EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
|
|
- Szczepan Stefański
- 5 lat temu
- Przeglądów:
Transkrypt
1 EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA Zasady oceniania rozwiązań zadań z arkusza egzaminacyjnego OMAP KWIECIEŃ 2019 Centralna Komisja Egzaminacyjna Warszawa
2 Zadanie 1. (0 1) Podstawa programowa Podstawa programowa PP 12. Obliczenia praktyczne. 4) wykonuje proste obliczenia kalendarzowe na dniach, tygodniach, miesiącach, latach. 1. Odczytywanie danych przedstawionych w różnej formie oraz ich przetwarzanie. KLASY IV VI XII. Obliczenia praktyczne. 4) wykonuje proste obliczenia kalendarzowe na dniach, tygodniach, miesiącach, latach. Zadanie 2. (0 1) C 4. Ułamki zwykłe i dziesiętne. 11) zaokrągla ułamki dziesiętne. I. Sprawność rachunkowa. 1. Wykonywanie nieskomplikowanych obliczeń w pamięci w działaniach trudniejszych pisemnie oraz wykorzystanie tych umiejętności w sytuacjach praktycznych. KLASY IV VI I. Liczby naturalne w dziesiątkowym układzie pozycyjnym. 4) zaokrągla liczby naturalne. 1 Rozporządzenie Ministra Edukacji Narodowej z dnia 27 sierpnia 2012 r. w sprawie podstawy programowej wychowania przedszkolnego oraz kształcenia ogólnego w poszczególnych typach szkół (Dz.U. z 30 sierpnia 2012 r. poz. 977); II etap edukacyjny: klasy IV VI. 2 Rozporządzenie Ministra Edukacji Narodowej z dnia 14 lutego 2017 r. w sprawie podstawy programowej wychowania przedszkolnego oraz podstawy programowej kształcenia ogólnego dla szkoły podstawowej, w tym dla uczniów z niepełnosprawnością intelektualną w stopniu umiarkowanym znacznym, kształcenia ogólnego dla branżowej szkoły I stopnia, kształcenia ogólnego dla szkoły specjalnej przysposabiającej do pracy oraz kształcenia ogólnego dla szkoły policealnej (Dz.U. z 2017 r. poz. 356); II etap edukacyjny: klasy VII i VIII. Strona 2 z 20
3 Zadanie 3. (0 1) B I reprezentacji. 1. Używanie prostych, dobrze znanych obiektów matematycznych, interpretowanie pojęć matematycznych i operowanie obiektami matematycznymi. KLASY VII i VIII I. Potęgi o podstawach wymiernych. 2) mnoży i dzieli potęgi o wykładnikach całkowitych dodatnich. Zadanie 4. (0 1) I. Sprawność KLASY VII i VIII rachunkowa. II. Pierwiastki. 1. Wykonywanie nieskomplikowanych 2) szacuje wielkość obliczeń w pamięci danego pierwiastka w działaniach kwadratowego trudniejszych pisemnie sześciennego oraz oraz wykorzystanie tych wyrażenia umiejętności arytmetycznego w sytuacjach zawierającego praktycznych. pierwiastki D Strona 3 z 20
4 Zadanie 5. (0-1) I. Sprawność rachunkowa. BC 2. Działania na liczbach naturalnych. 4) wykonuje dzielenie z resztą liczb naturalnych. I. Sprawność rachunkowa. 1. Wykonywanie nieskomplikowanych obliczeń w pamięci w działaniach trudniejszych pisemnie oraz wykorzystanie tych umiejętności w sytuacjach praktycznych. KLASY IV-VI II. Działania na liczbach naturalnych. 17) wyznacza wynik dzielenia z resztą liczby a przez liczbę b i zapisuje liczbę a w postaci: a = b q + r. Zadanie 6. (0 1) I KLASY VII i VIII VII. Proporcjonalność reprezentacji. prosta. 1. Używanie prostych, 3) stosuje podział dobrze znanych proporcjonalny. obiektów V. Obliczenia matematycznych, procentowe. interpretowanie pojęć 1) przedstawia część matematycznych wielkości jako procent i operowanie tej wielkości. obiektami matematycznymi. E Strona 4 z 20
5 Zadanie 7. (0 1) PP IV. Rozumowanie i argumentacja. 1. Przeprowadzanie prostego rozumowania, podawanie argumentów uzasadniających poprawność rozumowania, rozróżnianie dowodu od przykładu. KLASY VII i VIII XIII. Odczytywanie danych i elementy statystyki opisowej. 3) oblicza średnią arytmetyczną kilku liczb. Zadanie 8. (0 1) KLASY VII i VIII IV. Przekształcanie 1. Odczytywanie wyrażeń algebraicznych. danych Sumy algebraiczne przedstawionych i działania na nich. w różnej formie oraz ich przetwarzanie. 3) mnoży sumy algebraiczne przez jednomian i dodaje wyrażenia powstałe z mnożenia sum algebraicznych przez jednomiany, 4) mnoży dwumian przez dwumian, dokonując redukcji wyrazów podobnych C Strona 5 z 20
6 Zadanie 9. (0-1) B 1. Odczytywanie danych przedstawionych w różnej formie oraz ich przetwarzanie. VII-VIII X. Oś liczbowa. Układ współrzędnych na płaszczyźnie. 4) znajduje środek odcinka, którego końce mają dane współrzędne (całkowite wymierne) oraz znajduje współrzędne drugiego końca odcinka, gdy dany jest jeden koniec i środek. 3) rysuje w układzie współrzędnych na płaszczyźnie punkty kratowe o danych współrzędnych całkowitych (dowolnego znaku). Zadanie 10. (0 1) IV. Rozumowanie i tworzenie strategii. FP 11.Obliczenia w geometrii. 1) oblicza obwód wielokąta o danych długościach boków. IV. Rozumowanie i argumentacja. 1. Przeprowadzanie prostego rozumowania, podawanie argumentów uzasadniających poprawność rozumowania, rozróżnianie dowodu od przykładu. KLASY IV VI XI. Obliczenia w geometrii. 1) oblicza obwód wielokąta o danych długościach boków. Strona 6 z 20
7 Zadanie 11. (0 1) B 2. Odczytywanie danych przedstawionych w różnej formie oraz ich przetwarzanie. KLASY VII i VIII VIII. Własności figur geometrycznych na płaszczyźnie. 4) zna i stosuje cechy przystawania trójkątów. Zadanie 12. (0 1) A 11.Obliczenia w geometrii. 6) oblicza miary kątów, stosując przy tym poznane własności kątów i wielokątów. 9. Wielokąty, koła, okręgi. stosuje twierdzenie o sumie kątów trójkąta. I reprezentacji. 1. Używanie prostych, dobrze znanych obiektów matematycznych, interpretowanie pojęć matematycznych i operowanie obiektami matematycznymi. KLASY IV VI IX. Wielokąty, koła i okręgi. 5) zna najważniejsze własności kwadratu, prostokąta, rombu, równoległoboku i trapezu, rozpoznaje figury osiowosymetryczne i wskazuje osie symetrii figur; 3) stosuje twierdzenie o sumie kątów wewnętrznych trójkąta. Strona 7 z 20
8 Zadanie 13. (0 1) B I reprezentacji. 2. Dobieranie modelu matematycznego do prostej sytuacji oraz budowanie go w różnych kontekstach, także w kontekście praktycznym. KLASY VII i VIII VIII. Własności figur geometrycznych na płaszczyźnie. 8) zna i stosuje w sytuacjach praktycznych twierdzenie Pitagorasa (bez twierdzenia odwrotnego); Zadanie 14. (0 1) III. Modelowanie matematyczne. C 9. Wielokąty, koła, okręgi. 4) rozpoznaje i nazywa kwadrat, prostokąt, romb, równoległobok, trapez I reprezentacji. 1. Używanie prostych, dobrze znanych obiektów matematycznych, interpretowanie pojęć matematycznych i operowanie obiektami matematycznymi. Klasy IV VI XI. Obliczenia w geometrii. 5) oblicza objętość: [ ] prostopadłościanu przy danych długościach krawędzi. Strona 8 z 20
9 Zadanie 15. (0 1) B 2. Odczytywanie danych przedstawionych w różnej formie oraz ich przetwarzanie. KLASY VII i VIII XI. Geometria przestrzenna. 1) rozpoznaje graniastosłupy i ostrosłupy w tym proste i prawidłowe. Zadanie 16. (0 2) Przykładowe rozwiązania 12. Obliczenia praktyczne. 2) w przypadkach osadzonych w kontekście praktycznym oblicza procent danej wielkości w stopniu trudności typu 50%, 10%, 20%. 13. Elementy statystyki opisowej. 2) odczytuje i interpretuje dane przedstawione w tekstach, tabelach, diagramach i na wykresach. 2. Odczytywanie danych przedstawionych w różnej formie oraz ich przetwarzanie. I sposób 25% to 10 meczów 5% to 2 mecze 30% to 12 meczów drużyna przegrała 12 meczów Odpowiedź: Drużyna w ciągu całego sezonu przegrała 12 meczów. KLASY VII i VIII XIII. Odczytywanie danych i elementy statystyki opisowej. 1) interpretuje dane przedstawione za pomocą tabel, diagramów słupkowych i kołowych, wykresów, w tym także wykresów w układzie współrzędnych. V. Obliczenia procentowe. 2) oblicza liczbę a równą p procent danej liczby b. Strona 9 z 20
10 II sposób x liczba wszystkich rozegranych meczów 25% z x to 10 0,25x = 10 x = 40 Drużyna w całym sezonie rozegrała 40 meczów. Drużyna przegrała 30% meczów. 0,3 40 = 12 Odpowiedź: Drużyna w ciągu całego sezonu przegrała 12 meczów. III sposób 25% to 10 meczów 100% to 40 meczów drużyna w całym sezonie rozegrała 40 meczów 10% to 4 mecze 30% to 12 meczów drużyna przegrała 12 meczów Odpowiedź: Drużyna w ciągu całego sezonu przegrała 12 meczów. Zasady oceniania 2 punkty pełne rozwiązanie obliczenie liczby przegranych meczów (12) 1 punkt poprawny sposób obliczenia liczby przegranych meczów obliczenie liczby wszystkich rozegranych meczów (40) 0 punktów rozwiązanie, w którym nie dokonano istotnego postępu Zadanie 17. (0 2) III. Modelowanie matematyczne. 12. Obliczenia praktyczne. 9) w sytuacji praktycznej oblicza: drogę przy danej prędkości i danym czasie, prędkość przy danej drodze i danym czasie, czas przy danej drodze i danej prędkości; stosuje jednostki prędkości: km/h, m/s. I reprezentacji. 2. Dobieranie modelu matematycznego do prostej sytuacji oraz budowanie go w różnych kontekstach, także w kontekście praktycznym. KLASY IV VI XII. Obliczenia praktyczne. 9) w sytuacji praktycznej oblicza: drogę przy danej prędkości i czasie, prędkość przy danej drodze i czasie, czas przy danej drodze i prędkości oraz stosuje jednostki prędkości km/h i m/s. Strona 10 z 20
11 Przykładowe rozwiązania I sposób Obliczamy czas przejazdu busa 1 h 80 km 0,5 h 40 km 1,5 h 120 km Obliczamy różnicę 1,5 h 75 min = 15 minut Odpowiedź: Czas przejazdu tej trasy samochodem był o 15 minut krótszy niż busem. II sposób Obliczamy czas jazdy busa 120 : 80 = 1,5 (h) 1,5 h = 90 minut Obliczamy różnicę czasu = 15 (minut) Odpowiedź: Czas przejazdu tej trasy samochodem był o 15 minut krótszy niż busem. III sposób Obliczamy czas jazdy busa 120 : 80 = 1,5 (h) 75 1 = 1 (h) Obliczamy różnicę czasu 1 1 = (h) Odpowiedź: Czas przejazdu tej trasy samochodem był o 15 minut krótszy niż busem. IV sposób Samochód: 75 min 120 km Bus: 60 min 80 km 15 min 20 km 75 min 100 km W czasie 75 minut bus przejechał o 20 km mniej niż samochód. Na przejechanie pozostałych 20 km potrzebował 15 minut. Odpowiedź: Czas przejazdu tej trasy samochodem był o 15 minut krótszy niż busem. Zasady oceniania 2 punkty pełne rozwiązanie wyznaczenie różnicy czasu (15 minut 4 1 godziny) 1 punkt poprawny sposób obliczenia czasu jazdy busa poprawny sposób obliczenia, o ile kilometrów mniej przejechał bus od samochodu osobowego w ciągu 75 minut 0 punktów rozwiązanie, w którym nie dokonano istotnego postępu Strona 11 z 20
12 Zadanie 18. (0 2) IV. Rozumowanie i tworzenie strategii. 14. Zadania tekstowe. 5) do rozwiązywania zadań osadzonych w kontekście praktycznym stosuje poznaną wiedzę z zakresu arytmetyki i geometrii oraz nabyte umiejętności rachunkowe, a także własne poprawne metody 2. Działania na liczbach naturalnych. 12) szacuje wyniki działań. IV. Rozumowanie i argumentacja. 1. Przeprowadzanie prostego rozumowania, podawanie argumentów uzasadniających poprawność rozumowania, rozróżnianie dowodu od przykładu. KLASY IV VI XIV. Zadania tekstowe. 5) do rozwiązania zadań osadzonych w kontekście praktycznym stosuje poznaną wiedzę z zakresu arytmetyki i geometrii oraz nabyte umiejętności rachunkowe, a także poznane poprawne metody II. Działania na liczbach naturalnych. 12) szacuje wyniki działań. Przykładowe rozwiązania I sposób x liczba róż w bukiecie 2x liczba tulipanów w bukiecie 4x koszt róż w bukiecie 2x 3 koszt tulipanów w bukiecie 4x + 6x = 35 10x = 35 x = 3,5 Za 35 zł można kupić maksymalnie 3 róże i 6 tulipanów. Odpowiedź: Najmniej reszty otrzyma się przy zakupie 3 róż i 6 tulipanów. II sposób Minimalny bukiet zgodnie z warunkami zadania: 1 róża i 2 tulipany. Koszt takiego bukietu: = 10 zł Za 35zł można kupić bukiet składający się maksymalnie z trzech takich zestawów, czyli 3 róż i 6 tulipanów. Odpowiedź: Najmniej reszty otrzyma się przy zakupie 3 róż i 6 tulipanów. Strona 12 z 20
13 III sposób Liczba Liczba Koszt bukietu róż goździków = 20 zł < 35 zł = 30zł < 35 zł = 40 zł > 35 zł Odpowiedź: Najmniej reszty otrzyma się przy zakupie 3 róż i 6 tulipanów. Zasady oceniania 2 punkty pełne rozwiązanie ustalenie maksymalnej liczby kwiatów, które można kupić za 35 zł (3 róże i 6 tulipanów) 1 punkt poprawny sposób ustalenia maksymalnej liczby kwiatów, które można kupić za 35 zł obliczenie kosztu zakupu 1 róży i 2 tulipanów (10 zł) 0 punktów rozwiązanie błędne brak rozwiązania Strona 13 z 20
14 Zadanie 19. (0-3) Przykładowe rozwiązania I sposób = = to 4 konkurencje 1 to 24 konkurencje 4. Ułamki zwykłe i dziesiętne. 1) opisuje część danej całości za pomocą ułamka. 5. Działania na ułamkach zwykłych i dziesiętnych. 1) dodaje, odejmuje, mnoży i dzieli ułamki zwykłe o mianownikach jedno dwucyfrowych, a także liczby mieszane. Odpowiedź: Podczas festynu zaplanowano przeprowadzenie 24 konkurencji. II sposób x liczba zaplanowanych konkurencji 1 1 x = x+ x x = 24 Odpowiedź: Podczas festynu zaplanowano przeprowadzenie 24 konkurencji. KLASY IV VI XIV. Zadania tekstowe. 5) do rozwiązania zadań osadzonych w kontekście praktycznym stosuje poznaną wiedzę z zakresu arytmetyki i geometrii oraz nabyte umiejętności rachunkowe, a także poznane poprawne metody II. Działania na liczbach naturalnych. 12) szacuje wyniki działań. Strona 14 z 20
15 III sposób 4 konkurencje 1 6 to 4 konkurencje 1 to 24 konkurencje Odpowiedź: Podczas festynu zaplanowano przeprowadzenie 24 konkurencji. Zasady oceniania 3 punkty pełne rozwiązanie obliczenie liczby zaplanowanych konkurencji (36) 2 punkty ustalenie, że 12 konkurencji stanowi 1 3 wszystkich zaplanowanych konkurencji zapisanie równania pozwalającego wyznaczyć liczbę zaplanowanych konkurencji obliczenie połowy z zaplanowanych konkurencji (18) 1 punkt opisanie za pomocą wyrażenia arytmetycznego ułamka, jaką częścią wszystkich konkurencji są konkurencje przeprowadzone w godzinach od do ( , 1 6 ) opisanie za pomocą wyrażenia algebraicznego liczby konkurencji przeprowadzonych w godzinach od do sposób obliczenia połowy z zaplanowanych konkurencji 1 ustalenie że 6 konkurencji stanowi z połowy zaplanowanych konkurencji (ale z komentarzem) 3 ustalenie że 12 konkurencji stanowi punktów rozwiązanie błędne brak rozwiązania z połowy zaplanowanych konkurencji (ale z komentarzem) Strona 15 z 20
16 Zadanie 20. (0 3) IV. Rozumowanie i tworzenie strategii. Przykładowe rozwiązania I sposób 11.Obliczenia w geometrii. 2) oblicza pola: kwadratu, prostokąta, rombu, równoległoboku, trójkąta, trapezu przedstawionych na rysunku (w tym na własnym rysunku pomocniczym) oraz w sytuacjach praktycznych. 6. Elementy algebry. 2) stosuje oznaczenia literowe nieznanych wielkości liczbowych i zapisuje proste wyrażenie algebraiczne na podstawie informacji osadzonych w kontekście praktycznym. IV. Rozumowanie i argumentacja. 3. Stosowanie strategii wynikającej z treści zadania, tworzenie strategii rozwiązania problemu, również w rozwiązaniach wieloetapowych oraz takich, które wymagają umiejętności łączenia wiedzy z różnych działów matematyki. KLASY VII I VIII IX. Wielokąty. 2) stosuje wzory na pole trójkąta, prostokąta, kwadratu, równoległoboku, rombu, trapezu, a także do wyznaczania długości odcinków [ ]. b= 2a Zatem wymiary działki przed podziałem można opisać jako 2a i 3a. 3a 2a = a a 2 2 = 3750 = 625 a = 25 2a = 2 25 = 50 3a = 3 25 = 75 Odpowiedź: Działka przed podziałem miała 75 m długości i 50 m szerokości. Strona 16 z 20
17 II sposób a b a a b b = 2a Zatem wymiary każdej małej działki można opisać jako 2a i a : 3 = 1250 a 2a = a = a = 625 a = 25 Wymiary działki przed podziałem: b = 2a = 2 25 = 50 a + b = = 75 Odpowiedź: Działka przed podziałem miała 75 m długości i 50 m szerokości. III sposób a b a a b Skoro b = 2a, to każda z trzech prostokątnych działek składa się z dwóch działek kwadratowych o boku a, stąd 3750 : 6 = 2 a = 625 a = Wymiary działki przed podziałem: b = 2a = 2 25 = 50 a + b = = 75 Odpowiedź: Działka przed podziałem miała 75 m długości i 50 m szerokości. Strona 17 z 20
18 Zasady oceniania 3 punkty pełne rozwiązanie obliczenie wymiarów działki przed podziałem (50 m, 75 m) 2 punkty poprawny sposób obliczenia jednego wymiaru prostokąta 1 punkt ustalenie, że długości wymiarów małej działki pozostają w stosunku 2:1 0 punktów rozwiązanie błędne brak rozwiązania Uwagi: Jeżeli uczeń podaje wymiary działki przed podziałem bez przedstawienia sposobu ich obliczenia, to otrzymuje 1 punkt. Nie oceniamy stosowania jednostek. Zadanie 21. (0-3) III. Modelowanie matematyczne. 11.Obliczenia w geometrii. 1) oblicza obwód wielokąta o danych długościach boków. I reprezentacji. 2. Dobieranie modelu matematycznego do prostej sytuacji oraz budowanie go w różnych kontekstach, także w kontekście praktycznym. Klasy VII i VIII VIII. Własności figur geometrycznych na płaszczyźnie. 8) zna i stosuje w sytuacjach praktycznych twierdzenie Pitagorasa (bez twierdzenia odwrotnego). Klasy IV VI XI. Obliczenia w geometrii. 1) oblicza obwód wielokąta o podanych długościach boków. Strona 18 z 20
19 Przykładowe rozwiązania I sposób x długość przeciwprostokątnej C = x 2 x = 20 cm 20 cm : 2 = 10 cm 16 cm y x y = 10 2 y = 6 cm. A 12 cm B 12 cm + 16 cm + 20 cm = 48 cm obwód trójkąta ABC 6 cm + 12 cm + 10 cm + 6 cm + 10 cm = 44 cm obwód trapezu PRST 48 cm 44 cm = 4 cm Odpowiedź: Różnica obwodów trójkąta ABC i trapezu PRST jest równa 4 cm. II sposób x długość przeciwprostokątnej C = x 2 x = 20 cm 20 cm : 2 = 10 cm 16 cm y x y = 10 2 y = 6 cm 16 cm 2 6 cm = 4 cm A. 12 cm B Odpowiedź: Różnica obwodów trójkąta ABC i trapezu PRST jest równa 4 cm. Strona 19 z 20
20 Zasady oceniania 3 punkty pełne rozwiązanie obliczenie obwodów trójkąta ABC i trapezu PRST oraz różnicy tych obwodów (48 cm, 44 cm, 4 cm) 2 punkty przedstawienie poprawnego sposobu obliczenia obwodu trójkąta ABC i obwodu trapezu PRST przedstawienie poprawnego sposobu obliczenia różnicy między obwodami trójkąta ABC i trapezu PRST obliczenie obwodu trapezu (44) 1 punkt przedstawienie poprawnego sposobu obliczenia długości przeciwprostokątnej trójkąta ABC 0 punktów rozwiązanie błędne brak rozwiązania Uwaga: Nie oceniamy jednostek. Strona 20 z 20
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA Zasady oceniania rozwiązań zadań z arkusza egzaminacyjnego OMAP-500-1904 KWIECIEŃ 2019 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (0
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA rozwiązań zadań z arkusza egzaminacyjnego OMAP-Q00-1904 KWIECIEŃ 2019 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (2 pkt) Podstawa programowa
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA rozwiązań zadań z arkusza egzaminacyjnego OMAP-800 KWIECIEŃ 2019 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (0 3) Podstawa programowa
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA rozwiązań zadań z przykładowego arkusza egzaminacyjnego (EO_Q) GRUDZIEŃ 2017 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (2 pkt) II.
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA rozwiązań zadań z przykładowego arkusza egzaminacyjnego (EO_8) GRUDZIEŃ 2017 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (0 2) II. Wykorzystanie
MATEMATYKA. klasa VII. Podstawa programowa przedmiotu SZKOŁY BENEDYKTA
2017-09-01 MATEMATYKA klasa VII Podstawa programowa przedmiotu SZKOŁY BENEDYKTA Cele kształcenia wymagania ogólne I. Sprawność rachunkowa. 1. Wykonywanie nieskomplikowanych obliczeń w pamięci lub w działaniach
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA rozwiązań zadań z próbnego arkusza egzaminacyjnego OMAP-100-1812 GRUDZIEŃ 2018 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (0 1) Podstawa
MATERIAŁ ĆWICZENIOWY DLA UCZNIÓW I NAUCZYCIELI
EGZAMIN ÓSMOKLASISTY MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ MATERIAŁ ĆWICZENIOWY DLA UCZNIÓW I NAUCZYCIELI MARZEC 2019 Zestaw zadań został opracowany przez Okręgową Komisję Egzaminacyjną w Krakowie
MATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. programowej dla klas IV-VI. programowej dla klas IV-VI.
MATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI. LICZBY I DZIAŁANIA 6 h Liczby. Rozwinięcia
MATEMATYKA KLASA VI. Podstawa programowa przedmiotu SZKOŁY BENEDYKTA
2016-09-01 MATEMATYKA KLASA VI Podstawa programowa przedmiotu SZKOŁY BENEDYKTA I. Sprawność rachunkowa. Cele kształcenia wymagania ogólne Uczeń wykonuje proste działania pamięciowe na liczbach naturalnych,
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP. V. Obliczenia procentowe. Uczeń: 1) przedstawia część wielkości jako procent tej wielkości;
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP Liczby. TEMAT Rozwinięcia dziesiętne liczb wymiernych. Zaokrąglanie liczb. Szacowanie wyników. Dodawanie i odejmowanie liczb dodatnich. Mnożenie i dzielenie
Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum)
Podstawa programowa przedmiotu MATEMATYKA III etap edukacyjny (klasy I - III gimnazjum) Cele kształcenia wymagania ogólne: I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i tworzy teksty o
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IV
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IV Dział I. Liczby naturalne część 1 Jak się uczyć matematyki Oś liczbowa Jak zapisujemy liczby Szybkie dodawanie Szybkie odejmowanie Tabliczka mnożenia Tabliczka
MATEMATYKA DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ
MATEMATYKA DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT 1. LICZBY I DZIAŁANIA Liczby. Rozwinięcia dziesiętne liczb wymiernych. Zaokrąglanie liczb. Szacowanie wyników. Dodawanie i odejmowanie
PRÓBNY EGZAMIN ÓSMOKLASISTY Z NOWĄ ERĄ 2018/2019 MATEMATYKA
PRÓBNY EGZAMIN ÓSMOKLASISTY Z NOWĄ ERĄ 2018/2019 MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ Copyright by Nowa Era Sp. z o.o. Zadanie 1. (0 1) I. Sprawność rachunkowa. 1. Wykonywanie nieskomplikowanych
ZESTAWIENIE TEMATÓW Z MATEMATYKI Z PLUSEM DLA KLASY VIII Z WYMAGANIAMI PODSTAWY PROGRAMOWEJ WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ
ZESTAWIENIE TEMATÓW Z MATEMATYKI Z PLUSEM DLA KLASY VIII Z WYMAGANIAMI PODSTAWY PROGRAMOWEJ TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI 1. LICZBY I DZIAŁANIA 14 h
WYMAGANIA EDUKACUJNE Z MATEMATYKI Z PLUSEM DLA KLASY VIII WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ TEMAT
WYMAGANIA EDUKACUJNE Z MATEMATYKI Z PLUSEM DLA KLASY VIII TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I DZIAŁANIA System rzymski. Powtórzenie i utrwalenie umiejętności z zakresu podstawy
Rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas
22 Rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas KLASA 5 Nr lekcji Temat lekcji 1 2 Wakacje, wakacje... i po wakacjach 3 Systemy zapisywania liczb
ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ
LICZBA GODZIN TEMAT LEKCYJNYCH LICZBY NATURALNE I UŁAMKI (11 H) 1. Rachunki pamięciowe na liczbach naturalnych i ułamkach dziesiętnych. ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ WYMAGANIA SZCZEGÓŁOWE
TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2
TEMAT 1. LICZBY I DZIAŁANIA 14 20 LICZBA GODZIN LEKCYJNYCH 1. Liczby 1-2 2. Rozwinięcia dziesiętne liczb wymiernych 3. Zaokrąglanie liczb. Szacowanie wyników 1 1-2 WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ
MATEMATYKA KLASA IV. Podstawa programowa przedmiotu SZKOŁY BENEDYKTA
2016-09-01 MATEMATYKA KLASA IV Podstawa programowa przedmiotu SZKOŁY BENEDYKTA Cele kształcenia wymagania ogólne I. Sprawność rachunkowa. Uczeń wykonuje proste działania pamięciowe na liczbach naturalnych,
I. WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE 4 SZKOŁY PODSTAWOWEJ
I. WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE 4 SZKOŁY 1. W zakresie sprawności rachunkowej uczeń: wykonuje proste działania pamięciowe na liczbach naturalnych, zna i stosuje algorytmy działań pisemnych
Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)
Matematyka z kluczem Układ treści w klasach 4 8 szkoły podstawowej KLASA 4 (126 h) część 1 (59 h) I. LICZBY NATURALNE część 1 (23) 1. Jak się uczyć matematyki (1) 2. Oś liczbowa 3. Jak zapisujemy liczby
Rozkład materiału nauczania. Klasa 5
1 Rozkład materiału nauczania. Klasa 5 Temat 1 2 Wakacje, wakacje... i po wakacjach 3 Systemy zapisywania liczb 4 5 Rachunek pamięciowy Dodawanie i mnożenie LICZBY NATURALNE (20 h) 1 2. 3 ) wykonuje proste
ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ
ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ TEMAT 1. Rachunki pamięciowe na liczbach naturalnych i ułamkach dziesiętnych. LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII
Wymagania edukacyjne klasa pierwsza.
Wymagania edukacyjne klasa pierwsza. TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I DZIAŁANIA Liczby Rozwinięcia dziesiętne liczb wymiernych Zaokrąglanie liczb. Szacowanie wyników Dodawanie
PRZEDMIOTOWY SYSTEM OCENIANIA W KLASIE IV MATEMATYKA Z KLASĄ
PRZEDMIOTOWY SYSTEM OCENIANIA W KLASIE IV MATEMATYKA Z KLASĄ Na ocenę niedostateczną: nie spełnia kryteriów oceny dopuszczającej. 1. Liczby naturalne w dziesiątkowym układzie pozycyjnym 1) odczytuje i
Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)
Matematyka z kluczem Układ treści w klasach 4 8 szkoły podstawowej KLASA 4 (126 h) część 1 (59 h) I. LICZBY NATURALNE część 1 (23) 1. Jak się uczyć matematyki (1) 2. Oś liczbowa 3. Jak zapisujemy liczby
Zakres wymagań z Podstawy Programowej dla klas IV- VI szkoły podstawowej. z przedmiotu matematyka
Zakres wymagań z Podstawy Programowej dla klas IV- VI szkoły podstawowej z przedmiotu matematyka 1. Liczby naturalne w dziesiątkowym układzie pozycyjnym. Uczeń 1) odczytuje i zapisuje liczby naturalne
Wymagania edukacyjne klasa trzecia.
TEMAT Wymagania edukacyjne klasa trzecia. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Lekcja organizacyjna System dziesiątkowy System rzymski Liczby wymierne i niewymierne
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 016/017 CZĘŚĆ. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 017 Zadanie 1. (0 1) II. Wykorzystywanie i interpretowanie reprezentacji.
Zakres tematyczny - PINGWIN. Klasa IV szkoły podstawowej 1. Zakres treści programowych z I etapu kształcenia. 2. Liczby naturalne i działania:
Zakres tematyczny - PINGWIN Klasa IV szkoły podstawowej 1. Zakres treści programowych z I etapu kształcenia. 2. Liczby naturalne i działania: zapisywanie i porównywanie liczb rachunki pamięciowe porównywanie
REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM
REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM Treści nauczania wg podstawy programowej Podręcznik M+ Klasa I Klasa II Klasa III 1. Liczby wymierne dodatnie. Uczeń: 1) odczytuje
WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM
WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM TEMAT WYMAGANIA SZCZEGÓŁOWE 1. LICZBY I WYRAŻENIA ALGEBRAICZNE 2. System dziesiątkowy 1. Liczby wymierne dodatnie. Uczeń: 1) zaokrągla rozwinięcia dziesiętne
TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2
TEMAT 1. LICZBY I DZIAŁANIA 14 0 LICZBA GODZIN LEKCYJNYCH 1. Liczby 1-. Rozwinięcia dziesiętne liczb wymiernych 3. Zaokrąglanie liczb. Szacowanie wyników 4. Dodawanie i odejmowanie liczb dodatnich 1 1-
MATEMATYKA. klasa IV. Podstawa programowa przedmiotu SZKOŁY BENEDYKTA
2017-09-01 MATEMATYKA klasa IV Podstawa programowa przedmiotu SZKOŁY BENEDYKTA Cele kształcenia wymagania ogólne I. Sprawności rachunkowa. 1) Wykonywanie nieskomplikowanych obliczeń w pamięci lub w działaniach
WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE
WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE Przekształcenia algebraiczne Równania i układy równań Pojęcie funkcji. Własności funkcji. WYRAŻENIA
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 016/017 CZĘŚĆ. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-MX1, GM-M, GM-M4, GM-M5, GM-M6 KWIECIEŃ 017 Zadanie 1. (0 1) II. Wykorzystywanie
ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ
TEMAT ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ LICZBA GODZIN LEKCYJNYCH LICZBY NATURALNE I UŁAMKI (12 H) 1. Rachunki pamięciowe na liczbach naturalnych i ułamkach dziesiętnych. WYMAGANIA SZCZEGÓŁOWE
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym
II. Działania na liczbach naturalnych. Uczeń:
TEMAT 1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe. 3. Kolejność działań. 4. Sprytne rachunki. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z 14. II. 2017. I. Liczby naturalne w dziesiątkowym
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym
1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe Kolejność działań Sprytne rachunki. 1 1.
TEMAT.LICZBY I DZIAŁANIA LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 008 R.. Zapisywanie i porównywanie liczb.. Rachunki pamięciowe. 3. Kolejność działań. 4. Sprytne rachunki..
Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka
Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka TEMAT 5. Przekątna kwadratu. Wysokość trójkąta równobocznego 6. Trójkąty o kątach 90º, 45º, 45º oraz 90º, 30º, 60º 1. Okrąg opisany na trójkącie
Wymagania edukacyjne z matematyki w klasie piątej
Wymagania edukacyjne z matematyki w klasie piątej Klasa V Wymagania Wymagania ponad Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń: Zastosowania matematyki
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA zna znaki używane do zapisu liczb w systemie rzymskim; zna zasady zapisu liczb w systemie rzymskim; umie zapisać
Wymagania na poszczególne oceny szkolne w klasie V
Wymagania na poszczególne oceny szkolne w klasie V Wymagania Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń: Zastosowania matematyki praktycznych liczbę
MATEMATYKA KLASA VI Uczeń kończący klasę VI powinien umieć:
MATEMATYKA KLASA VI Uczeń kończący klasę VI powinien umieć: dodawać, odejmować, mnożyć i dzielić liczby naturalne, ułamki zwykłe oraz ułamki dziesiętne, obliczać wartości wyrażeń arytmetycznych i algebraicznych
ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi
ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. Zgodnie z przyjętymi założeniami w programie nauczania
MIEJSKI OŚRODEK DOSKONALENIA NAUCZYCIELI w KONINIE. ul. Sosnowa 6, Konin tel/fax lub
MIEJSKI OŚRODEK DOSKONALENIA NAUCZYCIELI w KONINIE ul. Sosnowa 6, 62-510 Konin tel/fax. 632433352 lub 632112756 sekretariat@modn.konin.pl www.modn.konin.pl CENTRUM DOSKONALENIA NAUCZYCIELI W KONINIE ul.
WYMAGANIA EGZAMINACYJNE DLA KLASY V
TEMAT WYMAGANIA EGZAMINACYJNE DLA KLASY V WYMAGANIA SZCZEGÓŁOWE 1.LICZBY I DZIAŁANIA 1. Zapisywanie i I. Liczby naturalne w dziesiątkowym układzie pozycyjnym. porównywanie liczb. Uczeń: 1) zapisuje i odczytuje
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA rozwiązań zadań z przykładowego arkusza egzaminacyjnego (EO_1) GRUDZIEŃ 2017 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (0 1) II. Wykorzystanie
Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII Uczeń na ocenę dopuszczającą: - zna znaki używane do zapisu liczb w systemie rzymskim, - umie zapisać i odczytać liczby naturalne dodatnie w systemie rzymskim
podstawowe (ocena dostateczna) 3 Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń:
Klasa V Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem
Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności
Matematyka Plan wynikowy klasa 6
Matematyka 2001. Plan wynikowy klasa 6 Oznaczenia: O odtwarzanie SP stosowanie procedur RP rozwiązywanie problemów P podstawowy poziom PP ponadpodstawowy poziom 1. Mnożenie ułamków zwykłych W sezonie czy
Wymagania edukacyjne z matematyki oraz sposoby sprawdzania wiedzy i umiejętności.
Wymagania edukacyjne z matematyki oraz sposoby sprawdzania wiedzy i umiejętności. Liczby naturalne. Działania na liczbach naturalnych. Proste i odcinki. Kąty. Koła i okręgi. Działania pisemne na liczbach
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne OCENĘ NIEDOSTATECZNĄ OTRZYMUJE UCZEŃ KTÓRY NIE SPEŁNIA KRYTERIÓW DLA OCENY DOPUSZCZAJĄCEJ, NIE KORZYSTA Z PROPONOWANEJ POMOCY W POSTACI ZAJĘĆ WYRÓWNAWCZYCH, PRACUJE
Lista działów i tematów
Lista działów i tematów Szkoła podstawowa. Klasa 4 Liczby i działania Rachunki pamięciowe - dodawanie i odejmowanie O ile więcej, o ile mniej Rachunki pamięciowe - mnożenie i dzielenie Mnożenie i dzielenie
Wymagania na poszczególne oceny szkolne Klasa VI - matematyka
Wymagania na poszczególne oceny szkolne Klasa VI - matematyka Dział 1. Działania na ułamkach zwykłych i dziesiętnych wykonuje działania na ułamkach dziesiętnych z pomocą kalkulatora; mnoży ułamki zwykłe
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIECIEŃ 2017 Zadanie 1. (0 1) Wymagania szczegółowe Umiejętności z zakresu
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA rozwiązań zadań z przykładowego arkusza egzaminacyjnego (EO_C) GRUDZIEŃ 2017 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (0 1) II. Wykorzystanie
MATEMATYKA Podstawa programowa SZKOŁA BENEDYKTA
2018-09-01 MATEMATYKA klasa VIII Podstawa programowa SZKOŁA BENEDYKTA Cele kształcenia wymagania ogólne I. Sprawność rachunkowa. 1. Wykonywanie nieskomplikowanych obliczeń w pamięci lub w działaniach trudniejszych
Wymagania programowe z matematyki w klasie V.
Wymagania programowe z matematyki w klasie V. I. Liczby naturalne w dziesiątkowym układzie pozycyjnym. Uczeń: zapisuje i odczytuje liczby naturalne wielocyfrowe; interpretuje liczby naturalne na osi liczbowej;
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne OCENĘ NIEDOSTATECZNĄ OTRZYMUJE UCZEŃ KTÓRY NIE SPEŁNIA KRYTERIÓW DLA OCENY DOPUSZCZAJĄCEJ, NIE KORZYSTA Z PROPONOWANEJ POMOCY W POSTACI ZAJĘĆ WYRÓWNAWCZYCH, PRACUJE
Wymagania edukacyjne z matematyki w klasie 5
Wymagania edukacyjne z matematyki w klasie 5 Wymagania podstawowe Wymagania ponadpodstawowe Rozdział konieczne (ocena dopuszczająca) 2 podstawowe (ocena dostateczna) 3 rozszerzające (ocena dobra) 4 dopełniające
Wymagania dla klasy siódmej. Treści na 2 na 3 na 4 na 5 na 6 Uczeń: Uczeń: Uczeń: Uczeń: Uczeń: DZIAŁ 1. LICZBY
Wymagania dla klasy siódmej Treści na 2 na 3 na 4 na 5 na 6 Uczeń: Uczeń: Uczeń: Uczeń: Uczeń: DZIAŁ 1. LICZBY Rzymski sposób zapisu liczb Liczby pierwsze i złożone. Dzielenie z resztą Rozwinięcia dziesiętne
ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM
ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM TEMAT LICZBA GODZIN LEKCYJNYCH 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1 2. System dziesiątkowy 2-4 3. System rzymski 5-6 WYMAGANIA SZCZEGÓŁOWE
MATEMATYKA Z PLUSEM DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. II. Działania na liczbach naturalnych. Uczeń:
MATEMATYKA Z PLUSEM DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI. LICZBY I DZIAŁANIA 4 h. Rachunki pamięciowe
PG im. Tadeusza Kościuszki w Kościerzycach Przedmiot
KARTA MONITOROWANIA PODSTAWY PROGRAMOWEJ KSZTAŁCENIA OGÓLNEGO III etap edukacyjny PG im. Tadeusza Kościuszki w Kościerzycach Przedmiot matematyka Klasa......... Rok szkolny Imię i nazwisko nauczyciela
Wymagania szczegółowe z matematyki klasa 7
Wymagania szczegółowe z matematyki klasa 7 Dział Szczegółowe wymagania Liczby całkowite (liczby dodatnie, ujemne i zero) - wyróżnia wśród liczb wymiernych liczby naturalne i całkowite oraz liczby pierwsze,
WYMAGANIA EGZAMINACYJNE DLA KLASY IV WYMAGANIA SZCZEGÓŁOWE
TEMAT 1. LICZBY I DZIAŁANIA 1. Rachunki pamięciowe dodawanie i odejmowanie 2. O ile więcej, o ile mniej 3. Rachunki pamięciowe mnożenie i dzielenie 4. Mnożenie i dzielenie (cd.) 5. Ile razy więcej, ile
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV Zna zależności wartości cyfry od jej położenia w liczbie Zna kolejność działań bez użycia nawiasów Zna algorytmy czterech działań pisemnych
Wymagania edukacyjne z matematyki w Szkole Podstawowej nr 16 w Zespole Szkolno-Przedszkolnym nr 1 w Gliwicach
Wymagania edukacyjne z matematyki w Szkole Podstawowej nr 16 w Zespole Szkolno-Przedszkolnym nr 1 w Gliwicach Wymagania edukacyjne dla ucznia klasy IV: wykonuje rachunki pamięciowe na liczbach naturalnych;
WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ. II. Działania na liczbach naturalnych. Uczeń:
MATEMATYKA Z PLUSEM WYMAGANIA EDUKACYJNE DLA KLASY IV TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I DZIAŁANIA 1. Rachunki pamięciowe dodawanie i odejmowanie I. Liczby naturalne w dziesiątkowym
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Klasa V Rozdział Wymagania podstawowe Wymagania ponadpodstawowe konieczne (ocena dopuszczająca) 2 podstawowe (ocena dostateczna) 3 rozszerzające (ocena dobra) 4
PRZEDMIOTOWY SYSTEM OCENIANIA- MATEMATYKA KLASA 6. Rok szkolny 2012/2013. Tamara Kostencka
PRZEDMIOTOWY SYSTEM OCENIANIA- MATEMATYKA KLASA 6 Rok szkolny 2012/2013 Tamara Kostencka 1 LICZBY NA CO DZIEŃ LICZBY NATURALNE I UŁAMKI Wymagania programowe dla klasy VI szkoły podstawowej DZIAŁ WYMAGANIA
Wymagania na poszczególne oceny szkolne KLASA V
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności
Ułamki i działania 20 h
Propozycja rozkładu materiału Klasa I Razem h Ułamki i działania 0 h I. Ułamki zwykłe II. Ułamki dziesiętne III. Ułamki zwykłe i dziesiętne. Przypomnienie wiadomości o ułamkach zwykłych.. Dodawanie i odejmowanie
MATEMATYKA Podstawa programowa SZKOŁA BENEDYKTA
2018-09-01 MATEMATYKA klasa V Podstawa programowa SZKOŁA BENEDYKTA Cele kształcenia wymagania ogólne I. Sprawności rachunkowa. Wykonywanie nieskomplikowanych obliczeń w pamięci lub w działaniach trudniejszych
MATEMATYKA DLA KLASY VI W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ
MATEMATYKA DLA KLASY VI W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT LICZBY NATURALNE I UŁAMKI 1. Rachunki pamięciowe na liczbach naturalnych i ułamkach dziesiętnych. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY
Wymagania na poszczególne oceny szkolne Klasa 7
1 Wymagania na poszczególne oceny szkolne Klasa 7 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 2018 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. 8.
Wymagania na poszczególne oceny szkolne KLASA VI
Matematyka Matematyka z pomysłem Klasa Szkoła podstawowa Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych.
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIECIEŃ 2019 Zadanie 1. (0 1) 2. Liczby wymierne (dodatnie i niedodatnie).
1. Potęga o wykładniku naturalnym Iloczyn i iloraz potęg o jednakowych podstawach Potęgowanie potęgi 1 LICZBA GODZIN LEKCYJNYCH
TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI 1. POTĘGI 1. Potęga o wykładniku naturalnym 2-3 2. Iloczyn i iloraz potęg o jednakowych podstawach 3. Potęgowanie potęgi
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE V. Temat lekcji Punkty z podstawy programowej z dnia 14 lutego 2017r.
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE V Temat lekcji Punkty z podstawy programowej z dnia 14 lutego 2017r. Działania pamięciowe Potęgowanie 1) dodaje i odejmuje w pamięci liczby naturalne dwucyfrowe
Wymagania edukacyjne niezbędne do otrzymania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki dla klasy VIII
Wymagania edukacyjne niezbędne do otrzymania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki dla klasy VIII Temat 1. System rzymski. 2. Własności liczb naturalnych. 3. Porównywanie
Wymagania edukacyjne z matematyki dla klasy 7 na podstawie planu wynikowego z rozkładem materiału
Wymagania edukacyjne z matematyki dla klasy 7 na podstawie planu wynikowego z rozkładem materiału Lp. Temat lekcji Punkty z podstawy programowej z dnia 1 lutego 2017 r. Wymagania podstawowe Wymagania ponadpodstawowe
Lista działów i tematów
Lista działów i tematów Gimnazjum. Klasa 1 Liczby i działania Liczby Rozwinięcia dziesiętne liczb wymiernych Zaokrąglenia liczb. Szacowanie wyników Dodawanie i odejmowanie liczb dodatnich Mnożenie i dzielenie
TEMAT 1. LICZBY I DZIAŁANIA Rachunki pamięciowe, dodawanie i odejmowanie. 2. O ile więcej, o ile mniej 2 LICZBA GODZIN LEKCYJNYCH
TEMAT 1. LICZBY I DZIAŁANIA 3 1. Rachunki pamięciowe, dodawanie i odejmowanie LICZBA GODZIN LEKCYJNYCH. O ile więcej, o ile mniej WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. Liczby naturalne w dziesiątkowym