Wykład IX. Ogniwa paliwowe

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wykład IX. Ogniwa paliwowe"

Transkrypt

1 Wykład IX Ogniwa paliwowe

2 Ogniwo paliwowe Ogniwo paliwowe jest urządzeniem pozwalającym na ciągłą przemianą energii chemicznej paliwa w energię oraz ciepło, tak długo jak, dostarczane jest paliwo i utleniacz 1838-odkrycie przez szwajcarskiego chemika S.F.Schonbeina zasady działania ogniw paliwowych 1839-stworzenie przez walijskiego naukowca, sir Williama Grove pierwszego działającego ogniwa Lata60-te XX wieku pierwsze praktyczne wykorzystanie ogniw paliwowych w czasie programów Sojuz, Apollo, Gemini, Skylab do produkcji energii elektrycznej i wody Specjaliści oceniają, że zastąpienie tradycyjnych metod wytwarzania energii elektrycznej z węgla przez ogniwa paliwowe powinno zmniejszyć emisję: CO 2 o 40-60%, tlenki azotu o 50-90%,

3 Elektroliza wody H 2 O 1/2O 2 + H 2 Energia elektryczna dostarczana G= kj O 2 + H Wymiana energii dla 1 mola wody H= kj bateria Energia z otoczenia T S=48.7 kj Praca na rozprężanie produkowanego gazu p V=3.7 kj

4 Ogniwo paliwowe PEMFC Proton Exchange Membrane Fuel CellSOFC Solid Oxide Fuel Cell

5 Ogniwa paliwowe termodynamika H 2 (g) + ½O 2 (g) H 2 O(l) Termodynamiczne własności w 1atm, 298K H 2 O 2 H 2 O (l) Entalpia (H) kj/ mol Entropia (S) J/mol K J/mol K J/mol K

6 Ogniwa paliwowe ΔH = ΔH reaction = ΣH products ΣH reactants = (1mol)( kj/ mol ) - (0) = kj ΔS = ΔS reaction ΣS products ΣS reactants = [(1mol)(69.91 J/mol K)] [(1mol)( J/mol K) + (½mol)( J/mol K)] = J/ K G= H-T S G= J-(298K) (-163.2J/K)= J ΔQ = TΔS = (298K)( J/ K ) = kj

7 Rodzaje ogniw paliwowych TYP Elektrolit Efektywność Temp. pracy SOFC ZrO % 800 o C MCFC (Li,K)CO 3 50% 650 o C PAFC H 3 PO 4 40% 200 o C AFC KOH 50-60% 80 o C PEFC mebrana 60% 80 o C polimerowa

8 Rodzaje ogniw paliwowych- przetwarzanie paliwa Paliwa płynne Parowanie Typ ogniwa Paliwa gzowe Wzrost złożoności procesu technologicznego przetwarzania paliwa Spadek efektywności o C Usuwanie siarki o C Konwersja do H 2 i CO Przesunięcie reakcji H 2 i CO Selektywne utlenianie CO <40% H 2 CO 2, H 2 O SOFC Termicznie zintegrowane z reformerem MCFC Termicznie zintegrowane z reformerem PAFC (CO < 5%) PEMFC (CO < 10ppm) o C 650 o C 200 o C 80 o C

9 Alkaliczne ogniwa paliwowe AFC Sprężone paliwo - wodór i tlen Elektrolit wodorotlenek potasu (KOH) Efektywność ~70% Temperatura pracy: 150 C C Moc wyjściowa 300W to 5kW Figure 4 Wymagany czysty wodór + Pt jako katalizator ($$) Wodny roztwór elektrolitu nieszczelności-korozja

10 Ogniwo paliwowe ze stopionym węglanem MCFC Elektrolit stopiony węglan Efektywność 60 80% Temperatura pracy ~650 C Katalizator Nikiel (tani) Do 2 MW Za wysoka temperatura pracy dla wielu zastosowań W czasie reakcji jony węglanowe są konsumowane kompensacja poprzez wprowadzenie CO 2

11 Ogniwo paliwowe z kwasem fosforowym PAFC Phosphoric Acid Fuel Cell Elektrolit kwas ortofosforowy Efektywność 40 80% Temperatura pracy 150 C C Testowane są jednostki o mocy 11 MW Figure 6 Jako paliwo można używać benzyn (bez siarki) Elektrolit ma właściwości korozyjne Katalizatory platynowe są bardzo drogie

12 Ogniwo paliwowe z membraną do wymiany protonów PEMFC Proton Exchange Membrane Fuel Cell Elektrolit - cienki przepuszczalny polimer Efektywność 40 60% Moc kw Figure 7 Temperatura pracy 80 C Elektrolit nie wymaga uszczelnienia i nie pęka Temperatura pracy pozwala na zastosowanie w domach i samochodach Katalizatory platynowe stosowane po obu stronach elektrolitu $$

13 Ogniwa paliwowe ze stałotlenkowym elektrolitem (SOFC) Elektrolit- ceramiczne tlenki metali Efektywność ~60% Temperatura pracy C Moc do 100 kw Figure 8 Wysoka temperatura / katalizatory mogą pochłaniać na elektrodzie wodór z paliwa Wysoka temperatura umożliwia zastosowania ciepła do otrzymywania energii ale ograniczeniem są duże wymiary SOFC Stały elektrolit nie wymaga uszczelnienia ale jest nieodporny na pękanie

14 Zalety Sprawność bezpośredniej konwersji energii chemicznej paliwa w energię elektryczną nie podlega ograniczeniu wynikającemu z teorii silników cieplnych Wysoka sprawność produkcji energii elektrycznej Możliwość stosowania różnych rodzajów paliw Technologia bezpieczna dla środowiska Nie istnieje problem emisji tlenków siarki i azotu (śladowe ilości) Brak ruchomych części pracujących w trudnych warunkach Możliwość pracy przy szerokim zakresie obciążeń Możliwość ciągłej pracy (o ile jest dostęp do utleniacza i paliwa)

15 Wady Niskie napięcie uzyskiwane z pojedynczego ogniwa Drogie materiały na katalizatory Stosunkowo niewielkie moce uzyskiwane z modułu Produkcja jedynie prądu stałego (co czasami jest zaletą) Podatność na wpływ zanieczyszczeń zawartych w paliwie (zanieczyszczenia zmniejszają żywotność ogniw zatykając porowate elektrody przez co zmniejsza się ich wydajność prądowa) Trudność z produkcją, magazynowaniem i dystrybucją paliwa (wodoru)

16 IDEALNE OGNIWO PEM G= H-T S G= J-(298K) (-163.2J/K)= J Dla 1atm, 25 o C, U ogniwa wynosi 1.23V E=- G/nF =-( J/2x96.487J/V)=1.23V Dla temperatury 80 o C G= J/mol E=-( J/2x96.487J/V=1.18V

17 Budowa ogniwa PEM

18 Zadania membrany w ogniwie PEM Elektrolityczna membrana polimerowa powinna spełniać następujące funkcje: Bierze udział w procesie przenoszenia ładunku (w przypadku ogniw PEM ładunkiem transportowanym są protony) Zapobiega mieszaniu się tlenu i wodoru Stanowi izolację elektronową pomiędzy elektrodami

19 Struktura polimerowej membrany NAFION Ciało stałe, polimer organiczny, składający się z: 1. -CF 2 -CF-CF 2-2. O-CF 2 -CF- O-CF 2 -CF 2 - Łańcuch boczny, 3. Skupisko jonów składające się z jonów kwasu sulfonowego (SO 3-, H + ) Nafion-jonowymienna membrana selektywnie przepuszczająca protony

20 Trwały Dlaczego Nafion? Odporny na działanie kwasów i zasad Odporny na działanie temperatury do 230 o C Można łatwo unieruchamiać w nim zarówno jony metali jak i ich kompleksy Można łatwo mechanicznie usuwać warstwy nafionu z powierzchni fazy przewodzącej Wysokie przewodnictwo protonowe: 0.1 S/cm w RT 0.15 S/cm w temperaturze pracy ogniwa 80 o C

21 Membrana polimerowa

22 Praca PEM- (Membrany z Polimerowych Elektrolitów) ogniw paliwowych jest ograniczana przez zakres temperatury, w której woda jest cieczą. Membrana musi zawierać wodę, jony wodorowe mogą przenosić ładunek wewnątrz membrany. Temperatura pracy membrany polimerowej w ogniwie paliwowym powyżej 100 o C jest możliwa pod ciśnieniem, wymagającym utrzymywanie wody w stanie ciekłym, ale skracającym czas życia ogniwa. Obecnie koszt około 37$/stopa kwadratowa (9.25 cm 2 )

23 Protonowy mechanizm przewodzenia

24 Własności plastyczny polimer, zazwyczaj w postaci membrany. grubość m, (papier 25 m). Polimerowa membrana jest zazwyczaj elektrolitem, w którym, jony ujemne są sztywno złapane wewnątrz struktury, natomiast jony dodatnie (jedyne) są mobilne i mogą przenosić dodatni ładunek przez membranę. W PEM jonami dodatnimi są protony, dlatego też membrany takie noszą nazwę membrany wymiany protonów. Ruch protonów od anody do katody w jednym kierunku (jedynie) jest podstawą działania PEM. Struktura jest oparta na Teflonie, membrany te są relatywnie trwałe i stabilne stanowią efektywny separator gazu-membrana oddziela paliwo wodorowe od powietrza polimer nie przewodzi elektronów

25 Stosowane membrany 1960 firma DuPont Chemical s wprowadza membranę perflurowaną- Nafion Odmiany Nafionu : Typ membrany Grubość ( m) Masa g/m 2 ) N N N Inne firmy produkujące jonowymienne membrany polimerowe: Asahi Chemical (Actiplex-S ), Dow Chemical (Dow) Rodzaj membrany (Firma) Masa równoważnikowa SO - 3 (g/mol) Grubość w stanie suchym ( m) Przewodność (S/m) Dow Actiplex-S Nafion

26 Elektrody Wszystkie elektrochemiczne reakcje składają się z 2 oddzielnych reakcji: reakcji utleniania na anodzie reakcji redukcji na katodzie Katoda i anoda są oddzielone elektrolitem. W połówkowej reakcji utleniania: 2H 2 4H + + 4e W połówkowej reakcji redukcji: O 2 + 4H + + 4e 2H 2 O Te dwie połówkowe reakcje zachodzą bardzo wolno w niskich temperaturach (zazwyczaj w 80 o C) Tak więc stosuje się na obu elektrodach katalizatory w celu zwiększenia szybkości reakcji połówkowych. Katalizatorem jest platyna

27 Dlaczego platyna? połączenia z atomami H - nie są za słabe i nie za mocne to jest wyjątkowa cecha dobrego katalizatora. największa możliwa powierzchnia właściwa. każda elektroda składa się z porowatego węgla z małymi cząsteczkami Pt. elektroda jest porowata co pozwala na dyfuzję gazu do katalizatora. C i Pt przewodzą elektrony, małe wymiary cząsteczek Pt, około 2 nm, powodują ogromną całkowitą powierzchnię właściwą Pt, która jest dostępna dla gazu. Całkowita powierzchnia prezentowana przez ogromną ilość małych cząstek jest bardzo duża natomiast całkowita masa Pt mała. Duża powierzchnia Pt pozwala na reakcje elektrodowe przebiegające na wielu miejscach Pt jednocześnie. Wysoka dyspersja katalizatora jest jednym ze sposobów generowania znaczącego prądu elektronowego

28 Budowa elektrod w PEM

29 Zarządzanie wodą W ogniwie paliwowym zarówno paliwo jak i powietrze musi być ciągle wilgotne. Ta dodatkowa woda utrzymuje polimerową membranę w stanie uwodnionym. Wilgotność gazów musi być kontrolowana. Za mało wody zapobiega przewodzeniu przez membranę jonów H +. Jeżeli powietrze przechodzi przez katodę za wolno, powietrze nie może przenieść całej wody produkowanej przy katodzie poza ogniwo - katoda jest zalewana. Osiągi ogniwa są zmniejszone ponieważ tlen nie jest w stanie penetrować przez katodę

30 Konstrukcja membrana/elektroda Materiał katalizatora preparowany w postaci farby formowanej przez dokładne mieszanie odpowiednich ilości katalizatora (proszek Pt rozproszony na węglu) i rozpuszczenie materiału w alkoholu. Pokrywanie powierzchni membrany roztworem katalizatora poprzez malowanie Wygrzewanie wilgotnej warstwy katalizatora na powierzchni membrany Powtarzanie procedury na drugiej stronie membrany Wysuszona membrana z elektrodami jest zanurzana w lekko wrzącym rozcieńczonym roztworze kwasu w celu zapewnienia jonów protonowych, koniecznych do działania PEM Ostatni etap to dokładne płukanie w destylowanej wodzie

31 Konstrukcja ogniwa PEM Pierwsza konstrukcja w latach 60-tych Gemini, 4mg Pt /cm 2 Obecnie 0.15mg Pt/cm 2 Na etapie laboratoryjnym 0.25mg Pt /cm 2 Odpowiada to udoskonaleniu osiągnięć ogniwa z programu Gemini, wyrażonych natężenie prądu na mg platyny z 0.5A do 15A. Grubość membrany w omawianej strukturze zmienia się w zależności od typu membrany. Grubość warstwy katalitycznej zależy od ilości zastosowanej platyny na każdej elektrodzie. Dla warstwy zawierającej około 0.15mg Pt/cm 2, grubość warstwy wynosi do 10 m, mniej niż grubość kartki papieru

32 SOFC: stało-tlenkowe ogniwa paliwowe H 2 O (g) anoda elektrolit katoda TPB (Triple Phase Boundary): 1. Gaz (O 2 ) 2.Electron (e ) 3.Anion (O 2 ): elektrolit 2H 2(g) + 2O 2- H 2 O (g) + 4e Anoda: Reakcja utleniania Atmosfera gazowa o niskim p(o 2 ) O 2(g) +4e 2O 2- Katoda: Reakcja redukcji Atmosfera gazowa o wysokim p(o 2 )

33 Ogniwa paliwowe Skład Przewodnictwo Mikrostruktura Preparatyka

34 Efektywna praca ogniwa paliwowego zdeterminowana jest: procesami zachodzącymi na granicy faz gaz -elektrodaelektrolit stały transportem jonów przez elektrolit stały: wartość przewodnictwa dyfuzja Reakcja sumaryczna, która zachodzi w ogniwie paliwowym z wodorem jako paliwem opisana jest równaniem: 2H 2 + O 2 H 2 O Wysoka gęstość prądu oraz związaną z nią gęstość mocy ogniwa (W/m 2 ) można osiągnąć gdy szybkość reakcji ogniwa jest wysoka. Reakcja składa się z następujących procesów następczych: na katodzie- redukcja tlenu w elektrolicie stałym-transport jonów tlenu na anodzie-utlenianie paliwa

35 Reakcje elektrodowe Oddziaływanie tlenu z YSZ pokrytym porowatą warstwą platyny obejmuje następujące etapy cząstkowe: Przepływ tlenu przez pory Pt Adsorpcja tlenu na ścianach Pt w formie molekularnej O 2(ads) Dysocjacja O 2(ads) na atomy, zachodząca na Pt lub na granicy faz Pt/YSZ Reakcja elektrochemiczna zachodząca na granicy faz Pt/YSZ: O (ads) + 2e (Pt) O 2- (YSZ)

36 Etap limitujący proces oddziaływania tlen-ciało stałe Tworzenie się międzymetalicznej fazy Pt(Y, Zr) która kontroluje przepływ ładunku Struktura i geometria elektrody-kontrola wbudowywania się tlenu Na powierzchni elektrolitu tworzą się O - 2(chem), które dysocjują na jony O 2- Wbudowywanie tlenu zachodzi w pobliżu styku trzech faz: gazowej, Pt oraz elektrolitu. Miejsce to nosi nazwę TPB (Triple Phase Boundary). Gęstość punktów TPB określa się parametrem zwanym obwodem sieci metalicznej PMN (Perimeter metal netwok)

37 SOFC-katoda redukcja tlenu Przewodnik elektronowy TPB MIEC-tlenki DIB

38 TPB przy anodzie Analogiczna sytuacja występuje przy anodzie, gdzie w TPB zachodzi następująca reakcja w przypadku wodoru (jako paliwa): H 2(gaz) + O 2- (YSZ) H 2 O (gaz) + 2e - (Pt) Modyfikacja elektrod w celu zwiększenia ilości miejsc w których zachodzą reakcje H 2 (gaz) + O 2- (YSZ) H 2 O (gaz) + 2e - (Pt) O (ads) + 2e (Pt) O 2- (YSZ) Zwiększenie obszarów styku metal-elektrolit Elektrody kompozytowe złożone z rozproszonych cząstek metalu w osnowie elektrolitu stałego CERMET Zastosowanie półprzewodnika o mieszanym typie przewodnictwa MIEC -metoda stosowana w przypadku katody

39 Materiały dla SOFC-wymagania Elektrody Wysokie przewodnictwo elektronowo-jonowe Chemiczna i mechaniczna stabilność: o C w utleniających warunkach dla katody i redukujących dla anody Dopasowanie współczynników rozszerzalności z elektrolitem Wystarczająca porowatość ułatwiająca transport tlenu z fazy gazowej do elektrolitu Elektrolit gazoszczelny wysokie przewodnictwo jonowe (tlenu) zaniedbywane przewodnictwo elektronowe

40 Materiały dla SOFC-wymagania, cd Interkonektory (pomiędzy katodą a anodą) -nieporowaty -wysokie przewodnictwo elektronowe i zaniedbywane przewodnictwo jonowe -stabilne zarówno w atmosferze utleniającej jak i redukującej -chemiczna i termiczna kompatybilność z innymi komponentami

41 Materiały dla SOFC: wymagania właściwości elektryczne właściwości termochemiczne Katoda przewodnictwo ele + ion aktywność katalityczna porowatość wsp.rozszerzalności termicznej adhezja Elektrolit Anoda przewodnictwo jonowe aktywność katalityczna przewodnictwo ele + ion gazoszczelność stabilność mechaniczna adhezja wsp.rozszerzalności termicznej porowatość

42 Faworyci SOFC Katoda- związki o strukturze perowskitu (La 1-x Sr x )(Co 1-x Fe x) O 3 (Sm 1-x Sr x )CoO 3 (Pr 1-x Sr x )(Co 1-x Mn x )O 3 Anoda Kompozyty Ni/Zr 1-x Y x O 2 Elektrolit-struktura fluorytu Zr 1-x Y x O 2 ( struktura fluorytu) Ce 1-x R x O 2 R-jon z grupy ziem rzadkich (struktura fluorytu) Bi 2-x R x O 2 R-jon z grupy ziem rzadkich (zdefektowana struktura fluorytu) Gd 1.9 Ca 0.1 Ti 2 O 6.95 (struktura pirochloru) (La, Nd) 0.8 Sr 0.2 Ga 0.8 Mg 0.2 O 2.8 (struktura perowskitu) Interkonektory La 1-x Sr x CrO 3 (struktura perowskitu)

43 Przewodniki jonów O 2- Wysoka koncentracja wakancji tlenowych Wymagane do przeskoku jonów O 2- Wysoka symetria Wysoka właściwa objętość międzyziarnowa (objętość wolna / całkowita objętość) Puste przestrzenie/ wakancje tworzą drogi dyfuzji dla jonów O 2- Polaryzowalne kationy kationy takie mogą odkształcać podczas przeskoków, które obniżają energię aktywacji Chemiczna stabilność, rozszerzalność cieplna, niskie koszty dla komercjalnych zastosowań

44 Przejścia fazowe w ZrO 2 Odmiana niskotemperaturowa jednoskośna Odmiana wysokotemperaturowa kubiczna

45 Domieszkowanie: ZrO 2, CeO 2 Domieszkowanie ZrO 2 (Zr 1-x Y x O 2-x/2, Zr 1-x Ca x O 2-x ) ma na celu: Wprowadzenie wakancji tlenowych (domieszkowanie jonami o niższej walencyjności od 4+) Stabilizacja struktury o wysokiej symetrii ( kationy o dużym promieniu są najbardziej efektywne)

46 Gd 2 Ti 2 O 7 struktura pirochloru Strukturę można otrzymać ze struktury fluorytu przez usunięcie 1/8 tlenu, porządkowanie kationów i wakacji tlenowych Po przez zastąpienie pewnej ilości Gd 3+ jonami Ca 2+, wakancje tlenowe tworzące się w sieci A 2 O, znacznie zwiększają przewodnictwo jonowe W 1000 o C Gd 2 Ti 2 O 7, =1x10-4 S/cm, Ea=0.94eV Gd 1.8 Ca 0.2 Ti 2 O 6.95, =5x10-2 S/cm, Ea=0.63eV W strukturze pirochloru jest możliwość występowania przewodnictwa elektronowojonowego

47 Ba 2 In 2 O 5 brownmilleryt Struktura taka uzyskana jest ze struktury perowskitu, przez usuniecie 1/6 ilości tlenu oraz uporządkowanie wakacji tlenowych tak żeby 50% mniejszych kationów znajduje się w zniekształconej koordynacji tetragonalnej. W temperaturze 800 o C w Ba 2 In 2 O 5 wakancje tlenowe poruszają się warstwach tetragonalnych i przewodnictwo jonowe zmienia się z 10-3 S/cm na 10-1 S/cm Roztwory stałe BaZrO 3 -Ba 2 In 2 O 5 absorbują wodę, wypełniając wakancje tlenowe staja się dobrymi przewodnikami protonowymi w zakresie temperatur o C

48 Fazy Aurivilliusa i BIMEVOX

49 Przykładem materiału o warstwowej perowskitopodobnej strukturze Aurivilliusa jest tytanian bizmutu Bi 4 Ti 3 O 12 (BTO). Strukturę BTO o m = 3, tworzą dwie jednostki perowskitowe BiTiO 3 przeplatające się z warstwami (Bi 2 O 2 )

50 Fazy Aurivilliusa i BIMEVOX Bi 4 V 2 O 11 jest zdefektowaną fazą Aurivilliusa, zapisaną także jako (Bi 2 O 2 )VO 3.5, gdzie 1/8 miejsc tlenu w warstwach perowskitu jest wolna. Przewodnictwo w 600C jest wysokie i wynosi 0.2 S/cm. Jedynie jony tlenu w strukturze perowskitu są ruchliwe. Bi 4 V 2 O 11 ulega przejściu fazowemu w niższych temperaturach, co powoduje obniżenie jego przewodnictwa jonowego. Wprowadzenie domieszki do sieci V stabilizuje wysokotemperaturową odmianę. Fazy takie nazywa się BIMEVOX-em. (Bi 2 O 2 )V 0.9 Cu 0.1 O 3.35 ma w temperaturze 350 o C przewodnictwo 0.01S/cm

51 Przewodniki jonów tlenu O 2- Podsumowanie 1. Domieszkowanie zwiększa koncentracje wakancji tlenowych oraz stabilizuje odmianę wysokotemperaturową o wysokiej symetrii. 2.Spośród przewodników O 2- o strukturze fluorytu domieszkowany CeO 2 i Bi 2 O 3 mają wyższe przewodnictwo w porównaniu ze stabilizowanym ZrO 2, ale oba związki są chemicznie mniej stabilne. Szczególnie są podatne na redukcję, co ogranicza ich zastosowanie. 3. Przewodniki o strukturze brownmilerytu wykazują wysokie przewodnictwo ale w warunkach redukujących stają się przewodnikami elektronowymi. Obiecującą własnością jest ich przewodnictwo protonowe. 4. Przewodniku jonowe typu BIMEVOX charakteryzują się bardzo wysokim przewodnictwem w niskich temperaturach

52 Przewodnictwo jonowe elektrolitów dla SOFC

53 IT-SOFC ( o C) IT-SOFC ze wzmocnioną anodą ( o C) IT-SOFC ze wzmacniającym metalem ( o C) LT-SOFC ze wzmacniającym metalem ( o C)

54 SOFC: Anode-Supported Obniżenie temperatury pracy wymaga doboru elektrolitu o obniżonym oporze 1. Projektowanie materiałów 2. Projektowanie geometrii (minimalizacja grubości elektrolitu) R ρ d A

55 IT-SOFC ze wzmocnioną anodą ( C) anoda mm porowaty Ni-YSZ, aktywna warstwa anody (10 m), elektrolit YSZ (10-30 m), katoda LSM La 1-x Sr x MnO 3 ( m), nie rozwiązane kwestie: wzmocnienie mechanicznie słabe trudności w przypadku mechanicznego i termicznego oddziaływania dodatkowo, wzmocnienie anody Ni-YSZ ulega zmianom objętościowym, które mogą wywoływać pęknięcia elektrolitu, w czasie cyklu redoksowego, nikiel jest utleniany do NiO a następnie znów redukowany do Ni. Zatem straty zasilania paliwa mogą mieć dramatyczne konsekwencje dla wzmocnienia Ni-YSZ

56 IT-SOFC ze wzmacniającym metalem ( C) Układ składa się z zestawu PEN (elektroda dodatnia/elektrolit/elektroda negatywna) wzmocnionego porowatym, metalicznym podłożem zamiast grubego podłoża anody. Konstrukcja wzmocnienia metalem jest odporna na szoki termiczne i umożliwia konwencjonalne połączenie metalu. Jednak obecność metalu powoduje, że temperatura spiekania komponentów PEN jest ograniczona przez temperaturę topnienia metalu i temperatury utleniania. Np. dla stali nierdzewnej konstrukcja nie może w sposób ciągły wygrzewana powyżej 1000C. Ponadto, niedopasowanie współczynników rozszerzalności termicznej YSZ i stali nierdzewnej może być przyczyną problemów zwłaszcza podczas cykli termicznych. Stwierdzono także, że zabezpieczająca warstwa od strony powietrza jest czasami konieczna do unikania utleniania stali w temperaturach pracy

Wykład VII. Ogniwa paliwowe

Wykład VII. Ogniwa paliwowe Wykład VII Ogniwa paliwowe Ogniwo paliwowe Ogniwo paliwowe jest urządzeniem pozwalającym na ciągłą przemianą energii chemicznej paliwa w energię oraz ciepło, tak długo jak, dostarczane jest paliwo i utleniacz

Bardziej szczegółowo

Laboratorium z Konwersji Energii. Ogniwo Paliwowe PEM

Laboratorium z Konwersji Energii. Ogniwo Paliwowe PEM Laboratorium z Konwersji Energii Ogniwo Paliwowe PEM 1.0 WSTĘP Ogniwo paliwowe typu PEM (ang. PEM FC) Ogniwa paliwowe są urządzeniami elektro chemicznymi, stanowiącymi przełom w dziedzinie źródeł energii,

Bardziej szczegółowo

CHP z ogniwem paliwowym Przegląd rynku

CHP z ogniwem paliwowym Przegląd rynku Piotr Stawski IASE CHP z ogniwem paliwowym Przegląd rynku ENERGYREGION - Efektywny rozwój rozproszonej energetyki odnawialnej w połączeniu z konwencjonalną w regionach. Zalety gospodarki skojarzonej K.Sroka,

Bardziej szczegółowo

JEDNOKOMOROWE OGNIWA PALIWOWE

JEDNOKOMOROWE OGNIWA PALIWOWE JEDNOKOMOROWE OGNIWA PALIWOWE Jan Wyrwa Katedra Chemii Analitycznej, Wydział Inżynierii Materiałowej i Ceramiki, AGH Al. Mickiewicza 30, 30-059 Kraków Światowe zapotrzebowanie na energię-przewidywania

Bardziej szczegółowo

SOFC. Historia. Elektrochemia. Elektroceramika. Elektroceramika WYKONANIE. Christian Friedrich Schönbein, Philosophical Magazine,1839

SOFC. Historia. Elektrochemia. Elektroceramika. Elektroceramika WYKONANIE. Christian Friedrich Schönbein, Philosophical Magazine,1839 Historia IDEA WYKONANIE Jeżeli przepływ prądu powoduje rozkład wody na tlen i wodór to synteza wody, w odpowiednich warunkach musi prowadzić do powstania różnicy potencjałów. Christian Friedrich Schönbein,

Bardziej szczegółowo

Celem ćwiczenia jest wyznaczenie charakterystyki prądowo- napięciowej elektrolizera typu PEM,

Celem ćwiczenia jest wyznaczenie charakterystyki prądowo- napięciowej elektrolizera typu PEM, Ćw.2 Elektroliza wody za pomocą ogniwa paliwowego typu PEM Celem ćwiczenia jest wyznaczenie charakterystyki prądowo- napięciowej elektrolizera typu PEM, A także określenie wydajności tego urządzenia, jeśli

Bardziej szczegółowo

Elektrolity wykazują przewodnictwo jonowe Elektrolity ciekłe substancje rozpadające się w roztworze na jony

Elektrolity wykazują przewodnictwo jonowe Elektrolity ciekłe substancje rozpadające się w roztworze na jony Elektrolity wykazują przewodnictwo jonowe Elektrolity ciekłe substancje rozpadające się w roztworze na jony Jony dodatnie - kationy: atomy pozbawione elektronów walencyjnych, np. Li +, Na +, Ag +, Ca 2+,

Bardziej szczegółowo

Elektrolity wykazują przewodnictwo jonowe Elektrolity ciekłe substancje rozpadające się w roztworze na jony

Elektrolity wykazują przewodnictwo jonowe Elektrolity ciekłe substancje rozpadające się w roztworze na jony Elektrolity wykazują przewodnictwo jonowe Elektrolity ciekłe substancje rozpadające się w roztworze na jony Przewodniki jonowe elektrolity stałe duża przewodność jonowa w stanie stałym; mały wkład elektronów

Bardziej szczegółowo

Jon w otoczeniu dipoli cząsteczkowych rozpuszczalnika utrzymywanych siłami elektrycznymi solwatacja (hydratacja)

Jon w otoczeniu dipoli cząsteczkowych rozpuszczalnika utrzymywanych siłami elektrycznymi solwatacja (hydratacja) Jon w otoczeniu dipoli cząsteczkowych rozpuszczalnika utrzymywanych siłami elektrycznymi solwatacja (hydratacja) Jon w otoczeniu chmury dipoli i chmury jonowej. W otoczeniu jonu dodatniego (kationu) przewaga

Bardziej szczegółowo

Akademickie Centrum Czystej Energii. Ogniwo paliwowe

Akademickie Centrum Czystej Energii. Ogniwo paliwowe Ogniwo paliwowe 1. Zagadnienia elektroliza, prawo Faraday a, pierwiastki galwaniczne, ogniwo paliwowe 2. Opis Główną częścią ogniwa paliwowego PEM (Proton Exchange Membrane) jest membrana złożona z katody

Bardziej szczegółowo

Ogniwo paliwowe typu PEM (ang. PEM-FC)

Ogniwo paliwowe typu PEM (ang. PEM-FC) OPRACOWALI: MGR INŻ. JAKUB DŁUGOSZ MGR INŻ. MARCIN MICHALSKI OGNIWA PALIWOWE I PRODUKCJA WODORU LABORATORIUM I- ZASADA DZIAŁANIA SYSTEMU OGNIW PALIWOWYCH TYPU PEM NA PRZYKŁADZIE SYSTEMU NEXA 1,2 kw II-

Bardziej szczegółowo

LABORATORIUM PRZEMIAN ENERGII

LABORATORIUM PRZEMIAN ENERGII LABORATORIUM PRZEMIAN ENERGII BADANIE OGNIWA PALIWOWEGO TYPU PEM I. Wstęp Ćwiczenie polega na badaniu ogniwa paliwowego typu PEM. Urządzenia tego typy są obecnie rozwijane i przystosowywane do takich aplikacji

Bardziej szczegółowo

1. BUDOWA I ZASADA DZIAŁANIA OGNIWA PALIWOWEGO

1. BUDOWA I ZASADA DZIAŁANIA OGNIWA PALIWOWEGO OGNIWA PALIWOWE Ogniwa paliwowe są urządzeniami generującymi prąd elektryczny dzięki odwróceniu zjawiska elektrolizy. Pierwszy raz zademonstrował to w 1839 r William R. Grove w swoim doświadczeniu które

Bardziej szczegółowo

Laboratorium odnawialnych źródeł energii. Ćwiczenie nr 5

Laboratorium odnawialnych źródeł energii. Ćwiczenie nr 5 Laboratorium odnawialnych źródeł energii Ćwiczenie nr 5 Temat: Badanie ogniw paliwowych. Politechnika Gdańska Wydział Fizyki Technicznej i Matematyki Stosowanej Fizyka i technika konwersji energii VI semestr

Bardziej szczegółowo

OGNIWA PALIWOWE. Zapewniają ekologiczne sposoby wytwarzania energii w dobie szybko wyczerpujących sięźródeł paliw kopalnych.

OGNIWA PALIWOWE. Zapewniają ekologiczne sposoby wytwarzania energii w dobie szybko wyczerpujących sięźródeł paliw kopalnych. Ogniwa paliwowe 1 OGNIWA PALIWOWE Ogniwa te wytwarzają energię elektryczną w reakcji chemicznej w wyniku utleniania stale dostarczanego do niego z zewnątrz paliwa. Charakteryzują się jednym z najwyższych

Bardziej szczegółowo

Ćwiczenie 2. Charakteryzacja niskotemperaturowego czujnika tlenu. (na prawach rękopisu)

Ćwiczenie 2. Charakteryzacja niskotemperaturowego czujnika tlenu. (na prawach rękopisu) Ćwiczenie 2. Charakteryzacja niskotemperaturowego czujnika tlenu (na prawach rękopisu) W analityce procesowej istotne jest określenie stężeń rozpuszczonych w cieczach gazów. Gazy rozpuszczają się w cieczach

Bardziej szczegółowo

INSTRUKCJA LABORATORYJNA NR 2-OP BADANIE OGNIW PALIWOWYCH

INSTRUKCJA LABORATORYJNA NR 2-OP BADANIE OGNIW PALIWOWYCH LABORATORIUM ODNAWIALNYCH ŹRÓDEŁ ENERGII Katedra Aparatury i Maszynoznawstwa Chemicznego Wydział Chemiczny Politechniki Gdańskiej INSTRUKCJA LABORATORYJNA NR -OP BADANIE OGNIW PALIWOWYCH Cel i zakres ćwiczenia

Bardziej szczegółowo

MATERIAŁY W BUDOWIE OGNIW PALIWOWYCH

MATERIAŁY W BUDOWIE OGNIW PALIWOWYCH MATERIAŁY W BUDOWIE OGNIW PALIWOWYCH OGNIWO PALIWOWE Ogniwo paliwowe jest urządzeniem służącym do bezpośredniej konwersji energii chemicznej zawartej w paliwie w energię elektryczną za pośrednictwem procesu

Bardziej szczegółowo

Laboratorium ogniw paliwowych i produkcji wodoru

Laboratorium ogniw paliwowych i produkcji wodoru Instrukcja System ogniw paliwowych typu PEM, opr. M. Michalski, J. Długosz; Wrocław 2014-12-03, str. 1 Laboratorium ogniw paliwowych i produkcji wodoru System ogniw paliwowych typu PEM Instrukcja System

Bardziej szczegółowo

Elektrochemia - prawa elektrolizy Faraday a. Zadania

Elektrochemia - prawa elektrolizy Faraday a. Zadania Elektrochemia - prawa elektrolizy Faraday a Zadania I prawo Faraday a Masa substancji wydzielonej na elektrodach podczas elektrolizy jest proporcjonalna do natężenia prądu i czasu trwania elektrolizy q

Bardziej szczegółowo

STAN OBECNY I PERSPEKTYWY WYKORZYSTANIA OGNIW PALIWOWYCH

STAN OBECNY I PERSPEKTYWY WYKORZYSTANIA OGNIW PALIWOWYCH XIV Konferencja Naukowo-Techniczna Rynek Energii Elektrycznej: Przesłanki Nowej Polityki Energetycznej - Paliwa, Technologie, Zarządzanie STAN OBECNY I PERSPEKTYWY WYKORZYSTANIA OGNIW PALIWOWYCH Józef

Bardziej szczegółowo

Leon Murawski, Katedra Fizyki Ciała Stałego Wydział Fizyki Technicznej i Matematyki Stosowanej

Leon Murawski, Katedra Fizyki Ciała Stałego Wydział Fizyki Technicznej i Matematyki Stosowanej Nanomateriałów Leon Murawski, Katedra Fizyki Ciała Stałego Wydział Fizyki Technicznej i Matematyki Stosowanej POLITECHNIKA GDAŃSKA Centrum Zawansowanych Technologii Pomorze ul. Al. Zwycięstwa 27 80-233

Bardziej szczegółowo

PODSTAWY KOROZJI ELEKTROCHEMICZNEJ

PODSTAWY KOROZJI ELEKTROCHEMICZNEJ PODSTAWY KOROZJI ELEKTROCHEMICZNEJ PODZIAŁ KOROZJI ZE WZGLĘDU NA MECHANIZM Korozja elektrochemiczna zachodzi w środowiskach wilgotnych, w wodzie i roztworach wodnych, w glebie, w wilgotnej atmosferze oraz

Bardziej szczegółowo

Materiały elektrodowe

Materiały elektrodowe Materiały elektrodowe Potencjał (względem drugiej elektrody): różnica potencjałów pomiędzy elektrodami określa napięcie możliwe do uzyskania w ogniwie. Wpływa na ilość energii zgromadzonej w ogniwie. Pojemność

Bardziej szczegółowo

ĆWICZENIE 1. Ogniwa paliwowe

ĆWICZENIE 1. Ogniwa paliwowe ĆWICZENIE 1 Ogniwa paliwowe Instrukcja zawiera: 1. Cel ćwiczenia 2. Wprowadzenie teoretyczne; definicje i wzory 3. Opis wykonania ćwiczenia 4. Sposób przygotowania sprawozdania 5. Lista pytań do kolokwium

Bardziej szczegółowo

Elektrochemia - szereg elektrochemiczny metali. Zadania

Elektrochemia - szereg elektrochemiczny metali. Zadania Elektrochemia - szereg elektrochemiczny metali Zadania Czym jest szereg elektrochemiczny metali? Szereg elektrochemiczny metali jest to zestawienie metali według wzrastających potencjałów normalnych. Wartości

Bardziej szczegółowo

Elektrochemia elektroliza. Wykład z Chemii Fizycznej str. 4.3 / 1

Elektrochemia elektroliza. Wykład z Chemii Fizycznej str. 4.3 / 1 Elektrochemia elektroliza Wykład z Chemii Fizycznej str. 4.3 / 1 ELEKTROLIZA POLARYZACJA ELEKTROD Charakterystyka prądowo-napięciowa elektrolizy i sposób określenia napięcia rozkładu Wykład z Chemii Fizycznej

Bardziej szczegółowo

1. Kryształy jonowe omówić oddziaływania w kryształach jonowych oraz typy struktur jonowych.

1. Kryształy jonowe omówić oddziaływania w kryształach jonowych oraz typy struktur jonowych. Tematy opisowe 1. Kryształy jonowe omówić oddziaływania w kryształach jonowych oraz typy struktur jonowych. 2. Dlaczego do kadłubów statków, doków, falochronów i filarów mostów przymocowuje się płyty z

Bardziej szczegółowo

Elektrolity polimerowe. 1. Modele transportu jonów 2. Rodzaje elektrolitów polimerowych 3. Zastosowania elektrolitów polimerowych

Elektrolity polimerowe. 1. Modele transportu jonów 2. Rodzaje elektrolitów polimerowych 3. Zastosowania elektrolitów polimerowych Elektrolity polimerowe 1. Modele transportu jonów 2. Rodzaje elektrolitów polimerowych 3. Zastosowania elektrolitów polimerowych Zalety - Giętkie, otrzymywane w postaci folii - Lekkie (wysoka gęstość energii/kg)

Bardziej szczegółowo

Zalety przewodników polimerowych

Zalety przewodników polimerowych Zalety przewodników polimerowych - Giętkie, otrzymywane w postaci folii - Lekkie (wysoka gęstość energii/kg) - Bezpieczne (przy przestrzeganiu zaleceń użytkowania) Wady - Degradacja na skutek starzenia,

Bardziej szczegółowo

Materiały katodowe dla ogniw Li-ion wybrane zagadnienia

Materiały katodowe dla ogniw Li-ion wybrane zagadnienia Materiały katodowe dla ogniw Li-ion wybrane zagadnienia Szeroki zakres interkalacji y, a więc duża dopuszczalna zmiana zawartości litu w materiale, która powinna zachodzić przy minimalnych zaburzeniach

Bardziej szczegółowo

Ćwiczenie 5. Testowanie ogniwa paliwowego wodorowego zasilanego energią pochodzącą z konwersji fotowoltaicznej

Ćwiczenie 5. Testowanie ogniwa paliwowego wodorowego zasilanego energią pochodzącą z konwersji fotowoltaicznej Ćwiczenie 5 Testowanie ogniwa paliwowego wodorowego zasilanego energią pochodzącą z konwersji fotowoltaicznej Wstęp Ogniwo paliwowe jest urządzeniem elektrochemicznym, które wytwarza energię użyteczną

Bardziej szczegółowo

Ćwiczenie 5. Testowanie ogniwa paliwowego wodorowego zasilanego energią pochodzącą z konwersji fotowoltaicznej

Ćwiczenie 5. Testowanie ogniwa paliwowego wodorowego zasilanego energią pochodzącą z konwersji fotowoltaicznej Ćwiczenie 5 Testowanie ogniwa paliwowego wodorowego zasilanego energią pochodzącą z konwersji fotowoltaicznej Wstęp Ogniwo paliwowe jest urządzeniem elektrochemicznym, które wytwarza energię użyteczną

Bardziej szczegółowo

Ogniwa paliwowe (fuel cells)

Ogniwa paliwowe (fuel cells) 18/04/2008 Spis tresci Ogniwa paliwowe są urządzeniami elektro - chemicznymi, stanowiącymi przełom w dziedzinie źródeł energii, pozwalają na uzyskanie energii elektrycznej i ciepła bezpośrednio z zachodzącej

Bardziej szczegółowo

Technologia ogniw paliwowych w IEn

Technologia ogniw paliwowych w IEn Technologia ogniw paliwowych w IEn Mariusz Krauz 1 Wstęp Opracowanie technologii ES-SOFC 3 Opracowanie technologii AS-SOFC 4 Podsumowanie i wnioski 1 Wstęp Rodzaje ogniw paliwowych Temperatura pracy Temperatura

Bardziej szczegółowo

Sprawozdanie z laboratorium proekologicznych źródeł energii

Sprawozdanie z laboratorium proekologicznych źródeł energii P O L I T E C H N I K A G D A Ń S K A Sprawozdanie z laboratorium proekologicznych źródeł energii Temat: Badanie ogniw paliwowych. Michał Stobiecki, Michał Ryms Grupa 5; sem. VI Wydz. Fizyki Technicznej

Bardziej szczegółowo

K, Na, Ca, Mg, Al, Zn, Fe, Sn, Pb, H, Cu, Ag, Hg, Pt, Au

K, Na, Ca, Mg, Al, Zn, Fe, Sn, Pb, H, Cu, Ag, Hg, Pt, Au WSTĘP DO ELEKTROCHEMII (opracowanie dr Katarzyna Makyła-Juzak Elektrochemia jest działem chemii fizycznej, który zajmuje się zarówno reakcjami chemicznymi stanowiącymi źródło prądu elektrycznego (ogniwa

Bardziej szczegółowo

Kryteria oceniania z chemii kl VII

Kryteria oceniania z chemii kl VII Kryteria oceniania z chemii kl VII Ocena dopuszczająca -stosuje zasady BHP w pracowni -nazywa sprzęt laboratoryjny i szkło oraz określa ich przeznaczenie -opisuje właściwości substancji używanych na co

Bardziej szczegółowo

Przetwarzanie energii: kondensatory

Przetwarzanie energii: kondensatory Przetwarzanie energii: kondensatory Ładując kondensator wykonujemy pracę nad ładunkiem. Przetwarzanie energii: ogniwa paliwowe W ogniwach paliwowych następuje elektrochemiczne spalanie paliwa. Energia

Bardziej szczegółowo

Bezemisyjna energetyka węglowa

Bezemisyjna energetyka węglowa Bezemisyjna energetyka węglowa Szansa dla Polski? Jan A. Kozubowski Wydział Inżynierii Materiałowej PW Człowiek i energia Jak ludzie zużywali energię w ciągu minionych 150 lat? Energetyczne surowce kopalne:

Bardziej szczegółowo

Podstawy elektrochemii

Podstawy elektrochemii Podstawy elektrochemii Elektrochemia bada procesy zachodzące na granicy elektrolit - elektroda Elektrony można wyciągnąć z elektrody bądź budując celkę elektrochemiczną, bądź dodając akceptor (np. kwas).

Bardziej szczegółowo

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej?

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? Tematy opisowe 1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? 2. Omów pomiar potencjału na granicy faz elektroda/roztwór elektrolitu. Podaj przykład, omów skale potencjału i elektrody

Bardziej szczegółowo

Różne dziwne przewodniki

Różne dziwne przewodniki Różne dziwne przewodniki czyli trzy po trzy o mechanizmach przewodzenia prądu elektrycznego Przewodniki elektronowe Metale Metale (zwane również przewodnikami) charakteryzują się tym, że elektrony ich

Bardziej szczegółowo

Ogniwa paliwowe - zasada działania

Ogniwa paliwowe - zasada działania Artykuł pobrano ze strony eioba.pl Ogniwa paliwowe - zasada działania OGNIWA PALIWOWE W roku 1839 fizyk brytyjski William R. Grove zademonstrował, że podczas elektrochemicznej reakcji łączenia wodoru z

Bardziej szczegółowo

Wybrane Działy Fizyki

Wybrane Działy Fizyki Wybrane Działy Fizyki energia elektryczna i jadrowa W. D ebski 25.11.2009 Rodzaje energii energia mechaniczna energia cieplna (chemiczna) energia elektryczna energia jadrowa debski@igf.edu.pl: W5-1 WNZ

Bardziej szczegółowo

Ogniwa paliwowe FIZYKA 3 MICHAŁ MARZANTOWICZ. Wykorzystanie wodoru jako nośnika energii

Ogniwa paliwowe FIZYKA 3 MICHAŁ MARZANTOWICZ. Wykorzystanie wodoru jako nośnika energii Ogniwa paliwowe Wykorzystanie wodoru jako nośnika energii Ogniwa paliwowe Zasada działania ogniwa zasilanego wodorem Rodzaje ogniw ogniwo z membraną przewodzącą protonowo (ang. Proton-exchange membrane

Bardziej szczegółowo

E dec. Obwód zastępczy. Napięcie rozkładowe

E dec. Obwód zastępczy. Napięcie rozkładowe Obwód zastępczy Obwód zastępczy schematyczny obwód elektryczny, ilustrujący zachowanie się badanego obiektu w polu elektrycznym. Elementy obwodu zastępczego (oporniki, kondensatory, indukcyjności,...)

Bardziej szczegółowo

Przetwarzanie energii: kondensatory

Przetwarzanie energii: kondensatory Przetwarzanie energii: kondensatory Ładując kondensator wykonujemy pracę nad ładunkiem. Przetwarzanie energii: ogniwa paliwowe W ogniwach paliwowych następuje elektrochemiczne spalanie paliwa. Energia

Bardziej szczegółowo

Problemy elektrochemii w inżynierii materiałowej

Problemy elektrochemii w inżynierii materiałowej Problemy elektrochemii w inżynierii materiałowej Pamięci naszych Rodziców Autorzy NR 102 Antoni Budniok, Eugeniusz Łągiewka Problemy elektrochemii w inżynierii materiałowej Wydawnictwo Uniwersytetu Śląskiego

Bardziej szczegółowo

OGNIWA PALIWOWE SPOSOBY NA KRYSYS ENERGETYCZNY

OGNIWA PALIWOWE SPOSOBY NA KRYSYS ENERGETYCZNY Martyna Ćwik Politechnika Częstochowska OGNIWA PALIWOWE SPOSOBY NA KRYSYS ENERGETYCZNY W dobie wyczerpujących się źródeł paliw kopalnych, ogniwa paliwowe zajmują istotną rolę wśród nowatorskich sposobów

Bardziej szczegółowo

Nowe kierunki rozwoju technologii superkondensatorów

Nowe kierunki rozwoju technologii superkondensatorów Nowe kierunki rozwoju technologii superkondensatorów Radosław Kuliński Instytut Elektrotechniki, Oddział Technologii i Materiałoznawstwa Elektrotechnicznego we Wrocławiu Politechnika Wrocławska, Instytut

Bardziej szczegółowo

Podstawowe pojęcia 1

Podstawowe pojęcia 1 Tomasz Lubera Półogniwo Podstawowe pojęcia 1 układ złożony z min. dwóch faz pozostających ze sobą w kontakcie, w którym w wyniku zachodzących procesów utleniania lub redukcji ustala się stan równowagi,

Bardziej szczegółowo

IV. PREFEROWANE TECHNOLOGIE GENERACJI ROZPROSZONEJ

IV. PREFEROWANE TECHNOLOGIE GENERACJI ROZPROSZONEJ IV. PREFEROWANE TECHNOLOGIE GENERACJI ROZPROSZONEJ Dwie grupy technologii: układy kogeneracyjne do jednoczesnego wytwarzania energii elektrycznej i ciepła wykorzystujące silniki tłokowe, turbiny gazowe,

Bardziej szczegółowo

wykład 6 elektorochemia

wykład 6 elektorochemia elektorochemia Ogniwa elektrochemiczne Ogniwo elektrochemiczne składa się z dwóch elektrod będących w kontakcie z elektrolitem, który może być roztworem, cieczą lub ciałem stałym. Elektrolit wraz z zanurzona

Bardziej szczegółowo

Karta pracy III/1a Elektrochemia: ogniwa galwaniczne

Karta pracy III/1a Elektrochemia: ogniwa galwaniczne Karta pracy III/1a Elektrochemia: ogniwa galwaniczne I. Elektroda, półogniwo, ogniowo Elektroda przewodnik elektryczny (blaszka metalowa lub pręcik grafitowy) który ma być zanurzony w roztworze elektrolitu

Bardziej szczegółowo

Ćwiczenie nr 2 Ogniwa paliwowe

Ćwiczenie nr 2 Ogniwa paliwowe AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE Wydział Inżynierii Materiałowej i Ceramiki Katedra Chemii Nieorganicznej Laboratorium z Elektrochemii Ciała Stałego Ćwiczenie nr 2 Ogniwa paliwowe

Bardziej szczegółowo

Schemat ogniwa:... Równanie reakcji:...

Schemat ogniwa:... Równanie reakcji:... Zadanie 1. Wykorzystując dane z szeregu elektrochemicznego metali napisz schemat ogniwa, w którym elektroda cynkowa pełni rolę anody. Zapisz równanie reakcji zachodzącej w półogniwie cynkowym. Schemat

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 2 Temat: Wyznaczenie współczynnika elektrochemicznego i stałej Faradaya.

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 2 Temat: Wyznaczenie współczynnika elektrochemicznego i stałej Faradaya. LABOATOIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr Temat: Wyznaczenie współczynnika elektrochemicznego i stałej Faradaya.. Wprowadzenie Proces rozpadu drobin związków chemicznych

Bardziej szczegółowo

Materiały do zajęć dokształcających z chemii nieorganicznej i fizycznej. Część V

Materiały do zajęć dokształcających z chemii nieorganicznej i fizycznej. Część V Materiały do zajęć dokształcających z chemii nieorganicznej i fizycznej Część V Wydział Chemii UAM Poznań 2011 POJĘCIA PODSTAWOWE Reakcjami utleniania i redukcji (oksydacyjno-redukcyjnymi) nazywamy reakcje,

Bardziej szczegółowo

Zastosowanie materiałów perowskitowych wykonanych metodą reakcji w fazie stałej do wytwarzania membran separujących tlen z powietrza

Zastosowanie materiałów perowskitowych wykonanych metodą reakcji w fazie stałej do wytwarzania membran separujących tlen z powietrza Zastosowanie materiałów perowskitowych wykonanych metodą reakcji w fazie stałej do wytwarzania membran separujących tlen z powietrza Magdalena Gromada, Janusz Świder Instytut Energetyki, Oddział Ceramiki

Bardziej szczegółowo

VII Podkarpacki Konkurs Chemiczny 2014/2015

VII Podkarpacki Konkurs Chemiczny 2014/2015 II Podkarpacki Konkurs Chemiczny 2014/2015 ETAP I 12.11.2014 r. Godz. 10.00-12.00 KOPKCh Uwaga! Masy molowe pierwiastków podano na końcu zestawu. Zadanie 1 1. Który z podanych zestawów zawiera wyłącznie

Bardziej szczegółowo

Właściwości kryształów

Właściwości kryształów Właściwości kryształów Związek pomiędzy właściwościami, strukturą, defektami struktury i wiązaniami chemicznymi Skład i struktura Skład materiału wpływa na wszystko, ale głównie na: właściwości fizyczne

Bardziej szczegółowo

Katedra Inżynierii Materiałowej

Katedra Inżynierii Materiałowej Katedra Inżynierii Materiałowej Instrukcja do ćwiczenia z Biomateriałów Polaryzacyjne badania korozyjne mgr inż. Magdalena Jażdżewska Gdańsk 2010 Korozyjne charakterystyki stałoprądowe (zależności potencjał

Bardziej szczegółowo

Materiały w bateriach litowych.

Materiały w bateriach litowych. Materiały w bateriach litowych. Dlaczego lit? 1. Pierwiastek najbardziej elektrododatni ( pot. 3.04V wobec standardowej elektrody wodorowej ). 2. Najlżejszy metal ( d = 0.53 g/cm 3 ). 3. Gwarantuje wysoką

Bardziej szczegółowo

Spis treści. Wykaz ważniejszych oznaczeń i jednostek 13 Przedmowa 17 Wstęp Odnawialne źródła energii 72

Spis treści. Wykaz ważniejszych oznaczeń i jednostek 13 Przedmowa 17 Wstęp Odnawialne źródła energii 72 Spis treści Wykaz ważniejszych oznaczeń i jednostek 13 Przedmowa 17 Wstęp 19 1_ Charakterystyka obecnego stanu środowiska 21.1. Wprowadzenie 21.2. Energetyka konwencjonalna 23.2.1. Paliwa naturalne, zasoby

Bardziej szczegółowo

UZUPEŁNIENIE DO WYKŁADÓW

UZUPEŁNIENIE DO WYKŁADÓW UZUPEŁNIENIE DO WYKŁADÓW Idea ogniwa paliwowego 1839 r. (demonstracja). Praktyczne zastosowanie ogniwa paliwowego statki termiczne. Ogólne zastosowanie ogniw paliwowych: - napęd samochodu, by zastąpić

Bardziej szczegółowo

TŻ Wykład 9-10 I 2018

TŻ Wykład 9-10 I 2018 TŻ Wykład 9-10 I 2018 Witold Bekas SGGW Elementy elektrochemii Wiele metod analitycznych stosowanych w analityce żywnościowej wykorzystuje metody elektrochemiczne. Podział metod elektrochemicznych: Prąd

Bardziej szczegółowo

ELEKTROGRAWIMETRIA. Zalety: - nie trzeba strącać, płukać, sączyć i ważyć; - osad czystszy. Wady: mnożnik analityczny F = 1.

ELEKTROGRAWIMETRIA. Zalety: - nie trzeba strącać, płukać, sączyć i ważyć; - osad czystszy. Wady: mnożnik analityczny F = 1. Zasada oznaczania polega na wydzieleniu analitu w procesie elektrolizy w postaci osadu na elektrodzie roboczej (katodzie lub anodzie) i wagowe oznaczenie masy osadu z przyrostu masy elektrody Zalety: -

Bardziej szczegółowo

Fragmenty Działu 8 z Tomu 1 PODSTAWY ELEKTROCHEMII

Fragmenty Działu 8 z Tomu 1 PODSTAWY ELEKTROCHEMII Fragmenty Działu 8 z Tomu 1 PODSTAWY ELEKTROCHEMII O G N I W A Zadanie 867 (2 pkt.) Wskaż procesy, jakie zachodzą podczas pracy ogniwa niklowo-srebrowego. Katoda Anoda Zadanie 868* (4 pkt.) W wodnym roztworze

Bardziej szczegółowo

Czym jest prąd elektryczny

Czym jest prąd elektryczny Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,

Bardziej szczegółowo

PODSTAWY CHEMII INŻYNIERIA BIOMEDYCZNA. Wykład 2

PODSTAWY CHEMII INŻYNIERIA BIOMEDYCZNA. Wykład 2 PODSTAWY CEMII INŻYNIERIA BIOMEDYCZNA Wykład Plan wykładu II,III Woda jako rozpuszczalnik Zjawisko dysocjacji Równowaga w roztworach elektrolitów i co z tego wynika Bufory ydroliza soli Roztwory (wodne)-

Bardziej szczegółowo

Temat 7. Równowagi jonowe w roztworach słabych elektrolitów, stała dysocjacji, ph

Temat 7. Równowagi jonowe w roztworach słabych elektrolitów, stała dysocjacji, ph Temat 7. Równowagi jonowe w roztworach słabych elektrolitów, stała dysocjacji, ph Dysocjacja elektrolitów W drugiej połowie XIX wieku szwedzki chemik S.A. Arrhenius doświadczalnie udowodnił, że substancje

Bardziej szczegółowo

Laboratorium z Elektrochemii Ciała Stałego

Laboratorium z Elektrochemii Ciała Stałego Laboratorium z Elektrochemii Ciała Stałego Ćwiczenie nr 2 Ogniwa paliwowe Spis treści 1. Cel ćwiczenia... 2 2. Ogniwa paliwowe... 2 2.1. Historia rozwoju technologii... 2 2.2. Zasada działania... 2 2.3.

Bardziej szczegółowo

Stanowisko do badania ogniwa paliwowego Nexa 1,2 kw

Stanowisko do badania ogniwa paliwowego Nexa 1,2 kw BIULETYN WAT VOL. LV, NR 3, 2006 Stanowisko do badania ogniwa paliwowego Nexa 1,2 kw LESZEK SZCZĘCH Wojskowa Akademia Techniczna, Wydział Mechaniczny, Instytut Pojazdów Mechanicznych i Transportu, 00-908

Bardziej szczegółowo

Technologia wytwarzania materiałów z przeznaczeniem na elementy stałotlenkowych ogniw paliwowych na suporcie anodowym AS-SOFC

Technologia wytwarzania materiałów z przeznaczeniem na elementy stałotlenkowych ogniw paliwowych na suporcie anodowym AS-SOFC Technologia wytwarzania materiałów z przeznaczeniem na elementy stałotlenkowych ogniw paliwowych na suporcie anodowym AS-SOFC Ryszard Kluczowski, Mariusz Krauz, Magdalena Gromada Praca realizowana w ramach

Bardziej szczegółowo

Ćwiczenie 1: Wyznaczanie warunków odporności, korozji i pasywności metali

Ćwiczenie 1: Wyznaczanie warunków odporności, korozji i pasywności metali Ćwiczenie 1: Wyznaczanie warunków odporności, korozji i pasywności metali Wymagane wiadomości Podstawy korozji elektrochemicznej, wykresy E-pH. Wprowadzenie Główną przyczyną zniszczeń materiałów metalicznych

Bardziej szczegółowo

Nazwy pierwiastków: ...

Nazwy pierwiastków: ... Zadanie 1. [ 3 pkt.] Na podstawie podanych informacji ustal nazwy pierwiastków X, Y, Z i zapisz je we wskazanych miejscach. I. Atom pierwiastka X w reakcjach chemicznych może tworzyć jon zawierający 20

Bardziej szczegółowo

NADPRZEWODNIKI WYSOKOTEMPERATUROWE (NWT) W roku 1986 Alex Muller i Georg Bednorz odkryli. miedziowo-lantanowym, w którym niektóre atomy lantanu były

NADPRZEWODNIKI WYSOKOTEMPERATUROWE (NWT) W roku 1986 Alex Muller i Georg Bednorz odkryli. miedziowo-lantanowym, w którym niektóre atomy lantanu były FIZYKA I TECHNIKA NISKICH TEMPERATUR NADPRZEWODNICTWO NADPRZEWODNIKI WYSOKOTEMPERATUROWE (NWT) W roku 1986 Alex Muller i Georg Bednorz odkryli nadprzewodnictwo w złożonym tlenku La 2 CuO 4 (tlenku miedziowo-lantanowym,

Bardziej szczegółowo

Wrocław dn. 22 listopada 2005 roku. Temat lekcji: Elektroliza roztworów wodnych.

Wrocław dn. 22 listopada 2005 roku. Temat lekcji: Elektroliza roztworów wodnych. Piotr Chojnacki IV rok, informatyka chemiczna Liceum Ogólnokształcące Nr I we Wrocławiu Wrocław dn. 22 listopada 2005 roku Temat lekcji: Elektroliza roztworów wodnych. Cel ogólny lekcji: Wprowadzenie pojęcia

Bardziej szczegółowo

4. OGNIWA GALWANICZNE 1

4. OGNIWA GALWANICZNE 1 138 Zasady energoelektryki 4. OGNIWA GALWANICZNE 1 4.1. WIADOMOŚCI OGÓLNE O OGNIWACH GALWANICZNYCH Ogniwa galwaniczne są niskonapięciowymi źródłami energii elektrycznej, w których zachodzi bezpośrednia

Bardziej szczegółowo

NIEKONWENCJONALNE ŹRÓDŁA ENERGII OGNIWA PALIWOWE

NIEKONWENCJONALNE ŹRÓDŁA ENERGII OGNIWA PALIWOWE NIEKONWENCJONALNE ŹRÓDŁA ENERGII OGNIWA PALIWOWE ZARYS HISTORYCZNY W roku 1839 fizyk brytyjski William R. Grove zademonstrował, że podczas elektrochemicznej reakcji łączenia wodoru z tlenem powstaje prąd

Bardziej szczegółowo

CHEMIA. Wymagania szczegółowe. Wymagania ogólne

CHEMIA. Wymagania szczegółowe. Wymagania ogólne CHEMIA Wymagania ogólne Wymagania szczegółowe Uczeń: zapisuje konfiguracje elektronowe atomów pierwiastków do Z = 36 i jonów o podanym ładunku, uwzględniając rozmieszczenie elektronów na podpowłokach [

Bardziej szczegółowo

Nowe materiały i ich zastosowania:

Nowe materiały i ich zastosowania: Nowe materiały i ich zastosowania: Przewodniki superjonowe Wstęp Jak przewodzą prąd elektryczny Zastosowania Przewodniki superjonowe Przewodniki superjonowe (elektrolity stale) ciała stałe o wiązaniach

Bardziej szczegółowo

Materiały Reaktorowe. Efekty fizyczne uszkodzeń radiacyjnych c.d.

Materiały Reaktorowe. Efekty fizyczne uszkodzeń radiacyjnych c.d. Materiały Reaktorowe Efekty fizyczne uszkodzeń radiacyjnych c.d. Luki (pory) i pęcherze Powstawanie i formowanie luk zostało zaobserwowane w 1967 r. Podczas formowania luk w materiale następuje jego puchnięcie

Bardziej szczegółowo

Ć W I C Z E N I E 6. Nadnapięcie wydzielania wodoru na metalach

Ć W I C Z E N I E 6. Nadnapięcie wydzielania wodoru na metalach HYDROMETALURGIA METALI NIEŻELAZNYCH 1 Ć W I C Z E N I E 6 Nadnapięcie wydzielania wodoru na metalach WPROWADZENIE ażdej elektrodzie, na której przebiega reakcja elektrochemiczna typu: x Ox + ze y Red (6.1)

Bardziej szczegółowo

INSTYTUT INŻYNIERII MATERIAŁOWEJ PŁ LABORATORIUM TECHNOLOGII POWŁOK OCHRONNYCH ĆWICZENIE 1 POWŁOKI KONWERSYJNE-TECHNOLOGIE NANOSZENIA

INSTYTUT INŻYNIERII MATERIAŁOWEJ PŁ LABORATORIUM TECHNOLOGII POWŁOK OCHRONNYCH ĆWICZENIE 1 POWŁOKI KONWERSYJNE-TECHNOLOGIE NANOSZENIA INSTYTUT INŻYNIERII MATERIAŁOWEJ PŁ LABORATORIUM TECHNOLOGII POWŁOK OCHRONNYCH ĆWICZENIE 1 POWŁOKI KONWERSYJNE-TECHNOLOGIE NANOSZENIA WSTĘP TEORETYCZNY Powłoki konwersyjne tworzą się na powierzchni metalu

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Zarządzanie i Inżynieria Produkcji Chemia procesów pozyskiwania energii Chemistry of energy receiving processes Kod przedmiotu: ZIP.PK.O.4.4. Rodzaj przedmiotu: przedmiot z

Bardziej szczegółowo

Chemia I Semestr I (1 )

Chemia I Semestr I (1 ) 1/ 6 Inżyniera Materiałowa Chemia I Semestr I (1 ) Osoba odpowiedzialna za przedmiot: dr inż. Maciej Walewski. 2/ 6 Wykład Program 1. Atomy i cząsteczki: Materia, masa, energia. Cząstki elementarne. Atom,

Bardziej szczegółowo

Chemia klasa VII Wymagania edukacyjne na poszczególne oceny Semestr II

Chemia klasa VII Wymagania edukacyjne na poszczególne oceny Semestr II Chemia klasa VII Wymagania edukacyjne na poszczególne oceny Semestr II Łączenie się atomów. Równania reakcji Ocena dopuszczająca [1] Ocena dostateczna [1 + 2] Ocena dobra [1 + 2 + 3] Ocena bardzo dobra

Bardziej szczegółowo

Wyciskamy z cytryny... prąd elektryczny. Wpisany przez Administrator środa, 04 lipca :26 -

Wyciskamy z cytryny... prąd elektryczny. Wpisany przez Administrator środa, 04 lipca :26 - Jak nazwa działu wskazuje będę tu umieszczał różne rozwiązania umożliwiające pozyskiwanie energii elektrycznej z niekonwencjonalnych źródeł. Zaczniemy od eksperymentu, który każdy może wykonać sobie w

Bardziej szczegółowo

Synteza Nanoproszków Metody Chemiczne II

Synteza Nanoproszków Metody Chemiczne II Synteza Nanoproszków Metody Chemiczne II Bottom Up Metody chemiczne Wytrącanie, współstrącanie, Mikroemulsja, Metoda hydrotermalna, Metoda solwotermalna, Zol-żel, Synteza fotochemiczna, Synteza sonochemiczna,

Bardziej szczegółowo

Ogniwo paliwowe zasilane ciekłym metanolem Direct Methanol Fuel Cell

Ogniwo paliwowe zasilane ciekłym metanolem Direct Methanol Fuel Cell Ogniwo paliwowe zasilane ciekłym metanolem Direct Methanol Fuel Cell Grzegorz Słowiński Podsumowanie 7 miesięcznego pobytu na stypendium Marii Curie na Newcastle University w Anglii Plan prezentacji Wprowadzenie

Bardziej szczegółowo

Część 3. Magazynowanie energii. Akumulatory Układy ładowania

Część 3. Magazynowanie energii. Akumulatory Układy ładowania Część 3 Magazynowanie energii Akumulatory Układy ładowania Technologie akumulatorów Najszersze zastosowanie w dużych systemach fotowoltaicznych znajdują akumulatory kwasowo-ołowiowe (lead-acid batteries)

Bardziej szczegółowo

Badanie utleniania kwasu mrówkowego na stopach trójskładnikowych Pt-Rh-Pd

Badanie utleniania kwasu mrówkowego na stopach trójskładnikowych Pt-Rh-Pd Badanie utleniania kwasu mrówkowego na stopach trójskładnikowych Pt-Rh-Pd Kamil Wróbel Pracownia Elektrochemicznych Źródeł Energii Kierownik pracy: prof. dr hab. A. Czerwiński Opiekun pracy: dr M. Chotkowski

Bardziej szczegółowo

Okres realizacji projektu: r r.

Okres realizacji projektu: r r. PROJEKT: Wykorzystanie modułowych systemów podawania i mieszania materiałów proszkowych na przykładzie linii technologicznej do wytwarzania katod w bateriach termicznych wraz z systemem eksperckim doboru

Bardziej szczegółowo

Obwody prądu stałego. Materiały dydaktyczne dla kierunku Technik Optyk (W12)Kwalifikacyjnego kursu zawodowego.

Obwody prądu stałego. Materiały dydaktyczne dla kierunku Technik Optyk (W12)Kwalifikacyjnego kursu zawodowego. Obwody prądu stałego Materiały dydaktyczne dla kierunku Technik Optyk (W12)Kwalifikacyjnego kursu zawodowego. Podstawowe prawa elektrotechniki w zastosowaniu do obwodów elektrycznych: Obwód elektryczny

Bardziej szczegółowo

Ogniwa galwaniczne. Elektrolizery. Rafinacja. Elektroosadzanie.

Ogniwa galwaniczne. Elektrolizery. Rafinacja. Elektroosadzanie. Elektrochemia Wydział SiMR, kierunek IPEiH II rok I stopnia studiów, semestr IV dr inż. Leszek Niedzicki. Elektrolizery. Rafinacja. Elektroosadzanie. Szereg elektrochemiczny (standardowe potencjały półogniw

Bardziej szczegółowo

SILNIKI SPALINOWE 1 PODSTAWY INSTRUKCJA LABORATORYJNA BADANIE NIEKONWENCJONALNEGO NAPĘDU POJAZDU Z OGNIWEM PALIWOWYM

SILNIKI SPALINOWE 1 PODSTAWY INSTRUKCJA LABORATORYJNA BADANIE NIEKONWENCJONALNEGO NAPĘDU POJAZDU Z OGNIWEM PALIWOWYM SILNIKI SPALINOWE 1 PODSTAWY INSTRUKCJA LABORATORYJNA BADANIE NIEKONWENCJONALNEGO NAPĘDU POJAZDU Z OGNIWEM PALIWOWYM Wstęp 1. Historia ogniw paliwowych Zasadę działania ogniw wodorowych odkrył w 1838 roku

Bardziej szczegółowo

OBWODY PRĄDU STAŁEGO. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

OBWODY PRĄDU STAŁEGO. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego OBWODY PRĄDU STAŁEGO Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Elektrotechnika - dział techniki zajmujący się praktycznym zastosowaniem wiedzy

Bardziej szczegółowo

Instytut Elektrotechniki Oddział Technologii i Materiałoznawstwa Elektrotechnicznego we Wrocławiu

Instytut Elektrotechniki Oddział Technologii i Materiałoznawstwa Elektrotechnicznego we Wrocławiu Oddział Technologii i Materiałoznawstwa Elektrotechnicznego we Wrocławiu Superkondensatory zasada działania i możliwości zastosowań dr inż. Bronisław Szubzda Co to jest kondensator Jest to układ dwóch

Bardziej szczegółowo