ZAAWANSOWANYCH MATERIAŁÓW I TECHNOLOGII

Wielkość: px
Rozpocząć pokaz od strony:

Download "ZAAWANSOWANYCH MATERIAŁÓW I TECHNOLOGII"

Transkrypt

1 WOJSKOWA AKADEMIA TECHNICZNA Wydział Nowych Technologii i Chemii KATEDRA ZAAWANSOWANYCH MATERIAŁÓW I TECHNOLOGII Metalurgia proszków Opracował: dr inż. Radosław Łyszkowski dr hab. inż. Cezary Senderowski

2 Literatura A. Ciaś, T. Frydrych, T. Pieczonka - Zarys metalurgii proszków, Warszawa, WSZiP, 1992

3 Metalurgia proszków Metalurgia proszków (MP) obejmuje technikę wytwarzania proszków metalicznych oraz wyrobów z tych proszków lub ich mieszanek z proszkami niemetalowymi w procesach formowania i spiekania. MP sięga swoimi korzeniami aż czasów starożytnych (monety platynowe wytwarzano w Hiszpanii i Rosji jeszcze w XIX w. Od początku XX w. MP stosowano do wytwarzania włókna w żarówkach z W, Mo i Ta. Po roku 1920 rozpoczęto w Niemczech produkcję węglików spiekanych pod nazwą WIDIA. Po roku 1930 rozpoczęto produkcję porowatych łożysk ślizgowych. W Polsce produkcję węglików spiekanych rozpoczęły dwa zakłady - Huta Baildon i Starachowickie Zakłady Górniczo-Hutnicze wg licencji Kruppa. Po 1945 roku największymi zakładami są: Fabryka Wyrobów z Proszków Spiekanych w Łomiankach, Huta Baildon, Fabryka Drutu i Wyrobów z Drutu w Gliwicach, Instytut Metali Nieżelaznych w Gliwicach, Zakłady Metalurgiczne w Trzebini.

4 Metalurgia proszków Zgodnie z polską normą PN-85/H metalurgia proszków to dziedzina techniki obejmująca wytwarzanie i scalanie proszków o charakterze metalicznym, jak również scalanie ich z proszkami niemetali, bez przeprowadzania całego produktu przez stan ciekły, przy czym proszek definiuje się jako materiał sypki o wielkości cząstek do 1mm. Obecnie każdy metal lub stop o znaczeniu technicznym można uzyskać w postaci proszku, którego właściwości fizykochemiczne mają zasadniczy wpływ na przebieg procesów technologicznych wytwarzania gotowych wyrobów (najczęściej w formie spieków lub powłok ochronnych) W praktyce metalurgii proszków stosuje się dużą liczbę różnych metod wytwarzania materiału proszkowego, przy czym w każdej metodzie istnieje wiele parametrów procesów technologicznych, stanowiących o jakości gotowego produktu (proszku). W praktyce wytwarzania proszków stosuje się często procesy będące kombinacją różnych metod, przy czym należy je dobierać w aspekcie: dużej wydajności, niskich kosztów, dostępności surowców, prostoty i bezpieczeństwa procesu, wymaganych właściwości fizykochemicznych finalnego produktu proszkowego.

5 Kierunki wytwarzania materiałów potencjalnie perspektywicznych dla zastosowań konstrukcyjnych Zróżnicowane technologie i metody wytwarzania proszków Wiele parametrów procesów technologicznych

6 Metalurgia proszków METODY WYTWARZANIA PROSZKÓW Mechaniczne Fizykomechaniczne Fizyczne Chemiczne Fizykochemiczne Mielenie Kruszenie Rozbijanie Obróbka skrawaniem Rozpylanie Granulacja Odparowanie i kondensacja Redukcja tlenków i innych związków Dysocjacja tlenków i innych związków Korozja międzykrystaliczna SAMOROZPAD Dla każdej grupy metod wytwarzania proszków, istnieje wiele teoretycznych i technologicznych aspektów, które wpływają na formowanie cząstek Hydrogenizacjadehydrogenizacja proszków i ich właściwości fizykochemiczne. Niemniej jednak każdą z wymienionych grup cechują określone ogólne zasady towarzyszące procesom technologicznego wytwarzania proszków. Redukcja metalotermiczna soli Redukcja roztworów wodnych soli wodorem Redukcja roztworów wodnych soli przez wypieranie Elektroliza roztworów wodnych soli Elektroliza stopionych soli Synteza i dysocjacja karbonylków Synteza i dysocjacja karbonylków

7 Metalurgia proszków Metody fizyczne polegają na mechanicznym rozdrabnianie materiału w stanie stałym, w wyniku czego uzyskuje się proszek o wymaganej wielkości cząstek lub wytwarzaniu proszków z wykorzystaniem zjawisk fizycznych, którym towarzyszą zmiany stanu skupienia. Np. poprzez odparowanie metalu i kondensację jego par w postaci proszku na chłodnych powierzchniach, można otrzymywać proszki cynku, kadmu i magnezu. Istnieje liczna grupa materiałów metalicznych, które można poddać odparowaniu, jednak szybkość parowania wielu z nich jest bardzo mała, co uniemożliwia rozpowszechnienie tej metody. Metody chemiczne dotyczą wytwarzania proszków w wyniku przebiegu reakcji chemicznych. Metody fizykochemiczne polegają na wytwarzaniu proszków w wyniku procesów łączących przebieg reakcji chemicznych z różnymi zjawiskami chemicznymi, np. mechaniczne rozdrabnianie materiału połączone ze zmianą stanu skupienia: ciało stałe-ciecz-ciało stałe.

8 Metalurgia proszków - zastosowanie

9 Metalurgia proszków

10 Produkcja z proszków metali

11 Badania w WAT

12 Zależność kształtu proszku zależnie od metody jego wytwarzania

13 Różne morfologie proszku dendrytyczna talerzykowa wielościenna płatkowa

14 Mechaniczne metody wytwarzania z fazy stałej Proces prowadzi się w różnego rodzajach młynach kulowych FRITSCH planetary mill

15 Wytwarzanie proszków metali z fazy ciekłej Mechaniczne wytwarzanie proszku z fazy ciekłej polega na rozpylaniu wodą, powietrzem lub gazem obojętnym wypływającego z dyszy ciekłego metalu. Rozpylanie powietrzem (metoda RZ - Roheisen-Zunder) stosuje się do wytwarzania proszków żeliwa, cyny, ołowiu i aluminium. Proszki mają rozwiniętą powierzchnię. Ciekły metal, żeliwo jest rozpylane w dyszy o średnicy 6-8mm pod P= MPa podczas rozpylania zachodzi utlenianie proszku. Utleniony proszek jest następnie poddany wyżarzaniu redukującemu w C. Wówczas tlenki żelaza na powierzchni rozkładają się na Fe i tlenek węgla. Tlenek węgla stanowi wówczas atmosferę ochronną. Aby zaszła pełna redukcja proszek się wstępnie utlenia przez wygrzewanie w 900 C

16 Rozpylanie gazem obojętnym (VIGA) nowoczesna metoda wytwarzania proszków o dużej czystości, np. Fe, Co, Ni, Cu, Ag metal jest topiony w indukcyjnym piecu próżniowym rozpylany jest wysokiej czystości argonem proszki cechuje mały stopień utlenienia

17 Morfologia proszku otrzymanego metodą VIGA

18 Rozpylanie wodą można wytwarzać bardzo drobne proszki ciekły metal jest rozpylany silnym strumieniem wody o prędkości ok. 100m/s stopień utlenienia jest mniejszy niż w metodzie rozpylania strumieniem powietrza proszki mają kształt kulisty

19 Fizykochemiczne metody wytwarzania Wytwarzanie proszków metali metodą redukcji, - redukcja węglem - redukcja wodorem Wytwarzanie proszków metali metodą kondensacji z fazy gazowej, Wytwarzanie proszków metali metodą elektrolizy. Redukcja węglem Temperatura 1200 C. Produkt - porowate żelazo (gąbka). Gąbkę żelaza mechanicznie się rozdrabnia. Następnie proszek poddaje się redukcji w 800 C wodorem ze zdysocjowanego amoniaku.

20 Redukcja wodorem Przebiega w piecach taśmowych w 800 C (stosowana w USA) Zgorzelina przed redukcją jest dodatkowo utleniania w 900 C w powietrzu Redukcja jest wodorem otrzymanym z reakcji pary wodnej z metanem z gazu ziemnego (CH 4 +2H 2 O 4H 2 +CO 2 ) Proszek cechuje się dużą czystością i drobnym ziarnem.

21 Wytwarzanie proszków metodą kondensacji z fazy gazowej W metodzie otrzymywania proszków przez kondensację z fazy gazowej gorące pary metalu są wprowadzane do osadnika, w którym w temperaturze niższej niż temperatura topnienia metalu przebiega ich kondensacja. Metoda ta nadaje się szczególnie do otrzymywania proszków metali niskotopliwych. Metoda pozwala na uzyskanie kulistych proszków z metali tworzących karbonylki. Stosuje się ją głównie do wytwarzania proszków na bazie Fe i Ni. rudę lub złom poddaje się działaniu tlenku węgla w reaktorach wysokociśnieniowych w odpowiednim zakresie ciśnienia i temperatury powstają karbonylki np. Fe(CO) 5, Ni(CO) 4 przykładowo karbonylek żelaza wrze w 103 o C i rozkłada się na żelazo i tlenek węgla (karbonylek niklu wrze już przy 43 o C) Proszki karbonylkowe są stosowane rzadko ze względu na wysokie koszty wytwarzania i niebezpieczną produkcję!!!

22 Wytwarzanie proszków metali metodą elektrolizy Metodą elektrolizy można wytwarzać proszki wszystkich metali oraz niektórych stopów! można stosować metodę z rozpuszczalną lub nierozpuszczalną anodą w celu odzyskiwania niektórych metali z elektrolitów powszechnie metodę tą wykorzystuje się do otrzymywania miedzi o frakcji 0.063mm stosując rozpuszczalną anodę metodą tą wytwarza się proszki Fe, Ni, Mn, Cr i Ag o dużej czystości.

23 Koncepcja otrzymywania proszków na osnowie faz międzymetalicznych z układu Fe-Al Możliwość zastosowania w gazotermicznych metodach nanoszenia powłok Techniki: - płomieniowa, - plazmowa, - HVOF, - DGS

24 Właściwości powłok z proszków Fe-Al DOBRA WYTRZYMAŁOŚĆ ADHEZYJNA WYSOKA ODPORNOŚĆ NA KOROZJĘ (również wysokotemperaturow), ze w/du na niską T c fazy FeAl ok.1250 o C BARDZO DOBRA ODPORNOŚĆ NA DZIAŁANIE SPALIN (zawierających SO 2 ) IZOTROPOWA ROZSZERZALNOŚĆ CIEPLNA ZNACZNA TWARDOŚĆ

25 Przyczyny procesu samorozpadu stopów TYPU PERYFERAL Fe-Al-C o strukturze na osnowie faz międzymetalicznych: Fe 3 Al i FeAl lub FeAl i Al 4 C 3 w zależności od składu chemicznego odlewu Istota zjawiska samorozpadu stop FeAl+C typu PERYFELAR wydzielenie Al 4 C 3 H 2 O (z otoczenia) Al(OH 3 ) oraz CH 4 Najważniejszy czynnik samorozpadu 1. proces starzenia przesyconego roztworu stałego (stanowiącego osnowę żeliwa), któremu towarzyszą zmiany objętościowe powodujące powstanie mikropęknięć 2. Reakcje z I-szej hipotezy - mają miejsce w końcowym etapie destrukcji odlewu

26 Przyczyny procesu samorozpadu stopów TYPU PERYFERAL Fe-Al-C o strukturze na osnowie faz międzymetalicznych: Fe 3 Al i FeAl lub FeAl i Al 4 C 3 w zależności od składu chemicznego odlewu wynik oddziaływania wodoru rozpuszczonego w cieczy żeliwnej (w trakcie jej wytapiania i odlewania), którego rezultatem jest reakcja termodynamiczna Al z parą wodną z atmosfery występowanie w odlewach z żeliwa wysokoaluminiowego: naprężeń własnych - stanowiących sumę naprężeń międzyfazowych (wynikających z dużej różnicy wartości współczynnika rozszerzalności cieplnej dla:, Al 4 C 3 i nadstruktury FeAl) naprężeń cieplnych, które wraz z upływem czasu prowadzą do stopniowego powiększania się mikropęknięć, ułatwiających penetrację pary wodnej Wówczas reakcja chemiczna (przedstawiona w 1-szej hipotezie) rozpoczęta na powierzchni odlewów, przebiega nadal w głąb mikropęknięć, co przyspiesza proces samorozpadu.

27 Przyczyny procesu samorozpadu stopów TYPU PERYFERAL Fe-Al-C o strukturze na osnowie faz międzymetalicznych: Fe 3 Al i FeAl lub FeAl i Al 4 C 3 w zależności od składu chemicznego odlewu Dynamika procesu samorozpadu w głównej mierze zależy od: zawartości aluminium i węgla szybkości chłodzenia wilgotności otaczającej atmosfery W procesie samorozpadu istotną rolę odgrywa dobór składu chemicznego osnowy odlewów wyjściowych Skład osnowy, w zależności od zawartości Al: FeAl i ferryt aluminiowy (29-34)%at Al FeAl (24-36)%at Al FeAl i FeAl 2 (36-45)%at Al FeAl 2 i Fe 2 Al 5 (36-45)%at Al (>45% Al) Zasadniczy wpływ na granulację: Skład fazowy osnowy odlewu, Ilość, kształt i wielkość pierwotnych Al 4 C 3

28 Proszki samorozpadowe Świadome kierowanie procesem samorozpadu: - odpowiedni dobór składu chemicznego stopu wyjściowego - warunków topienia i odlewania oraz warunków krzepnięcia w formie odlewniczej Proces technologiczny wytwarzania 1. odlewania stopów o odpowiednim składzie chemicznym, chłodzonych z odpowiednią szybkością; 2. samorozpadu odlewów w zamkniętych pojemnikach, w środowisku o wilgotności względnej około 100%, w czasie dni w zależności od szybkości chłodzenia po odlaniu; 3. klasyfikacji w/g wielkości cząstek i uzdatniania proszku w aspekcie zastosowania.

29 Proszki samorozpadowe Proszek FeAl 36 %at w stanie wyjściowym po procesie samorozpadu (przed mieleniem) Morfologia pojedynczych ziaren proszków samorozpadowych wykonana po upływie około jednego roku od procesu samorozpadu (proces samorzutnego rozpadu).

30 1,38 9,7 17,4 25,1 32,8 45,1 54,3 65,1 75,9 85,1 92, ,02 7, ,8 24,5 30,2 38,3 48,1 57,9 64,4 70,9 79,9 89,7 97, Liczność [%] Liczność [%] REPREZENTATYWNE WYNIKI BADAŃ PROSZKI SAMOROZPADOWE w stanie wyjściowym po procesie samorozpadu /przed mieleniem/ - po separacji na przesiewaczu wibracyjnym Analiza wymiarowa cząstek proszków metodą dyfrakcji laserowej I Proszek FeAl po sitowaniu >75 m II A DI = 1,38 m A DII = 133 m I Proszek FeAl po sitowaniu >75 m A DI = 1,02 m A DII = 127 m II 60 dni później D [ m] do badań wybrano cząstki proszku o granulacji >125 m; dwa przedziały średnic ekwiwalentnych cząstek proszków: * ADII = 133 m * ADI = 1,38 m Wniosek: podczas przesiewania cząstki proszku ulegają rozpadowi D [ m] Dwa miesiące później, ten sam proszek: dwa przedziały średnic ekwiwalentnych cząstek proszków: * ADII = 127 m * ADI = 1,02 m Wniosek: cząstki proszku ulegają ustawicznemu rozpadowi w funkcji upływającego czasu

31 REPREZENTATYWNE WYNIKI BADAŃ PROSZKI SAMOROZPADOWE w stanie po mieleniu /20 godz./ -następnie poddanych separacji na przesiewaczu wibracyjnym, w zakresie granulometrycznym (38 75) m Statystyczna analiza wymiarowa cząstek proszków ,8% A ECD =31 m SD ECD =11 m =1,39 Liczność[%] ,0% 13,6% 10 6,8% 1,5% 1,5% 0,8% <= 10 (10;20] (20;30] (30;40] (40;50] (50;60] (60;75] > 75 ECD[10-3 m] trzykrotne zmniejszenie średniej średnicy ekwiwalentnej (ECD=31 m) w stosunku do wielkości cząstek proszków przed mieleniem (ECD=94 m) ; aż 89,4% udziału zmielonego proszku posiada wielkość cząstek w przedziale (20-50) m - najlepszym do natryskiwania detonacyjnego;

32 REPREZENTATYWNE WYNIKI BADAŃ PROSZKI SAMOROZPADOWE Porównanie współczynnika kształtu cząstek proszków 20 Proszek w stanie wyjściowym 17,5% 21,4% 20,5% A ECD =94 m SD ECD =29 m =1, Proszek po mieleniu /20 godz./ 50,8% A ECD =31 m SD ECD =11 m =1,39 15 Liczność[%] ,1% 4,8% 12,7% 11,4% 6,1% 2,6% Liczność[%] ,8% 25,0% 13,6% <= 50 (50;60] (60;70] (70;80] (80;90] (90;100] (100;110] (110;120] > 125 1,5% 1,5% 0,8% <= 10 (10;20] (20;30] (30;40] (40;50] (50;60] (60;75] > 75 ECD[10-3 m] ECD[10-3 m] większą równoosiowość (jednorodność geometryczną) cząstek proszku po mieleniu, jednak przy ewidentnym udziale dyspersyjnych cząstek (~1 m)

33 Proszki samorozpadowe Proszek FeAl 36 %at w stanie po mieleniu /20 godz./ i separacji sitowej w zakresie granulometrycznym (35-78) m Morfologia Mikrotwardość proszków Można to tłumaczyć procesem kontynuowanego samorozpadu, dodatkowo uaktywnionego niskoenergetycznym mieleniem 1- proszek referencyjny / o granulacji (35-78) m, wygrzewany przez 100 godz. w T=1000 o C (atmosfera argonu cz.d.a.) i chłodzony z piecem (2 o C/min) Nieznaczny wzrost HV proszków w funkcji czasu mielenia przy poszerzonej szerokości połówkowej refleksów może świadczyć o rozdrobnieniu krystalitów

34 LRO 1 0,8 0,6 0,4 0,2 REPREZENTATYWNE WYNIKI BADAŃ PROSZKI SAMOROZPADOWE Wielkość krystalitów (d k ) oraz stopień uporządkowania dalekiego zasięgu (LRO) fazy FeAl 0,83 /dyfrakcja RTG proszków metoda Scherrera/ 42,8 0,42 0,26 LRO dk d k [nm] 1- proszek w stanie wyjściowym / od dostawcy/ 2- proszek po mieleniu /6 godz./ 3- proszek po mieleniu /20 godz./ stan proszku 8 0 W wyniku mielenia nastąpiło rozdrobnienie krystalitów cząstek proszków: d k = - 42,8 nm (po 6 godz. mielenia) - 8 nm (po 20 godz. mielenia)!!! nanokrystaliczna struktura proszku

35 LRO 1 0,8 0,6 0,4 0,2 0 REPREZENTATYWNE WYNIKI BADAŃ PROSZKI SAMOROZPADOWE Wielkość krystalitów (dk) oraz stopień uporządkowania dalekiego zasięgu (LRO) fazy FeAl 0,83 /dyfrakcja rtg proszków metoda Scherrera/ 42,8 0,42 0, stan proszku 8 LRO dk Zmniejszenie stopnia uporządkowania roztworu wtórnego FeAl: LRO = - 0,83 proszek w stanie wyjściowym (od dostawcy) - 0,42 proszek po 6 godz. mielenia - 0,26 proszek po 20 godz. mielenia d k [nm] 1- proszek w stanie wyjściowym / od dostawcy/ 2- proszek po mieleniu /6 godz./ 3- proszek po mieleniu /20 godz./ Zmniejszony poziom umocnienia cząstek proszku kompensowany jest umacniającym wpływem rozdrobnienia krystalitów Wpływ uzyskanej nanostruktury jest o tyle istotny, że pomimo rozporządkowania nadstruktury, mikrotwardość cząstek nawet w nieznacznym stopniu wzrasta (wraz z wydłużeniem czasu mielenia)

36 Liczność [%] Liczność [%] 0,97 4,74 7,94 11,1 14,3 17,5 20,7 23,9 REPREZENTATYWNE WYNIKI BADAŃ PROSZKI SAMOROZPADOWE 27,1 30,3 33,5 36,7 39,9 43,1 46,3 49,5 52,7 55,9 59,1 62,3 65,5 68,7 71,9 75,1 79,1 85,5 107 Liczność [%] Liczność [%] Analiza wymiarowa cząstek proszków metodą dyfrakcji laserowej przedział granulometryczny <38 m Data pomiaru Proszek FeAl po mieleniu i sitowaniu <38 mm dwa miesiące później Proszek FeAl po mieleniu i sitowaniu <38 mm A D = 14,3 m 4 3 AD = 4,08 mm ,97 3,94 6,34 8,74 11,1 13,5 15,9 18,3 20,7 23,1 25,5 27,9 30,3 32,7 35,1 37,5 39,9 42,3 44,7 47,9 51,9 D [ m] 66,3 75,1 81,5 0 1,02 4,08 6,53 8,97 11,4 13,9 16,3 18,8 21,2 23,6 przedział granulometryczny m 26,1 28, ,4 35,9 38,3 40,8 43,2 45,6 48,1 50,5 53 D [ m] 55,4 75, Data pomiaru Proszek FeAl po mieleniu i sitowaniu m dwa miesiące później Proszek FeAl po mieleniu i sitowaniu m I D [ m] A DI = 5,54 m A DII = 39,9 m II ,02 4,9 8,16 11,4 14,7 17,9 21,2 24,5 27,7 31 I 34,2 37,5 40,8 II 44 D [ m] 47,3 50,5 53,8 57,1 A DI = 4,09 m A DII = 38,9 m 60,3 63,6 66,8 70,1 73,4 76,6 81,5

37 0,97 7,14 12,7 18,3 23,9 29,5 35,1 41,5 47,9 53,5 59,1 64,7 70,3 75,9 81,5 87,1 92,7 98, ,02 6,53 11,4 16,3 21,2 26, ,9 40,8 46,5 55,4 60,3 65,2 70, ,9 84,8 89,7 94,5 99, Liczność [%] Liczność [%] Liczność [%] Liczność [%] REPREZENTATYWNE WYNIKI BADAŃ Analiza wymiarowa cząstek proszków metodą dyfrakcji laserowej przedział granulometryczny m Data pomiaru Proszek FeAl po mieleniu i sitowaniu m dwa miesiące później Proszek FeAl po mieleniu i sitowaniu m I II A DI = 3,94 m A DII = 53,5 m I II A DI = 3,27 m A DII = 50,1 m 0 0,97 6,34 11,1 15,9 20,7 25,5 30,3 35,1 39,9 44,7 49,5 54,3 59,1 63,9 68,7 73,5 78,3 D [ m] 83,1 87,9 92,7 97, ,02 6,53 11,4 16,3 21,2 26, ,9 40,8 45,6 50,5 przedział granulometryczny >75 m 55,4 60,3 65,2 D [ m] 70, ,9 84,8 89,7 94,5 99, Data pomiaru Proszek FeAl po mieleniu i sitowaniu >75 m dwa miesiące później Proszek FeAl po mieleniu i sitowaniu >75 m I II A DI = 6,34 m A DII = 86,9 m I II A DI = 2,45 m A DII = 84,6 m D [ m]!!! również cząstki proszku po mieleniu ulegają ustawicznemu rozpadowi w wyniku funkcji upływającego czasu (2 miesiące) D [ m]

38 Badania proszków Analiza składu chemicznego - oznaczanie zawartości tlenu w proszku metodą straty wodorowej Kształt cząstek proszku Oznaczenie wielkości cząstek proszku - metoda sitowa (do mm) - mikroskopowa analiza obrazu (<0.18mm) - analiza sedymentacyjna (<0.09mm).

39 Metoda oznaczania straty wodorowej X H gdzie: m 1 - masa łódki [g], m 2 - masa łódki z proszkiem przed wyżarzaniem [g,] m 3 - masa łódki z proszkiem po wyżarzaniu [g] Proszek wygrzewany jest w mieszaninie wodoru z azotem w temperaturze i czasie odpowiednim dla danego proszku, Po wyżarzaniu łódka z proszkiem jest przesuwana do strefy chłodzenia, % Wadą tej metody jest brak redukcji tlenków SiO 2, Al 2 O 3, MgO, CaO, BeO, TiO 2 oraz uwzględnienie wody, węglowodorów, metali niskotopliwych zawartych w proszku i uwalniające się w czasie wyżarzania. m m 2 m m 1

40 Metoda badania zawartość tlenu Metodą redukcji węglem w atmosferze azotu wg. Naesera W wyniku wygrzewania proszku w obecności węgla (pod postacią grafitu) i w atmosferze azotu powstaje tlenek węgla, którego wytworzona objętość jest miarą zawartości tlenu w proszku

41 Morfologia cząstek proszków Kształt cząstek proszku zależy głównie od stosowanej metody wytwarzania, stąd też określenie kształtu ziaren może, z dużym prawdopodobieństwem, określić jego historię technologiczną (metodę wytwarzania). Ze względu na kształt cząstek rozróżniamy następujące rodzaje proszków: sferoidalne - kuliste lub prawie kuliste cząstki, globularne - nieregularne, zaokrąglone wielościenne - ostre krawędzie lub płaskie powierzchnie, iglaste, gąbczaste - nieregularne, porowate, granulkowe -nieregularne bryły w przybliżeniu o jednakowych wymiarach, dendrytyczne, płatkowe. Kształt cząstek proszku określa się za pomocą mikroskopu optycznego lub skaningowego ustalając podstawowe wymiary rzutu płaskiego cząstki.

42 Kształt cząstek proszków H.M. Hausner opracował sposób opisu kształtu cząstek na podstawie wymiarów najmniejszego prostokąta, który można opisać na konturze ziarna znajdującego się w najbardziej stabilnym położeniu (a i b - powierzchnia konturu A, obwód C) a C A b x a b y A ( a b) z 2 C (12.6 A) x równoosiowość y stopień wypełnienia cząstką pola prostokąta z stopień rozwinięcia powierzchni

43 Średnica ekwiwalentna cząstki proszku Metoda polegająca na oznaczaniu bezwymiarowych wielkości charakteryzujących wymiary obrazu cząstki w jej stabilnym położeniu: l max /l min, d F /d M, P 2 /S, gdzie: P - obwód powierzchni rzutu cząstki, S - pole powierzchni rzutu cząstki. Metoda polegająca na określeniu średnicy zastępczej, zwanej ekwiwalentną ECD A A=A k ECD 4A k d max ECD Współczynnik równoosiowości cząstki - dla cząstki sferycznej = 1

44 Rozkład granulometryczny cząstek proszku Metoda sitowa najbardziej rozpowszechniona metoda wyznaczania rozmiarów cząstek przesiewanie jest wykonywane na sitach ułożonych jedno na drugim, w kolejności od sita o największych rozmiarach oczek, znajdującego się na górze, do sita o najmniejszych rozmiarach oczek. próbkę umieszcza się na górnym sicie, masa próbki wynosi: - 100g jeżeli gęstość nasypowa proszku >1,5g/cm 3, - 50g gdy gęstość nasypowa <1,5g/cm 3 po przesiewaniu waży się poszczególne sita i wyniki przedstawia na ogół w postaci histogramu obecnie coraz częściej stosuje się układy do automatycznej analizy sitowej.

45 Analiza sedymentacyjna rozmiaru cząstek Oznaczenia rozmiaru cząstek proszku powstałego z zawiesiny proszku dokonuje się metodą pośrednią za pomocą wagi Sartoriusa. Wielkość cząstek ustala się na podstawie zależności między zmianą masy osadzającego się na szalce wagi proszku a czasem. Metoda tego typu wykorzystuje prawo Stokesa określające prędkość opadania cząstek V p w zależności od lepkości ośrodka i wielkości ziarna. V f (,,, ) p r p p c r p - promień cząstek proszku p - gęstość cząstek proszku c - gęstość cieczy - lepkość cieczy

46 Analiza foto-sedymentacyjna rozmiaru cząstek Oznaczenia zmiany strumienia świetlnego przechodzącego przez zawiesinę (metoda turbidymetryczna) dokonuje się na podstawie pomiarów fotometrycznych, metodą pomiaru zmian natężenia światła przechodzącego przez zawiesinę proszku. Pipeta Andreassena - pomiar polega na określeniu zmian masy proszku znajdującej się w kolejnych porcjach zawiesiny w objętości 10cm 3, pobieranej w określonym odstępie czasu z poziomu zerowego pipety. Wielkość cząstek proszku jest funkcją ich kształtu, gęstości i lepkości, gęstości i wysokości słupa cieczy oraz czasu opadania cząstek w zawiesinie.

47 Analiza sedymentacyjna w warunkach produkcji Oznaczanie rozmiarów i segregacja cząstek proszku w warunkach ciągłego przepływu cieczy lub gazu przez przewody o zmiennym przekroju jest jednym ze sposobów wykorzystania sedymentacji. Podstawową zaletą takiego rozwiązania jest wysoka wydajność procesu ciągłego oznaczania rozmiarów cząstek proszku połączona z separacją granulometryczną.

48 Właściwości technologiczne proszku Właściwości technologiczne proszku są bezpośrednio wykorzystywane np. przy konstrukcji matryc, zasypie proszku, określania koniecznego ciśnienia prasowania i warunków spiekania. Należy do nich: gęstość nasypowa, gęstość nasypowa z usadem, gęstość teoretyczna, sypkość proszku, zagęszczalność, formowalność.

49 Gęstość nasypowa Oznaczana jako nas [g/cm 3 ] - wartość ilorazu masy swobodnie zasypanego proszku wyrażonej w gramach do objętości tego proszku. nas m V ps pl gdzie: m ps - masa proszku swobodnie zasypanego do formy [g], V pl - objętość proszku swobodnie zasypanego do formy [cm 3 ]. Do obliczenia gęstości nasypowej wykorzystuje się metodykę Halla i Scotta: pomiar gęstości nasypowej metodą Halla polega na pobraniu próbki proszku objętości min. 50cm 3, wysuszeniu w temperaturze 110±2 o C i wsypaniu przez lejek o średnicy 2,5 lub 5mm do naczynia pomiarowego o objętości 25cm 3 w metodzie Scotta pobiera się próbkę proszku o objętości min. 25cm 3, suszy się w temperaturze 110±2 o C a następnie zasypuje się do naczynia pomiarowego z lejka górnego o średnicy 20mm przez lejek prowadzący, w którym ruch proszku jest hamowany za pomocą płytek skierowanych ukośnie do strumienia proszku Gęstość nasypowa z usadem oznaczana jako u [g/cm 3 ] - wartość ilorazu masy proszku do najmniejszej jego objętości, uzyskanej w wyniku wstrząsania. Jej pomiar polega na zagęszczaniu określonej ilości proszku, najczęściej 50 lub 100g za pomocą urządzenia wstrząsającego lub ręcznie do stałej objętości stanowiącej podstawę obliczania.

50 Gęstość teoretyczna Oznaczana jako teor [g/cm 3 ] - określa się ją piknometrycznie i praktycznie jest sama jak gęstość materiału, z którego wytworzono proszek taka teor m p m m p pik c m pik p gdzie: m p - masa badanego proszku [g], m p - masa piknometru z cieczą [g], m pik+p - masa piknometru z cieczą i proszkiem [g], c - gęstość cieczy [g/cm 3 ]. pomiar piknometryczny daje wyniki nieco zaniżone - nie uwzględnia zamkniętych porów wewnątrz cząstek proszku, informacje dotyczące gęstości proszku są niezbędne podczas projektowania matrycy.

51 Sypkość Oznaczana jako X p [s] - określa czas przesypywania masy proszku przez lejek o ustalonym kształcie - w praktyce jest to czas przesypywania się 50-gramowej próbki proszku z lejka Halla o średnicy 2,5mm X p f t s 25.3 C f gdzie: t s - czas przesypywania [s], f - współczynnik korygujący. C - cecha lejka, tj. czas wylewania się 100cm 3 wody destylowanej (średnia z pięciu pomiarów) znajomość sypkości umożliwia określenie czasu potrzebnego na wypełnienie proszkiem komory zasypowej matrycy największą sypkość mają proszki kuliste

52 Formowalność To zdolność proszku do zachowania kształtu w wyniku prasowania w matrycy - oznaczenie formowalności polega na określeniu min. i max. miejscowej gęstości wypraski wykonanej w matrycy formowalność umożliwia określenie najmniejszych ciśnień prasowania, przy których jest możliwe wykonanie wypraski o nieuszkodzonych krawędziach, najlepszą formowalnością charakteryzują się proszki o rozwiniętej powierzchni i frakcji 0,063-0,125mm.

53 Zagęszczalność Jest to podatność proszku do zmniejszania objętości w wyniku prasowania w matrycy. pomiar zagęszczalności polega na określeniu zmian gęstości wyprasek wytworzonych w matrycy cylindrycznej w zależności od ciśnienia prasowania, Z w P min w - gęstość względna wypraski [%], P min - najmniejsze ciśnienie przy którym gęstość względna wypraski jest równa 65% [MPa] najlepszą zagęszczalnością charakteryzują się proszki z materiałów o małej twardości, dużej gęstości nasypowej, frakcji 0,063-0,125mm oraz dużym zróżnicowaniu cząstek

54 Formowanie

55 Przygotowanie proszków wyżarzanie redukujące proszki metali w atmosferze wodoru w celu usunięcia tlenków odważenie porcji metali i środków poślizgowych mieszanie w mieszalnikach lub młynach w C Proszki metali twardych miesza się w młynach kulowych Proszki metali plastycznych miesza się w mieszalnikach łopatkowych i stożkowych

56 Prasowanie matrycowe Prasowanie jest formowaniem proszku w zamkniętej przestrzeni matrycy pod wpływem ciśnienia. W prasowniku wytwarza się kształtki tzw. wypraski, charakteryzujące się właściwościami ciała sprężystego. Proszek w komorze matrycy, w wyniku nacisku stempla, zachowuje się w przybliżeniu jak ciecz. Wskutek tarcia między stykającymi się cząstkami oraz ściankami wewnętrznymi matrycy a cząstkami proszku nie jest spełnione prawo Pascala. p b =( )p (Pa) p b - ciśnienie wywierane na ścianki boczne matrycy, Pa p - ciśnienie prasowania, Pa Siły tarcia powodują spadek ciśnienia w kierunku prasowania, a tym samym zmniejszenie gęstości wypraski w kierunku prasowania.

57 Prasowanie matrycowe Wynika stąd również, że wraz ze wzrostem odległości od powierzchni stempla maleje efektywne ciśnienie prasowania, co prowadzi do niejednorodnego rozkładu gęstości w objętości wypraski. Różnice w rozkładzie gęstości w wyprasce można zmniejszyć przez: zastosowanie środków poślizgowych smarowanie ścianek bocznych matrycy zastąpienie prasowania jednoosiowego prasowaniem dwustronnym h/d=1.66 d h/d=0.79 h/d=0.42

58 Stadia prasowania Podczas prasowania proszku plastycznego wyróżnia się następujące stadia: przemieszczanie cząstek względem siebie, odkształcenie sprężyste cząstek proszku, odkształcenie plastyczne cząstek proszku. Podczas prasowania proszku z materiału kruchego zamiast odkształcenia plastycznego występuje kruszenie cząstek.

59 Mikrostruktura wypraski Podstawowym parametrem efektywności prasowania jest gęstość wypraski, która zależy od: właściwości proszku, sposobu i warunków prasowania, rodzaju środków poślizgowych. Wypraska z proszku Fe o gęstości 7.2 g/cm 3 Wypraska z proszku Fe o gęstości 5.7 g/cm 3 Zagęszczalność proszku zależy od rozmiarów i kształtu jego cząstek oraz wielu innych właściwości, jak: twardość, stopień utlenienia, zawartość gazów.

60 Metody prasowania Prasowanie jednostronne Polega na wywieraniu jednostronnego nacisku stemplem górnym na proszek w matrycy. Powoduje to nierównomierny rozkład ciśnienia w proszku podczas prasowania, Najwyższe ciśnienie jest pod stemplem górnym, najniższe - nad stemplem dolnym. Górna część wypraski ma większą gęstość niż dolna. Prasowanie dwustronne Polega na wywieraniu dwustronnego nacisku stemplem górnym i dolnym na proszek matrycy. Ten sposób prasowania zapewnia bardziej równomierny rozkład ciśnienia w proszku podczas prasowania i bardziej równomierny rozkład gęstości w wyprasce, W przypadku prasowania dwustronnego najmniejszą gęstość ma wypraska w połowie wysokości.

61 Metody prasowania Prasowanie swobodne Stanowi odmianę prasowania dwustronnego na prasach działających jednostronnie. W metodzie tej element jest prasowany stemplem górnym, przy nieruchomym stemplu dolnym z jednoczesnym przesuwem matrycy w dół wskutek działania sił tarcia pomiędzy proszkiem a bocznymi ściankami matrycy. Matryca jest podparta sprężynami ściskanymi w trakcie prasowania. Daje to efekt ruchu matrycy względem stempla dolnego, powodujący wzrost gęstości wypraski. Prasowanie sterowane Charakteryzuje się ruchem matrycy współbieżnym z ruchem stempla górnego. Stempel dolny pozostaje nieruchomy. Matryca przesuwa się dwukrotnie wolniej niż stempel górny, co daje efekt ruchu względnego matrycy w stosunku do obydwu stempli. Wypchnięcie wypraski następuje nie w wyniku ruchu stempla w górę, lecz w skutek dalszego przesuwania się matrycy w dół. Metoda ta daje dobry efekt dla wyprasek o dwóch lub więcej wysokościach w kierunku prasowania.

62 Metody prasowania Prasowanie dwukrotne Zapewnia szczególnie dużą gęstość wypraski wynoszącą ok. 95% gęstości materiału nieporowatego. Składa się z następujących operacji: prasowania wstępnego pod ciśnieniem MPa spiekania wstępnego - krótkookresowego, prasowania końcowego pod ciśnieniem ok. 600 MPa, spiekania końcowego. Otrzymanie metodą jednokrotnego prasowania i spiekania wypraski o porównywalnej gęstości z gęstością wypraski po prasowaniu i spiekaniu dwukrotnym wymaga ciśnienia MPa, następuje intensywne zużycie stempli i matrycy. Prasowanie z drgającą matrycą Używane są drgania o amplitudzie ok. 0,01mm przy jednoczesnym oddziaływaniu na proszek ultradźwięków o częstotliwości 21-22kHz. Powoduje to znaczne zwiększenie gęstości, szczególnie w miejscach oddalonych od powierzchni stempla.

63 Czynniki wpływające na gęstość wypraski WARUNKI PRASOWANIA ciśnienie, prędkość przyrostu ciśnienia, czas oddziaływania ciśnienia na proszek, GEOMETRIA WYPRASKI wysokość wypraski w kierunku osi prasowania do jej średnicy h/d - stosuje się h/d<1 dla wałków - h/s<3 dla tulei, gdzie s-grubość ścianki, ŚRODKI POŚLIZGOWE najsilniejszy wpływ z rozpatrywanych czynników na gęstość wypraski ma wartość ciśnienia prasowania, przy dużych ciśnieniach prasowania, a mniejszej szybkości wzrostu ciśnienia prasowania i długim czasie działania ciśnienia, uzyskuje się większą gęstość wypraski, zwiększenie czasu działania ciśnienia np. z 2-3s do 20-30s powoduje wzrost gęstości wypraski o ok. 2-3% - wynik większego odkształcenia cząstek proszku na stykach ziaren.

64 Środki poślizgowe Obecność środków poślizgowych ułatwia wzajemne przemieszczanie się cząstek proszku względem siebie oraz względem ścianek matrycy. Powoduje to: zwiększenie gęstości wypraski przy określonym ciśnieniu prasowania, zmniejszenie ciśnienia prasowania przy założonej gęstości wypraski, zmniejszenie różnic ciśnienia i gęstości w wyprasce, zmniejszenie przylepiania się ziaren proszku do ścianek matrycy oraz siły wypychania. Najczęściej używane środki poślizgowe to smary, oleje, wazelina, wosk, parafina, grafit oraz materiały aktywne powierzchniowo np. stearynian cynku, kwas oleinowy. Wprowadza się je w ilości 0,2-1,0% do wsadu. Podczas spiekania degradacja lub odparowanie środków poślizgowych powoduje wzrost porowatości spieku.

65 Urządzenia do prasowania Prasy mechaniczne mają najczęściej napęd krzywkowy, mimośrodowy lub korbowy. Dobór prasy zależy od wielkości produkcji i stopnia złożoności. Wydajność pras mechanicznych to 5-50 cykli na minutę. Prasy te pracują zgodnie z zasadą stałego skoku - dlatego wypraski mają stałą objętość i wysokość. Ograniczenie stosowania tych pras to maksymalny nacisk 1 MN oraz ograniczony skok Prasy hydrauliczne są stosowane już przy naciskach większych niż 0.6 MN. Wydajność tych pras jest jednak mniejsza niż pras mechanicznych i wynosi 15 szt./min. Prasy te pracują zgodnie z zasadą stałego ciśnienia. Dlatego wypraski uzyskane tą metodą mają stałą gęstość przy zwiększonej tolerancji wysokości. 1 - tłok górny, 2 - płyta stempla górnego, 3 - stempel górny, 4 - matryca, 5 - stempel dolny, płyta stempla dolnego i 7 - tłok dolny

66 Cykl formowania wypraski Etapy formowania a) zasyp proszku b) prasowanie c) wypychanie lub wyjęcie wypraski Metody formowania

67 Prasowanie izostatyczne na zimno (CIP) Prasowanie izostatyczne polega na zagęszczeniu proszku w formie z materiału plastycznego w wyniku oddziaływania ciśnienia hydrostatycznego, które jest wywierane równomiernie za pośrednictwem, np. wody na wszystkie ścianki formy.

68 Prasowanie izostatyczne na gorąco (HIP) Stosowane do formowania wyrobów o porowatości zbliżonej do zera, Stosuje się do formowania z proszków trudno zagęszczających się, jak: metale wysokotopliwe, materiały ceramiczne i ceramiczno-metalowe, Czynnikiem wywierającym ciśnienie jest gaz, Prasowanie prowadzi się w wysokiej temperaturze, Elastyczne formy wytwarza się z materiałów ogniotrwałych (metali i szkła).

69 Walcowanie proszków Luźno zasypany proszek (lub za pomocą śruby podajnika) ulega ściskaniu w przestrzeni między walcami Metoda pozwala wytwarzać taśmy płaskie lub profile, oraz taśmy bimetalowe Spiekanie taśm prowadzi się bezpośrednio po walcowaniu w piecach przelotowych z atmosferą wodorową przez kilka minut Taśmy mają znaczną porowatość i kruchość; grubość taśm nie przekracza 6 mm; poddaje się je dodatkowej obróbce plastycznej i spiekaniu stosowane do masowej produkcji taśm z materiałów magnetycznie miękkich, bimetalowych oraz taśm na styki elektryczne

70 Prasowanie matrycowe na gorąco stanowi połączenie w jednym zabiegu prasowania i spiekania, uzyskuje się tą metodą spieki praktycznie nieporowate o bardzo dobrych właściwościach mechanicznych, zastosowanie do metali trudnotopliwych i ceramicznych.

71 Spiekanie

72 Spiekanie w fazie stałej Proces spiekania polega na wygrzewaniu sprasowanego proszku w temperaturze niższej niż temperatura topnienia głównego składnika proszku w celu scalenia go w trwałą kształtkę. Temperatura spiekania T m Siłą napędową procesu spiekania jest wysoka energia swobodna odkształconych plastycznie cząstek. Dążność do zmniejszenia energii swobodnej powoduje, że podczas spiekania następuje zmniejszenie powierzchni cząstek poprzez ich sferoidyzację, wygładzenie powierzchni, tworzenie szyjek i zmniejszenie ilości porów. W wyniku tych procesów fizykochemicznych następuje zmiana właściwości mechanicznych i fizyko-chemicznych wyprasek.

73 Mechanizmy transportu masy Efekt przenoszenia masy podczas spiekania występuje w wyniku pełzania, dyfuzji powierzchniowej i objętościowej oraz parowania i kondensacji. Płynięcie lepkościowe występuje w początkowym okresie spiekania i decyduje o procesie pełzania, którego siłą napędową jest ciśnienie kapilarne. Parowanie i kondesacja występuje wskutek wyższej prężności pary metalu na powierzchnią wypukłą, z której jest on przenoszony przez fazę gazową w rejon szyjki. Dyfuzja powierzchniowa jest spowodowana przemieszczaniem się atomów po powierzchni ziarn od powierzchni wypukłych do wklęsłych, ponieważ stężenie atomów na wypukłej jest większe niż na wklęsłej. Dyfuzja objętościowa jest spowodowana migracją wakansów i atomów metalu w przeciwnym kierunku i prowadzi do wyrównania różnicy ich stężenia w mikroobszarach.

74 Mechanizm zdrowienia i rekrystalizacji Na proces spiekania ma również wpływ transport masy na małych odległościach w wyniku zdrowienia i rekrystalizacji. Procesy rozpoczynają się w miejscach zgniotu krytycznego cząstek odkształconych w czasie prasowania i rozprzestrzeniają się w całej objętości. Zmienia się struktura krystaliczna materiału, z wielu cząstek tworzy się jedna, a pory znajdujące się początkowo na granicy cząstek mogą stać się porami zamkniętymi wewnątrz ziaren. Część porów przesuwa się na granice ziaren, tworząc porowatość otwartą.

75 Etapy spiekania w fazie stałej Wypraska przed spiekaniem Tworzenie się szyjki i porów Powiększanie się powierzchni styku cząstek i zmiana kształtu i wielkości porów

76 Spiekanie z udziałem fazy ciekłej Spiekanie układów wieloskładnikowych przebiega najczęściej w temperaturze wyższej niż najniższa temperatura topnienia jednego ze składników mieszaniny. Obecność fazy ciekłej aktywizuje proces spiekania wskutek zwiększenia ruchliwości atomów. Wpływ ten powiększa się ze wzrostem zwilżalności fazy stałej przez fazę ciekłą. Faza ciekła w obecności ciśnienia kapilarnego może przyciągać cząstki w przypadku dobrej zwilżalności lub odpychać w przypadku złej zwilżalności. cos sv lv 1 cos 2 2 ss sl sl o 90 o 180 zwilżanie brak zwilżania Wartości energii powierzchniowej może być zmieniana przez: dodatki stopowe o dużej aktywności powierzchniowej, podwyższenie temperatury układu.

77 Spiekanie z udziałem fazy ciekłej Proces spiekania z udziałem fazy ciekłej przebiega przez następujące stadia: 1. przegrupowanie cząstek fazy stałej przez lepkościowe płynięcie fazy ciekłej 2. transport materii przez fazę ciekłą poprzez rozpuszczanie i osadzanie 3. spiekanie szkieletu fazy stałej Pierwsze stadium przebiega w warunkach całkowitego rozdzielenia cząstek fazy stałej fazą ciekłą, tzn. przy małej wartości dwuściennego kata zwilżania. Jeśli kąt przyjmuje dużą wartość szybko tworzy się szkielet fazy stałej i spiekanie przebiega wg. trzeciego stadium. W drugim stadium drobne cząstki fazy stałej rozpuszczają się w fazie ciekłej, a następnie osadzają na cząstkach stałych dużych.

78 Spiekania z fazą ciekłą Proszki metali o nieograniczonej rozpuszczalności w stanie stałym Proszków metali o ograniczonej rozpuszczalności w stanie stałym

79 Spiekanie aktywowane Dodatek aktywujący może: zwiększyć szybkość procesów dyfuzyjnych, ułatwić tworzenie się fazy ciekłej w wyniku obniżenia temperatury solidusu i likwidusu, spowodować występowanie przemiany eutektycznej i perytektycznej. Pierwiastki skutecznie aktywujące proces spiekania żelaza i jego stopów to: B, C, P, Ko, Si, Cu, Mo, Ta, Ti, W i V.

80 Technologiczne aspekty spiekania W czasie spiekania dyfuzji atomów metalu towarzyszą następujące procesy: desorpcja gazów odparowanie środków poślizgowych wydzielanie się gazów rozpuszczonych w sieci krystalicznej redukcja tlenków rekrystalizacja Zależność skurczu (s) spieków żelaza od ciśnienia prasowania i czasu spiekania w temperaturze C Wpływ temperatury i czasu spiekania na gęstość wypraski Ni

81 Urządzenia stosowane do spiekania Spiekanie prowadzi się w piecach elektrycznych oporowych lub indukcyjnych oraz gazowych o pracy ciągłej lub okresowej. Jako elementy grzejne w piecach oporowych stosuje się druty oporowe, rury węglowe, pręty molibdenowe i sylity. Maksymalna temperatura pieca zależy od jego wymiarów, mocy, izolacji cieplnej i materiału elementów grzejnych (Nichrom 900 C; Kanthal do 1700 C; Sylit 1350 C; Molibden C; Wolfram lub Grafit do 3000 C) Piec do pracy ciągłej Piec rurowy do pracy okresowej

82 Atmosfery stosowane do spiekania Spiekanie prowadzi się najczęściej w atmosferze wodoru, który jest pobierany z butli lub z elektrolizera. Spiekanie można prowadzić również w atmosferze zdysocjowanego amoniaku NH 3 (75%N-25%H). Stosowane są atmosfery endotermiczne i egzotermiczne. Inne (gazy ochronne Ar, He, próżnia).

83 Obróbka spieków Kalibrowanie spieków - celem kalibrowania jest uzyskanie małych tolerancji ich wymiarów i dobrej gładkości powierzchni bez obróbki mechanicznej Obróbka skrawaniem - ze względu na wysokie koszty jest wykonywana wyjątkowo, np. wcięcia, otwory w kierunku poprzecznym do kierunku prasowania lub o średnicy mniejszej niż 2 mm; stosowane narzędzia są wykonywane z węglików spiekanych Obróbka cieplna - sposób jej przeprowadzenia zależy od gęstości wypraski (dla Fe < czy > od 7.2g/cm 3 ) Obróbka cieplno-chemiczna - stosowana w ograniczonym zakresie. Spieki Fe poddaje się nawęglaniu lub cyjanowaniu. Nasycanie spieków - jest stosowane w celu zamknięcia porów zwiększenia Rm, poprawy odporności na korozję i ścieranie. Spieki Fe mogą być nasycane metalami (Cu, brązy, mosiądze) oraz polimerami Obróbka powierzchniowa - cel dekoracyjny lub ochrona przed korozją (galwanizacja przez niklowanie, chromowanie i cynkowanie)

84 Badanie spieków Oznaczanie gęstości i porowatości spieków - bezpośrednio z pomiarów masy i objętości Właściwości mechaniczne - twardość - wytrzymałość na rozciąganie - wytrzymałość na zginanie - wytrzymałość na ściskanie.

85 Projektowanie spiekanych elementów maszyn W fazie projektowania należy uwzględnić specyfikę procesu prasowania proszków!!! Projektowany element powinien spełniać: możliwość wypchnięcia go z matrycy niewystępowanie wąskich szczelin i kanałów nieskomplikowany kształt odpowiednie h/d możliwość prasowania jak najmniejszą ilością stempli minimalna grubość prasowania większa niż 2 mm Projektowanie prasowników powinno uwzględniać: podstawowe elementy prasownika to: matryca, stemple i rdzenie wszystkie te elementy charakteryzuje duża odporność na ścieranie stemple dodatkowo muszą być sztywne i odporne na odkształcenie rdzenie powinna charakteryzować dobra ciągliwość twardość matrycy HRC; stempla HRC; rdzenia HRC

86 Technologia spiekanych części maszyn

87 Proces technologiczny pierścienia centrującego

88 Spieki metali o specjalnych właściwościach Stal stopowa spiekana - R m > 700 MPa; spieki ze stali szybkotnącej Spiekane materiały filtracyjne - dokładność filtrowania do mm; prosta regeneracja; porowatość nawet powyżej 50%; materiały to brązy, mosiądze stopy Cr, Ni, Mo, Zn i Fe Spieki magnetyczne - magnetycznie twarde; wytwarzane są z proszków Fe, Al, Ni, Cu i Ti; metoda: prasownie i spiekanie oraz obróbka cieplna; materiały magnetycznie miękkie (rdzenie w cewkach indukcyjnych obwodów małej i dużej częstotliwości) produkowane są wyłącznie metodami metalurgii proszków (materiały to Fe, ferryty i np. Fe-Si-Al) Spieki samosmarujące - są to elementy łożysk ślizgowych (materiały porowate i nieporowate); porowate wykonywane są ze spieków na bazie Fe z dodatkiem Cu i grafitu oraz z miedzi o składzie brązów cynowych; nieporowate wykonywane są spieków na bazie Fe (+C+Cu), Cu-Pb, Ni-Cu(+ polimer)

89 Następne zajęcia : W8 Kolokwium zaliczeniowe. Dziękuję za uwagę! Prowadzenie: dr inż. Radosław Łyszkowski

MATERIAŁY SPIEKANE (SPIEKI)

MATERIAŁY SPIEKANE (SPIEKI) MATERIAŁY SPIEKANE (SPIEKI) Metalurgia proszków jest dziedziną techniki, obejmującą metody wytwarzania proszków metali lub ich mieszanin z proszkami niemetali oraz otrzymywania wyrobów z tych proszków

Bardziej szczegółowo

Ćwiczenie nr 4. Metalurgia proszków. Pod pojęciem materiały spiekane rozumie się materiały, które wytwarza się metodami metalurgii proszków.

Ćwiczenie nr 4. Metalurgia proszków. Pod pojęciem materiały spiekane rozumie się materiały, które wytwarza się metodami metalurgii proszków. Technologie materiałowe 1. Wprowadzenie Ćwiczenie nr 4. Metalurgia proszków Pod pojęciem materiały spiekane rozumie się materiały, które wytwarza się metodami metalurgii proszków. Definicja: Metalurgią

Bardziej szczegółowo

LABORATORIUM NAUKI O MATERIAŁACH

LABORATORIUM NAUKI O MATERIAŁACH Imię i Nazwisko Grupa dziekańska Indeks Ocena (kol.wejściowe) Ocena (sprawozdanie)........................................................... Ćwiczenie: MISW1 Podpis prowadzącego Politechnika Łódzka Wydział

Bardziej szczegółowo

Technologie wytwarzania. Opracował Dr inż. Stanisław Rymkiewicz KIM WM PG

Technologie wytwarzania. Opracował Dr inż. Stanisław Rymkiewicz KIM WM PG Technologie wytwarzania Opracował Dr inż. Stanisław Rymkiewicz KIM WM PG Technologie wytwarzania Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki

Bardziej szczegółowo

3. Prasowanie proszków

3. Prasowanie proszków 3. Prasowanie proszków Prasowanie jest jednym z głównych procesów technologicznych w produkcji wyrobów ze spiekanych metali. Ma ono na celu formowanie wyprasek o określonych wymiarach i kształcie oraz

Bardziej szczegółowo

Technologie wytwarzania metali. Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe

Technologie wytwarzania metali. Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe Technologie wytwarzania metali Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe KRYSTALIZACJA METALI I STOPÓW Krzepnięcie - przemiana fazy

Bardziej szczegółowo

Technologie wytwarzania metali. Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe

Technologie wytwarzania metali. Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe Technologie wytwarzania metali Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe KRYSTALIZACJA METALI I STOPÓW Krzepnięcie - przemiana fazy

Bardziej szczegółowo

MIKROSKOPIA METALOGRAFICZNA

MIKROSKOPIA METALOGRAFICZNA MIKROSKOPIA METALOGRAFICZNA WYKŁAD 3 Stopy żelazo - węgiel dr inż. Michał Szociński Spis zagadnień Ogólna charakterystyka żelaza Alotropowe odmiany żelaza Układ równowagi fazowej Fe Fe 3 C Przemiany podczas

Bardziej szczegółowo

KRYSTALIZACJA METALI I STOPÓW. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

KRYSTALIZACJA METALI I STOPÓW. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego KRYSTALIZACJA METALI I STOPÓW Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Krzepnięcie przemiana fazy ciekłej w fazę stałą Krystalizacja przemiana

Bardziej szczegółowo

WPŁYW DODATKÓW STOPOWYCH NA WŁASNOŚCI STOPU ALUMINIUM KRZEM O NADEUTEKTYCZNYM SKŁADZIE

WPŁYW DODATKÓW STOPOWYCH NA WŁASNOŚCI STOPU ALUMINIUM KRZEM O NADEUTEKTYCZNYM SKŁADZIE WYDZIAŁ ODLEWNICTWA AGH Oddział Krakowski STOP XXXIV KONFERENCJA NAUKOWA Kraków - 19 listopada 2010 r. Marcin PIĘKOŚ 1, Stanisław RZADKOSZ 2, Janusz KOZANA 3,Witold CIEŚLAK 4 WPŁYW DODATKÓW STOPOWYCH NA

Bardziej szczegółowo

Wykład 8. Przemiany zachodzące w stopach żelaza z węglem. Przemiany zachodzące podczas nagrzewania

Wykład 8. Przemiany zachodzące w stopach żelaza z węglem. Przemiany zachodzące podczas nagrzewania Wykład 8 Przemiany zachodzące w stopach żelaza z węglem Przemiany zachodzące podczas nagrzewania Nagrzewanie stopów żelaza powyżej temperatury 723 O C powoduje rozpoczęcie przemiany perlitu w austenit

Bardziej szczegółowo

MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I. dr inż. Hanna Smoleńska

MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I. dr inż. Hanna Smoleńska MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I dr inż. Hanna Smoleńska UKŁADY RÓWNOWAGI FAZOWEJ Równowaga termodynamiczna pojęcie stosowane w termodynamice. Oznacza stan, w którym makroskopowe

Bardziej szczegółowo

1. BADANIE SPIEKÓW 1.1. Oznaczanie gęstości i porowatości spieków

1. BADANIE SPIEKÓW 1.1. Oznaczanie gęstości i porowatości spieków 1. BADANIE SPIEKÓW 1.1. Oznaczanie gęstości i porowatości spieków Gęstością teoretyczną spieku jest stosunek jego masy do jego objętości rzeczywistej, to jest objętości całkowitej pomniejszonej o objętość

Bardziej szczegółowo

Nowoczesne metody metalurgii proszków. Dr inż. Hanna Smoleńska Materiały edukacyjne DO UŻYTKU WEWNĘTRZNEGO Część III

Nowoczesne metody metalurgii proszków. Dr inż. Hanna Smoleńska Materiały edukacyjne DO UŻYTKU WEWNĘTRZNEGO Część III Nowoczesne metody metalurgii proszków Dr inż. Hanna Smoleńska Materiały edukacyjne DO UŻYTKU WEWNĘTRZNEGO Część III Metal injection moulding (MIM)- formowanie wtryskowe Metoda ta pozwala na wytwarzanie

Bardziej szczegółowo

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał Statyka Cieczy i Gazów Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał 1. Podstawowe założenia teorii kinetyczno-molekularnej budowy ciał: Ciała zbudowane są z cząsteczek. Pomiędzy cząsteczkami

Bardziej szczegółowo

Nauka o Materiałach. Wykład IV. Polikryształy I. Jerzy Lis

Nauka o Materiałach. Wykład IV. Polikryształy I. Jerzy Lis Wykład IV Polikryształy I Jerzy Lis Treść wykładu I i II: 1. Budowa polikryształów - wiadomości wstępne. 2. Budowa polikryształów: jednofazowych porowatych z fazą ciekłą 3. Metody otrzymywania polikryształów

Bardziej szczegółowo

PODSTAWY OBRÓBKI CIEPLNEJ

PODSTAWY OBRÓBKI CIEPLNEJ PODSTAWY OBRÓBKI CIEPLNEJ STOPÓW ŻELAZA WYŻARZANIE Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego 1. POJĘCIA PODSTAWOWE 2. PRZEMIANY PRZY NAGRZEWANIU

Bardziej szczegółowo

WŁAŚCIWOŚCI MECHANICZNE PLASTYCZNOŚĆ. Zmiany makroskopowe. Zmiany makroskopowe

WŁAŚCIWOŚCI MECHANICZNE PLASTYCZNOŚĆ. Zmiany makroskopowe. Zmiany makroskopowe WŁAŚCIWOŚCI MECHANICZNE PLASTYCZNOŚĆ Zmiany makroskopowe Zmiany makroskopowe R e = R 0.2 - umowna granica plastyczności (0.2% odkształcenia trwałego); R m - wytrzymałość na rozciąganie (plastyczne); 1

Bardziej szczegółowo

Wykład IV: Polikryształy I. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych

Wykład IV: Polikryształy I. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Wykład IV: Polikryształy I JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Treść wykładu (część I i II): 1. Budowa polikryształów - wiadomości wstępne.

Bardziej szczegółowo

KONSTRUKCJE METALOWE - LABORATORIUM. Produkcja i budowa stali

KONSTRUKCJE METALOWE - LABORATORIUM. Produkcja i budowa stali KONSTRUKCJE METALOWE - LABORATORIUM Produkcja i budowa stali Produkcja stali ŻELAZO (Fe) - pierwiastek chemiczny, w stanie czystym miękki i plastyczny metal o niezbyt dużej wytrzymałości STAL - stop żelaza

Bardziej szczegółowo

MATERIAŁY SUPERTWARDE. rodzaje materiałów supertwardych, proces technologiczny materiałów spiekanych, zastosowanie,

MATERIAŁY SUPERTWARDE. rodzaje materiałów supertwardych, proces technologiczny materiałów spiekanych, zastosowanie, MATERIAŁY SUPERTWARDE rodzaje materiałów supertwardych, proces technologiczny materiałów spiekanych, zastosowanie, Supertwarde materiały Twarde i bardzo twarde materiały są potrzebne w takich przemysłowych

Bardziej szczegółowo

Metody łączenia metali. rozłączne nierozłączne:

Metody łączenia metali. rozłączne nierozłączne: Metody łączenia metali rozłączne nierozłączne: Lutowanie: łączenie części metalowych za pomocą stopów, zwanych lutami, które mają niższą od lutowanych metali temperaturę topnienia. - lutowanie miękkie

Bardziej szczegółowo

Materiały Reaktorowe. Właściwości mechaniczne

Materiały Reaktorowe. Właściwości mechaniczne Materiały Reaktorowe Właściwości mechaniczne Naprężenie i odkształcenie F A 0 l i l 0 l 0 l l 0 a. naprężenie rozciągające b. naprężenie ściskające c. naprężenie ścinające d. Naprężenie torsyjne Naprężenie

Bardziej szczegółowo

MATERIAŁY SUPERTWARDE

MATERIAŁY SUPERTWARDE MATERIAŁY SUPERTWARDE Twarde i supertwarde materiały Twarde i bardzo twarde materiały są potrzebne w takich przemysłowych zastosowaniach jak szlifowanie i polerowanie, cięcie, prasowanie, synteza i badania

Bardziej szczegółowo

OBRÓBKA PLASTYCZNA METALI

OBRÓBKA PLASTYCZNA METALI OBRÓBKA PLASTYCZNA METALI Plastyczność: zdolność metali i stopów do trwałego odkształcania się bez naruszenia spójności Obróbka plastyczna: walcowanie, kucie, prasowanie, ciągnienie Produkty i półprodukty

Bardziej szczegółowo

Obróbka cieplna stali

Obróbka cieplna stali OBRÓBKA CIEPLNA Obróbka cieplna stali Powstawanie austenitu podczas nagrzewania Ujednorodnianie austenitu Zmiany wielkości ziarna Przemiany w stali podczas chłodzenia Martenzytyczna Bainityczna Perlityczna

Bardziej szczegółowo

PODSTAWY OBRÓBKI CIEPLNEJ STOPÓW ŻELAZA WYŻARZANIE 1. POJĘCIA PODSTAWOWE 2. PRZEMIANY PRZY NAGRZEWANIU I POWOLNYM CHŁODZENIU STALI 3.

PODSTAWY OBRÓBKI CIEPLNEJ STOPÓW ŻELAZA WYŻARZANIE 1. POJĘCIA PODSTAWOWE 2. PRZEMIANY PRZY NAGRZEWANIU I POWOLNYM CHŁODZENIU STALI 3. PODSTAWY OBRÓBKI CIEPLNEJ STOPÓW ŻELAZA WYŻARZANIE 1. POJĘCIA PODSTAWOWE 2. PRZEMIANY PRZY NAGRZEWANIU I POWOLNYM CHŁODZENIU STALI 3. WYŻARZANIE 1. POJĘCIA PODSTAWOWE Definicja obróbki cieplnej Dziedzina

Bardziej szczegółowo

PL B1. WOJSKOWA AKADEMIA TECHNICZNA, Warszawa, PL BUP 22/09

PL B1. WOJSKOWA AKADEMIA TECHNICZNA, Warszawa, PL BUP 22/09 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 211592 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 384991 (22) Data zgłoszenia: 21.04.2008 (51) Int.Cl. B22F 9/22 (2006.01)

Bardziej szczegółowo

KONSTRUKCYJNE MATERIAŁY KOMPOZYTOWE PRZEZNACZONE DO WYSOKOOBCIĄŻONYCH WĘZŁÓW TARCIA

KONSTRUKCYJNE MATERIAŁY KOMPOZYTOWE PRZEZNACZONE DO WYSOKOOBCIĄŻONYCH WĘZŁÓW TARCIA II Konferencja: Motoryzacja-Przemysł-Nauka ; Ministerstwo Gospodarki, dn. 26 listopada 2014 KONSTRUKCYJNE MATERIAŁY KOMPOZYTOWE PRZEZNACZONE DO WYSOKOOBCIĄŻONYCH WĘZŁÓW TARCIA Dr hab. inż. Jerzy Myalski

Bardziej szczegółowo

OBRÓBKA CIEPLNA STOPÓW ŻELAZA. Cz. I. Wyżarzanie

OBRÓBKA CIEPLNA STOPÓW ŻELAZA. Cz. I. Wyżarzanie OBRÓBKA CIEPLNA STOPÓW ŻELAZA Cz. I. Wyżarzanie Przemiany przy nagrzewaniu i powolnym chłodzeniu stali A 3 A cm A 1 Przykład nagrzewania stali eutektoidalnej (~0,8 % C) Po przekroczeniu temperatury A 1

Bardziej szczegółowo

OBRÓBKA CIEPLNA STOPÓW ŻELAZA. Cz. II. Przemiany austenitu przechłodzonego

OBRÓBKA CIEPLNA STOPÓW ŻELAZA. Cz. II. Przemiany austenitu przechłodzonego OBRÓBKA CIEPLNA STOPÓW ŻELAZA Cz. II. Przemiany austenitu przechłodzonego WPŁYW CHŁODZENIA NA PRZEMIANY AUSTENITU Ar 3, Ar cm, Ar 1 temperatury przy chłodzeniu, niższe od równowagowych A 3, A cm, A 1 A

Bardziej szczegółowo

30/01/2018. Wykład V: Polikryształy II. Treść wykładu (część II): Krystalizacja ze stopu. Podstawowe metody otrzymywania polikryształów

30/01/2018. Wykład V: Polikryształy II. Treść wykładu (część II): Krystalizacja ze stopu. Podstawowe metody otrzymywania polikryształów Wykład V: Polikryształy II JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Treść wykładu (część II): Podstawowe metody otrzymywania polikryształów krystalizacja

Bardziej szczegółowo

Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i Techniki Wysokich Napięć. Dr hab.

Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i Techniki Wysokich Napięć. Dr hab. Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i Techniki Wysokich Napięć Dr hab. Paweł Żukowski Materiały magnetyczne Właściwości podstawowych materiałów magnetycznych

Bardziej szczegółowo

Technologia obróbki cieplnej. Grzanie i ośrodki grzejne

Technologia obróbki cieplnej. Grzanie i ośrodki grzejne Technologia obróbki cieplnej Grzanie i ośrodki grzejne Grzanie: nagrzewanie i wygrzewanie Dobór czasu grzania Rodzaje ośrodków grzejnych Powietrze Ośrodki gazowe Złoża fluidalne Kąpiele solne: sole chlorkowe

Bardziej szczegółowo

Wykład V: Polikryształy II. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych

Wykład V: Polikryształy II. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Wykład V: Polikryształy II JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Treść wykładu (część II): Podstawowe metody otrzymywania polikryształów krystalizacja

Bardziej szczegółowo

Pytania do egzaminu inżynierskiego, PWSZ Głogów, Przeróbka Plastyczna

Pytania do egzaminu inżynierskiego, PWSZ Głogów, Przeróbka Plastyczna Pytania do egzaminu inżynierskiego, PWSZ Głogów, Przeróbka Plastyczna 1. Badania własności materiałów i próby technologiczne 2. Stany naprężenia, kierunki, składowe stanu naprężenia 3. Porównywanie stanów

Bardziej szczegółowo

ANALIZA ROZDRABNIANIA WARSTWOWEGO NA PODSTAWIE EFEKTÓW ROZDRABNIANIA POJEDYNCZYCH ZIAREN

ANALIZA ROZDRABNIANIA WARSTWOWEGO NA PODSTAWIE EFEKTÓW ROZDRABNIANIA POJEDYNCZYCH ZIAREN Akademia Górniczo Hutnicza im. Stanisława Staszica Wydział Górnictwa i Geoinżynierii Katedra Inżynierii Środowiska i Przeróbki Surowców Rozprawa doktorska ANALIZA ROZDRABNIANIA WARSTWOWEGO NA PODSTAWIE

Bardziej szczegółowo

Nauka o Materiałach. Wykład XI. Właściwości cieplne. Jerzy Lis

Nauka o Materiałach. Wykład XI. Właściwości cieplne. Jerzy Lis Nauka o Materiałach Wykład XI Właściwości cieplne Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Stabilność termiczna materiałów 2. Pełzanie wysokotemperaturowe 3. Przewodnictwo cieplne 4. Rozszerzalność

Bardziej szczegółowo

STABILNOŚĆ STRUKTURALNA STALI P92 W KSZTAŁTOWANYCH PLASTYCZNIE ELEMENTACH RUROCIĄGÓW KOTŁÓW ENERGETYCZNYCH ANDRZEJ TOKARZ, WŁADYSŁAW ZALECKI

STABILNOŚĆ STRUKTURALNA STALI P92 W KSZTAŁTOWANYCH PLASTYCZNIE ELEMENTACH RUROCIĄGÓW KOTŁÓW ENERGETYCZNYCH ANDRZEJ TOKARZ, WŁADYSŁAW ZALECKI PL0400058 STABILNOŚĆ STRUKTURALNA STALI P92 W KSZTAŁTOWANYCH PLASTYCZNIE ELEMENTACH RUROCIĄGÓW KOTŁÓW ENERGETYCZNYCH ANDRZEJ TOKARZ, WŁADYSŁAW ZALECKI Instytut Metalurgii Żelaza im. S. Staszica, Gliwice

Bardziej szczegółowo

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342 ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342 wydany przez POLSKIE CENTRUM AKREDYTACJI 01-382 Warszawa ul. Szczotkarska 42 Wydanie nr 13, Data wydania: 22 kwietnia 2015 r. Nazwa i adres INSTYTUT

Bardziej szczegółowo

Laboratorium Dużych Odkształceń Plastycznych CWS

Laboratorium Dużych Odkształceń Plastycznych CWS Laboratorium Dużych Odkształceń Plastycznych CWS W Katedrze Przeróbki Plastycznej i Metaloznawstwa Metali Nieżelaznych AGH utworzono nowoczesne laboratorium, które wyposażono w oryginalną w skali światowej

Bardziej szczegółowo

PIERWIASTKI STOPOWE W STALACH. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

PIERWIASTKI STOPOWE W STALACH. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego PIERWIASTKI STOPOWE W STALACH Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Stal stopowa stop żelaza z węglem, zawierający do ok. 2% węgla i pierwiastki

Bardziej szczegółowo

Materiałoznawstwo optyczne CERAMIKA OPTYCZNA

Materiałoznawstwo optyczne CERAMIKA OPTYCZNA Materiałoznawstwo optyczne CERAMIKA OPTYCZNA Szkło optyczne i fotoniczne, A. Szwedowski, R. Romaniuk, WNT, 2009 POLIKRYSZTAŁY - ciała stałe o drobnoziarnistej strukturze, które są złożone z wielkiej liczby

Bardziej szczegółowo

Temat: kruszyw Oznaczanie kształtu ziarn. pomocą wskaźnika płaskości Norma: PN-EN 933-3:2012 Badania geometrycznych właściwości

Temat: kruszyw Oznaczanie kształtu ziarn. pomocą wskaźnika płaskości Norma: PN-EN 933-3:2012 Badania geometrycznych właściwości Wydział Geoinżynierii, Górnictwa i Geologii Politechniki Wrocławskiej Instrukcja do zajęć laboratoryjnych Eksploatacja i obróbka skał Badania geometrycznych właściwości Temat: kruszyw Oznaczanie kształtu

Bardziej szczegółowo

CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ

CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ Ciepło i temperatura Pojemność cieplna i ciepło właściwe Ciepło przemiany Przejścia między stanami Rozszerzalność cieplna Sprężystość ciał Prawo Hooke a Mechaniczne

Bardziej szczegółowo

MATERIAŁY KONSTRUKCYJNE

MATERIAŁY KONSTRUKCYJNE Stal jest to stop żelaza z węglem o zawartości węgla do 2% obrobiona cieplnie i przerobiona plastycznie Stale ze względu na skład chemiczny dzielimy głównie na: Stale węglowe Stalami węglowymi nazywa się

Bardziej szczegółowo

1. Otrzymywanie proszków metodą elektrolityczną

1. Otrzymywanie proszków metodą elektrolityczną 1. Otrzymywanie proszków metodą elektrolityczną Wśród metod fizykochemicznych metoda elektrolizy zajmuje drugie miejsce po redukcji w ogólnej produkcji proszków. W metodzie elektrolitycznej reduktorem

Bardziej szczegółowo

Obróbka cieplna stali

Obróbka cieplna stali Obróbka cieplna stali Obróbka cieplna stopów: zabiegi cieplne, które mają na celu nadanie im pożądanych cech mechanicznych, fizycznych lub chemicznych przez zmianę struktury stopu. Podstawowe etapy obróbki

Bardziej szczegółowo

PL B1. POLITECHNIKA ŚWIĘTOKRZYSKA, Kielce, PL BUP 17/16. MAGDALENA PIASECKA, Kielce, PL WUP 04/17

PL B1. POLITECHNIKA ŚWIĘTOKRZYSKA, Kielce, PL BUP 17/16. MAGDALENA PIASECKA, Kielce, PL WUP 04/17 PL 225512 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 225512 (13) B1 (21) Numer zgłoszenia: 415204 (51) Int.Cl. C23C 10/28 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ

WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ Instrukcja do ćwiczenia T-06 Temat: Wyznaczanie zmiany entropii ciała

Bardziej szczegółowo

Wykład IX: Odkształcenie materiałów - właściwości plastyczne

Wykład IX: Odkształcenie materiałów - właściwości plastyczne Wykład IX: Odkształcenie materiałów - właściwości plastyczne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych Treść wykładu: 1. Odkształcenie

Bardziej szczegółowo

PL B1. Akademia Górniczo-Hutnicza im. Stanisława Staszica,Kraków,PL BUP 14/02. Irena Harańczyk,Kraków,PL Stanisława Gacek,Kraków,PL

PL B1. Akademia Górniczo-Hutnicza im. Stanisława Staszica,Kraków,PL BUP 14/02. Irena Harańczyk,Kraków,PL Stanisława Gacek,Kraków,PL RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19)PL (11)195686 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 344720 (22) Data zgłoszenia: 19.12.2000 (51) Int.Cl. B22F 9/18 (2006.01)

Bardziej szczegółowo

STALE STOPOWE KONSTRUKCYJNE. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

STALE STOPOWE KONSTRUKCYJNE. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego STALE STOPOWE KONSTRUKCYJNE Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego STALE STOPOWE KONSTRUKCYJNE Ważniejsze grupy stali: stale spawalne o podwyższonej

Bardziej szczegółowo

Zespół Szkół Samochodowych

Zespół Szkół Samochodowych Zespół Szkół Samochodowych Podstawy Konstrukcji Maszyn Materiały Konstrukcyjne i Eksploatacyjne Temat: OTRZYMYWANIE STOPÓW ŻELAZA Z WĘGLEM. 2016-01-24 1 1. Stopy metali. 2. Odmiany alotropowe żelaza. 3.

Bardziej szczegółowo

Wykaz norm będących w zakresie działalności Komitetu Technicznego KT 301 ds. Odlewnictwa aktualizacja na dzień

Wykaz norm będących w zakresie działalności Komitetu Technicznego KT 301 ds. Odlewnictwa aktualizacja na dzień Wykaz norm będących w zakresie działalności Komitetu Technicznego KT 301 ds. Odlewnictwa aktualizacja na dzień 15.12.2016 Numer PN Odlewy PN-EN 1559-1:2011P PN-EN 1559-1:2011E PN-EN 1559-2:2014-12E PN-EN

Bardziej szczegółowo

2013-06-12. Konsolidacja Nanoproszków I - Formowanie. Zastosowanie Nanoproszków. Konsolidacja. Konsolidacja Nanoproszków - Formowanie

2013-06-12. Konsolidacja Nanoproszków I - Formowanie. Zastosowanie Nanoproszków. Konsolidacja. Konsolidacja Nanoproszków - Formowanie Konsolidacja Nanoproszków I - Formowanie Zastosowanie Nanoproszków w stanie zdyspergowanym katalizatory, farby, wypełniacze w stanie zestalonym(?): układy porowate katalizatory, sensory, elektrody, układy

Bardziej szczegółowo

Technologie Materiałowe II Wykład 2 Technologia wyżarzania stali

Technologie Materiałowe II Wykład 2 Technologia wyżarzania stali KATEDRA INŻYNIERII MATERIAŁOWEJ I SPAJANIA ZAKŁAD INŻYNIERII SPAJANIA Technologie Materiałowe II Wykład 2 Technologia wyżarzania stali dr hab. inż. Jerzy Łabanowski, prof.nadzw. PG Kierunek studiów: Inżynieria

Bardziej szczegółowo

Metaloznawstwo II Metal Science II

Metaloznawstwo II Metal Science II Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014

Bardziej szczegółowo

PODSTAWOWE POJĘCIA I PRAWA CHEMICZNE

PODSTAWOWE POJĘCIA I PRAWA CHEMICZNE PODSTAWOWE POJĘCIA I PRAWA CHEMICZNE Zadania dla studentów ze skryptu,,obliczenia z chemii ogólnej Wydawnictwa Uniwersytetu Gdańskiego 1. Jaka jest średnia masa atomowa miedzi stanowiącej mieszaninę izotopów,

Bardziej szczegółowo

OK Tubrodur Typ wypełnienia: specjalny

OK Tubrodur Typ wypełnienia: specjalny OK Tubrodur 14.70 EN 14700: T Z Fe14 Drut rdzeniowy do napawania wytwarzający stopiwo o dużej zawartości węglików chromu, niezwykle odporne na zużycie przez ścieranie drobnoziarnistymi materiałami, takimi

Bardziej szczegółowo

STRUKTURA STOPÓW UKŁADY RÓWNOWAGI FAZOWEJ. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

STRUKTURA STOPÓW UKŁADY RÓWNOWAGI FAZOWEJ. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego STRUKTURA STOPÓW UKŁADY RÓWNOWAGI FAZOWEJ Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Wykresy układów równowagi faz stopowych Ilustrują skład fazowy

Bardziej szczegółowo

Sympozjum Inżynieria materiałowa dla przemysłu

Sympozjum Inżynieria materiałowa dla przemysłu Sympozjum Inżynieria materiałowa dla przemysłu Kwazikrystaliczne stopy Al-Mn-Fe otrzymywane za pomocą metody szybkiej krystalizacji - struktura i własności Katarzyna Stan Promotor: Lidia Lityńska-Dobrzyńska,

Bardziej szczegółowo

IV Ogólnopolska Konferencja Naukowo-Techniczna Problematyka funkcjonowania i rozwoju branży metalowej w Polsce

IV Ogólnopolska Konferencja Naukowo-Techniczna Problematyka funkcjonowania i rozwoju branży metalowej w Polsce IV Ogólnopolska Konferencja Naukowo-Techniczna Problematyka funkcjonowania i rozwoju branży metalowej w Polsce Jedlnia Letnisko 28 30 czerwca 2017 Właściwości spieków otrzymanych techniką prasowania na

Bardziej szczegółowo

Nauka o Materiałach. Wykład IX. Odkształcenie materiałów właściwości plastyczne. Jerzy Lis

Nauka o Materiałach. Wykład IX. Odkształcenie materiałów właściwości plastyczne. Jerzy Lis Nauka o Materiałach Wykład IX Odkształcenie materiałów właściwości plastyczne Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Odkształcenie plastyczne 2. Parametry makroskopowe 3. Granica plastyczności

Bardziej szczegółowo

Rozdrabniarki i młyny.

Rozdrabniarki i młyny. Rozdrabniarki i młyny. Zmniejszenie rozmiarów ciała stałego połączone ze zniszczeniem jego struktury nazywamy rozdrabnianiem lub kruszeniem. Celem kruszenia jest uzyskanie materiałów o określonych pożądanych

Bardziej szczegółowo

w_08 Chemia mineralnych materiałów budowlanych c.d. Chemia metali budowlanych

w_08 Chemia mineralnych materiałów budowlanych c.d. Chemia metali budowlanych w_08 Chemia mineralnych materiałów budowlanych c.d. Chemia metali budowlanych Spoiwa krzemianowe Kompozyty krzemianowe (silikatowe) kity, zaprawy, farby szkło wodne Na 2 SiO 3 + 2H 2 O H 2 SiO 3 +

Bardziej szczegółowo

Zastosowanie programu DICTRA do symulacji numerycznej przemian fazowych w stopach technicznych kontrolowanych procesem dyfuzji" Roman Kuziak

Zastosowanie programu DICTRA do symulacji numerycznej przemian fazowych w stopach technicznych kontrolowanych procesem dyfuzji Roman Kuziak Zastosowanie programu DICTRA do symulacji numerycznej przemian fazowych w stopach technicznych kontrolowanych procesem dyfuzji" Roman Kuziak Instytut Metalurgii Żelaza DICTRA jest pakietem komputerowym

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Podstawy obróbki cieplnej Rok akademicki: 2013/2014 Kod: MIM-1-505-s Punkty ECTS: 4 Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Inżynieria Materiałowa Specjalność: Poziom

Bardziej szczegółowo

INSTYTUT INŻYNIERII MATERIAŁOWEJ PŁ LABORATORIUM TECHNOLOGII POWŁOK OCHRONNYCH ĆWICZENIE 1 POWŁOKI KONWERSYJNE-TECHNOLOGIE NANOSZENIA

INSTYTUT INŻYNIERII MATERIAŁOWEJ PŁ LABORATORIUM TECHNOLOGII POWŁOK OCHRONNYCH ĆWICZENIE 1 POWŁOKI KONWERSYJNE-TECHNOLOGIE NANOSZENIA INSTYTUT INŻYNIERII MATERIAŁOWEJ PŁ LABORATORIUM TECHNOLOGII POWŁOK OCHRONNYCH ĆWICZENIE 1 POWŁOKI KONWERSYJNE-TECHNOLOGIE NANOSZENIA WSTĘP TEORETYCZNY Powłoki konwersyjne tworzą się na powierzchni metalu

Bardziej szczegółowo

MATERIAŁOZNAWSTWO. dr hab. inż. Joanna Hucińska Katedra Inżynierii Materiałowej Pok. 128 (budynek Żelbetu )

MATERIAŁOZNAWSTWO. dr hab. inż. Joanna Hucińska Katedra Inżynierii Materiałowej Pok. 128 (budynek Żelbetu ) MATERIAŁOZNAWSTWO dr hab. inż. Joanna Hucińska Katedra Inżynierii Materiałowej Pok. 128 (budynek Żelbetu ) jhucinsk@pg.gda.pl MATERIAŁOZNAWSTWO dziedzina nauki stosowanej obejmująca badania zależności

Bardziej szczegółowo

Magazynowanie cieczy

Magazynowanie cieczy Magazynowanie cieczy Do magazynowania cieczy służą zbiorniki. Sposób jej magazynowania zależy od jej objętości i właściwości takich jak: prężność par, korozyjność, palność i wybuchowość. Zbiorniki mogą

Bardziej szczegółowo

Akademia Morska w Szczecinie Instytut InŜynierii Transportu Zakład Techniki Transportu. Materiałoznawstwo i Nauka o materiałach

Akademia Morska w Szczecinie Instytut InŜynierii Transportu Zakład Techniki Transportu. Materiałoznawstwo i Nauka o materiałach Akademia Morska w Szczecinie Instytut InŜynierii Transportu Zakład Techniki Transportu Instrukcja do ćwiczeń laboratoryjnych z przedmiotów Materiałoznawstwo i Nauka o materiałach Wpływ róŝnych rodzajów

Bardziej szczegółowo

Metale nieżelazne - miedź i jej stopy

Metale nieżelazne - miedź i jej stopy Metale nieżelazne - miedź i jej stopy Miedź jest doskonałym przewodnikiem elektryczności, ustępuje jedynie srebru. Z tego powodu miedź znalazła duże zastosowanie w elektrotechnice na przewody. Miedź charakteryzuje

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ

INSTRUKCJA DO ĆWICZEŃ UNIWERSYTET KAZIMIERZA WIELKIEGO Instytut Mechaniki Środowiska i Informatyki Stosowanej PRACOWNIA SPECJALISTYCZNA INSTRUKCJA DO ĆWICZEŃ Nr ćwiczenia TEMAT: Wyznaczanie porowatości objętościowej przez zanurzenie

Bardziej szczegółowo

WPŁYW RODZAJU MASY OSŁANIAJĄCEJ NA STRUKTURĘ, WŁAŚCIWOŚCI MECHANICZNE I ODLEWNICZE STOPU Remanium CSe

WPŁYW RODZAJU MASY OSŁANIAJĄCEJ NA STRUKTURĘ, WŁAŚCIWOŚCI MECHANICZNE I ODLEWNICZE STOPU Remanium CSe WYśSZA SZKOŁA INśYNIERII DENTYSTYCZNEJ im. prof. Meissnera w Ustroniu WYDZIAŁ INśYNIERII DENTYSTYCZNEJ WPŁYW RODZAJU MASY OSŁANIAJĄCEJ NA STRUKTURĘ, WŁAŚCIWOŚCI MECHANICZNE I ODLEWNICZE STOPU Remanium

Bardziej szczegółowo

BADANIE WYNIKÓW NAUCZANIA Z CHEMII KLASA I GIMNAZJUM. PYTANIA ZAMKNIĘTE.

BADANIE WYNIKÓW NAUCZANIA Z CHEMII KLASA I GIMNAZJUM. PYTANIA ZAMKNIĘTE. BADANIE WYNIKÓW NAUCZANIA Z CHEMII KLASA I GIMNAZJUM. PYTANIA ZAMKNIĘTE. 1. Którą mieszaninę można rozdzielić na składniki poprzez filtrację; A. Wodę z octem. B. Wodę z kredą. C. Piasek z cukrem D. Wodę

Bardziej szczegółowo

FABRYKA MASZYN BUDOWLANYCH "BUMAR" Sp. z o.o. Fabryka Maszyn Budowlanych ODLEWY ALUMINIOWE

FABRYKA MASZYN BUDOWLANYCH BUMAR Sp. z o.o. Fabryka Maszyn Budowlanych ODLEWY ALUMINIOWE Fabryka Maszyn Budowlanych BUMAR Sp. z o.o. ul. Fabryczna 6 73-200 CHOSZCZNO ODLEWY ALUMINIOWE 1.PIASKOWE DO 100 KG 2.KOKILOWE DO 30 KG 3.CISNIENIOWE DO 3 KG 1. Zapewniamy atesty i sprawdzenie odlewów

Bardziej szczegółowo

Utrwalenie wiadomości. Fizyka, klasa 1 Gimnazjum im. Jana Pawła II w Sułowie

Utrwalenie wiadomości. Fizyka, klasa 1 Gimnazjum im. Jana Pawła II w Sułowie Utrwalenie wiadomości Fizyka, klasa 1 Gimnazjum im. Jana Pawła II w Sułowie Za tydzień sprawdzian Ciało fizyczne a substancja Ciało Substancja gwóźdź żelazo szklanka szkło krzesło drewno Obok podanych

Bardziej szczegółowo

CIENKOŚCIENNE KONSTRUKCJE METALOWE

CIENKOŚCIENNE KONSTRUKCJE METALOWE CIENKOŚCIENNE KONSTRUKCJE METALOWE Wykład 2: Materiały, kształtowniki gięte, blachy profilowane MATERIAŁY Stal konstrukcyjna na elementy cienkościenne powinna spełniać podstawowe wymagania stawiane stalom:

Bardziej szczegółowo

Stal - definicja Stal

Stal - definicja Stal \ Stal - definicja Stal stop żelaza z węglem,plastycznie obrobiony i obrabialny cieplnie o zawartości węgla nieprzekraczającej 2,11% co odpowiada granicznej rozpuszczalności węgla w żelazie (dla stali

Bardziej szczegółowo

Wytrzymałość Materiałów

Wytrzymałość Materiałów Wytrzymałość Materiałów Rozciąganie/ ściskanie prętów prostych Naprężenia i odkształcenia, statyczna próba rozciągania i ściskania, właściwości mechaniczne, projektowanie elementów obciążonych osiowo.

Bardziej szczegółowo

BUDOWA ATOMU KRYSTYNA SITKO

BUDOWA ATOMU KRYSTYNA SITKO BUDOWA ATOMU KRYSTYNA SITKO Ziarnista budowa materii Otaczająca nas materia to świat różnorodnych substancji np. woda, powietrze, drewno, metale. Sprawiają one wrażenie, że mają budowę ciągłą, to znaczy

Bardziej szczegółowo

Kryteria oceniania z chemii kl VII

Kryteria oceniania z chemii kl VII Kryteria oceniania z chemii kl VII Ocena dopuszczająca -stosuje zasady BHP w pracowni -nazywa sprzęt laboratoryjny i szkło oraz określa ich przeznaczenie -opisuje właściwości substancji używanych na co

Bardziej szczegółowo

Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym).

Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym). Spis treści 1 Stan gazowy 2 Gaz doskonały 21 Definicja mikroskopowa 22 Definicja makroskopowa (termodynamiczna) 3 Prawa gazowe 31 Prawo Boyle a-mariotte a 32 Prawo Gay-Lussaca 33 Prawo Charlesa 34 Prawo

Bardziej szczegółowo

Samopropagująca synteza spaleniowa

Samopropagująca synteza spaleniowa Samopropagująca synteza spaleniowa Inne zastosowania nauki o spalaniu Dyfuzja gazów w płomieniu Zachowanie płynnych paliw i aerozoli; Rozprzestrzenianie się płomieni wzdłuż powierzchni Synteza spaleniowa

Bardziej szczegółowo

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach 1 STECHIOMETRIA INTERPRETACJA ILOŚCIOWA ZJAWISK CHEMICZNYCH relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

Bardziej szczegółowo

Synteza Nanoproszków Metody Chemiczne II

Synteza Nanoproszków Metody Chemiczne II Synteza Nanoproszków Metody Chemiczne II Bottom Up Metody chemiczne Wytrącanie, współstrącanie, Mikroemulsja, Metoda hydrotermalna, Metoda solwotermalna, Zol-żel, Synteza fotochemiczna, Synteza sonochemiczna,

Bardziej szczegółowo

( ) ( ) Frakcje zredukowane do ustalenia rodzaju gruntu spoistego: - piaskowa: f ' 100 f π π. - pyłowa: - iłowa: Rodzaj gruntu:...

( ) ( ) Frakcje zredukowane do ustalenia rodzaju gruntu spoistego: - piaskowa: f ' 100 f π π. - pyłowa: - iłowa: Rodzaj gruntu:... Frakcje zredukowane do ustalenia rodzaju gruntu spoistego: 100 f p - piaskowa: f ' p 100 f + f - pyłowa: - iłowa: ( ) 100 f π f ' π 100 ( f k + f ż ) 100 f i f ' i 100 f + f k ż ( ) k ż Rodzaj gruntu:...

Bardziej szczegółowo

PL B1. POLITECHNIKA LUBELSKA, Lublin, PL BUP 24/14. ZBIGNIEW PATER, Turka, PL JANUSZ TOMCZAK, Lublin, PL

PL B1. POLITECHNIKA LUBELSKA, Lublin, PL BUP 24/14. ZBIGNIEW PATER, Turka, PL JANUSZ TOMCZAK, Lublin, PL PL 223938 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 223938 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 403989 (22) Data zgłoszenia: 21.05.2013 (51) Int.Cl.

Bardziej szczegółowo

Metale i niemetale. Krystyna Sitko

Metale i niemetale. Krystyna Sitko Metale i niemetale Krystyna Sitko Substancje proste czyli pierwiastki dzielimy na : metale np. złoto niemetale np. fosfor półmetale np. krzem Spośród 115 znanych obecnie pierwiastków aż 91 stanowią metale

Bardziej szczegółowo

Dobór materiałów konstrukcyjnych

Dobór materiałów konstrukcyjnych Dobór materiałów konstrukcyjnych Dr inż. Hanna Smoleńska Materiały edukacyjne DO UŻYTKU WEWNĘTRZNEGO Część IV Tarcie i zużycie Wygląd powierzchni metalu dokładnie obrobionej obróbką skrawaniem P całkowite

Bardziej szczegółowo

chemia wykład 3 Przemiany fazowe

chemia wykład 3 Przemiany fazowe Przemiany fazowe Przemiany fazowe substancji czystych Wrzenie, krzepnięcie, przemiana grafitu w diament stanowią przykłady przemian fazowych, które zachodzą bez zmiany składu chemicznego. Diagramy fazowe

Bardziej szczegółowo

Kompozyty Ceramiczne. Materiały Kompozytowe. kompozyty. ziarniste. strukturalne. z włóknami

Kompozyty Ceramiczne. Materiały Kompozytowe. kompozyty. ziarniste. strukturalne. z włóknami Kompozyty Ceramiczne Materiały Kompozytowe intencjonalnie wytworzone materiały składające się, z co najmniej dwóch faz, które posiadają co najmniej jedną cechę lepszą niż tworzące je fazy. Pozostałe właściwości

Bardziej szczegółowo

(12) OPIS PATENTOWY (19) PL (11) (13) B1

(12) OPIS PATENTOWY (19) PL (11) (13) B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 159324 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 277320 (22) Data zgłoszenia: 23.01.1989 (51) Int.Cl.5: C23C 14/24

Bardziej szczegółowo

Sonochemia. Schemat 1. Strefy reakcji. Rodzaje efektów sonochemicznych. Oscylujący pęcherzyk gazu. Woda w stanie nadkrytycznym?

Sonochemia. Schemat 1. Strefy reakcji. Rodzaje efektów sonochemicznych. Oscylujący pęcherzyk gazu. Woda w stanie nadkrytycznym? Schemat 1 Strefy reakcji Rodzaje efektów sonochemicznych Oscylujący pęcherzyk gazu Woda w stanie nadkrytycznym? Roztwór Znaczne gradienty ciśnienia Duże siły hydrodynamiczne Efekty mechanochemiczne Reakcje

Bardziej szczegółowo

Powtórzenie wiadomości z klasy I. Cząsteczkowa budowa materii. Ciśnienie, prawo Pascala - obliczenia.

Powtórzenie wiadomości z klasy I. Cząsteczkowa budowa materii. Ciśnienie, prawo Pascala - obliczenia. Powtórzenie wiadomości z klasy I Cząsteczkowa budowa materii. Ciśnienie, prawo Pascala - obliczenia. Atomy i cząsteczki 1. Materia składa się z cząsteczek zbudowanych z atomów. 2. Atomy są bardzo małe,

Bardziej szczegółowo

PIERWIASTKI STOPOWE W STALACH

PIERWIASTKI STOPOWE W STALACH PIERWIASTKI STOPOWE W STALACH Stal stopowa - stop żelaza z węglem, zawierający do ok. 2 % węgla i pierwiastki (dodatki stopowe) wprowadzone celowo dla nadania stali wymaganych właściwości, otrzymany w

Bardziej szczegółowo

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342 ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342 wydany przez POLSKIE CENTRUM AKREDYTACJI 01-382 Warszawa ul. Szczotkarska 42 Wydanie nr 8, Data wydania: 17 września 2009 r. Nazwa i adres organizacji

Bardziej szczegółowo

Warunki izochoryczno-izotermiczne

Warunki izochoryczno-izotermiczne WYKŁAD 5 Pojęcie potencjału chemicznego. Układy jednoskładnikowe W zależności od warunków termodynamicznych potencjał chemiczny substancji czystej definiujemy następująco: Warunki izobaryczno-izotermiczne

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Zwykła próba rozciągania stali Numer ćwiczenia: 1 Laboratorium z przedmiotu:

Bardziej szczegółowo