Podłączanie zewnętrznych układów do systemu mikroprocesorowego

Wielkość: px
Rozpocząć pokaz od strony:

Download "Podłączanie zewnętrznych układów do systemu mikroprocesorowego"

Transkrypt

1 0-0- Podłączanie zewnętrznych układów do systemu mikroprocesorowego Semestr zimowy 0/0, WIEiK- PK Rozbudowa systemu mikroprocesorowego Podstawowy system mikroprocesorowy zawiera jednostkę CPU, pamięć programu ROM, pamięć danych RAM i powinien zawierać jakieś urządzenia wejścia/wyjścia. Jeżeli jest za mało pamięci ROM lub pamięci RAM można podłączyć zewnętrzną pamięć programu lub zewnętrzną pamięć danych, oczywiście jeżeli system mikroprocesorowy ma taką możliwość. System zbudowany na mikrokontrolerze będzie miał już w sobie podstawowe układy wejścia/wyjścia, takie jak porty równoległe, porty szeregowe i układy czasowe. Za pomocą portów równoległych i portów szeregowych można dołączać do systemu inne urządzenia, np. sygnały z czujników, klawiaturę, przekaźniki, diody LED, wyświetlacze LED, LCD, przetworniki A/C i C/A, pamięci masowe karty pamięci, moduły radiowe W wielu przypadkach liczba, jak i możliwości wewnętrznych układów I/O są niewystarczające więc należy dołączyć zewnętrzne układy I/O. Semestr zimowy 0/0, WIEiK- PK

2 0-0- System mikroprocesorowy na mikrokontrolerze Generator zegarowy fx (Jednostka centralna) CPU Reset System przerwań sprzętowych IRQ Wew. szyna adresowa Wew. szyna danych Wew. szyna sterująca Pamięć programu ROM Pamięć danych RAM Podstawowe układy wejścia/wyjścia Liczniki Porty równoległe Porty szeregowe Uniwersalne porty wejścia/wyjścia MIKROKONTROLER (ang. MicroComputer System) Wszystkie podstawowe elementy systemu w jednym układzie scalonym Semestr zimowy 0/0, WIEiK- PK System mikroprocesorowy na mikroprocesorze Mikroprocesor (Jednostka centralna) CPU Reset Generator zegarowy fx System przerwań sprzętowych IRQ Kontroler DMA Szyna sterująca Szyna danych Szyna adresowa Pamięć programu ROM Pamięć danych RAM Port równoległe Port szeregowe Przetwornik A/C Przetwornik C/A Semestr zimowy 0/0, WIEiK- PK

3 0-0- Rozbudowa gotowego systemu mikroprocesorowego W pełni zdolne i gotowe do działania systemy mikroprocesorowe, np. sterowniki typu PLC, też mają możliwość dołączania dodatkowych modułów rozszerzających funkcjonalność samego sterownika przemysłowego. Jeżeli producent przewidział taką możliwość, to za pomocą interfejsów równoległych lub szeregowych można zainstalować dodatkowe logiczne moduły wejścia/wyjścia, moduły wejść lub wyjść analogowych, moduły do pomiaru temperatury. Większość sterowników PLC ma możliwość podłączenia do zewnętrznego panelu operatorskiego za pomocą portu szeregowego. Semestr zimowy 0/0, WIEiK- PK Elementy i układy najczęściej podłączane do systemu mikroprocesorowego Podstawowe elementy systemu Dodatkowa pamięć programu ROM (EPROM, Flash, FRAM) Dodatkowa pamięć danych RAM (SRAM, DRAM) Szeregowa pamięć danych EEPROM (interfejs SPI, IC) Karty pamięci masowych np. typu SD Porty równoległe (wejściowe i wyjściowe) Porty szeregowe (UART, SPI, IC, CAN, USB, Ethernet) Przetwornik analogowo-cyfrowy (interfejs równoległy lub szeregowy) Przetwornik cyfrowy-analogowo (interfejs równoległy lub szeregowy) Semestr zimowy 0/0, WIEiK- PK

4 0-0- Elementy i układy najczęściej podłączane do systemu mikroprocesorowego Pozostałe układy i urządzenia Elementy do wprowadzania danych (przyciski, klawiatura x, pełna klawiatura) Lampki, kontrolki, diody LED, Wyświetlacze LED, -segmentowe, matrycowe, (mono, kolor) Wyświetlacze tekstowe LCD, OLED, fluorescencyjne, próżniowe wyświetlacze VFD Wyświetlacze graficzne LCD, OLED, fluorescencyjne, próżniowe wyświetlacze VFD Moduły kamer cyfrowych Panele dotykowe Czujniki dwustanowe, (wył. krańcowe, czujniki indukcyjne, optyczne, pojemnościowe,...) Elementy wykonawcze (przekaźniki elektromechaniczne, półprzewodnikowe, elektrozawory, małe silniki elektryczne) Moduły radiowe, (MHz, MHz,.GHz, GPS, GSM, ZigBee, Wi-Fi) Czujniki temperatury RTD, termopary, czujniki półprzewodnikowe, Zegary czasu rzeczywistego RTC (/ godzinne) Czujniki przyspieszenia, czujniki położenia Czytniki pamięci masowych (USB, CF, SD, MMC, MS, SM, microsd) Semestr zimowy 0/0, WIEiK- PK Podłączanie zewnętrznych układów Do systemu mikroprocesorowego można podłączyć zewnętrzne elementy lub układy na kilka sposobów:. Za pomocą sprzętowej zewnętrznej szyny danych, szyny adresowej i szyny sterującej. Wtedy do zapisu lub odczytu danych używa się gotowych rozkazów mikroprocesora/mikrokontrolera.. Za pomocą programowej zewnętrznej szyny danych, zewnętrznej szyny adresowej i zewnętrznej szyny sterującej zrealizowanej za pomocą równoległych portów I/O. Wtedy do zapisu lub odczytu danych należy napisać procedury.. Za pomocą równoległych portów I/O, zapis lub odczyt poprzez odpowiednie sterowanie poszczególnych końcówek portu.. Za pomocą interfejsów szeregowych sprzętowych lub interfejsów szeregowych programowych. Semestr zimowy 0/0, WIEiK- PK

5 0-0- Podłączanie zewnętrznych układów sprzętowa zewnętrzna szyny danych, szyna adresowa i szyna sterująca Ta metoda zapewnia najszybszy dostęp do podłączonego układu lub urządzenia. Wystarczy jeden rozkaz jednostki CPU do zapisu lub odczytu. Jeżeli jest kilka układów I/O należy je wyposażyć w dekoder adresu. Jest to najlepszy sposób do podłączenia zewnętrznej pamięci ROM i RAM. Korzystając z takiej możliwości należy pamiętać o tzw. wolnych układach typu I/O, np. wyświetlacze LCD, które wymagają odpowiednio dłuższych czasów zapisu lub odczytu, wymaga to użycia dłuższych czasów sygnałów zapisu lub odczytu, tzw. wait-states. Semestr zimowy 0/0, WIEiK- PK Podstawowy system mikroprocesorowy podłączenie za pomocą szyny danych, adresowej i sterującej Szyna danych Układ wejścia/wyjścia Mikroprocesor ROM RAM I/O Szyna adresowa /IOWR /IORD Dekoder adresu /MEMWR /MEMRD Szyna sterująca /ROMRD Semestr zimowy 0/0, WIEiK- PK 0

6 0-0- Układy, urządzenia w komputerze klasy PC Semestr zimowy 0/0, WIEiK- PK Przykład rozmieszczenia układów i urządzeń w przestrzeni adresowej pamięci danych w komputerze PC Semestr zimowy 0/0, WIEiK- PK

7 0-0- Przykład rozmieszczenia układów i urządzeń w przestrzeni adresowej układów I/O w komputerze PC Semestr zimowy 0/0, WIEiK- PK Podłączanie zewnętrznych układów programowa zewnętrzna szyny danych, szyna adresowa i szyna sterująca Tej metody najczęściej się używa do małej liczby zewnętrznych układów wejścia/wyjścia, wymagane jest napisanie programu do obsługi programowej szyny danych, szyny adresowej i szyny sterującej, Jest możliwość kontrolowania czasów zapisu i odczytu Ta metoda jest stosowania w mikrokontrolerach, które nie mają zewnętrznej sprzętowej szyny danych, adresowej i sterującej Semestr zimowy 0/0, WIEiK- PK

8 0-0- Podłączanie zewnętrznych układów równoległe porty wejścia/wyjścia w mikrokontrolerze Metoda najczęściej używana do małej liczby zewnętrznych układów wejścia/wyjścia, umożliwia ustawianie pojedynczych bitów i kontrolowanie czasów trwania stanów zapisu/odczytu. przy kilku układach I/O wymagana jest odpowiednia liczba końcówek w mikrokontrolerze, każdy układ I/O wymaga napisania programu do jego obsługi, w ten sposób podłącza się np. wyświetlacze LCD tekstowe lub graficzne, klawiaturę itp. Semestr zimowy 0/0, WIEiK- PK Podłączanie zewnętrznych układów sprzętowy port szeregowy w mikrokontrolerze Dzięki tej metodzie można podłączyć większą liczbę układów I/O, które są wyposażone w interfejs do transmisji szeregowej, szybkość wymiany danych może być mniejsza w porównaniu z sprzętową szyną danych, podłączenie w ten sposób upraszcza podłączenie elektryczne układów, mniejsza liczba połączeń elektrycznych, wymagana jest minimalna liczba końcówek mikrokontrolera do obsługi zewnętrznych układów, oprogramowanie wymaga wstępnego zaprogramowania wybranego portu szeregowego a później tylko zapis lub odczyt wybranych rejestrów portu w celu zapisu lub odczytu odebranych danych, do tego celu najczęściej używa się interfejsów typu IC, SPI, Microwire, -wire Semestr zimowy 0/0, WIEiK- PK

9 0-0- Podłączanie zewnętrznych układów programowy port szeregowy w mikrokontrolerze W tej metodzie w sposób programowy następuje obsługa portu szeregowego, powoduje to spowolnienie wymiany danych i większość obciążalność jednostki CPU na obsługę, np. generowanie sygnału zegarowego, pozostałe właściwości tej metody są podobne jak wymiana danych za pomocą sprzętowego portu szeregowego, tą metodę można użyć w prostym mikrokontrolerze, który np. nie posiada portu typu IC, SM-Bus, SPI, Semestr zimowy 0/0, WIEiK- PK Podstawowy system mikroprocesorowy z układem rozdzielającym szynę danych i szynę adresową Dane/Adres Szyna danych Szyna danych Multipleksowana szyna danych i szyna adresowa ALE Rejestr zatrzaskowy Szyna adresowa Mikroprocesor/ mikrokontroler Adres /IOWR /IORD /MEMWR /MEMRD /ROMRD Semestr zimowy 0/0, WIEiK- PK

10 0-0- Podstawowa struktura systemu na mikroprocesorze typu Intel 0 Sygnały do zapisu/odczytu pamięci Szyna sterująca Sygnały do zapisu/odczytu układów I/O Szyna adresowa Szyna danych Semestr zimowy 0/0, WIEiK- PK Podłączanie pamięci ROM i RAM Zewnętrzną pamięć programu ROM można podłączyć do systemu za pomocą szyny danych, szyny adresowej i szyny sterującej. Jest to najlepszy sposób i zapewnia szybki dostęp do pamięci programu. Zewnętrzną pamięć danych RAM można podłączyć do systemu za pomocą szyny danych, szyny adresowej i szyny sterującej. Jest to najlepszy sposób i zapewnia szybki dostęp do pamięci. Pamięć danych, najczęściej typu EEPROM lub typu Flash można podłączyć do systemu za pomocą interfejsu szeregowego np. typu IC, SPI, -Wire. Taka pamięć jest nieulotna i służy do zapamiętywania tylko wybranych danych, parametrów, nastaw, haseł dostępu, itp. Semestr zimowy 0/0, WIEiK- PK 0 0

11 0 VSS X 0 X X X 0-0- Podstawowa konfiguracja mikrokontrolera 0/0 C Y C S 0k R uf/v + C 0 U EA/VP P.0/RXD P./TXD P./INT0 P./INT P./T0 P./T P. P. P.0/T P./TEX P. P. P. P. P. P. 0 pf MHz pf P0.0/A P0./AD P0./AD P0./AD P0./AD P0./AD P0./AD P0./AD P.0/A P./A P./ P./A P./A P./A P./A P./A ALE/P PSEN 0 0 VSS 0 C 0.uF Wszystkie końcówki portów I/O do wykorzystania, Możliwość stworzenia zewnętrznej szyny danych, szyny adresowej i szyny sterującej. Przy podłączaniu odbiorników do wyjść mikrokontrolera należy pamiętać o maksymalnym prądzie obciążenia końcówki (max prąd wpływający i wypływający). Semestr zimowy 0/0, WIEiK- PK Podłączenie do 0 zewnętrznej pamięci ROM i zewnętrznej pamięci RAM S 0k R uf/v + C D N J U 0C Mikrokontroler z rodziny 0 C pf EA/VP INT0/P. INT/P. T0/P. T/P. P.0/T P./TEX P. P. P. P. P. P..0MHz Y X C0 0.uF C pf P0.0 P0. P0. P0. P0. P0. P0. P0. P.0 P. P. P. P. P. P. P. P. P. ALE/P PSEN 0 P.0/RXD P./TXD 0 Bufor zatrzaskowy adres pamięci ROM od 0000h do FFFFh Szyna danych U LS U 0 D D Q A A D D Q A A A O0 D D D Q A A A O D D D D Q A A A O D D D D Q A A A O D D D D Q A A A O D D D D Q A A A O D D D Q A A O D D ALE A C OC A O D A A ROM A A A A A A A A A A A A OE/VPP A A CE 0 C A A A[0..] U 0 A D A A D D /PSEN A A D Szyna adresowa D A A D D A A D D A A D D A A D D A A D Podłączenie zewnętrznej pamięci A A A programu (kb) i zewnętrznej A pamięci danych (kb) A A A A A CE 0 A A OE A WE RAM adres pamięci RAM Semestr zimowy 0/0, WIEiK- PK od 0000h do FFFh D[0..] /PSEN

12 0-0- Parametry czasowe do zapisu lub odczytu pamięci i układów I/O Odczyt pamięci ROM w 0 Semestr zimowy 0/0, WIEiK- PK Zapis pamięci RAM w 0 Semestr zimowy 0/0, WIEiK- PK

13 0-0- Odczyt pamięci RAM w 0 Semestr zimowy 0/0, WIEiK- PK Podłączenie zewnętrznej pamięci RAM do mikrokontrolera typu AVR, ATMEGA R 0k C 00uF/0V + C 0.uF ALE / ICP OCB PB0 PB PB PB PB PB PB PB C0 0.uF 0 C pf U GND ICP XTAL 0 ALE OCB Y MHz X XTAL C pf X Mikrokontroler P/A PA/AD PA/AD PA/AD PA/AD PA/AD PA/AD PA/AD PC0/A PC/A PC/ PC/A PC/A PC/A PC/A PC/A 0 0 PB0/T0 PD PB/T PD PB/AIN0 PD/OCA PB/AIN PD PB/SS PD/INT PB/MOSI PD/INT0 PB/MISO PD/TXD PB/SCK P/RXD AT0S/PLCC PD PD INT INT0 Tx Rx D D D D D D D ALE D D D D D D D Bufor zatrzaskowy U D D D D D D D D LS Podłączenie zewnętrznej pamięci danych kb (xkb) C Q Q Q Q Q Q Q Q OC A A A A A A A A A A A A A A Szyna adresowa Szyna danych A[0..] A A A A A A A A A A A A A A A A A A A A A A A A A A A 0 U A A A A A A A A A A A A A D[0..] D D D D D D D CE 0 OE WE RAM adres pamięci RAM od 000h do FFFFh 0 U A A A A A A A A A A A A A D D D D D D D CE 0 OE WE RAM adres pamięci RAM Semestr zimowy 0/0, WIEiK- PK od 0h do FFFh D D D D D D D /A D D D D D D D UA LS0

14 0-0- BANK U A A 0 A A A A A A A A A A A A A CS CS 0 OE WE D D D D D D 0 D A A D A D A D D D D U LS D D D D D D D D C OC Q Q Q Q Q Q Q Q D A A A /PSEN A D C pf D A D A D ALE Podłączenie zewnętrznej pamięci programu (kb) i zewnętrznej pamięci danych (kb) A A D A A A D A A C pf D A D A adres pamięci RAM od 0000h do FFFFh A D A RAM A A A Szyna adresowa D ROM A A[0..] C0 0.uF D A A D A D adres pamięci ROM od 0000h do FFFFh D D J A D A A A A D D A Szyna danych D[0..] X D A Bufor zatrzaskowy D Y.0MHz A /PSEN D A U 0C EA/VP X X INT0/P. INT/P. T0/P. T/P. P.0/T P./TEX P. P. P. P. P. P. P0.0 P0. P0. P0. P0. P0. P0. P0. P.0 P. P. P. P. P. P. P. P. P. PSEN ALE/P 0 P./TXD P.0/RXD 0 0 VSS 0 U C 0 A A A A A A A A A A A A CE 0 OE/VPP A A O0 O O O O O O O Mikrokontroler z rodziny 0 A A A A A kb Sygnał wyboru banku pamięci RAM + C uf/v R 0k D N S Podłączenie do 0 zewnętrznej pamięci ROM (kb) i zewnętrznej pamięci RAM (kb) Semestr zimowy 0/0, WIEiK- PK Pamięć RAM C 0.uF Szyna adresow a Y MHz C pf pf PF0 PF PF PF A A PF A PF A A A A PF + C uf/0v PF AVREF ALE A R 00 Mikrokontroler A A A A A A A A A A / A A U A A 0 A A A A A A A A A A A A A CS CS 0 OE WE D D D D D D 0 D GND NC A A A A AD AD AD AD AD P AD AD AD AD AD PD AD PD AD AD PD AD /PEN P PD AD PD A AD AD PD AD AD AD PD AD PB0 C 0.uF + C0 00uF/0V PB PB PB R 0k PB PB PB AD[0..] PB R 0k S J RAM U ATMEGA PB0/SS 0 PB/SCK PB/MOSI PB/MISO PB/OC0 PB/OCA PB/OCB PB/OC/OCC XTAL XTAL P/SCL/INT0 PD/SDA/INT PD/RXD/INT PD/TXD/INT PD/ICP PD/XCK 0 PD/T PD/T GND PF0/ADC0 PF/ADC 0 PF/ADC PF/ADC PF/ADC/TCK PF/ADC/TMS PF/ADC/TDO PF/ADC/TDI AVREF AGND A PC0/A PC/A PC/ PC/A PC/A PC/A PC/A PC/A 0 0 P/A PA/AD 0 PA/AD PA/AD PA/AD PA/AD PA/AD PA/AD PG/ALE PG PG0 PG/TOSC PG/TOSC GND PE0/RX/PDI PE/TX/PDO PE/AIN0/XCK0 PE/AIN/OCA PE/INT/OCB PE/INT/OCC PE/INT/T PE/INT/ICP PEN U HCT D D D D D D D D C OC Q Q Q Q Q Q Q Q R 0k R 0k A A PE A PE A A A A A A Y Hz C 0.uF L 0uH ALE PG PG PE0 Szyna danych PE PE PE PE PE Wybór sygnału wyboru banku pamięci Podłączenie zewnętrznej pamięci RAM do mikrokontrolera typu AVR, ATMEGA Semestr zimowy 0/0, WIEiK- PK

15 GND GND 0-0- Dekoder adresu adr adr adr adr adr adr adr adr0 U P0 P P P P P P P P=Q HCT Q0 Q Q Q Q Q Q Q G C R xk SW SW DIP- 0 Podłączenie układów lub urządzeń (ROM, RAM, I/O) do szyny danych, szyny adresowej i szyny sterującej wymaga aby każdy układ miał dekoder adresu, który rozpoznaje adresy i operację zapisu lub odczytu. /EEXWR /EEXRD UB 0 UC HCT00 UB UD HCT00 HCT HCT00 /EEXRD /EEXWR UD HCT 0 UD HCT UC Dekoder adresu na typowych układach logicznych HCT /PSEN Semestr zimowy 0/0, WIEiK- PK A A A A A A A A 0 U I I I I I I I I I I I I/CLK GALV0 I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q 0 I/O/Q I/O/Q I/O/Q A /CSIN /CS /CS /CSRAM /OEROM /OERAM CSOUT CSLCD Dekoder adresu na układzie programowalnym typu GALV0 Szeregowe pamięci EEPROM U U P.0 P. P. P. CS CLK DC DI ORG DO VSS ATCXX P.0 P. P. CS CLK DC DI ORG DO VSS ATCXX Podłączenie pamięci typu -wire Bus, SPI R.k P. P.0 R.k U SDA SCL ATCXX A A WP GND Podłączenie pamięci typu IC (-wire Bus) U U P.0 P. P. P. CS SCK SI SO AT00 U LP0ACZ-. IN OUT WP HOLD VSS C 0uF/V 0 P.0 P. P. CS SCK SI SO AT00 WP HOLD VSS Pamięć Data Flash EEPROM.V Podłączenie pamięci typu SPI (-wire Bus) Obudowa DIP, SO, TSSOP, MSOP C 0.uF + C 0.uF PB PB PB PB U SCLK SI SO CS AT WP RST / Podłączenie pamięci typu Flash, -wire Bus SPI R0 0k / Semestr zimowy 0/0, WIEiK- PK 0

16 0-0- Podłączanie przetworników A/C do systemu EOC MISO U WE A/C N-bit START DATA MCU U WE A/C MOSI SCK /CS MCU V REF V REF AGND DGND Przetwornik A/C z wyjściem równoległym U WE EOC U WE U MUX WE U WE A/C N-bit START V REF DATA MCU AGND DGND Przetwornik A/C z wyjściem szeregowym, typu SPI U WE U WE U WE U WE V REF MUX A/C SCL SDA MCU AGND DGND Czterokanałowy przetwornik A/C z wyjściem równoległym Semestr zimowy 0/0, WIEiK- PK AGND DGND Czterokanałowy przetwornik A/C z wyjściem szeregowym typu IC Podłączanie przetworników C/A WPIS MISO MCU DATA N-bit C/A U wy MCU MOSI SCK /CS C/A U wy V REF V REF DGND AGND Przetwornik C/A z wejściem równoległym MCU MISO MOSI SCK /CS C/A C/A C/A C/A DGND AGND Przetwornik C/A z wejściem szeregowym typu SPI U wy U wy U wy U wy V REF DGND AGND Cztero-kanałowy przetwornik C/A z wejściem szeregowym typu SPI Semestr zimowy 0/0, WIEiK- PK

17 Vdd GND 0-0- Przetwornik A/C, C/A Podłączenie dwóch układów typu MCP (x C/A -bit) po interfejsie SPI Podłączenie układów typu AD (A/C -bit) po interfejsie SPI Semestr zimowy 0/0, WIEiK- PK Zegar czasu rzeczywistego RTC z dostępem szeregowym P.0 P. U SCL SDA A TEST PFIN EXTPF COMP VSS VSS PCF FSET MIN SEC 0 VDD OSC OSC0 Y.kHz D N C 0pF D BAT C 0.uF BT.V R.k P.0 P. R.k U SCL SDA PCF OSCI INT 0pF C OSCO Y khz D D C 0.uF N BAT BT.V Podłączenie układów RTC za pomocą interfejsu IC Semestr zimowy 0/0, WIEiK- PK

18 0-0- Dodatkowe porty wejścia/wyjścia a /CS HCT0 UA D D D D D D D U D D D D D D D D C U Q Q Q Q Q Q Q Q HCT Y Y Y Y Y Y Y Y G G HCT OC -bitowy PORT WYJSCIOWY D D D D D D D -bitowy PORT WEJSCIOWY A A A A A A A A OUT OUT OUT OUT OUT OUT OUT OUT IN IN IN IN IN IN IN IN /CS b UA HCT UB HCT D D D D D D D D D D D D D D U D Q D Q D Q D Q D Q D Q D Q D Q CLK OC HCT U A B A B A B A B A B A B A B A B G DIR HCT OUT OUT OUT OUT OUT OUT OUT OUT IN IN IN IN IN IN IN IN Prosta realizacja dodatkowych -bitowych portów I/O, Semestr zimowy 0/0, WIEiK- PK Alfanumeryczny wyświetlacz LCD /CS UA HCT00 UA HCT00 A D D D D D D D 0 W UA EN R/W RS VO MODUŁ LCD D D D D D D D GND HCT00 UA HCT00 +V R 0k P. P. P. P.0 P. P. P. P. P. P. P. 0 W EN R/W RS VO MODUŁ LCD D D D D D D D GND +V R 0k EN RS D D D D 0 W EN R/W RS VO MODUŁ LCD D D D LED-A D D LED-K D D GND +V R R 0k +V LCD podłączony do szyny danych, szyny adresowej i szyny sterującej. Tryb pracy -bitowy LCD podłączony bezpośrednio do portów I/O, tryb pracy -bitowy LCD podłączony bezpośrednio do portów I/O, tryb pracy -bitowy Semestr zimowy 0/0, WIEiK- PK

19 VSS VSS 0-0- Graficzny wyświetlacz LCD P. P. P.0 P. P. P. P. P. P. P. P. W CE WR RD C/D D D D D D D D FS -V MODUŁ GRAFICZNY LCD RST FG GND +V 0 -V R 0k Reset LCD LCD podłączony bezpośrednio do portów I/O, tryb pracy -bitowy LCD podłączony do szyny danych, szyny adresowej i szyny sterującej. Tryb pracy -bitowy Semestr zimowy 0/0, WIEiK- PK Przejście z interfejsu szeregowego na równoległy R.k P.0 P. R.k U SCL SDA A A PCF P0 P P P P P P P INT 0 P0 P P P P P P P INT R R.k.k U P0 P.0 P SCL P P. P SDA P P P P A A INT PCF 0 P P P P 0 W EN R/W RS VO MODUŁ LCD D D D D D D D GND +V R 0k Expander interfejsu IC na - bitowy równoległy port wejścia/wyjścia Expander interfejsu IC do sterowania wyświetlaczem LCD Semestr zimowy 0/0, WIEiK- PK

20 0-0- Przejście z interfejsu szeregowego na równoległy Expander magistrali IC lub SPI na -bitowy równoległy port wejścia/wyjścia, firmy Microchip Semestr zimowy 0/0, WIEiK- PK Przyciski i klawiatury a P.0 P. S S S S S S0 S S S S S S b P.0 P. P. P. S S S S do w ejścia R 0k S P. S S S S P. P. S S P. P. P. P. P. P. P. S S Pojedynczy styk Konfiguracja klawiatury matrycowej Konfiguracja klawiatury -stykowej Semestr zimowy 0/0, WIEiK- PK 0 0

21 0-0- Przekaźniki Sterowanie przekaźnikiem elektromagnetycznym wymaga dodatkowego obwodu wzmacniającego Sterowanie przekaźnikiem półprzewodnikowym (SSR) na +V, bezpośrednio z mikrokontrolera P.0 D N00 R.k K +V +V MOTOR AC K Q NPN przekaznik D LED R 0 Układ z tranzystorem NPN, włączenie stanem logicznym P.0 P. P. P. P. P. P. P. U I I I I I I I I GND M ULN0A O O O O O O O O COM 0 +V R 0 przekaźnik D LED ŻARÓWKA Rozwiązanie z specjalizowanym układem scalonym, włączenie stanem logicznym +V J 0V/0Hz Led R +V D LED włączenie stanem logicznym 0 Semestr zimowy 0/0, WIEiK- PK Diody LED i wyświetlacze LED >+V Led R 0 D LED Led R +V D LED Led Q NPN R k D LED P. R.k R.k Q BC R 0 D LED Sterowanie stanem logicznym 0 Sterowanie stanem logicznym 0 Sterowanie stanem logicznym dla napięcia zasilania > +V i większy prąd wyjściowy Sterowanie stanem logicznym 0, większy prąd wyjściowy P.0 P. P. P. P. P. P. P. x0 0 A B C D E F G K W P.0 P. P. P. U A B A C B D C D 0 E LT RBI F BI/RBO G 0 A B C D E F G K W Pojedynczy wyświetlacz - segmentowych Zespół dwóch wyświetlaczy - segmentowych P. P. P. P. A B A C B D C D 0 E LT RBI F BI/RBO G U 0 A B C D E F G K W Semestr zimowy 0/0, WIEiK- PK

22 Wyświetlacze LED P. P. P. P. U A B C D 0 0 LS R R R R R R k Q PNP Q PNP Q PNP Q PNP Q PNP Q PNP Wspólna anoda W W W W W W COM COM COM COM COM COM A B C D E F G K A B C D E F G K A B C D E F G K A B C D E F G K A B C D E F G K A B C D E F G K P.0 P. P. P. P. P. P. P. U I I I I I I I I O O O O O O O O x0 GND COM 0 ULN0A Zespół wyświetlaczy -segmentowych, sterowanie multipleksowe Semestr zimowy 0/0, WIEiK- PK Wejścia logiczne +V a UB /wejscie D N R 0 b wejscie /wejscie UC R 0 wejscie LS D N LS D.V Wejścia logiczne bez izolacji galwanicznej a wejscie +V ISO 0 R wejscie b /wejscie +V R k 0 R wejscie LS UA R k LS UD ISO Wejścia logiczne z izolacją galwaniczną Semestr zimowy 0/0, WIEiK- PK

23 0-0- Wyjście z optoizolacją obciążenie +V R U MOC0 R a R P..k 0 Q BC ZERO CROSS CIRCUIT Q TRIAK MT G MT R 0/W C 0nF/00V 0V/0Hz R 0 b P. R.k R 0 +V Q BC U MOC0 R Q TRIAK MT G MT obciążenie R 0/W C 0nF/00V 0V/0Hz R 0 Sterowanie odbiornikiem mocy typu AC zasilanych z sieci energetycznej 0V/0Hz, włączenie stanem logicznym Semestr zimowy 0/0, WIEiK- PK Podsumowanie Przy projektowaniu i budowie układu sterowania opartego o jakiś system mikroprocesorowy należy się kierować zasadą, że lepiej wybrać taki typ mikrokontrolera aby posiadał jak najwięcej elementów i układów wymaganych do naszej aplikacji. Wybrać taki rodzaj (typ, model) mikrokontrolera, który ma wystarczającą ilość wewnętrznej pamięci programu i pamięci danych. Nie dołączać zewnętrznych pamięci programu. Pamięć zewnętrzna danych najczęściej z dostępem szeregowym, nieulotna Należy wykorzystać jak najwięcej gotowych elementów lub układów do budowy nowego systemu mikroprocesorowego, które gwarantują poprawne działanie i niezawodność a także łatwiejsze oprogramowanie. Zewnętrzne układy i urządzenia najlepiej podłączać do systemu za pomocą interfejsów szeregowych (mniejsza liczba połączeń, mniejsze obudowy). Konstrukcja takiego układu jest prostsza i bardziej niezawodna. Przy podłączaniu zewnętrznych sygnałów (logicznych i analogowych) do mikrokontrolera należy pamiętać o maksymalnych wartościach napięć wejściowych. Przy podłączaniu odbiorników do wyjść mikrokontrolera należy pamiętać o maksymalnym prądzie obciążenia końcówki (max prąd wpływający i wypływający). Semestr zimowy 0/0, WIEiK- PK

Podłączanie zewnętrznych układów do systemu mikroprocesorowego

Podłączanie zewnętrznych układów do systemu mikroprocesorowego 0-0- Podłączanie zewnętrznych układów do systemu mikroprocesorowego E-, WEiK- PK Rozbudowa systemu mikroprocesorowego Podstawowy system mikroprocesorowy zawiera jednostkę CPU, pamięd programu ROM, pamięd

Bardziej szczegółowo

Porty wejścia/wyjścia w układach mikroprocesorowych i w mikrokontrolerach

Porty wejścia/wyjścia w układach mikroprocesorowych i w mikrokontrolerach 0-- Porty wejścia/wyjścia w układach mikroprocesorowych i w mikrokontrolerach Semestr zimowy 0/0, WIEiK-PK Porty wejścia-wyjścia Input/Output ports Podstawowy układ peryferyjny port wejścia-wyjścia do

Bardziej szczegółowo

Wyjścia analogowe w sterownikach, regulatorach

Wyjścia analogowe w sterownikach, regulatorach Wyjścia analogowe w sterownikach, regulatorach 1 Sygnały wejściowe/wyjściowe w sterowniku PLC Izolacja galwaniczna obwodów sterownika Zasilanie sterownika Elementy sygnalizacyjne Wejścia logiczne (dwustanowe)

Bardziej szczegółowo

Wejścia logiczne w regulatorach, sterownikach przemysłowych

Wejścia logiczne w regulatorach, sterownikach przemysłowych Wejścia logiczne w regulatorach, sterownikach przemysłowych Semestr zimowy 2013/2014, WIEiK PK 1 Sygnały wejściowe/wyjściowe w sterowniku PLC Izolacja galwaniczna obwodów sterownika Zasilanie sterownika

Bardziej szczegółowo

Technika Mikroprocesorowa

Technika Mikroprocesorowa Technika Mikroprocesorowa Dariusz Makowski Katedra Mikroelektroniki i Technik Informatycznych tel. 631 2648 dmakow@dmcs.pl http://neo.dmcs.p.lodz.pl/tm 1 System mikroprocesorowy? (1) Magistrala adresowa

Bardziej szczegółowo

Wejścia analogowe w sterownikach, regulatorach, układach automatyki

Wejścia analogowe w sterownikach, regulatorach, układach automatyki Wejścia analogowe w sterownikach, regulatorach, układach automatyki 1 Sygnały wejściowe/wyjściowe w sterowniku PLC Izolacja galwaniczna obwodów sterownika Zasilanie sterownika Elementy sygnalizacyjne Wejścia

Bardziej szczegółowo

Porty wejścia/wyjścia w układach mikroprocesorowych i w mikrokontrolerach

Porty wejścia/wyjścia w układach mikroprocesorowych i w mikrokontrolerach Porty wejścia/wyjścia w układach mikroprocesorowych i w mikrokontrolerach Semestr zimowy 2012/2013, E-3, WIEiK-PK 1 Porty wejścia-wyjścia Input/Output ports Podstawowy układ peryferyjny port wejścia-wyjścia

Bardziej szczegółowo

Instrukcja użytkownika

Instrukcja użytkownika TOP0X REV.0 Moduł adaptacyjny dla płyt EVB0X Instrukcja użytkownika Evalu ation Board s for, AVR, ST, PIC microcontrollers Sta- rter Kits Embedded Web Serve rs Prototyping Boards Minimodules for microcontrollers,

Bardziej szczegółowo

ZL15AVR. Zestaw uruchomieniowy dla mikrokontrolerów ATmega32

ZL15AVR. Zestaw uruchomieniowy dla mikrokontrolerów ATmega32 ZL15AVR Zestaw uruchomieniowy dla mikrokontrolerów ATmega32 ZL15AVR jest uniwersalnym zestawem uruchomieniowym dla mikrokontrolerów ATmega32 (oraz innych w obudowie 40-wyprowadzeniowej). Dzięki wyposażeniu

Bardziej szczegółowo

Zaliczenie Termin zaliczenia: Sala IE 415 Termin poprawkowy: > (informacja na stronie:

Zaliczenie Termin zaliczenia: Sala IE 415 Termin poprawkowy: > (informacja na stronie: Zaliczenie Termin zaliczenia: 14.06.2007 Sala IE 415 Termin poprawkowy: >18.06.2007 (informacja na stronie: http://neo.dmcs.p.lodz.pl/tm/index.html) 1 Współpraca procesora z urządzeniami peryferyjnymi

Bardziej szczegółowo

ZL16AVR. Zestaw uruchomieniowy dla mikrokontrolerów ATmega8/48/88/168

ZL16AVR. Zestaw uruchomieniowy dla mikrokontrolerów ATmega8/48/88/168 ZL16AVR Zestaw uruchomieniowy dla mikrokontrolerów ATmega8/48/88/168 ZL16AVR jest uniwersalnym zestawem uruchomieniowym dla mikrokontrolerówavr w obudowie 28-wyprowadzeniowej (ATmega8/48/88/168). Dzięki

Bardziej szczegółowo

AVREVB1. Zestaw uruchomieniowy dla mikrokontrolerów AVR. Zestawy uruchomieniowe www.evboards.eu

AVREVB1. Zestaw uruchomieniowy dla mikrokontrolerów AVR. Zestawy uruchomieniowe www.evboards.eu AVREVB1 Zestaw uruchomieniowy dla mikrokontrolerów AVR. 1 Zestaw AVREVB1 umożliwia szybkie zapoznanie się z bardzo popularną rodziną mikrokontrolerów AVR w obudowach 40-to wyprowadzeniowych DIP (układy

Bardziej szczegółowo

Systemy wbudowane. Paweł Pełczyński ppelczynski@swspiz.pl

Systemy wbudowane. Paweł Pełczyński ppelczynski@swspiz.pl Systemy wbudowane Paweł Pełczyński ppelczynski@swspiz.pl 1 Program przedmiotu Wprowadzenie definicja, zastosowania, projektowanie systemów wbudowanych Mikrokontrolery AVR Programowanie mikrokontrolerów

Bardziej szczegółowo

ARS3 RZC. z torem radiowym z układem CC1101, zegarem RTC, kartą Micro SD dostosowany do mikro kodu ARS3 Rxx. dokument DOK 01 05 12. wersja 1.

ARS3 RZC. z torem radiowym z układem CC1101, zegarem RTC, kartą Micro SD dostosowany do mikro kodu ARS3 Rxx. dokument DOK 01 05 12. wersja 1. ARS RZC projekt referencyjny płytki mikrokontrolera STMF z torem radiowym z układem CC0, zegarem RTC, kartą Micro SD dostosowany do mikro kodu ARS Rxx dokument DOK 0 0 wersja.0 arskam.com . Informacje

Bardziej szczegółowo

STM32Butterfly2. Zestaw uruchomieniowy dla mikrokontrolerów STM32F107

STM32Butterfly2. Zestaw uruchomieniowy dla mikrokontrolerów STM32F107 Zestaw uruchomieniowy dla mikrokontrolerów STM32F107 STM32Butterfly2 Zestaw STM32Butterfly2 jest platformą sprzętową pozwalającą poznać i przetestować możliwości mikrokontrolerów z rodziny STM32 Connectivity

Bardziej szczegółowo

WPROWADZENIE Mikrosterownik mikrokontrolery

WPROWADZENIE Mikrosterownik mikrokontrolery WPROWADZENIE Mikrosterownik (cyfrowy) jest to moduł elektroniczny zawierający wszystkie środki niezbędne do realizacji wymaganych procedur sterowania przy pomocy metod komputerowych. Platformy budowy mikrosterowników:

Bardziej szczegółowo

ZL30ARM. Zestaw uruchomieniowy dla mikrokontrolerów STM32F103

ZL30ARM. Zestaw uruchomieniowy dla mikrokontrolerów STM32F103 ZL30ARM Zestaw uruchomieniowy dla mikrokontrolerów STM32F103 Zestaw ZL30ARM jest uniwersalnym zestawem uruchomieniowym dla mikrokontrolerów STM32F103. Dzięki wyposażeniu w szeroką gamę układów peryferyjnych

Bardziej szczegółowo

HC541 8-bitowy bufor jednokierunkowy HC245 8-bitowy bufor dwukierunkowy HC244 dwa 4-bitowe bufory jednokierunkowe

HC541 8-bitowy bufor jednokierunkowy HC245 8-bitowy bufor dwukierunkowy HC244 dwa 4-bitowe bufory jednokierunkowe Bufory (BUFFER) Bufory stosuje się po to by: - zwiększyć obciążalność magistrali - chronić układ wysokiej skali integracji - sterować przepływem danych HC541 8-bitowy bufor jednokierunkowy HC245 8-bitowy

Bardziej szczegółowo

Układy czasowo-licznikowe w systemach mikroprocesorowych

Układy czasowo-licznikowe w systemach mikroprocesorowych Układy czasowo-licznikowe w systemach mikroprocesorowych 1 W każdym systemie mikroprocesorowym znajduje zastosowanie układ czasowy lub układ licznikowy Liczba liczników stosowanych w systemie i ich długość

Bardziej szczegółowo

ZL8AVR. Płyta bazowa dla modułów dipavr

ZL8AVR. Płyta bazowa dla modułów dipavr ZL8AVR Płyta bazowa dla modułów dipavr Zestaw ZL8AVR to płyta bazowa dla modułów dipavr (np. ZL7AVR z mikrokontrolerem ATmega128 lub ZL12AVR z mikrokontrolerem ATmega16. Wyposażono ją w wiele klasycznych

Bardziej szczegółowo

Struktura systemu mikroprocesorowego

Struktura systemu mikroprocesorowego Struktura systemu mikroprocesorowego Struktura systemu mikroprocesorowego / Podstawowe składniki systemu Systemy jednopłytkowe Systemy modułowe Składniki systemu /. Procesor od wyboru procesora zaleŝy

Bardziej szczegółowo

ZL28ARM. Zestaw uruchomieniowy dla mikrokontrolerów AT91SAM7XC

ZL28ARM. Zestaw uruchomieniowy dla mikrokontrolerów AT91SAM7XC ZL28ARM Zestaw uruchomieniowy dla mikrokontrolerów AT91SAM7XC Zestaw ZL28ARM jest uniwersalnym zestawem uruchomieniowym dla mikrokontrolerów AT91SAM7XC. Dzięki wyposażeniu w szeroką gamę układów peryferyjnych

Bardziej szczegółowo

ZL5PIC. Zestaw uruchomieniowy dla mikrokontrolerów PIC16F887

ZL5PIC. Zestaw uruchomieniowy dla mikrokontrolerów PIC16F887 ZL5PIC Zestaw uruchomieniowy dla mikrokontrolerów PIC16F887 ZL5PIC jest uniwersalnym zestawem uruchomieniowym dla mikrokontrolerów PIC16F887 (oraz innych w obudowie 40-wyprowadzeniowej). Dzięki wyposażeniu

Bardziej szczegółowo

ZL15AVR. Zestaw uruchomieniowy dla mikrokontrolerów ATmega32

ZL15AVR. Zestaw uruchomieniowy dla mikrokontrolerów ATmega32 ZL15AVR Zestaw uruchomieniowy dla mikrokontrolerów ATmega32 ZL15AVR jest uniwersalnym zestawem uruchomieniowym dla mikrokontrolerów ATmega32 (oraz innych w obudowie 40-wyprowadzeniowej). Dzięki wyposażeniu

Bardziej szczegółowo

Kurs Elektroniki. Część 5 - Mikrokontrolery. www.knr.meil.pw.edu.pl 1/26

Kurs Elektroniki. Część 5 - Mikrokontrolery. www.knr.meil.pw.edu.pl 1/26 Kurs Elektroniki Część 5 - Mikrokontrolery. www.knr.meil.pw.edu.pl 1/26 Mikrokontroler - autonomiczny i użyteczny system mikroprocesorowy, który do swego działania wymaga minimalnej liczby elementów dodatkowych.

Bardziej szczegółowo

UNO R3 Starter Kit do nauki programowania mikroprocesorów AVR

UNO R3 Starter Kit do nauki programowania mikroprocesorów AVR UNO R3 Starter Kit do nauki programowania mikroprocesorów AVR zestaw UNO R3 Starter Kit zawiera: UNO R3 (Compatible Arduino) x1szt. płytka stykowa 830 pól x1szt. zestaw 75 sztuk kabli do płytek stykowych

Bardziej szczegółowo

Zagadnienia zaliczeniowe z przedmiotu Układy i systemy mikroprocesorowe elektronika i telekomunikacja, stacjonarne zawodowe

Zagadnienia zaliczeniowe z przedmiotu Układy i systemy mikroprocesorowe elektronika i telekomunikacja, stacjonarne zawodowe Zagadnienia zaliczeniowe z przedmiotu Układy i systemy mikroprocesorowe elektronika i telekomunikacja, stacjonarne zawodowe System mikroprocesorowy 1. Przedstaw schemat blokowy systemu mikroprocesorowego.

Bardziej szczegółowo

2. Architektura mikrokontrolerów PIC16F8x... 13

2. Architektura mikrokontrolerów PIC16F8x... 13 Spis treści 3 Spis treœci 1. Informacje wstępne... 9 2. Architektura mikrokontrolerów PIC16F8x... 13 2.1. Budowa wewnętrzna mikrokontrolerów PIC16F8x... 14 2.2. Napięcie zasilania... 17 2.3. Generator

Bardziej szczegółowo

Instrukcja użytkownika

Instrukcja użytkownika TOP50X REV.0 Moduł adaptacyjny dla płyt EVB50X Instrukcja użytkownika Evalu ation Board s for 5, AVR, ST, PIC microcontrollers Sta- rter Kits Embedded Web Serve rs Prototyping Boards Minimodules for microcontrollers,

Bardziej szczegółowo

LABORATORIUM - ELEKTRONIKA Układy mikroprocesorowe cz.2

LABORATORIUM - ELEKTRONIKA Układy mikroprocesorowe cz.2 LABORATORIUM - ELEKTRONIKA Układy mikroprocesorowe cz.2 1. Cel ćwiczenia Celem ćwiczenia jest pokazanie budowy systemów opartych na układach Arduino. W tej części nauczymy się podłączać różne czujników,

Bardziej szczegółowo

dokument DOK 02-05-12 wersja 1.0 www.arskam.com

dokument DOK 02-05-12 wersja 1.0 www.arskam.com ARS3-RA v.1.0 mikro kod sterownika 8 Linii I/O ze zdalną transmisją kanałem radiowym lub poprzez port UART. Kod przeznaczony dla sprzętu opartego o projekt referencyjny DOK 01-05-12. Opis programowania

Bardziej szczegółowo

ZL2AVR. Zestaw uruchomieniowy z mikrokontrolerem ATmega8

ZL2AVR. Zestaw uruchomieniowy z mikrokontrolerem ATmega8 ZL2AVR Zestaw uruchomieniowy z mikrokontrolerem ATmega8 ZL2AVR jest uniwersalnym zestawem uruchomieniowym dla mikrokontrolerów ATmega8 (oraz innych w obudowie 28-wyprowadzeniowej). Dzięki wyposażeniu w

Bardziej szczegółowo

ZL29ARM. Zestaw uruchomieniowy dla mikrokontrolerów STM32F107

ZL29ARM. Zestaw uruchomieniowy dla mikrokontrolerów STM32F107 ZL29ARM Zestaw uruchomieniowy dla mikrokontrolerów STM32F107 Zestaw ZL29ARM jest platformą sprzętową pozwalającą poznać i przetestować możliwości mikrokontrolerów z rodziny STM32 Connectivity Line (STM32F107).

Bardziej szczegółowo

Opis funkcjonalny i architektura. Modu³ sterownika mikroprocesorowego KM535

Opis funkcjonalny i architektura. Modu³ sterownika mikroprocesorowego KM535 Opis funkcjonalny i architektura Modu³ sterownika mikroprocesorowego KM535 Modu³ KM535 jest uniwersalnym systemem mikroprocesorowym do pracy we wszelkiego rodzaju systemach steruj¹cych. Zastosowanie modu³u

Bardziej szczegółowo

Moduł z mikrokontrolerem ATmega128. Halszka Konieczek

Moduł z mikrokontrolerem ATmega128. Halszka Konieczek INSTYTUT INFORMATYKI, AUTOMATYKI I ROBOTYKI POLITECHNIKI WROCŁAWSKIEJ Na prawach rękopisu Moduł z mikrokontrolerem ATmega18 Halszka Konieczek Słowa kluczowe: mikrokontroler AVR, płytka drukowana, system

Bardziej szczegółowo

Przetworniki A/C i C/A w systemach mikroprocesorowych

Przetworniki A/C i C/A w systemach mikroprocesorowych Przetworniki A/C i C/A w systemach mikroprocesorowych 1 Przetwornik A/C i C/A Przetworniki analogowo-cyfrowe (A/C) i cyfrowoanalogowe (C/A) to układy elektroniczne umożliwiające przesyłanie informacji

Bardziej szczegółowo

Moduł uruchomieniowy mikrokontrolera MC68HC912B32

Moduł uruchomieniowy mikrokontrolera MC68HC912B32 Instytut Cybernetyki Technicznej Systemy Mikroprocesorowe Moduł uruchomieniowy mikrokontrolera MC68HC912B32 Grzegorz Cielniak Wrocław 1999 1. Informacje ogólne Moduł uruchomieniowy jest tanim i prostym

Bardziej szczegółowo

Systemy Wbudowane. Arduino - rozszerzanie. Podłączanie wyświetlacza LCD. Podłączanie wyświetlacza LCD. Podłączanie wyświetlacza LCD

Systemy Wbudowane. Arduino - rozszerzanie. Podłączanie wyświetlacza LCD. Podłączanie wyświetlacza LCD. Podłączanie wyświetlacza LCD Wymagania: V, GND Zasilanie LED podswietlenia (opcjonalne) Regulacja kontrastu (potencjometr) Enable Register Select R/W (LOW) bity szyny danych Systemy Wbudowane Arduino - rozszerzanie mgr inż. Marek

Bardziej szczegółowo

Aoi Ryuu. v2.0 moduł z mikroprocesorem Atmega169 dla makiety dydaktycznej Akai Kaba

Aoi Ryuu. v2.0 moduł z mikroprocesorem Atmega169 dla makiety dydaktycznej Akai Kaba Aoi Ryuu v.0 moduł z mikroprocesorem Atmega69 dla makiety dydaktycznej Akai Kaba Moduł mikroprocesorowy Aoi Ryuu v.0 jest przeznaczony do współpracy z makietą dydaktyczną Akai Kaba v.x. Wyposażony został

Bardziej szczegółowo

Zastosowanie procesorów AVR firmy ATMEL w cyfrowych pomiarach częstotliwości

Zastosowanie procesorów AVR firmy ATMEL w cyfrowych pomiarach częstotliwości Politechnika Lubelska Wydział Elektrotechniki i Informatyki PRACA DYPLOMOWA MAGISTERSKA Zastosowanie procesorów AVR firmy ATMEL w cyfrowych pomiarach częstotliwości Marcin Narel Promotor: dr inż. Eligiusz

Bardziej szczegółowo

SigmaDSP - zestaw uruchomieniowy dla procesora ADAU1701. SigmaDSP - zestaw uruchomieniowy dla procesora ADAU1701.

SigmaDSP - zestaw uruchomieniowy dla procesora ADAU1701. SigmaDSP - zestaw uruchomieniowy dla procesora ADAU1701. SigmaDSP - zestaw uruchomieniowy. SigmaDSP jest niedrogim zestawem uruchomieniowym dla procesora DSP ADAU1701 z rodziny SigmaDSP firmy Analog Devices, który wraz z programatorem USBi i darmowym środowiskiem

Bardziej szczegółowo

ZL25ARM. Płyta bazowa dla modułów diparm z mikrokontrolerami STR912. [rdzeń ARM966E-S]

ZL25ARM. Płyta bazowa dla modułów diparm z mikrokontrolerami STR912. [rdzeń ARM966E-S] ZL25ARM Płyta bazowa dla modułów diparm z mikrokontrolerami STR912 [rdzeń ARM966E-S] ZL25ARM to płyta bazowa umożliwiająca wykonywanie różnorodnych eksperymentów z mikrokontrolerami STR912 (ARM966E-S).

Bardziej szczegółowo

Instrukcja Użytkownika

Instrukcja Użytkownika ISPcable III Programator ISP dla mikrokontrolerów AVR firmy Atmel, zgodny z STK00. REV.0 Instrukcja Użytkownika Evalu ation Board s for, AVR, ST, PIC microcontrollers Sta- rter Kits Embedded Web Serve

Bardziej szczegółowo

ZL27ARM. Zestaw uruchomieniowy dla mikrokontrolerów STM32F103

ZL27ARM. Zestaw uruchomieniowy dla mikrokontrolerów STM32F103 ZL27ARM Zestaw uruchomieniowy dla mikrokontrolerów STM32F103 Zestaw ZL27ARM jest uniwersalnym zestawem uruchomieniowym dla mikrokontrolerów STM32F103. Dzięki wyposażeniu w szeroką gamę zaawansowanych układów

Bardziej szczegółowo

System mikroprocesorowy i peryferia. Dariusz Chaberski

System mikroprocesorowy i peryferia. Dariusz Chaberski System mikroprocesorowy i peryferia Dariusz Chaberski System mikroprocesorowy mikroprocesor pamięć kontroler przerwań układy wejścia wyjścia kontroler DMA 2 Pamięć rodzaje (podział ze względu na sposób

Bardziej szczegółowo

ZL3ST7. Zestaw uruchomieniowy dla mikrokontrolerów

ZL3ST7. Zestaw uruchomieniowy dla mikrokontrolerów ZL3ST7 Zestaw uruchomieniowy dla mikrokontrolerów ST7FLITE3x Zestaw ZL3ST7 jest uniwersalnym zestawem uruchomieniowym dla mikrokontrolerów ST7FLITE3x. Dzięki wyposażeniu w szeroką gamę układów peryferyjnych

Bardziej szczegółowo

WYKŁAD 5. Zestaw DSP60EX. Zestaw DSP60EX

WYKŁAD 5. Zestaw DSP60EX. Zestaw DSP60EX Zestaw DSP60EX Karta DSP60EX współpracuje z sterownikiem DSP60 i stanowi jego rozszerzenie o interfejs we/wy cyfrowy, analogowy oraz użytkownika. Karta z zamontowanym sterownikiem pozwala na wykorzystanie

Bardziej szczegółowo

Płyta uruchomieniowa EBX51

Płyta uruchomieniowa EBX51 Dariusz Kozak ZESTAW URUCHOMIENIOWY MIKROKOMPUTERÓW JEDNOUKŁADOWYCH MCS-51 ZUX51 Płyta uruchomieniowa EBX51 INSTRUKCJA OBSŁUGI Wszystkie prawa zastrzeżone Kopiowanie, powielanie i rozpowszechnianie w jakiejkolwiek

Bardziej szczegółowo

Wykład 4. Przegląd mikrokontrolerów 16-bit: - PIC24 - dspic - MSP430

Wykład 4. Przegląd mikrokontrolerów 16-bit: - PIC24 - dspic - MSP430 Wykład 4 Przegląd mikrokontrolerów 16-bit: - PIC24 - dspic - MSP430 Mikrokontrolery PIC Mikrokontrolery PIC24 Mikrokontrolery PIC24 Rodzina 16-bitowych kontrolerów RISC Podział na dwie podrodziny: PIC24F

Bardziej szczegółowo

Instrukcja użytkownika

Instrukcja użytkownika MMmega0X Minimoduły dla ATmega 0/ REV. Instrukcja użytkownika Evalu ation Board s for, AVR, ST, PIC microcontrollers Sta- rter Kits Embedded Web Serve rs Prototyping Boards Minimodules for microcontrollers,

Bardziej szczegółowo

1. Wprowadzenie Programowanie mikrokontrolerów Sprzęt i oprogramowanie... 33

1. Wprowadzenie Programowanie mikrokontrolerów Sprzęt i oprogramowanie... 33 Spis treści 3 1. Wprowadzenie...11 1.1. Wstęp...12 1.2. Mikrokontrolery rodziny ARM...13 1.3. Architektura rdzenia ARM Cortex-M3...15 1.3.1. Najważniejsze cechy architektury Cortex-M3... 15 1.3.2. Rejestry

Bardziej szczegółowo

ZL9AVR. Płyta bazowa dla modułów ZL7AVR (ATmega128) i ZL1ETH (RTL8019)

ZL9AVR. Płyta bazowa dla modułów ZL7AVR (ATmega128) i ZL1ETH (RTL8019) ZL9AVR Płyta bazowa dla modułów ZL7AVR (ATmega128) i ZL1ETH (RTL8019) ZL9AVR to płyta bazowa umożliwiająca wykonywanie różnorodnych eksperymentów związanych z zastosowaniem mikrokontrolerów AVR w aplikacjach

Bardziej szczegółowo

Elektronika i techniki mikroprocesorowe

Elektronika i techniki mikroprocesorowe Elektronika i techniki mikroprocesorowe Technika Mikroprocesorowa Układy peryferyjne, komunikacja z uŝytkownikiem Katedra Energoelektroniki, Napędu Elektrycznego i Robotyki Wydział Elektryczny, ul. Krzywoustego

Bardziej szczegółowo

Sterownik PLC ELP11R32-BASIC Dokumentacja techniczna (ver. 1.0)

Sterownik PLC ELP11R32-BASIC Dokumentacja techniczna (ver. 1.0) Sterownik PLC ELP11R32-BASIC Dokumentacja techniczna (ver. 1.0) Spis treści 1.Informację ogólne...2 2.Podstawowe parametry...2 3.Wejścia / wyjścia...2 4.Schemat blokowy...5 5.Zegar czasu rzeczywistego...6

Bardziej szczegółowo

Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki

Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki ĆWICZENIE Nr 10 (3h) Implementacja interfejsu SPI w strukturze programowalnej Instrukcja pomocnicza do laboratorium z przedmiotu

Bardziej szczegółowo

Biomonitoring system kontroli jakości wody

Biomonitoring system kontroli jakości wody FIRMA INNOWACYJNO -WDROŻENIOWA ul. Źródlana 8, Koszyce Małe 33-111 Koszyce Wielkie tel.: 0146210029, 0146360117, 608465631 faks: 0146210029, 0146360117 mail: biuro@elbit.edu.pl www.elbit.edu.pl Biomonitoring

Bardziej szczegółowo

STM32 Butterfly. Zestaw uruchomieniowy dla mikrokontrolerów STM32F107

STM32 Butterfly. Zestaw uruchomieniowy dla mikrokontrolerów STM32F107 Zestaw uruchomieniowy dla mikrokontrolerów STM32F107 STM32 Butterfly Zestaw STM32 Butterfly jest platformą sprzętową pozwalającą poznać i przetestować możliwości mikrokontrolerów z rodziny STM32 Connectivity

Bardziej szczegółowo

Charakterystyka mikrokontrolerów. Przygotowali: Łukasz Glapiński, Mateusz Kocur, Adam Kokot,

Charakterystyka mikrokontrolerów. Przygotowali: Łukasz Glapiński, Mateusz Kocur, Adam Kokot, Charakterystyka mikrokontrolerów Przygotowali: Łukasz Glapiński, 171021 Mateusz Kocur, 171044 Adam Kokot, 171075 Plan prezentacji Co to jest mikrokontroler? Historia Budowa mikrokontrolera Wykorzystywane

Bardziej szczegółowo

E-TRONIX Sterownik Uniwersalny SU 1.2

E-TRONIX Sterownik Uniwersalny SU 1.2 Obudowa. Obudowa umożliwia montaż sterownika na szynie DIN. Na panelu sterownika znajduje się wyświetlacz LCD 16x2, sygnalizacja LED stanu wejść cyfrowych (LED IN) i wyjść logicznych (LED OUT) oraz klawiatura

Bardziej szczegółowo

Zestaw uruchomieniowy z mikrokontrolerem LPC1114 i wbudowanym programatorem ISP

Zestaw uruchomieniowy z mikrokontrolerem LPC1114 i wbudowanym programatorem ISP Zestaw uruchomieniowy z mikrokontrolerem LPC1114 i wbudowanym programatorem ISP ZL32ARM ZL32ARM z mikrokontrolerem LPC1114 (rdzeń Cotrex-M0) dzięki wbudowanemu programatorowi jest kompletnym zestawem uruchomieniowym.

Bardziej szczegółowo

Systemy wbudowane Mikrokontrolery

Systemy wbudowane Mikrokontrolery Systemy wbudowane Mikrokontrolery Budowa i cechy mikrokontrolerów Architektura mikrokontrolerów rodziny AVR 1 Czym jest mikrokontroler? Mikrokontroler jest systemem komputerowym implementowanym w pojedynczym

Bardziej szczegółowo

MODUŁ UNIWERSALNY UNIV 3

MODUŁ UNIWERSALNY UNIV 3 1. Cechy Moduł służy do budowy modułów systemu automatyki domowej HAPCAN. - Zawiera procesor CPU (PIC18F26K80) - Transceiver CAN MCP2551 - Układ wyprowadzeń zgodny z DIL-24 (15,24mm) - Zgodny z CAN 2.0B

Bardziej szczegółowo

Instrukcja użytkownika

Instrukcja użytkownika TOP0X REV.0 Moduł adaptacyjny dla płyt EVB0X Instrukcja użytkownika Evalu ation Board s for, AVR, ST, PIC microcontrollers Sta- rter Kits Embedded Web Serve rs Prototyping Boards Minimodules for microcontrollers,

Bardziej szczegółowo

DTR PICIO v1.0. 1. Przeznaczenie. 2. Gabaryty. 3. Układ złącz

DTR PICIO v1.0. 1. Przeznaczenie. 2. Gabaryty. 3. Układ złącz DTR PICIO v1.0 1. Przeznaczenie Moduł PICIO jest uniwersalnym modułem 8 wejść cyfrowych, 8 wyjść cyfrowych i 8 wejść analogowych. Głównym elementem modułu jest procesor PIC18F4680. Izolowane galwanicznie

Bardziej szczegółowo

M-1TI. PRECYZYJNY PRZETWORNIK RTD, TC, R, U NA SYGNAŁ ANALOGOWY 4-20mA Z SEPARACJĄ GALWANICZNĄ. 2

M-1TI. PRECYZYJNY PRZETWORNIK RTD, TC, R, U NA SYGNAŁ ANALOGOWY 4-20mA Z SEPARACJĄ GALWANICZNĄ.  2 M-1TI PRECYZYJNY PRZETWORNIK RTD, TC, R, U NA SYGNAŁ ANALOGOWY 4-20mA Z SEPARACJĄ GALWANICZNĄ www.metronic.pl 2 CECHY PODSTAWOWE Przetwarzanie sygnału z czujnika na sygnał standardowy pętli prądowej 4-20mA

Bardziej szczegółowo

Instrukcja użytkownika

Instrukcja użytkownika MMlan REV.0 Mini karta sieciowa z magistralą bitową Instrukcja użytkownika Evalu ation Board s for, AVR, ST, PIC microcontrollers Sta- rter Kits Embedded Web Serve rs Prototyping Boards Minimodules for

Bardziej szczegółowo

Wstęp...9. 1. Architektura... 13

Wstęp...9. 1. Architektura... 13 Spis treści 3 Wstęp...9 1. Architektura... 13 1.1. Schemat blokowy...14 1.2. Pamięć programu...15 1.3. Cykl maszynowy...16 1.4. Licznik rozkazów...17 1.5. Stos...18 1.6. Modyfikowanie i odtwarzanie zawartości

Bardziej szczegółowo

LITEcompLPC1114. Zestaw ewaluacyjny z mikrokontrolerem LPC1114 (Cortex-M0) Sponsorzy:

LITEcompLPC1114. Zestaw ewaluacyjny z mikrokontrolerem LPC1114 (Cortex-M0) Sponsorzy: LITEcompLPC1114 Zestaw ewaluacyjny z mikrokontrolerem LPC1114 (Cortex-M0) Bezpłatny zestaw dla Czytelników książki Mikrokontrolery LPC1100. Pierwsze kroki LITEcompLPC1114 jest doskonałą platformą mikrokontrolerową

Bardziej szczegółowo

4/80. Przegląd systemu. Modułowe sterowniki PLC XC100/XC200. http://catalog.moeller.net. Moeller HPL0211-2007/2008 F6 F7 F8 F9 F10 F11 +/- F12 F13 F14

4/80. Przegląd systemu. Modułowe sterowniki PLC XC100/XC200. http://catalog.moeller.net. Moeller HPL0211-2007/2008 F6 F7 F8 F9 F10 F11 +/- F12 F13 F14 DC INPUT EH-XD1 DC INPUT EH-XD1 4/80 Przegląd systemu Modułowe sterowniki PLC XC0/XC00 F1 F F1 F F F F1 F F +/-, 0 F4 4 1 F5 8 5 F F F8 F9 9 SHIFT ESC ENTER CLEAR 1 180 Moeller HPL0-00/008 http://catalog.moeller.net

Bardziej szczegółowo

Płytka uruchomieniowa AVR oparta o układ ATMega16/ATMega32. Instrukcja Obsługi. SKN Chip Kacper Cyrocki Page 1

Płytka uruchomieniowa AVR oparta o układ ATMega16/ATMega32. Instrukcja Obsługi. SKN Chip Kacper Cyrocki Page 1 Płytka uruchomieniowa AVR oparta o układ ATMega16/ATMega32 Instrukcja Obsługi SKN Chip Kacper Cyrocki Page 1 Spis treści Wstęp... 3 Wyposażenie płytki... 4 Zasilanie... 5 Programator... 6 Diody LED...

Bardziej szczegółowo

Projektowanie urządzeń mikroprocesorowych cz. 2 Wykład 4

Projektowanie urządzeń mikroprocesorowych cz. 2 Wykład 4 Projektowanie urządzeń mikroprocesorowych cz. 2 Wykład 4 Etapy projektowania Proste urządzenie mikroprocesorowe 2 Zasilanie mikrokontrolera W zależności od potrzeb można wykorzystać wariant podstawowy

Bardziej szczegółowo

Obsługa kart pamięci Flash za pomocą mikrokontrolerów, część 1

Obsługa kart pamięci Flash za pomocą mikrokontrolerów, część 1 Obsługa kart pamięci Flash za pomocą mikrokontrolerów, część 1 Wraz ze wzrostem zapotrzebowania na tanie i pojemne noúniki danych niezawieraj¹cych elementûw ruchomych, kilka firm specjalizuj¹cych sií w

Bardziej szczegółowo

MAGISTRALE MIKROKONTROLERÓW (BSS) Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska

MAGISTRALE MIKROKONTROLERÓW (BSS) Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska (BSS) Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska Odległości pomiędzy źródłem a odbiorcą informacji mogą być bardzo zróżnicowane, przykładowo zaczynając od pojedynczych milimetrów w przypadku

Bardziej szczegółowo

Karta katalogowa JAZZ OPLC JZ20-T40/JZ20-J-T wejść cyfrowych, 2 wejścia analogowe/cyfrowe, 2 wejścia analogowe. 20 wyjść tranzystorowych

Karta katalogowa JAZZ OPLC JZ20-T40/JZ20-J-T wejść cyfrowych, 2 wejścia analogowe/cyfrowe, 2 wejścia analogowe. 20 wyjść tranzystorowych Karta katalogowa JAZZ OPLC JZ20-T40/JZ20-J-T40 16 wejść cyfrowych, 2 wejścia analogowe/cyfrowe, 2 wejścia analogowe 20 wyjść tranzystorowych Specyfikacja techniczna Zasilanie Napięcie zasilania 24 VDC

Bardziej szczegółowo

Podstawowe urządzenia peryferyjne mikrokontrolera ATmega8 Spis treści

Podstawowe urządzenia peryferyjne mikrokontrolera ATmega8 Spis treści Podstawowe urządzenia peryferyjne mikrokontrolera ATmega8 Spis treści 1. Konfiguracja pinów2 2. ISP..2 3. I/O Ports..3 4. External Interrupts..4 5. Analog Comparator5 6. Analog-to-Digital Converter.6 7.

Bardziej szczegółowo

NX70 PLC www.atcontrol.pl

NX70 PLC www.atcontrol.pl NX70 PLC NX70 Właściwości Rozszerzalność, niezawodność i łatwość w integracji Szybki procesor - zastosowanie technologii ASIC pozwala wykonywać CPU proste instrukcje z prędkością 0,2 us/1 krok Modyfikacja

Bardziej szczegółowo

Kod produktu: MP01611-ZK

Kod produktu: MP01611-ZK ZAMEK BEZSTYKOWY RFID ZE ZINTEGROWANĄ ANTENĄ, WYJŚCIE RS232 (TTL) Moduł stanowi gotowy do zastosowania bezstykowy zamek pracujący w technologii RFID dla transponderów UNIQUE 125kHz, zastępujący z powodzeniem

Bardziej szczegółowo

2. PRZERZUTNIKI I REJESTRY

2. PRZERZUTNIKI I REJESTRY Technika cyfrowa i mikroprocesorowa w ćwiczeniach laboratoryjnych : praca zbiorowa / pod redakcją Jerzego Jakubca ; autorzy Ryszard Bogacz, Jerzy Roj, Janusz Tokarski. Wyd. 3. Gliwice, 2016 Spis treści

Bardziej szczegółowo

Mikroprocesory i Mikrosterowniki

Mikroprocesory i Mikrosterowniki Mikroprocesory i Mikrosterowniki Wykład 1 Wydział Elektroniki Mikrosystemów i Fotoniki dr inż. Piotr Markowski Na prawach rękopisu. Na podstawie dokumentacji ATmega8535, www.atmel.com. Konsultacje Pn,

Bardziej szczegółowo

MCAR Robot mobilny z procesorem AVR Atmega32

MCAR Robot mobilny z procesorem AVR Atmega32 MCAR Robot mobilny z procesorem AVR Atmega32 Opis techniczny Jakub Kuryło kl. III Ti Zespół Szkół Zawodowych nr. 1 Ul. Tysiąclecia 3, 08-530 Dęblin e-mail: jkurylo92@gmail.com 1 Spis treści 1. Wstęp..

Bardziej szczegółowo

Ćwiczenie 5 Zegar czasu rzeczywistego na mikrokontrolerze AT90S8515

Ćwiczenie 5 Zegar czasu rzeczywistego na mikrokontrolerze AT90S8515 Laboratorium Techniki Mikroprocesorowej Informatyka studia dzienne Ćwiczenie 5 Zegar czasu rzeczywistego na mikrokontrolerze AT90S8515 Cel ćwiczenia Celem ćwiczenia jest poznanie możliwości nowoczesnych

Bardziej szczegółowo

1.2. Architektura rdzenia ARM Cortex-M3...16

1.2. Architektura rdzenia ARM Cortex-M3...16 Od Autora... 10 1. Wprowadzenie... 11 1.1. Wstęp...12 1.1.1. Mikrokontrolery rodziny ARM... 14 1.2. Architektura rdzenia ARM Cortex-M3...16 1.2.1. Najważniejsze cechy architektury Cortex-M3... 16 1.2.2.

Bardziej szczegółowo

Szczegółowy Opis Przedmiotu Zamówienia: Zestaw do badania cyfrowych układów logicznych

Szczegółowy Opis Przedmiotu Zamówienia: Zestaw do badania cyfrowych układów logicznych ZP/UR/46/203 Zał. nr a do siwz Szczegółowy Opis Przedmiotu Zamówienia: Zestaw do badania cyfrowych układów logicznych Przedmiot zamówienia obejmuje następujące elementy: L.p. Nazwa Ilość. Zestawienie komputera

Bardziej szczegółowo

Przetworniki A/C i C/A w systemach mikroprocesorowych

Przetworniki A/C i C/A w systemach mikroprocesorowych Przetworniki A/C i C/A w systemach mikroprocesorowych 1 Przetwornik A/C i C/A Przetworniki analogowo-cyfrowe (A/C) i cyfrowoanalogowe (C/A) to układy elektroniczne umożliwiające przesyłanie informacji

Bardziej szczegółowo

IC200UDR002 ASTOR GE INTELLIGENT PLATFORMS - VERSAMAX NANO/MICRO

IC200UDR002 ASTOR GE INTELLIGENT PLATFORMS - VERSAMAX NANO/MICRO IC200UDR002 8 wejść dyskretnych 24 VDC, logika dodatnia/ujemna. Licznik impulsów wysokiej częstotliwości. 6 wyjść przekaźnikowych 2.0 A. Port: RS232. Zasilanie: 24 VDC. Sterownik VersaMax Micro UDR002

Bardziej szczegółowo

Spis treœci. Co to jest mikrokontroler? Kody i liczby stosowane w systemach komputerowych. Podstawowe elementy logiczne

Spis treœci. Co to jest mikrokontroler? Kody i liczby stosowane w systemach komputerowych. Podstawowe elementy logiczne Spis treści 5 Spis treœci Co to jest mikrokontroler? Wprowadzenie... 11 Budowa systemu komputerowego... 12 Wejścia systemu komputerowego... 12 Wyjścia systemu komputerowego... 13 Jednostka centralna (CPU)...

Bardziej szczegółowo

Karta katalogowa JAZZ OPLC. Modele JZ20-T10/JZ20-J-T10 i JZ20-T18/JZ20-J-T18

Karta katalogowa JAZZ OPLC. Modele JZ20-T10/JZ20-J-T10 i JZ20-T18/JZ20-J-T18 Karta katalogowa JAZZ OPLC Modele JZ20-T10/JZ20-J-T10 i JZ20-T18/JZ20-J-T18 W dokumencie znajduje się specyfikacja Unitronics Jazz Micro-OPLC JZ20-T10/JZ20-J-T10 oraz JZ20-T18/JZ20-J-T18. Dodatkowe informacje

Bardziej szczegółowo

Sprawozdanie z projektu MARM. Część druga Specyfikacja końcowa. Prowadzący: dr. Mariusz Suchenek. Autor: Dawid Kołcz. Data: r.

Sprawozdanie z projektu MARM. Część druga Specyfikacja końcowa. Prowadzący: dr. Mariusz Suchenek. Autor: Dawid Kołcz. Data: r. Sprawozdanie z projektu MARM Część druga Specyfikacja końcowa Prowadzący: dr. Mariusz Suchenek Autor: Dawid Kołcz Data: 01.02.16r. 1. Temat pracy: Układ diagnozujący układ tworzony jako praca magisterska.

Bardziej szczegółowo

Karta katalogowa JAZZ OPLC JZ20-R31

Karta katalogowa JAZZ OPLC JZ20-R31 Karta katalogowa JAZZ OPLC JZ20-R31 W tym dokumencie znajduje się specyfikacja Unitronics Jazz Micro-OPLC JZ20-R31. Dodatkowe informacje znajdują się na płycie instalacyjnej CD Unitronics i w bibliotece

Bardziej szczegółowo

JAZZ OPLC JZ20-R10 i JZ20-R16

JAZZ OPLC JZ20-R10 i JZ20-R16 Karta katalogowa JAZZ OPLC i W dokumencie znajduje się specyfikacja Unitronics Jazz Micro-OPLC oraz. Dodatkowe informacje znajdują się na płycie instalacyjnej CD Unitronics i w bibliotece technicznej na

Bardziej szczegółowo

ZL9ARM płytka bazowa dla modułów diparm z mikrokontrolerami LPC213x/214x

ZL9ARM płytka bazowa dla modułów diparm z mikrokontrolerami LPC213x/214x ZL9ARM płytka bazowa dla modułów diparm z mikrokontrolerami LPC213x/214x ZL9ARM Płytka bazowa dla modułów diparm z mikrokontrolerami LPC213x/214x 1 ZL9ARM to uniwersalna płyta bazowa dla modułów diparm

Bardziej szczegółowo

Sterownik PLC ELP10T32-VH Dokumentacja techniczna

Sterownik PLC ELP10T32-VH Dokumentacja techniczna Sterownik PLC ELP10T32-VH Dokumentacja techniczna Spis treści 1. Informację ogólne...2 2. Podstawowe parametry...2 3. Wejścia / wyjścia...2 4. Schemat blokowy...5 5. Zegar czasu rzeczywistego...6 6. Łącza

Bardziej szczegółowo

1.10 MODUŁY KOMUNIKACYJNE

1.10 MODUŁY KOMUNIKACYJNE ASTOR GE INTELLIGENT PLATFORMS - VERSAMAX NANO/MICRO 1.10 MODUŁY KOMUNIKACYJNE IC200SET001 konwerter łącza RS (RS232 lub RS485) na Ethernet (10/100Mbit), obsługiwane protokoły: SRTP, Modbus TCP IC200USB001

Bardziej szczegółowo

Samba OPLC SM35-J-R20

Samba OPLC SM35-J-R20 Karta katalogowa Samba OPLC SM35-J-R20 Unitronics SM35-J-R20 posiada wbudowane następujące wejścia/wyjścia: 12 wejść cyfrowych, które mogą zostać przekształcone w: o 1 szybkie wejście licznikowe/enkoderowe

Bardziej szczegółowo

micro Programator ISP mikrokontrolerów AVR zgodny z STK500v2 Opis Obs³ugiwane mikrokontrolery Wspó³praca z programami Podstawowe w³aœciwoœci - 1 -

micro Programator ISP mikrokontrolerów AVR zgodny z STK500v2 Opis Obs³ugiwane mikrokontrolery Wspó³praca z programami Podstawowe w³aœciwoœci - 1 - STK500v2 Programator ISP mikrokontrolerów AVR zgodny z STK500v2 Opis Obs³ugiwane mikrokontrolery Programator STK500v2 jest programatorem ISP 8-bitowych mikrokontrolerów AVR firmy Atmel. Pod³¹czany do portu

Bardziej szczegółowo

1. Podstawowe wiadomości...9. 2. Możliwości sprzętowe... 17. 3. Połączenia elektryczne... 25. 4. Elementy funkcjonalne programów...

1. Podstawowe wiadomości...9. 2. Możliwości sprzętowe... 17. 3. Połączenia elektryczne... 25. 4. Elementy funkcjonalne programów... Spis treści 3 1. Podstawowe wiadomości...9 1.1. Sterowniki podstawowe wiadomości...10 1.2. Do czego służy LOGO!?...12 1.3. Czym wyróżnia się LOGO!?...12 1.4. Pierwszy program w 5 minut...13 Oświetlenie

Bardziej szczegółowo

Wstęp. Opis ATMEGA128 MINI MODUŁ VE-APS-1406

Wstęp. Opis ATMEGA128 MINI MODUŁ VE-APS-1406 ATMEGA128 MINI MODUŁ VE-APS-1406 Wstęp Instrukcja użytkownika Opis Instrukcja prezentuje mini moduł z mikrokontrolerem rodziny AVR (firmy ATMEL) Atmega128 w obudowie TQFP 64. Procesor ATmega128 wyposażony

Bardziej szczegółowo

Millenium II+ Moduły programowalne. jeszcze więcej możliwości NOWOŚĆ! FUNKCJA

Millenium II+ Moduły programowalne. jeszcze więcej możliwości NOWOŚĆ! FUNKCJA NOWOŚĆ! Moduły programowalne Millenium II+ jeszcze więcej możliwości FUNKCJA Łatwość i intuicyjność programowania, szeroka oferta oraz olbrzymie możliwości w postaci wejścia analogowego 0-10V, potencjometrycznego,

Bardziej szczegółowo

Wykład Mikroprocesory i kontrolery

Wykład Mikroprocesory i kontrolery Wykład Mikroprocesory i kontrolery Cele wykładu: Poznanie podstaw budowy, zasad działania mikroprocesorów i układów z nimi współpracujących. Podstawowa wiedza potrzebna do dalszego kształcenia się w technice

Bardziej szczegółowo

System czasu rzeczywistego

System czasu rzeczywistego System czasu rzeczywistego Definicje System czasu rzeczywistego (real-time system) jest to system komputerowy, w którym obliczenia prowadzone równolegle z przebiegiem zewnętrznego procesu mają na celu

Bardziej szczegółowo