Badanie materiałów mikroporowatych metodą spektroskopii IR
|
|
- Przybysław Stasiak
- 7 lat temu
- Przeglądów:
Transkrypt
1 Badanie materiałów mikroporowatych metodą spektroskopii IR Paweł Kozyra 1 I Materiały porowate 1. Co warto wiedzieć o materiałach porowatych? a) rodzaje b) metody syntezy c) budowa struktura d) właściwości, możliwości modyfikacji e) metody badania f) zastosowanie 2. Sygnały Ciała stałe mogą wykazywać porowatość w skali nano ( m). Takie materiały są rodzajem nanomateriałów o tyle interesującym, że wielkość porów jest porównywalna z rozmiarami cząsteczek chemicznych. Synteza struktur o różnej wielkości i topologii porów w połączeniu z różnorodnością chemiczną daje niemal nieograniczone możliwości ich projektowania i modyfikowania. Wykorzystywanie tych możliwości przekłada się na stały wzrost zainteresowania sitami molekularnymi, a liczba publikacji na ich temat jest ogromna. Dzieje się tak głównie ze względu na ważne praktyczne zastosowanie takich materiałów w katalizie i adsorpcji. Materiały porowate występują w naturze jako minerały a także jako tkanki (np. kostna). Już pierwsze odkrycia właściwości takich materiałów inspirowały do dalszych badań. Zastanawiające było, że potrafią one pochłonąć wodę niczym gąbka do 30% swojej masy. Aby mieć obiekt badań należało w pierwszym kroku opracować metodę otrzymywania takich materiałów. Pierwsze otrzymano krystaliczne materiały o stosunkowo małych rozmiarach porów (< 2 nm), czyli materiały mikroporowate zwane zeolitami. Występuje tu zatem pewien konflikt w nazewnictwie: materiały zawierające pory o rozmiarach do dwóch nanometrów nazywane są mikroporowatymi (co nigdy nie oznacza materiałów z porami wielkości mikrometrów). Opanowanie syntezy zeolitów okazało się stwarzać nowe możliwości, które doprowadziły do otrzymania materiałów o znacznie większych rozmiarach porów (do 50 nm) materiałów mezoporowatych różniły się one nie tylko rozmiarami porów, ale także odmienną budową. Materiały o jeszcze większych porach zazwyczaj określa się jako makroporowate. Takie specyficzne materiały (porowaty tlenek glinu korund lub AlPO) mają zastosowanie jako implanty Zeolity Najważniejszą cechą zeolitów, poza rozmiarami porów, jest ich krystaliczność. Dzięki temu stanowią one bardzo dobrze zdefiniowany układ. Znane struktury zeolitów zostały zebrane w atlasie struktur zeolitowych ( Ponadto ważnymi cechami zeolitów są: właściwości sorpcyjne (m. in. selektywna sorpcja), zdolność do wymiany jonowej (kationy mogą pełnić rolę centrów katalitycznych), możliwość wykorzystania jako 1 Dziękuję za konsultacje dr Izabeli Sobczak (UAM Poznań), dr Kindze Górze-Marek (UJ) oraz dr hab. Joannie Łojewskiej (UJ).
2 nośników dla metali, tlenków metali czy materiałów optycznie aktywnych. Możliwe jest także zakotwiczanie (grafting) fragmentów organicznych lub nieorganicznych pełniących następnie rolę centrów katalitycznych. Materiały mikroporowate otrzymuje się w procesie syntezy hydrotermalnej (wodne roztwory, podwyższone ciśnienie i temperatura). Mieszanina reakcyjna zawiera związki nieorganiczne stanowiące budulec przyszłych materiałów (związki krzemu, glinu lub fosforu) oraz substancję ograniczą, która jest czynnikiem kierującym syntezą (templat). Wielkość i kształt cząsteczek organicznych wpływa na uporządkowanie tetraedrów TO 4 (T = kation sieciowy, np. Si, Al, P). Cząsteczki templatu są okludowane przez krystalizującą nieorganiczną sieć. W ostatnim etapie następuje usuwanie templatu w jego miejsce pozostają puste kanały i komory. Klasyfikacja zeolitów oraz charakterystyka zeolitów typu fojazytu patrz poz. 1 cytowanej literatury Materiały mezoporowate Do otrzymywania materiałów mezoporowatych stosuje się czynnik kierujący syntezą w postaci supramolekularnych agregatów cząsteczek powierzchniowo czynnych (patrz ćwiczenie Micelizacja ). Jego wybór, podobnie jak w przypadku zeolitów, ma kluczowe znaczenie. W preparatyce nanoporowatych krzemianów stosuje się różne źródła krzemu: stopiona lub koloidalna krzemionka, (C 2 H 5 ) 4 SiO 4 ortokrzemian tetraetylu (TOES), (CH 3 ) 4 SiO 4 ortokrzemian tetrametylu (TOMS). Drugim niezbędnym składnikiem mieszaniny reakcyjnej jest surfaktant. Rodzaj użytego surfaktanta nie tylko decyduje o wielkości mezoporów, ale o samej strukturze. Do otrzymywania jednego z najpopularniejszych materiałów mezoporowatych, oznaczonego symbolem MCM-41, stosuje się typowo bromek heksadodecylotrimetyloaminy (C 16 TMABr). W zależności od stężenia i temperatury surfaktant ten tworzy agregaty o różnym zorganizowaniu. Powyżej krytycznego stężenia micelizacji (CMC) tworzą się kuliste micele. Wzrost stężenia powoduje agregację miceli kulistych do cylindrycznych, by w końcu utworzyć odpowiednie ciekłokrystaliczne mezofazy: heksagonalną, regularną lub lamelarną. Układy te służą jako matryce do otrzymywania odpowiednich materiałów: MCM-41, MCM-48, MCM-50. Oprócz stężenia surfaktanta o tym, która z faz tworzy się decyduje ph. Przy ph < 10 tworzy się faza amorficzna. Dla ph do tworzy się układ heksagonalny, a dla jeszcze bardziej zasadowego roztworu układ lamelarny lub nie tworzą się w ogóle żadne struktury (klarowny roztwór). Granice otrzymywania poszczególnych faz mogą się nieco zmieniać w zależności od źródła krzemu. Czynnik ph staje się istotny także dlatego, że zmienia się w trakcie syntezy i jego kontrola jest konieczna dla odpowiedniego kierowania przebiegiem syntezy. Poza mezoporowatymi analogami zeolitów możliwe jest otrzymywanie mezoporowatych tlenków metali. W takim przypadku konieczne jest związanie grupy hydrofilowej z cząsteczkami fazy nieorganicznej. Przeważnie oddziaływanie ma charakter jonowy, przy czym możliwe są cztery kombinacje ładunków jonów fazy nieorganicznej (I) i surfaktanta (S). W przypadku jednoimiennych ładunków konieczne jest pośredniczenie w oddziaływaniu przez trzeci jon (halogenku X lub metalu M + ) wg schematu S M + I lub S + X I +. W odróżnieniu od zeolitów, które są krystaliczne, materiały mezoporowate, chociaż posiadają szerokie pory o jednakowych średnicach, to charakteryzują się budową amorficzną. Właśnie z tego powodu charakteryzują się stosunkowo małą kwasowością. Zapotrzebowanie na materiały o dużych porach i wysokiej kwasowości doprowadziło do pomysłu porozsuwania warstw zeolitu w ten sposób otrzymano zeolity delaminowane. W tego typu materiałach warstwy mogą być porozrzucane jak domek z kart (ITQ-2) lub mogą być popodpierane za pomocą słupków (pilars) jak w materiale MCM-36. Ostatnio wykazano możliwość syntezy materiałów z bimodalnym rozkładem porów w zakresie mezo- i makroporów, przy użyciu kuleczek styrenu jako templatu. Materiały mezoporowate, podobnie jak zeolity, można modyfikować już po ich syntezie. Jedną z możliwości jest powiększanie rozmiarów porów różnymi sposobami: poprzez starzenie 2
3 materiału w podwyższonej temperaturze w roztworze po syntezie (423 K), hydrotermalne traktowanie. Kolejna to, generowanie mikroporów w amorficznych ściankach materiału MCM-41, prowadząca do powstania sita SBA * Metody modyfikacji materiałów porowatych Patrz poz. 1 (rozdz. 1.8, ) i 2 (rozdz. 1.3.) cytowanej literatury. * Temat ten jest fakultatywny dla zainteresowanych Metody badań materiałów porowatych Do charakterystyki zeolitów i materiałów mezoporowatych stosuje się te same techniki badawcze patrz poz. 1 (rozdz. 3) i 2 (rozdz. 2) cytowanej literatury. 3. Literatura 1. M. Ziółek, I. Nowak, Kataliza heterogeniczna, Wydawnictwo Naukowe UAM, Poznań 1999, rozdz. 1.8 *, , *, I. Nowak, M. Ziółek, Wiadomości Chemiczne Biblioteka 2001, Wrocław 2001, Wstęp, rozdziały 1.3. *, 2 i Zakres ćwiczenia Micelizacja (w ramach tej pracowni dla biomateriałów). II Spektroskopia w podczerwieni 1. Co warto wiedzieć o spektroskopii IR? a) Jak oddziałuje fala elekromagnetyczna o częstości z zakresu cm 1 z materią? b) Jak zarejestrować widmo IR działanie spektrometru FTIR. c) Jakie informacje można uzyskać z widma IR? d) Jak wyznaczyć (oszacować) wielkość porów? e) Jak zarejestrować widmo materiału porowatego? f) Jak wybrać rodzaj cząsteczek-sond interpretacja jakościowa widma. g) Jak zinterpretować ilościowo pasma w przypadku techniki transmisyjnej bądź refleksyjnej? 2. Jak wykorzystać spektroskopię IR (infra red) do badania materiałów porowatych? Technika IR jest nieniszczącą uniwersalną metodą badawczą. O ile przejrzystość próbek na to pozwala, rejestruje się widma absorpcyjne. W takim przypadku ilościowa interpretacja odbywa się w oparciu o prawo Lamberta-Beera: A = ε c l, gdzie ε molowy współczynnik absorpcji, c stężenie molowe substancji absorbującej, l grubość warstwy próbki wzdłuż kierunki przebiegu wiązki promieniowania. W przypadku spektroskopii IR molowe współczynniki absorpcji są rzadko wyznaczane. Jedną z przyczyn jest fakt, że oprócz tego, że zależą od rodzaju substancji badanej i długości fali, to wykazują silną zmienność z rodzajem matrycy (centrum), z którą związana jest badana cząsteczka. Można powiedzieć, że jest to wada, gdyż komplikuje to interpretację. Z drugiej strony jest to zaleta, gdyż większa czułość metody pozwala na uzyskanie większej informacji o próbce. Alternatywną techniką uzyskania widma jest DRIFT (diffuse reflectance infra-red fourier transform). W takim wypadku zbierane jest promieniowane rozproszone przez powierzchniowe 3
4 warstwy atomowe. Rejestrowane częstości pasm są analogiczne, jednakże znacznie trudniejsza jest interpretacja intensywności. Sygnał przetworzony na skalę Kubelka-Munka można interpretować najwyżej półilościowo. Standardowo (głównie dla związków organicznych w celu ich identyfikacji) pomiary IR wykonuje się techniką transmisyjną dla pastylki zrobionej z bromku potasu zawierającej ok. 0,5 mg badanej substancji. Stosuje się także pomiary w kuwecie próżniowej pozwala to na wyeliminowanie zakłócenia widmem fazy gazowej. Pomimo to ostatnio zyskuje popularność badanie materiałów/katalizatorów in situ w przepływie gazów reakcyjnych, w różnym zakresie temperatur. Dobierając warunki, w jakich normalnie pracują katalizatory umożliwia to obserwacje najbliższe przemysłowej rzeczywistości, tzw. technika in operando. Spektroskopia IR może być stosowana do rejestracji widma samej próbki materiału porowatego, jednakże znacznie częściej stosuje się ją do rejestracji widm cząsteczek-sond bądź cząsteczek reagentów oddziałujących z centrami zlokalizowanymi wewnątrz porów. Stosując cząsteczki o różnych wielkościach można wnioskować o rozmiarach porów. Natomiast znając ponadto molowe współczynniki absorpcji odpowiednich pasm zaadsorbowanych cząsteczek-sond możliwa jest analiza ilościowa dystrybucji cząsteczek w porach. 3. Literatura 1. J. Minczewski, Z. Marczenko, Chemia analityczna t. 3, Warszawa 1987, Fizyka chemiczna, red. J. Janikowa, Metody badania katalizatorów kontaktowych, red. M. Najbar, III Wykonanie ćwiczenia 1. Wykonanie pastylki z badanego materiału 2. Aktywacja próbki w próżni ºC (rejestracja widma w 220 i 130 ºC) 3. Adsorpcja pirydyny w 220 ºC (porcje, nadmiar) 4. Desorpcja pirydyny w 220 ºC, rejestracja widma w 130 ºC 5. Adsorpcja amoniaku w 130 ºC (porcje, nadmiar), desorpcja nadmiaru amoniaku 6. Eksport widm do plików ASCII 4
5 IV Opracowanie wyników 1. Schemat aparatury + wykonanie ćwiczenia (IR + aparatura próżniowa). 2. Interpretacja jakościowa widma preparatu aktywowanego oraz po adsorpcji pirydyny i amoniaku. 3. Interpretacja widma po adsorpcji pirydyny a) ewentualne odwodnienie widm, odjęcie widma próbki aktywowanej b) wybranie zakresu całkowania, obliczenie powierzchni pasma diagnostycznego c) wyliczenie ilości grup OH dostępnych dla pirydyny 4. Interpretacja widma po adsorpcji amoniaku a) ewentualne odwodnienie widm, odjęcie widma próbki po adsorpcji pirydyny b) wybranie zakresu całkowania, obliczenie powierzchni pasma diagnostycznego c) wyliczenie ilości grup OH dostępnych dla amoniaku 5. Podsumowanie a) Wyznaczenie wzoru sumarycznego zeolitu. Porównanie stężenia centrów dostępnych dla amoniaku i pirydyny. Oszacowanie wielkości porów na podstawie rozmiarów cząsteczeksond. Zweryfikowanie oszacowań za pomocą danych krystalograficznych b) Porównanie zastosowanej metody pod kątem uzyskiwanych informacji z innymi metodami (XRD, badania sorpcyjne, EPR, NMR). Ocena dokładności i ograniczeń stosowanych metod do badań materiałów porowatych 6. Sugestie modyfikacji instrukcji, wykonania, literatury, organizacji (zebrane od wszystkich). Jedna osoba: redakcja całości techniczna, merytoryczna, sformułowanie celu. 7. Dane pomiarowe oraz literaturowe a) Średnica pastylki 21 mm zależy od pastylkarki. b) Masa pastylki w każdym eksperymencie inna, należy wyznaczyć przed. W trakcie aktywacji zeolit traci wodę krystalizacyjną (w tym przypadku 17%). c) Wzór sumaryczny badanego materiału: Na H [( AlO ) ( SiO ) ] O d) Współczynniki absorpcji pasm diagnostycznych (Tabela 1) n a a 2 2 xh 2, Si/Al = 2,56 n 192 n Tabela 1. Współczynniki absorpcji pasm diagnostycznych. Pasmo Przybliżony zakres pasma -1 cm Współczynnik absorpcji -1 cm µmol PyH ,22 + NH ,51 5
PRODUKTY CHEMICZNE Ćwiczenie nr 3 Oznaczanie zawartości oksygenatów w paliwach metodą FTIR
PRODUKTY CHEMICZNE Ćwiczenie nr 3 Oznaczanie zawartości oksygenatów w paliwach metodą FTIR WSTĘP Metody spektroskopowe Spektroskopia bada i teoretycznie wyjaśnia oddziaływania pomiędzy materią będącą zbiorowiskiem
Spektroskopia. Spotkanie pierwsze. Prowadzący: Dr Barbara Gil
Spektroskopia Spotkanie pierwsze Prowadzący: Dr Barbara Gil Temat rozwaŝań Spektroskopia nauka o powstawaniu i interpretacji widm powstających w wyniku oddziaływań wszelkich rodzajów promieniowania na
Optyczna spektroskopia oscylacyjna. w badaniach powierzchni
Optyczna spektroskopia oscylacyjna w badaniach powierzchni Zalety oscylacyjnej spektroskopii optycznej uŝycie fotonów jako cząsteczek wzbudzających i rejestrowanych nie wymaga uŝycia próŝni (moŝliwość
Spektroskopia molekularna. Spektroskopia w podczerwieni
Spektroskopia molekularna Ćwiczenie nr 4 Spektroskopia w podczerwieni Spektroskopia w podczerwieni (IR) jest spektroskopią absorpcyjną, która polega na pomiarach promieniowania elektromagnetycznego pochłanianego
Podczerwień bliska: cm -1 (0,7-2,5 µm) Podczerwień właściwa: cm -1 (2,5-14,3 µm) Podczerwień daleka: cm -1 (14,3-50 µm)
SPEKTROSKOPIA W PODCZERWIENI Podczerwień bliska: 14300-4000 cm -1 (0,7-2,5 µm) Podczerwień właściwa: 4000-700 cm -1 (2,5-14,3 µm) Podczerwień daleka: 700-200 cm -1 (14,3-50 µm) WIELKOŚCI CHARAKTERYZUJĄCE
dr inż. Beata Brożek-Pluska SERS La boratorium La serowej
dr inż. Beata Brożek-Pluska La boratorium La serowej Spektroskopii Molekularnej PŁ Powierzchniowo wzmocniona sp ektroskopia Ramana (Surface Enhanced Raman Spectroscopy) Cząsteczki zaadsorbowane na chropowatych
1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej?
Tematy opisowe 1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? 2. Omów pomiar potencjału na granicy faz elektroda/roztwór elektrolitu. Podaj przykład, omów skale potencjału i elektrody
Fizykochemiczne metody w kryminalistyce. Wykład 7
Fizykochemiczne metody w kryminalistyce Wykład 7 Stosowane metody badawcze: 1. Klasyczna metoda analityczna jakościowa i ilościowa 2. badania rentgenostrukturalne 3. Badania spektroskopowe 4. Metody chromatograficzne
OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS
OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS Zagadnienia teoretyczne. Spektrofotometria jest techniką instrumentalną, w której do celów analitycznych wykorzystuje się przejścia energetyczne zachodzące
Spektroskopia molekularna. Ćwiczenie nr 1. Widma absorpcyjne błękitu tymolowego
Spektroskopia molekularna Ćwiczenie nr 1 Widma absorpcyjne błękitu tymolowego Doświadczenie to ma na celu zaznajomienie uczestników ćwiczeń ze sposobem wykonywania pomiarów metodą spektrofotometryczną
PANEL SPECJALIZACYJNY Kataliza przemysłowa i adsorbenty oferowany przez Zakład Technologii Chemicznej
PANEL SPECJALIZACYJNY Kataliza przemysłowa i adsorbenty oferowany przez Zakład Technologii Chemicznej Zespół Technologii rganicznej Zespół Chemicznych Technologii Środowiskowych Kontakt: dr hab. Piotr
IR II. 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni
IR II 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni Promieniowanie podczerwone ma naturę elektromagnetyczną i jego absorpcja przez materię podlega tym samym prawom,
Moduły kształcenia. Efekty kształcenia dla programu kształcenia (kierunku) MK_06 Krystalochemia. MK_01 Chemia fizyczna i jądrowa
Matryca efektów kształcenia określa relacje między efektami kształcenia zdefiniowanymi dla programu kształcenia (efektami kierunkowymi) i efektami kształcenia zdefiniowanymi dla poszczególnych modułów
Ćwiczenie 1. Zagadnienia: spektroskopia absorpcyjna, prawa absorpcji, budowa i działanie. Wstęp. Część teoretyczna.
Ćwiczenie 1 Metodyka poprawnych i dokładnych pomiarów absorbancji, wyznaczenie małych wartości absorbancji. Czynniki wpływające na mierzone widma absorpcji i wartości absorbancji dla wybranych długości
POLITECHNIKA BIAŁOSTOCKA
POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Towaroznawstwo Kod przedmiotu: LS03282; LN03282 Ćwiczenie 4 POMIARY REFRAKTOMETRYCZNE Autorzy: dr
CHEMIA. Wymagania szczegółowe. Wymagania ogólne
CHEMIA Wymagania ogólne Wymagania szczegółowe Uczeń: zapisuje konfiguracje elektronowe atomów pierwiastków do Z = 36 i jonów o podanym ładunku, uwzględniając rozmieszczenie elektronów na podpowłokach [
PODSTAWY METODY SPEKTROSKOPI W PODCZERWIENI ABSORPCJA, EMISJA
PODSTAWY METODY SPEKTROSKOPI W PODCZERWIENI ABSORPCJA, EMISJA Materia może oddziaływać z promieniowaniem poprzez absorpcję i emisję. Procesy te polegają na pochłonięciu lub wyemitowaniu fotonu przez cząstkę
Ćwiczenie 2 Przejawy wiązań wodorowych w spektroskopii IR i NMR
Ćwiczenie 2 Przejawy wiązań wodorowych w spektroskopii IR i NMR Szczególnym i bardzo charakterystycznym rodzajem oddziaływań międzycząsteczkowych jest wiązanie wodorowe. Powstaje ono między molekułami,
Metody spektroskopowe:
Katedra Chemii Analitycznej Metody spektroskopowe: Absorpcyjna Spektrometria Atomowa Fotometria Płomieniowa Gdańsk, 2010 Opracowała: mgr inż. Monika Kosikowska 1 1. Wprowadzenie Spektroskopia to dziedzina
Jak analizować widmo IR?
Jak analizować widmo IR? Literatura: W. Zieliński, A. Rajca, Metody spektroskopowe i ich zastosowanie do identyfikacji związków organicznych. WNT. R. M. Silverstein, F. X. Webster, D. J. Kiemle, Spektroskopowe
Ćwiczenie 3 Pomiar równowagi keto-enolowej metodą spektroskopii IR i NMR
Ćwiczenie 3 Pomiar równowagi keto-enolowej metodą spektroskopii IR i NMR 1. Wstęp Związki karbonylowe zawierające w położeniu co najmniej jeden atom wodoru mogą ulegać enolizacji przez przesunięcie protonu
LABORATORIUM Z KATALIZY HOMOGENICZNEJ I HETEROGENICZNEJ OKREŚLANIE RODZAJU CENTRÓW AKTYWNYCH POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY
POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW OKREŚLANIE RODZAJU CENTRÓW AKTYWNYCH KWASOWYCH KATALIZATORÓW HETEROGENICZNYCH W OPARCIU O Prowadzący: Joanna Strzezik
K02 Instrukcja wykonania ćwiczenia
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego K2 Instrukcja wykonania ćwiczenia Wyznaczanie krytycznego stężenia micelizacji (CMC) z pomiarów napięcia powierzchniowego Zakres zagadnień obowiązujących
Techniki immunochemiczne. opierają się na specyficznych oddziaływaniach między antygenami a przeciwciałami
Techniki immunochemiczne opierają się na specyficznych oddziaływaniach między antygenami a przeciwciałami Oznaczanie immunochemiczne RIA - ( ang. Radio Immuno Assay) techniki radioimmunologiczne EIA -
OFERTA TEMATÓW PROJEKTÓW DYPLOMOWYCH (MAGISTERSKICH) do zrealizowania w Katedrze INŻYNIERII CHEMICZNEJ I PROCESOWEJ
OFERTA TEMATÓW PROJEKTÓW DYPLOMOWYCH (MAGISTERSKICH) do zrealizowania w Katedrze INŻYNIERII CHEMICZNEJ I PROCESOWEJ Badania kinetyki utleniania wybranych grup związków organicznych podczas procesów oczyszczania
Laboratorium Podstaw Biofizyki
CEL ĆWICZENIA Celem ćwiczenia jest zbadanie procesu adsorpcji barwnika z roztworu oraz wyznaczenie równania izotermy Freundlicha. ZAKRES WYMAGANYCH WIADOMOŚCI I UMIEJĘTNOŚCI: widmo absorpcyjne, prawo Lamberta-Beera,
Nanochemia i kataliza
Panel specjalizacyjny Nanochemia i kataliza Panel realizowany w Zakładzie Chemii Nieorganicznej kierownik panelu prof. dr hab. Zbigniew Sojka 5 N2O conversion panel nanochemia i kataliza 0 0 1.2 1.0 0.8
Instrukcja do ćwiczeń laboratoryjnych
UNIWERSYTET GDAŃSKI WYDZIAŁ CHEMII Pracownia studencka Katedra Analizy Środowiska Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 3 OZNACZANIE CHLORKÓW METODĄ SPEKTROFOTOMETRYCZNĄ Z TIOCYJANIANEM RTĘCI(II)
relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach
1 STECHIOMETRIA INTERPRETACJA ILOŚCIOWA ZJAWISK CHEMICZNYCH relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach
Zeolity hierarchiczne otrzymane na drodze desilikacji charakterystyka teksturalna i spektroskopowa. Natura i dostępność centrów kwasowych.
Zeolity hierarchiczne otrzymane na drodze desilikacji charakterystyka teksturalna i spektroskopowa. Natura i dostępność centrów kwasowych. Karolina Tarach Natura i dostępność centrów kwasowych w zeolitach
Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie. Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności
Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności Spektroskopia, a spektrometria Spektroskopia nauka o powstawaniu
Zadanie 2. (1 pkt) Uzupełnij tabelę, wpisując wzory sumaryczne tlenków w odpowiednie kolumny. CrO CO 2 Fe 2 O 3 BaO SO 3 NO Cu 2 O
Test maturalny Chemia ogólna i nieorganiczna Zadanie 1. (1 pkt) Uzupełnij zdania. Pierwiastek chemiczny o liczbie atomowej 16 znajduje się w.... grupie i. okresie układu okresowego pierwiastków chemicznych,
Politechnika Gdańska Wydział Chemiczny. Katedra Technologii Chemicznej
Politechnika Gdańska Wydział Chemiczny Katedra Technologii Chemicznej Bezpieczeństwo środowiskowe Sorpcyjne właściwości gleb Przygotował: dr inż. Andrzej P. Nowak Gleba, czyli pedosfera, jest naturalnym
imię i nazwisko, nazwa szkoły, miejscowość Zadania I etapu Konkursu Chemicznego Trzech Wydziałów PŁ V edycja
Zadanie 1 (2 pkt.) Zmieszano 80 cm 3 roztworu CH3COOH o stężeniu 5% wag. i gęstości 1,006 g/cm 3 oraz 70 cm 3 roztworu CH3COOK o stężeniu 0,5 mol/dm 3. Obliczyć ph powstałego roztworu. Jak zmieni się ph
Jan Drzymała ANALIZA INSTRUMENTALNA SPEKTROSKOPIA W ŚWIETLE WIDZIALNYM I PODCZERWONYM
Jan Drzymała ANALIZA INSTRUMENTALNA SPEKTROSKOPIA W ŚWIETLE WIDZIALNYM I PODCZERWONYM Światło słoneczne jest mieszaniną fal o różnej długości i różnego natężenia. Tylko część promieniowania elektromagnetycznego
Ćwiczenie 30. Zagadnienia: spektroskopia absorpcyjna w zakresie UV-VIS, prawa absorpcji, budowa i. Wstęp
Ćwiczenie 30 Metodyka poprawnych i dokładnych pomiarów absorbancji w zakresie UV- VS, wyznaczenie małych wartości absorbancji. Czynniki wpływające na mierzone widma absorpcji i wartości absorbancji dla
PL B1. Sposób otrzymywania pigmentów na bazie mikroporowatych sit molekularnych zawierających indygo
PL 214019 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 214019 (13) B1 (21) Numer zgłoszenia: 388935 (51) Int.Cl. C01B 39/00 (2006.01) C09B 7/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej
2. Metody, których podstawą są widma atomowe 32
Spis treści 5 Spis treści Przedmowa do wydania czwartego 11 Przedmowa do wydania trzeciego 13 1. Wiadomości ogólne z metod spektroskopowych 15 1.1. Podstawowe wielkości metod spektroskopowych 15 1.2. Rola
Reflekcyjno-absorpcyjna spektroskopia w podczerwieni RAIRS (IRRAS) Reflection-Absorption InfraRed Spectroscopy
Reflekcyjno-absorpcyjna spektroskopia w podczerwieni RAIRS (IRRAS) Reflection-Absorption InfraRed Spectroscopy Odbicie promienia od powierzchni metalu E n 1 Równania Fresnela E θ 1 θ 1 r E = E odb, 0,
Opracował dr inż. Tadeusz Janiak
Opracował dr inż. Tadeusz Janiak 1 Uwagi dla wykonujących ilościowe oznaczanie metodami spektrofotometrycznymi 3. 3.1. Ilościowe oznaczanie w metodach spektrofotometrycznych Ilościowe określenie zawartości
ZASADY ZALICZENIA PRZEDMIOTU MBS
ZASADY ZALICZENIA PRZEDMIOTU MBS LABORATORIUM - MBS 1. ROZWIĄZYWANIE WIDM kolokwium NMR 25 kwietnia 2016 IR 30 maja 2016 złożone 13 czerwca 2016 wtorek 6.04 13.04 20.04 11.05 18.05 1.06 8.06 coll coll
Techniki analityczne. Podział technik analitycznych. Metody spektroskopowe. Spektroskopia elektronowa
Podział technik analitycznych Techniki analityczne Techniki elektrochemiczne: pehametria, selektywne elektrody membranowe, polarografia i metody pokrewne (woltamperometria, chronowoltamperometria inwersyjna
HETEROGENICZNOŚĆ STRUKTURALNA ORAZ WŁAŚCIWOŚCI ADSORPCYJNE ADSORBENTÓW NATURALNYCH
Uniwersytet Mikołaja Kopernika Monografie Wydziału Chemii MYROSLAV SPRYNSKYY HETEROGENICZNOŚĆ STRUKTURALNA ORAZ WŁAŚCIWOŚCI ADSORPCYJNE ADSORBENTÓW NATURALNYCH (KLINOPTYLOLIT, MORDENIT, DIATOMIT, TALK,
Zastosowanie spektroskopii w podczerwieni w jakościowej i ilościowej analizie organicznej
Zastosowanie spektroskopii w podczerwieni w jakościowej i ilościowej analizie organicznej dr Alina Dubis Zakład Chemii Produktów Naturalnych Instytut Chemii UwB Tematyka Spektroskopia - podział i zastosowanie
IM21 SPEKTROSKOPIA ODBICIOWA ŚWIATŁA BIAŁEGO
IM21 SPEKTROSKOPIA ODBICIOWA ŚWIATŁA BIAŁEGO Cel ćwiczenia: Zapoznanie się z metodą pomiaru grubości cienkich warstw za pomocą interferometrii odbiciowej światła białego, zbadanie zjawiska pęcznienia warstw
Wodorotlenki. n to liczba grup wodorotlenowych w cząsteczce wodorotlenku (równa wartościowości M)
Wodorotlenki Definicja - Wodorotlenkami nazywamy związki chemiczne, zbudowane z kationu metalu (zazwyczaj) (M) i anionu wodorotlenowego (OH - ) Ogólny wzór wodorotlenków: M(OH) n M oznacza symbol metalu.
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Spektrofotometryczne oznaczanie stężenia jonów żelaza(iii) opiekun mgr K. Łudzik
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Spektrofotometryczne oznaczanie stężenia jonów żelaza(iii) opiekun mgr K. Łudzik ćwiczenie nr 26 Zakres zagadnień obowiązujących do ćwiczenia 1. Prawo Lamberta
Ćwiczenie 8 Wyznaczanie stałej szybkości reakcji utleniania jonów tiosiarczanowych
CHEMI FIZYCZN Ćwiczenie 8 Wyznaczanie stałej szybkości reakcji utleniania jonów tiosiarczanowych W ćwiczeniu przeprowadzana jest reakcja utleniania jonów tiosiarczanowych za pomocą jonów żelaza(iii). Przebieg
Przedmiot: Chemia budowlana Zakład Materiałoznawstwa i Technologii Betonu
Przedmiot: Chemia budowlana Zakład Materiałoznawstwa i Technologii Betonu Ćw. 4 Kinetyka reakcji chemicznych Zagadnienia do przygotowania: Szybkość reakcji chemicznej, zależność szybkości reakcji chemicznej
Kryteria oceniania z chemii kl VII
Kryteria oceniania z chemii kl VII Ocena dopuszczająca -stosuje zasady BHP w pracowni -nazywa sprzęt laboratoryjny i szkło oraz określa ich przeznaczenie -opisuje właściwości substancji używanych na co
ZAKŁAD CHEMII TEORETYCZNEJ
ZAKŁAD CHEMII TEORETYCZNEJ Prof. Krzysztof Nieszporek Kierownik Zakładu Prof. Krzysztof Woliński Prof. Paweł Szabelski Dr Mariusz Barczak Dr Damian Nieckarz Dr Przemysław Podkościelny prof. Krzysztof Woliński
b) Podaj liczbę moli chloru cząsteczkowego, która całkowicie przereaguje z jednym molem glinu.
Informacja do zadań 1 i 2 Chlorek glinu otrzymuje się w reakcji glinu z chlorowodorem lub działając chlorem na glin. Związek ten tworzy kryształy, rozpuszczalne w wodzie zakwaszonej kwasem solnym. Z roztworów
2.1. Charakterystyka badanego sorbentu oraz ekstrahentów
BADANIA PROCESU SORPCJI JONÓW ZŁOTA(III), PLATYNY(IV) I PALLADU(II) Z ROZTWORÓW CHLORKOWYCH ORAZ MIESZANINY JONÓW NA SORBENCIE DOWEX OPTIPORE L493 IMPREGNOWANYM CYANEXEM 31 Grzegorz Wójcik, Zbigniew Hubicki,
Ćwiczenie 31. Zagadnienia: spektroskopia absorpcyjna, prawa absorpcji, budowa i działanie. Wstęp
Ćwiczenie 31 Metodyka poprawnych i dokładnych pomiarów widm absorbancji w zakresie UV-VIS. Wpływ monochromatyczności promieniowania i innych parametrów pomiarowych na kształt widm absorpcji i wartości
Adsorpcja błękitu metylenowego na węglu aktywnym w obecności acetonu
Adsorpcja błękitu metylenowego na węglu aktywnym w obecności acetonu Cel ćwiczenia Celem ćwiczenia jest zbadanie procesu adsorpcji barwnika z roztworu, wyznaczenie równania izotermy Freundlicha oraz wpływu
1. Podstawowe prawa i pojęcia chemiczne
1. PODSTAWOWE PRAWA I POJĘCIA CHEMICZNE 5 1. Podstawowe prawa i pojęcia chemiczne 1.1. Wyraź w gramach masę: a. jednego atomu żelaza, b. jednej cząsteczki kwasu siarkowego. Odp. 9,3 10 23 g; 1,6 10 22
Badanie właściwości związków powierzchniowo czynnych
POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA TECHNOLOGII CHEMICZNEJ ORGANICZNEJ I PETROCHEMII INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH: Badanie właściwości związków powierzchniowo czynnych Laboratorium z
X Konkurs Chemii Nieorganicznej i Ogólnej rok szkolny 2011/12
ŁÓDZKIE CENTRUM DOSKONALENIA NAUCZYCIELI I KSZTAŁCENIA PRAKTYCZNEGO X Konkurs Chemii Nieorganicznej i Ogólnej rok szkolny 2011/12 Imię i nazwisko Szkoła Klasa Nauczyciel Uzyskane punkty Zadanie 1. (10
Jednostki Ukadu SI. Jednostki uzupełniające używane w układzie SI Kąt płaski radian rad Kąt bryłowy steradian sr
Jednostki Ukadu SI Wielkość Nazwa Symbol Długość metr m Masa kilogram kg Czas sekunda s Natężenie prądu elektrycznego amper A Temperatura termodynamiczna kelwin K Ilość materii mol mol Światłość kandela
PRACOWNIA CHEMII. Równowaga chemiczna (Fiz2)
PRACOWNIA CHEMII Ćwiczenia laboratoryjne dla studentów II roku kierunku Zastosowania fizyki w biologii i medycynie Biofizyka molekularna Projektowanie molekularne i bioinformatyka Równowaga chemiczna (Fiz2)
Powierzchniowo wzmocniona spektroskopia Ramana SERS. (Surface Enhanced Raman Spectroscopy)
Powierzchniowo wzmocniona spektroskopia Ramana SERS (Surface Enhanced Raman Spectroscopy) Cząsteczki zaadsorbowane na chropowatych powierzchniach niektórych metali (Ag, Au, Cu) dają bardzo intensywny sygnał
Roztwory elekreolitów
Imię i nazwisko:... Roztwory elekreolitów Zadanie 1. (2pkt) W teorii Brönsteda sprzężoną parą kwas-zasada nazywa się układ złożony z kwasu oraz zasady, która powstaje z tego kwasu przez odłączenie protonu.
PRACOWNIA APARATUROWA Chemia I rok II stopień 2018/19 ZASTOSOWANIE SPEKTROSKOPII FT-IR W ANALIZIE JAKOŚCIOWEJ I ILOŚCIOWEJ
PRACOWNIA APARATUROWA Chemia I rok II stopień 2018/19 ZASTOSOWANIE SPEKTROSKOPII FT-IR W ANALIZIE JAKOŚCIOWEJ I ILOŚCIOWEJ W trakcie zajęć realizowane będą dwa ćwiczenia Ćwiczenie 1 Analiza jakościowa
LABORATORIUM Z KATALIZY HOMOGENICZNEJ I HETEROGENICZNEJ POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY. Miejsce ćwiczenia: Zakład Chemii Fizycznej, sala 109
POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW CHARAKTERYSTYKA SKŁADU KATALIZATORA - SPEKTROSKOPIA RAMANA Miejsce ćwiczenia: Zakład Chemii Fizycznej, sala 109 LABORATORIUM
Oferta handlowa. Witamy. Prezentujemy firmę zajmującą się między innymi dostarczaniem dla naszych klientów sit molekularnych.
Oferta handlowa Witamy Prezentujemy firmę zajmującą się między innymi dostarczaniem dla naszych klientów sit molekularnych. Naszym głównym celem jest dostarczenie klientom najwyższej jakości produkt w
Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych. CHEMIA klasa II.
Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych CHEMIA klasa II Oceny śródroczne: Ocenę dopuszczającą otrzymuje uczeń, który: -wymienia zasady bhp
Promieniowanie podczerwone (ang. infrared IR) obejmuje zakres promieniowania elektromagnetycznego pomiędzy promieniowaniem widzialnym a mikrofalowym.
Próby identyfikacji białego cukru buraczanego i trzcinowego dr inż. Maciej Wojtczak Promieniowanie podczerwone Promieniowanie podczerwone (ang. infrared IR) obejmuje zakres promieniowania elektromagnetycznego
Spis treści. Wstęp. Twardość wody
Spis treści 1 Wstęp 1.1 Twardość wody 1.2 Oznaczanie twardości wody 1.3 Oznaczanie utlenialności 1.4 Oznaczanie jonów metali 2 Część doświadczalna 2.1 Cel ćwiczenia 2.2 Zagadnienia do przygotowania 2.3
Realizacja wymagań szczegółowych podstawy programowej w poszczególnych tematach podręcznika Chemia Nowej Ery dla klasy siódmej szkoły podstawowej
Realizacja wymagań szczegółowych podstawy programowej w poszczególnych tematach podręcznika Chemia Nowej Ery dla klasy siódmej szkoły podstawowej Temat w podręczniku Substancje i ich przemiany 1. Zasady
Realizacja wymagań szczegółowych podstawy programowej z chemii dla klasy siódmej szkoły podstawowej
Realizacja wymagań szczegółowych podstawy programowej z chemii dla klasy siódmej szkoły podstawowej Nauczyciel: Marta Zielonka Temat w podręczniku Substancje i ich przemiany 1. Zasady bezpiecznej pracy
2. Podczas spalania 2 objętości pewnego gazu z 4 objętościami H 2 otrzymano 1 objętość N 2 i 4 objętości H 2O. Jaki gaz uległ spalaniu?
1. Oblicz, ilu moli HCl należy użyć, aby poniższe związki przeprowadzić w sole: a) 0,2 mola KOH b) 3 mole NH 3 H 2O c) 0,2 mola Ca(OH) 2 d) 0,5 mola Al(OH) 3 2. Podczas spalania 2 objętości pewnego gazu
Nanochemia i kataliza
Panel specjalizacyjny Nanochemia i kataliza panel realizowany w Zakładzie Chemii Nieorganicznej Kierownik panelu: profesor Zbigniew Sojka 1.2 N2O conversion 1.0 X N = e 0.8 0.6 0.4 2O 1- E a t A e R T
Wykład 5. Anna Ptaszek. 9 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 5. Anna Ptaszek 1 / 20
Wykład 5 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 9 października 2015 1 / 20 Zjawiska powierzchniowe Adsorpcja na powierzchni ciała stałego (adsorbentu): adsorpcja fizyczna: substancja adsorbująca
E (2) nazywa się absorbancją.
1/6 Celem ćwiczenia jest poznanie zjawiska absorpcji światła przez roztwory, pomiar widma absorpcji przy pomocy spektrofotometru oraz wyliczenie stężenia badanego roztworu. Promieniowanie elektromagnetyczne,
Efekty kształcenia dla kierunku studiów CHEMIA studia drugiego stopnia profil ogólnoakademicki
Załącznik nr 2 Efekty kształcenia dla kierunku studiów CHEMIA studia drugiego stopnia profil ogólnoakademicki Umiejscowienie kierunku w obszarze kształcenia Kierunek studiów chemia należy do obszaru kształcenia
XXIII KONKURS CHEMICZNY DLA GIMNAZJALISTÓW ROK SZKOLNY 2015/2016
IMIĘ I NAZWISKO PUNKTACJA SZKOŁA KLASA NAZWISKO NAUCZYCIELA CHEMII I LICEUM OGÓLNOKSZTAŁCĄCE Inowrocław 21 maja 2016 Im. Jana Kasprowicza INOWROCŁAW XXIII KONKURS CHEMICZNY DLA GIMNAZJALISTÓW ROK SZKOLNY
Konkurs Chemiczny dla uczniów szkół ponadgimnazjalnych rok szkolny 2013/2014
ŁÓDZKIE CENTRUM DOSKONALENIA NAUCZYCIELI I KSZTAŁCENIA PRAKTYCZNEGO Konkurs Chemiczny dla uczniów szkół ponadgimnazjalnych rok szkolny 2013/2014 Imię i nazwisko uczestnika Szkoła Klasa Nauczyciel Imię
WYZNACZANIE ROZMIARÓW
POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI Ćwiczenie 6 WYZNACZANIE ROZMIARÓW MAKROCZĄSTECZEK I. WSTĘP TEORETYCZNY Procesy zachodzące między atomami lub cząsteczkami w skali molekularnej
CHEMIA NIEORGANICZNA. Andrzej Kotarba Zakład Chemii Nieorganicznej Wydział Chemii I piętro p. 138 WYKŁAD -1
CHEMIA NIEORGANICZNA Andrzej Kotarba Zakład Chemii Nieorganicznej Wydział Chemii I piętro p. 138 WYKŁAD -1 w poprzednim odcinku RÓWNOWAGA PRZEMIANA STRUKTURA w poprzednim odcinku w poprzednim odcinku poziomy
Zadanie 1. [ 3 pkt.] Uzupełnij zdania, wpisując brakującą informację z odpowiednimi jednostkami.
Zadanie 1. [ 3 pkt.] Uzupełnij zdania, wpisując brakującą informację z odpowiednimi jednostkami. I. Gęstość propanu w warunkach normalnych wynosi II. Jeżeli stężenie procentowe nasyconego roztworu pewnej
PL 198188 B1. Instytut Chemii Przemysłowej im.prof.ignacego Mościckiego,Warszawa,PL 03.04.2006 BUP 07/06
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 198188 (13) B1 (21) Numer zgłoszenia: 370289 (51) Int.Cl. C01B 33/00 (2006.01) C01B 33/18 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)
Spektroskopowe metody identyfikacji związków organicznych
Spektroskopowe metody identyfikacji związków organicznych Wstęp Spektroskopia jest metodą analityczną zajmującą się analizą widm powstających w wyniku oddziaływania promieniowania elektromagnetycznego
Widma w podczerwieni (IR)
Spektroskopowe metody identyfikacji związków organicznych Widma w podczerwieni (IR) dr 2 Widmo w podczerwieni Liczba drgań zależy od liczby atomów w cząsteczce: cząsteczka nieliniowa o n atomach ma 3n-6
ogromna liczba małych cząsteczek, doskonale elastycznych, poruszających się we wszystkich kierunkach, tory prostoliniowe, kierunek ruchu zmienia się
CHEMIA NIEORGANICZNA Dr hab. Andrzej Kotarba Zakład Chemii Nieorganicznej Wydział Chemii I pietro p. 138 WYKŁAD - STAN GAZOWY i CHEMIA GAZÓW kinetyczna teoria gazów ogromna liczba małych cząsteczek, doskonale
UNIWERSYTET MARII CURIE-SKŁODOWSKIEJ W LUBLINIE
UNIWERSYTET MARII CURIE-SKŁODOWSKIEJ W LUBLINIE Projekt Zintegrowany UMCS Centrum Kształcenia i Obsługi Studiów, Biuro ds. Kształcenia Ustawicznego telefon: +48 81 537 54 61 Podstawowe informacje o przedmiocie
Za poprawną metodę Za poprawne obliczenia wraz z podaniem zmiany ph
Zadanie 1 ( pkt.) Zmieszano 80 cm roztworu CHCH o stężeniu 5% wag. i gęstości 1,006 g/cm oraz 70 cm roztworu CHCK o stężeniu 0,5 mol/dm. bliczyć ph powstałego roztworu. Jak zmieni się ph roztworu po wprowadzeniu
OZNACZENIE JAKOŚCIOWE I ILOŚCIOWE w HPLC
OZNACZENIE JAKOŚCIOWE I ILOŚCIOWE w HPLC prof. Marian Kamiński Wydział Chemiczny, Politechnika Gdańska CEL Celem rozdzielania mieszaniny substancji na poszczególne składniki, bądź rozdzielenia tylko wybranych
Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy)
Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy) Oddziaływanie elektronów ze stałą, krystaliczną próbką wstecznie rozproszone elektrony elektrony pierwotne
Egzamin końcowy Średnia arytmetyczna przedmiotów wchodzących w skład modułu informacje dodatkowe
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Technologia Chemiczna poziom I Sylabus modułu: Podstawy chemii 002 Nazwa wariantu modułu (opcjonalnie): - 1. Informacje ogólne koordynator
JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI?
Podstawowe miary masy i objętości stosowane przy oznaczaniu ilości kwasów nukleinowych : 1g (1) 1l (1) 1mg (1g x 10-3 ) 1ml (1l x 10-3 ) 1μg (1g x 10-6 ) 1μl (1l x 10-6 ) 1ng (1g x 10-9 ) 1pg (1g x 10-12
Ćwiczenie IX KATALITYCZNY ROZKŁAD WODY UTLENIONEJ
Wprowadzenie Ćwiczenie IX KATALITYCZNY ROZKŁAD WODY UTLENIONEJ opracowanie: Barbara Stypuła Celem ćwiczenia jest poznanie roli katalizatora w procesach chemicznych oraz prostego sposobu wyznaczenia wpływu
Sylabus - Identyfikacja Związków Organicznych
Sylabus - Identyfikacja Związków Organicznych 1. Metryczka Nazwa Wydziału: Program kształcenia (kierunek studiów, poziom i profil kształcenia, forma studiów, np. Zdrowie publiczne I stopnia profil praktyczny,
Ćwiczenie 3 ANALIZA JAKOŚCIOWA PALIW ZA POMOCĄ SPEKTROFOTOMETRII FTIR (Fourier Transform Infrared Spectroscopy)
POLITECHNIKA ŁÓDZKA WYDZIAŁ INśYNIERII PROCESOWEJ I OCHRONY ŚRODOWISKA KATEDRA TERMODYNAMIKI PROCESOWEJ K-106 LABORATORIUM KONWENCJONALNYCH ŹRÓDEŁ ENERGII I PROCESÓW SPALANIA Ćwiczenie 3 ANALIZA JAKOŚCIOWA
Wymagania edukacyjne na poszczególne roczne oceny klasyfikacyjne z przedmiotu chemia dla klasy 7 w r. szk. 2019/2020
Wymagania edukacyjne na poszczególne roczne oceny klasyfikacyjne z przedmiotu chemia dla klasy 7 w r. szk. 2019/2020 Ocenę niedostateczną otrzymuje uczeń, który nie opanował wymagań na ocenę dopuszczającą.
VIII Podkarpacki Konkurs Chemiczny 2015/2016
III Podkarpacki Konkurs Chemiczny 015/016 ETAP I 1.11.015 r. Godz. 10.00-1.00 Uwaga! Masy molowe pierwiastków podano na końcu zestawu. Zadanie 1 (10 pkt) 1. Kierunek której reakcji nie zmieni się pod wpływem
PLAN STUDIÓW NR II PROFIL OGÓLNOAKADEMICKI POZIOM STUDIÓW: STUDIA DRUGIEGO STOPNIA (1,5-roczne magisterskie) FORMA STUDIÓW:
UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY 1.TECHNOLOGIA PROCESÓW CHEMICZNYCH 2. BIOTECHNOLOGIA PRZEMYSŁOWA 3. ANALITYKA CHEMICZNA I SPOŻYWCZA 4. NOWOCZESNE TECHNOLOGIE MATERIAŁOWE godzin tygodniowo (semestr
WYKONUJEMY POMIARY. Ocenę DOSTATECZNĄ otrzymuje uczeń, który :
WYKONUJEMY POMIARY Ocenę DOPUSZCZAJĄCĄ otrzymuje uczeń, który : wie, w jakich jednostkach mierzy się masę, długość, czas, temperaturę wie, do pomiaru jakich wielkości służy barometr, menzurka i siłomierz
Materiał obowiązujący do ćwiczeń z analizy instrumentalnej II rok OAM
Materiał obowiązujący do ćwiczeń z analizy instrumentalnej II rok OAM Ćwiczenie 1 Zastosowanie statystyki do oceny metod ilościowych Błąd gruby, systematyczny, przypadkowy, dokładność, precyzja, przedział
Wykład 5. Anna Ptaszek. 30 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Fizykochemiczne podstawy procesów przemysłu
Wykład 5 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 30 października 2018 1 / 22 Zjawiska powierzchniowe Adsorpcja na powierzchni ciała stałego (adsorbentu): adsorpcja fizyczna: substancja adsorbująca
WYMAGANIA EDUKACYJNE na poszczególne oceny śródroczne i roczne Z CHEMII W KLASIE II gimnazjum
WYMAGANIA EDUKACYJNE na poszczególne oceny śródroczne i roczne Z CHEMII W KLASIE II gimnazjum Program nauczania chemii w gimnazjum autorzy: Teresa Kulawik, Maria Litwin Program realizowany przy pomocy