo

MATEMATYKA - klasa I Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony

MATEMATYKA - klasa I Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony MATEMATYKA - klasa I Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe

Bardziej szczegółowo

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II POZIOM ROZSZERZONY Równania i nierówności z wartością bezwzględną. rozwiązuje równania i nierówności

Bardziej szczegółowo

Klasa 1 wymagania edukacyjne

Klasa 1 wymagania edukacyjne Klasa wymagania edukacyjne Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program

Bardziej szczegółowo

MATEMATYKA KL I LO zakres podstawowy i rozszerzony

MATEMATYKA KL I LO zakres podstawowy i rozszerzony MATEMATYKA KL I LO zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa 1

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa 1 Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa 1 Liczby rzeczywiste: Uczeń otrzymuje ocenę ( jeśli rozumie i stosuje podpowiedź nauczyciela)oraz

Bardziej szczegółowo

MATeMAtyka 1. wymagania edukacyjne. Zakres podstawowy i rozszerzony. Autorzy Dorota Ponczek, Karolina Wej

MATeMAtyka 1. wymagania edukacyjne. Zakres podstawowy i rozszerzony. Autorzy Dorota Ponczek, Karolina Wej MATeMAtyka wymagania edukacyjne Zakres podstawowy i rozszerzony Autorzy Dorota Ponczek, Karolina Wej Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R),

Bardziej szczegółowo

Matematyka wykaz umiejętności wymaganych na poszczególne oceny

Matematyka wykaz umiejętności wymaganych na poszczególne oceny Matematyka wykaz umiejętności wymaganych na poszczególne oceny KLASA I 1.Liczby rzeczywiste 1. Podawanie przykładów liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz

Bardziej szczegółowo

MATeMAtyka klasa II poziom rozszerzony

MATeMAtyka klasa II poziom rozszerzony MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład

Bardziej szczegółowo

Wymagania edukacyjne: Matematyka Zasadnicza Szkoła Zawodowa

Wymagania edukacyjne: Matematyka Zasadnicza Szkoła Zawodowa ymagania edukacyjne: Matematyka Zasadnicza Szkoła Zawodowa Oznaczenia: wymagania konieczne (ocena dopuszczająca), wymagania podstawowe (ocena dostateczna), wymagania rozszerzające (ocena dobra) D wymagania

Bardziej szczegółowo

Klasa pierwsza: I TE 1, I TE 2, 1 TG, 1 TH, I TRA, 1TI Poziom podstawowy 3 godz. x 30 tyg.= 90 nr programu DKOS /07 I. Liczby rzeczywiste

Klasa pierwsza: I TE 1, I TE 2, 1 TG, 1 TH, I TRA, 1TI Poziom podstawowy 3 godz. x 30 tyg.= 90 nr programu DKOS /07 I. Liczby rzeczywiste Klasa pierwsza: I TE 1, I TE 2, 1 TG, 1 TH, I TRA, 1TI Poziom podstawowy 3 godz. x 30 tyg.= 0 nr programu DKOS-5002-7/07 I. Liczby rzeczywiste Liczby naturalne Liczby całkowite. Liczby wymierne. 1 Wykonalność

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W KLASIE I

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W KLASIE I NAUCZYCIEL BARBARA PAPUSZKA PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W KLASIE I KONTRAKT NAUCZYCIEL UCZEŃ 1. Uczeń zobowiązany jest do bycia przygotowanym na każdą lekcję tj. wymagane jest posiadanie

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym.

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym. Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

Dorota Ponczek, Karolina Wej. MATeMAtyka 1. Plan wynikowy. Zakres podstawowy i rozszerzony

Dorota Ponczek, Karolina Wej. MATeMAtyka 1. Plan wynikowy. Zakres podstawowy i rozszerzony Dorota onczek, arolina Wej MATeMAtyka lan wynikowy Zakres podstawowy i rozszerzony MATeMAtyka. lan wynikowy. ZiR Oznaczenia: wymagania konieczne; wymagania podstawowe; R wymagania rozszerzające; D wymagania

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII

WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII ROZDZIAŁ I LICZBY 1. rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 2. odczytuje liczby naturalne dodatnie zapisane w

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie VII szkoły podstawowej

Wymagania edukacyjne z matematyki w klasie VII szkoły podstawowej Wymagania edukacyjne z matematyki w klasie VII szkoły podstawowej ROZDZIAŁ I LICZBY Uczeń otrzymuje ocenę dopuszczającą jeśli: 1. rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IbB ZAKRES ROZSZERZONY (90 godz.)

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IbB ZAKRES ROZSZERZONY (90 godz.) WYMAGANIA EDUACYJNE Z MATEMATYI LASA IbB ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga.

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga. Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga. Funkcja liniowa. Uczeń otrzymuje ocenę dopuszczającą, jeśli: - rozpoznaje funkcję liniową

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (36 h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie

Bardziej szczegółowo

RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1

RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1 RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1 Zakres podstawowy Kl. 1-60 h ( 30 h w semestrze) Kl. 2-60 h (30 h w semestrze) Kl. 3-90 h (45 h w semestrze)

Bardziej szczegółowo

1.. FUNKCJE TRYGONOMETRYCZNE Poziom (K) lub (P)

1.. FUNKCJE TRYGONOMETRYCZNE Poziom (K) lub (P) Wymagania edukacyjne dla klasy IIIc technik informatyk 1.. FUNKCJE TRYGONOMETRYCZNE rok szkolny 2014/2015 zaznacza kąt w układzie współrzędnych, wskazuje jego ramię początkowe i końcowe wyznacza wartości

Bardziej szczegółowo

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych

Bardziej szczegółowo

Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum

Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum I. POTĘGI I PIERWIASTKI oblicza wartości potęg o wykładnikach całkowitych liczb różnych od zera zapisuje liczbę

Bardziej szczegółowo

Wymagania edukacyjne. Hasło z podstawy programowej 1. Liczby naturalne 1 Liczby naturalne, cechy podzielności. Liczba godzin

Wymagania edukacyjne. Hasło z podstawy programowej 1. Liczby naturalne 1 Liczby naturalne, cechy podzielności. Liczba godzin . Liczby rzeczywiste (3 h) PRZEDMIOT: Matematyka KLASA: I zasadnicza szkoła zawodowa Dział programowy Temat Wymagania edukacyjne Liczba godzin Hasło z podstawy programowej. Liczby naturalne Liczby naturalne,

Bardziej szczegółowo

MATeMAtyka zakres podstawowy

MATeMAtyka zakres podstawowy MATeMAtyka zakres podstawowy Proponowany rozkład materiału kl. I (100 h) 1. Liczby rzeczywiste 15 1. Liczby naturalne 1 2. Liczby całkowite. Liczby wymierne 1 1.1, 1.2 3. Liczby niewymierne 1 1.3 4. Rozwinięcie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I ZAKRES ROZSZERZONY (90 godz.)

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I ZAKRES ROZSZERZONY (90 godz.) WYMAGANIA EDUACYJNE Z MATEMATYI LASA I ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania dopełniające

Bardziej szczegółowo

Program nauczania z matematyki i poradnik dla nauczyciela klasa I szkoły ponadgimnazjalnej

Program nauczania z matematyki i poradnik dla nauczyciela klasa I szkoły ponadgimnazjalnej Program nauczania z matematyki i poradnik dla nauczyciela klasa I szkoły ponadgimnazjalnej Wstęp... 4 Program nauczania z matematyki... 5 Poradnik dla nauczyciela... 41 Wstęp Ważnym celem nauczania matematyki

Bardziej szczegółowo

Plan wynikowy z rozkładem materiału MATEMATYKA ZASADNICZA SZKOŁA ZAWODOWA

Plan wynikowy z rozkładem materiału MATEMATYKA ZASADNICZA SZKOŁA ZAWODOWA . Liczby rzeczywiste (3 h) Plan wynikowy z rozkładem materiału MATEMATYKA ZASADNICZA SZKOŁA ZAWODOWA Gwiazdką * oznaczono te hasła i wymagania, które są rozszerzeniem podstawy programowej. Nauczyciel może

Bardziej szczegółowo

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h)

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony (według podręczników z serii MATeMAtyka) Klasa I (90 h) Temat Liczba godzin 1. Liczby rzeczywiste 15

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (30h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie

Bardziej szczegółowo

Klasa II - zakres podstawowy i rozszerzony

Klasa II - zakres podstawowy i rozszerzony Klasa II - zakres podstawowy i rozszerzony 1. PLANIMETRIA stosuje twierdzenie o sumie miar kątów w trójkącie oraz nierówność trójkąta uzasadnia przystawanie trójkątów, wykorzystując cechy przystawania

Bardziej szczegółowo

Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE

Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je

Bardziej szczegółowo

Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas

Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas klasa I 1)Działania na liczbach: dopuszczający: uczeń potrafi poprawnie wykonać cztery podstawowe działania na ułamkach

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM LICZBY, WYRAŻENIA ALGEBRAICZNE umie obliczyć potęgę o wykładniku naturalnym; umie obliczyć

Bardziej szczegółowo

1 wyznacza współrzędne punktów przecięcia prostej danej

1 wyznacza współrzędne punktów przecięcia prostej danej Wymagania edukacyjne z matematyki DLA II i III KLASY ZASADNICEJ SZKOŁY ZAWODOWEJ Gwiazdką * oznaczono te hasła i wymagania, które są rozszerzeniem podstawy programowej. Nauczyciel może je realizować jedynie

Bardziej szczegółowo

Wymagania z wiedzy i umiejętności na poszczególne stopnie szkolne z matematyki w Zasadniczej Szkole Zawodowej nr 14

Wymagania z wiedzy i umiejętności na poszczególne stopnie szkolne z matematyki w Zasadniczej Szkole Zawodowej nr 14 z wiedzy i umiejętności na poszczególne stopnie szkolne z matematyki w Zasadniczej Szkole Zawodowej nr 14 Liczby rzeczywiste Wiadomości i umiejętności rozpoznać liczby naturalne w tym pierwsze i złożone,

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem

Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem pojęcie liczby naturalnej, całkowitej, wymiernej rozszerzenie osi liczbowej na liczby ujemne sposób i potrzebę zaokrąglania

Bardziej szczegółowo

ZAKRES PODSTAWOWY CZĘŚĆ I. Liczby rzeczywiste

ZAKRES PODSTAWOWY CZĘŚĆ I. Liczby rzeczywiste CZĘŚĆ I ZAKRES PODSTAWOWY W nawiasach proponowane oceny: 2 poziom konieczny wymagań edukacyjnych 3 poziom podstawowy wymagań edukacyjnych 4 poziom rozszerzający wymagań edukacyjnych 5 poziom dopełniający

Bardziej szczegółowo

Plan wynikowy z matematyki kl.i LO

Plan wynikowy z matematyki kl.i LO Literka.pl Plan wynikowy z matematyki kl.i LO Data dodania: 2006-09-23 09:27:55 Przedstawiam Państwu plan wynikowy z matematyki dla klasy pierwszej LO wg programu programu DKOS 4015-12/02 na rok szkolny

Bardziej szczegółowo

ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY:

ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY: ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY: KLASA II GIMNAZJUM Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je zatem opanować

Bardziej szczegółowo

MATEMATYKA Z SENSEM. Ryszard Kalina Tadeusz Szymański Marek Lewicki. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych.

MATEMATYKA Z SENSEM. Ryszard Kalina Tadeusz Szymański Marek Lewicki. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. MATEMATYKA Z SENSEM Ryszard Kalina Tadeusz Szymański Marek Lewicki Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Klasa I Zakres podstawowy i rozszerzony Wymagania konieczne (K)

Bardziej szczegółowo

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY. (zakres podstawowy) klasa 2

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY. (zakres podstawowy) klasa 2 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY (zakres podstawowy) klasa 2 1. Funkcja liniowa Tematyka zajęć: Proporcjonalność prosta Funkcja liniowa. Wykres funkcji liniowej Miejsce zerowe funkcji liniowej.

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE MATEMATYKA TECHNIKUM. rok szkolny 2017/2018. Zespół Szkół Nr1 Olkusz, ul. Górnicza 12

WYMAGANIA EDUKACYJNE MATEMATYKA TECHNIKUM. rok szkolny 2017/2018. Zespół Szkół Nr1 Olkusz, ul. Górnicza 12 WYMAGANIA EDUKACYJNE MATEMATYKA TECHNIKUM rok szkolny 2017/2018 Zespół Szkół Nr1 Olkusz, ul. Górnicza 12 Wymagania na ocenę dopuszczającą dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę,

Bardziej szczegółowo

Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste

Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste Liczby naturalne Liczby całkowite. Liczby wymierne Liczby niewymierne Rozwinięcie dziesiętne liczby rzeczywistej Pierwiastek

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Poziom podstawowy Klasa IIIb r.szk. 2014/2015 PLANIMETRIA(1) rozróżnia trójkąty: ostrokątne, prostokątne, rozwartokątne stosuje twierdzenie o sumie miar kątów w trójkącie

Bardziej szczegółowo

Wymagania programowe na poszczególne oceny. Klasa 2. Potęgi o wykładnikach naturalnych i całkowitych. Poziom wymagań edukacyjnych:

Wymagania programowe na poszczególne oceny. Klasa 2. Potęgi o wykładnikach naturalnych i całkowitych. Poziom wymagań edukacyjnych: Wymagania programowe na poszczególne oceny Poziom wymagań edukacyjnych: K konieczny (ocena dopuszczająca) P podstawowy (ocena dostateczna) R rozszerzający (ocena dobra) D dopełniający (ocena bardzo dobra)

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do uzyskania śródrocznych i rocznych ocen klasyfikacyjnych. z matematyki dla uczniów klasy I LO poziom podstawowy

Wymagania edukacyjne niezbędne do uzyskania śródrocznych i rocznych ocen klasyfikacyjnych. z matematyki dla uczniów klasy I LO poziom podstawowy Wymagania edukacyjne niezbędne do uzyskania śródrocznych i rocznych ocen klasyfikacyjnych Nauczyciel: mgr Karolina Bębenek z matematyki dla uczniów klasy I LO poziom podstawowy 1. Wprowadzenie do matematyki.

Bardziej szczegółowo

Kształcenie w zakresie podstawowym. Klasa 1

Kształcenie w zakresie podstawowym. Klasa 1 Kształcenie w zakresie podstawowym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować

Bardziej szczegółowo

Kup książkę Poleć książkę Oceń książkę. Księgarnia internetowa Lubię to!» Nasza społeczność

Kup książkę Poleć książkę Oceń książkę. Księgarnia internetowa Lubię to!» Nasza społeczność Kup książkę Poleć książkę Oceń książkę Księgarnia internetowa Lubię to!» Nasza społeczność Spis treści WSTĘP 5 ROZDZIAŁ 1. Matematyka Europejczyka. Program nauczania matematyki w szkołach ponadgimnazjalnych

Bardziej szczegółowo

Plan wynikowy z przedmiotu: MATEMATYKA

Plan wynikowy z przedmiotu: MATEMATYKA Plan wynikowy z przedmiotu: MATEMATYKA Szkoła: Liceum Ogólnokształcące Klasa: pierwsza Poziom nauczania: podstawowy Numer programu: DPN-5002-31/08 Podręcznik: MATEMATYKA Anna Jatczak, Monika Ciołkosz,

Bardziej szczegółowo

MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania

MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania MATEMATYKA WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski Treści zapisane kursywą (i oznaczone gwiazdką) wykraczają poza podstawę programową. Nauczyciel może je realizować,

Bardziej szczegółowo

1. LICZBY DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia

1. LICZBY DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia L.P. DZIAŁ Z PODRĘCZNIKA NaCoBeZu kryteria sukcesu w języku ucznia 1. LICZBY 1. Znam pojęcie liczby naturalne, całkowite, wymierne, dodatnie, ujemne, niedodatnie, odwrotne, przeciwne. 2. Potrafię zaznaczyć

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym i rozszerzonym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć

Bardziej szczegółowo

Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1

Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1 Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1 Wyróżniono następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki w ZSZ Klasa I

Przedmiotowy system oceniania z matematyki w ZSZ Klasa I Przedmiotowy system oceniania z matematyki w ZSZ Klasa I Dopuszczający Uczeń z potrafi : -zamienić ułamek zwykły na dziesiętny i odwrotnie -rozróżnia liczby wymierne i niewymierne -zna definicję liczby

Bardziej szczegółowo

MATeMAtyka zakres rozszerzony

MATeMAtyka zakres rozszerzony MATeMAtyka zakres rozszerzony Proponowany rozkład materiału kl. I (160 h) (Na czerwono zaznaczono treści z zakresu rozszerzonego) Temat lekcji Liczba godzin 1. Liczby rzeczywiste 15 1. Liczby naturalne

Bardziej szczegółowo

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Wariant nr (klasa I 4 godz., klasa II godz., klasa III godz.) Klasa I 7 tygodni 4 godziny = 48 godzin Lp. Tematyka zajęć

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne z matematyki. dla uczniów klasy Ia i Ib. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016

Wymagania na poszczególne oceny szkolne z matematyki. dla uczniów klasy Ia i Ib. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016 Wymagania na poszczególne oceny szkolne z matematyki dla uczniów klasy Ia i Ib Gimnazjum im. Jana Pawła II w Mętowie w roku szkolnym 2015/2016 DZIAŁ I: LICZBY zaznacza na osi liczbowej punkty odpowiadające

Bardziej szczegółowo

I. LICZBY RZECZYWISTE I/1 1 Liczby naturalne, całkowite, wymierne i niewymierne.

I. LICZBY RZECZYWISTE I/1 1 Liczby naturalne, całkowite, wymierne i niewymierne. Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2016/2017 Przedmiot: MATEMATYKA Klasa: I 80 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat

Bardziej szczegółowo

Zakres na egzamin poprawkowy w r. szk. 2013/14 /nauczyciel M.Tatar/ Podręcznik klasa 1 ZAKRES PODSTAWOWY i ROZSZERZONY

Zakres na egzamin poprawkowy w r. szk. 2013/14 /nauczyciel M.Tatar/ Podręcznik klasa 1 ZAKRES PODSTAWOWY i ROZSZERZONY MATEMATYKA Klasa TMB Zakres na egzamin poprawkowy w r. szk. 013/14 /nauczyciel M.Tatar/ Podręcznik klasa 1 ZAKRES PODSTAWOWY i ROZSZERZONY (zakres rozszerzony - czcionką pogrubioną) Hasła programowe Wymagania

Bardziej szczegółowo

Rozkład materiału nauczania

Rozkład materiału nauczania Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2016/2017 Przedmiot: MATEMATYKA Klasa: II 96 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat

Bardziej szczegółowo

Wymagania edukacyjne klasa trzecia.

Wymagania edukacyjne klasa trzecia. TEMAT Wymagania edukacyjne klasa trzecia. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Lekcja organizacyjna System dziesiątkowy System rzymski Liczby wymierne i niewymierne

Bardziej szczegółowo

PLAN WYNIKOWY (zakres podstawowy) klasa 2. rok szkolny 2015/2016

PLAN WYNIKOWY (zakres podstawowy) klasa 2. rok szkolny 2015/2016 PLAN WYNIKOWY (zakres podstawowy) klasa 2. rok szkolny 2015/2016 Wymagania wykraczające zawierają w sobie wymagania dopełniające, te zaś zawierają wymagania podstawowe. Ocenę dopuszczającą powinien otrzymać

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem

Bardziej szczegółowo

Wymagania na poszczególne oceny w klasie I gimnazjum do programu nauczania MATEMATYKA NA CZASIE

Wymagania na poszczególne oceny w klasie I gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania na poszczególne oceny w klasie I gimnazjum do programu nauczania MATEMATYKA NA CZASIE I.LICZBY - zaznacza na osi liczbowej punkty odpowiadające liczbom całkowitym, wymiernym(np. 1 2, 2 1 1 ),

Bardziej szczegółowo

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013 Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne

Bardziej szczegółowo

Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka

Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka TEMAT 5. Przekątna kwadratu. Wysokość trójkąta równobocznego 6. Trójkąty o kątach 90º, 45º, 45º oraz 90º, 30º, 60º 1. Okrąg opisany na trójkącie

Bardziej szczegółowo