Badanie przetworników A/C i C/A

Wielkość: px
Rozpocząć pokaz od strony:

Download "Badanie przetworników A/C i C/A"

Transkrypt

1 9 POLITECHNIKA POZNAŃSKA KATEDRA STEROWANIA I INŻYNIERII SYSTEMÓW Pracownia Układów Elektronicznych i Przetwarzania Sygnałów ELEKTRONICZNE SYSTEMY POMIAROWE Instrukcja do ćwiczeń laboratoryjnych Badanie przetworników A/C i C/A Laboratorium Elektronicznych Systemów Pomiarowych Poznań 2008

2 1. Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie się z metodyką pomiaru przetworników analogowocyfrowych i cyfrowo-analogowych oraz poznanie typowych błędów przetwarzania. 2. Wprowadzenie Przetworniki analogowo-cyfrowe należą do najbardziej znaczących układów elektronicznych łączących domenę informacji analogowej z domeną informacji cyfrowej. Zadaniem przetwornika A/C jest przetworzenie analogowej wartości sygnału (typowo napięcia) na przeliczalny zbiór liczb (reprezentację cyfrową), które mogą być w dalszym etapie przetwarzane bądź zachowywane w pamięci komputera. Ponowne przetworzenie sygnału cyfrowego na sygnał analogowy dokonywane jest przez przetworniki C/A. Istnieje wiele metod przetwarzania analogowo-cyfrowego. W układach opartych na metodach bezpośrednich następuje porównanie napięcia wejściowego z szeregiem wielkości odniesienia, a następnie wykorzystanie uzyskanych wyników do sformułowania wyjściowego sygnału cyfrowego. Powyższa metoda stanowi najszybszy sposób przetwarzania analogowo-cyfrowego i dlatego znajduje zastosowanie w oscyloskopach cyfrowych. Inną grupą przetworników A/C z bezpośrednim porównaniem są przetworniki kompensacyjne z wykorzystaniem dzielnika rezystancyjnego. Ten typ przetworników pracuje w sprzężeniu z przetwornikiem C/A. W wyniku wielokrotnego porównania sygnału wejściowego z sygnałem wyjściowym przetwornika C/A (referencyjnym) następuje określenie postaci cyfrowej sygnału na wyjściu. Przy metodach pośrednich najpierw odbywa się zamiana wielkości przetwarzanej na pewną wielkość pomocniczą (czas lub częstotliwość), która następnie jest porównana z wielkością referencyjną. W zależności od rodzaju wielkości pomocniczej wyróżnia się metodę częstotliwościową i metodę czasową (prostą lub z podwójnym całkowaniem). Najnowszą grupę przetworników A/C stanowią przetworniki wykorzystujące metodę śledzenia sygnału wejściowego (napięcia). Przetworniki te znane są pod nazwą sigma-delta. Przetworniki A/C stosowane są nie tylko do przetwarzania napięć stałych, lecz także do przetwarzania napięć zmieniających się w czasie. W tym przypadku pobieranie i przetwarzanie próbek napięcia następuje okresowo z pewną częstotliwością, zwaną szybkością próbkowania. Podczas trwania konwersji w przetworniku wartość sygnału wejściowego może ulec zmianom, co powoduje powstawanie dodatkowego błędu, zależnego od wzajemnej relacji szybkości zmian sygnału wejściowego i szybkości przetwarzania. W celu uniknięcia tego błędu, szczególnie przy przetwarzaniu napięć szybkozmiennych, stosuje się układ próbkujący z pamięcią, który umieszczony przed przetwornikiem utrzymuje stałą wartość sygnału w trakcie procesu przetwarzania. 3. Podstawowe parametry przetworników C/A rozdzielczość przetwornika C/A Określa ją liczba N - bitów słowa wejściowego. Definiuje się ją również przez wartość związaną z najmniej znaczącym bitem (LSB), odpowiadającą części pełnego zakresu przetwarzania równej 2 -N U max (rozdzielczość bezwzględna). Wartość ta odniesiona do pełnego zakresu i podana w procentach to rozdzielczość względna. Przykładowo dla 12-bitowego przetwornika C/A o napięciu pełnej skali U max = 10 V rozdzielczość bezwzględna jest równa 2,44 mv, a rozdzielczość względna wynosi 0,0244%. 2

3 Typowe liczby bitów słowa przetworników C/A wynoszą 8, 10, 12, 16. Produkowane są przetworniki o rozdzielczości do 32 bitów. Rozdzielczość nie decyduje o dokładności przetwornika, należy ją rozpatrywać w powiązaniu z dokładnością bezwzględną. dokładność przetwornika C/A Jest to różnica miedzy zmierzoną, a przewidywaną wartością napięcia wyjściowego, odniesiona do napięcia pełnej skali i wyrażona w procentach. Dokładność określa się zwykle po korekcji błędu skalowania przy określonej wartości napięcia odniesienia oraz po przeprowadzeniu kompensacji błędu przesunięcia zera. błędy analogowe Błąd skalowania (lub błąd wzmocnienia) Jest on określony odchyłką napięcia wyjściowego od wartości projektowanej dla maksymalnej wartości słowa (np. w naturalnym kodzie dwójkowym dla słowa wejściowego o wartościach wszystkich bitów równych l). Błąd skalowania może być spowodowany efektami termicznymi w poszczególnych częściach przetwornika: źródle napięcia odniesienia, sieci rezystorowej, przełącznikach analogowych lub wzmacniaczu sumującym. Błąd skalowania może być skorygowany przez regulację wzmocnienia wzmacniacza sumującego lub napięcia odniesienia. Błąd przesunięcia zera Jest on napięciem wyjściowym przetwornika C/A dla minimalnej wartości słowa (np. w naturalnym kodzie dwójkowym dla słowa wejściowego o wartościach wszystkich bitów równych 0). Błąd przesunięcia zera jest zwykle spowodowany przez wejściowe napięcie lub prąd niezrównoważenia wzmacniacza sumującego. Błąd ten może być skorygowany do zera przez kompensację wejściowego napięcia niezrównoważenia wzmacniacza. Nieliniowość całkowa Jest to maksymalne odchylenie rzeczywistej charakterystyki przetwarzania U wy = f(n) przetwornika C/A od jego charakterystyki idealnej, będącej linią prostą przechodzącą przez punkt zerowy i maksymalny zakresu. Wyznaczamy ją po skompensowaniu błędu przesunięcia zera i błędu skalowania. Można ją podać jako wartość bezwzględną (w V lub mv) lub względną ε c1 odniesioną do pełnego zakresu przetwarzania wzór (1). ( U ) wy max ε c1 = 100% (1) U wy max Nieliniowość różniczkowa Jest ona określona maksymalną lub minimalną różnicą pomiędzy dwiema wartościami napięcia wyjściowego odpowiadającymi zmianie słowa wejściowego o wartość najmniej znaczącego bitu. Nieliniowość różniczkową ε r1 wyznaczamy z wzoru (2): 3

4 N 1 Uwyim N Uwyi i= 1 ε r1 = (2) N 1 N Uwyi i= 1 gdzie: Uwyi - i-ta różnica między dwiema wartościami napięcia wyjściowego odpowiadającymi zmianie słowa wejściowego o wartość najmniej znaczącego bitu; Uwy im - maksymalna lub minimalna różnica między dwiema wartościami napięcia wyjściowego odpowiadającymi zmianie słowa wejściowego o wartość najmniej znaczącego bitu, wybieramy wartość dającą większy błąd; N - ilość różnic. W niekorzystnym przypadku zbyt duży błąd nieliniowości różniczkowej może spowodować zmianę znaku nachylenia charakterystyki przetwarzania, wywołując jej niemonotoniczność. Łączny wpływ błędów nieliniowości, skalowania, przesunięcia zera, wpływu efektów termicznych stanowi dokładność bezwzględną przetwornika, która w prawidłowo zaprojektowanym układzie nie powinna przekraczać wartości napięcia wyjściowego odpowiadającej ± ½ LSB, a więc powinna być mniejsza od rozdzielczości lub z nią porównywalna. 4. Podstawowe parametry przetworników A/C Do parametrów określających błąd cyfrowy (uwarunkowany liczbą bitów) należą: Bezwzględna zdolność rozdzielcza U odniesiona do napięcia wejściowego i wyrażona w mv: U we max N U = (3) 2 gdzie: U we max N - pełny zakres przetwarzania, - liczba bitów słowa wyjściowego. Tak wyrażona rozdzielczość jest jednocześnie tzw. przedziałem dyskretyzacji, czyli wartością napięcia wejściowego odpowiadającą najmniej znaczącemu bitowi (LSB). Rozdzielczość względna wyrażona jako wartość 100%/2 N ; Rozdzielczość wyrażona przez 2 -N. Błąd cyfrowy, czyli zdolność rozdzielcza przetwornika, stanowi granicę jego dokładności wynikającą z samej istoty procesu dyskretyzacji (kwantowania) napięcia wejściowego przy przetwarzaniu go na wielkość cyfrową. W prawidłowo zaprojektowanym przetworniku długość 4

5 słowa wyjściowego jest tak dobrana, że wartość błędu analogowego jest mniejsza od błędu cyfrowego. Zwiększanie długości słowa ponad granicę wynikającą z wielkości błędu analogowego nie ma sensu, gdyż nie poprawia już dokładności przetwarzania. Przy prawidłowo wyznaczonych parametrach przetwornika, wartość katalogowej rozdzielczości powinna określać jego dokładność. Inne błędy nie powinny przekraczać wartości odpowiadającej najmniej znaczącemu bitowi (LSB). Do parametrów określających błąd analogowy należą: Błąd przesunięcia zera (błąd niezrównoważenia) Jest on określany przez wartość napięcia wejściowego potrzebną do przejścia od zerowej wartości słowa wyjściowego do następnej większej wartości. Błąd ten jest mierzony jako przesunięcie w stosunku do charakterystyki idealnej. Możliwa jest całkowita kompensacja tego błędu w większości nowoczesnych przetworników. Mogą natomiast pozostać nieskompensowane zmiany cieplne napięcia przesunięcia zera. Błąd skalowania (lub błąd wzmocnienia) Wynika ze zmiany nachylenia charakterystyki przetwarzania N = f(u we ) w stosunku do charakterystyki idealnej. Jest określony przez odchylenie rzeczywistej wartości napięcia U we max (odpowiadającej maksymalnej wartości słowa wyjściowego), od wartości idealnej. Nieliniowość całkowa Określona jest jako maksymalne względne odchylenie ( U we ) max rzeczywistej charakterystyki przetwarzania N =f (U we ) od charakterystyki idealnej, czyli od prostej łączącej skrajne punkty zakresu przetwarzania wzór (4). Nieliniowość całkowa ε c jest wyrażona w procentach w stosunku do pełnego zakresu przetwarzania: ( U ) we max ε c = 100% (4) U we max Nieliniowość różniczkowa Określona jest podobnie jak dla przetwornika C/A przez wyznaczenie różnic między sąsiednimi wartościami napięcia wejściowego, powodującymi zmianę słowa wyjściowego o wartość najmniej znaczącego bitu. Nieliniowość różniczkowa jest podawana w procentach jako maksymalne względne odchylenie tej różnicy od jej wartości średniej w całym zakresie 5

6 przetwarzania patrz wzór (2). Pozostałe istotne parametry przetworników: współczynniki niestabilności termicznej; parametry dynamiczne; napięcia zasilania, odniesienia (referencyjne), wejść cyfrowych. 5. Symulacja pracy przetwornika C/A programem Multisim Układ symulacyjny zawiera: Wirtualny multimetr cyfrowy, Wirtualny oscyloskop, Przetwornik C/A, Licznik binarny, Przełączniki, źródła zasilania, elementy R C. W ćwiczeniu wykorzystano 8-bitowy przetwornik C/A skrócony do 4-bitowego przez połączenie z masą (0 logiczne) czterech wejść najmłodszych bitów D 0 do D 3. 4-bitowy licznik binarny służy do zadawania słów binarnych na pozostałych wejściach przetwornika D 4 do D 7. Dołączone do wyjścia wirtualne przyrządy oscyloskop i multimetr pozwalają na pomiary statycznej i dynamicznej charakterystyki przetwornika. Przełączniki służą do kasowania licznika (J2) i jego taktowania (J1). Rys.1. Schemat ideowy układu symulacyjnego przetwornika C/A. 6

7 Przebieg ćwiczenia 1. Uruchomić program MULTISIM z grupy programów National Instruments. 2. Połączyć układ do symulacji w sposób pokazany na rysunku 1. Niezbędne elementy ściągnąć z pasków narzędziowych na górze i z prawej strony ekranu. 3. Wyzerować licznik binarny przełącznikiem J2 przy rozwartym J1 i zmierzyć napięcie wyjściowe. Załączając i wyłączając przełącznik J1 (klawiszem spacja) notować ilość załączeń J1 (wartość binarna) oraz napięcie na wyjściu przetwornika. 4. Podać w formie tabeli i wykresu charakterystykę przetwornika C/A. 5. W miejsce przełącznika J1 do węzła 1 dołączyć generator taktujący. Drugi zacisk generatora połączyć z masą. Można wykorzystać w tym celu generator impulsów bipolarnych deklarując wartość napięcia dodatniego 5V, a ujemnego Uruchomić oscyloskop. Wyregulować podstawę czasu oscyloskopu i zdjąć z ekranu przebieg charakterystyki przetwornika C/A. Częstotliwość generatora dobrać doświadczalnie. 6. Symulacja pracy przetwornika A/C programem Multisim Układ symulacyjny zawiera: Wirtualny multimetr cyfrowy, Wirtualny oscyloskop, Generator taktujący, Przetwornik C/A, Licznik binarny, bramkę AND, komparator Przełącznik, źródła zasilania, elementy R C. W ćwiczeniu wykorzystano 8-bitowy przetwornik C/A skrócony do 4-bitowego przez połączenie z masą (0 logiczne) czterech wejść najmłodszych bitów D 0 do D 3. 4-bitowy licznik binarny służy do zadawania słów binarnych na pozostałych wejściach przetwornika D 4 do D 7. Licznik ten jest taktowany impulsami z generatora przez bramkę AND. Na drugie wejście bramki dochodzi sygnał z komparatora porównującego napięcie z wyjścia przetwornika C/A z napięciem wejściowym. Bramka AND jest tak długo otwarta, aż napięcie z wyjścia przetwornika C/A nie przekroczy napięcia wejściowego. W tym momencie licznik binarny staje, a stan na wyjściach przetwornika C/A jest jednocześnie sygnałem wyjściowym całego układu przetwornika A/C. Wirtualne przyrządy oscyloskop i multimetr pozwalają na pomiary statycznej charakterystyki przetwornika. Przełącznik J2 służy do kasowania licznika. 7

8 Rys.2. Schemat ideowy układu symulacyjnego przetwornika A/C Przebieg ćwiczenia 1. Rezystorem R1 ustalić napięcie wejściowe na wartość 0V. Wyzerować licznik binarny przełącznikiem J2. Wolno zwiększając napięcie (przez naciskanie klawisza A ) określić jego wartość w momencie zmiany stanu z 0000 na Rezystorem R1 zwiększać dalej napięcie wejściowe, monitorując stan przetwornika C/A. Przy każdej zmianie stanu przetwornika C/A zanotować napięcie wejściowe i aktualny jego stan. 3. Podać w formie tabeli i wykresu charakterystykę przetwornika A/C. 7. Obliczenia dla obu przetworników 1. Obliczyć błędy różniczkowe obu przetworników. 2. Dla założenia, że napięcie znamionowe dla pełnego zakresu przetwarzania (stan 1111) wynosi 10 V (wyjściowe dla C/A i wejściowe dla A/C) obliczyć błędy skalowania i przesunięcia zera. 3. Wyznaczyć błędy całkowe obu przetworników. 8

9 8. Sprawozdanie 1. Podać tabele i wykresy z punktów 5-4 i Zamieścić charakterystykę zdjętą oscyloskopowo. 3. Porównać charakterystykę statyczną przetwornika C/A (u wy = f(n we )) z charakterystyką dynamiczną (oscyloskopową). 4. Określić rozdzielczość bezwzględną i względną obu przetworników i dokonać porównania. 5. Oszacować błędy skalowania, przesunięcia zera oraz nieliniowości całkową i różniczkową obu przetworników. Dokonać porównania uzyskanych wyników. 6. Podać wnioski. 9. Literatura uzupełniająca 1. Nadachowski M, Kulka Z.: Analogowe układy scalone, WKŁ, W-wa 1980, 2. Pieńkos J. Turczyński J.: Układy scalone TTL w systemach cyfrowych, WKŁ W-wa 1980, 3. Horowitz P, Hill W.: Sztuka elektroniki, cz. 2 WKŁ W-wa,

PRZETWORNIKI C / A PODSTAWOWE PARAMETRY

PRZETWORNIKI C / A PODSTAWOWE PARAMETRY PRZETWORIKI C / A PODSTAWOWE PARAMETRY Rozdzielczość przetwornika C/A - Określa ją liczba - bitów słowa wejściowego. - Definiuje się ją równieŝ przez wartość związaną z najmniej znaczącym bitem (LSB),

Bardziej szczegółowo

KATEDRA ELEKTRONIKI AGH WYDZIAŁ EAIIE. Dydaktyczny model 4-bitowego przetwornika C/A z siecią rezystorów o wartościach wagowych

KATEDRA ELEKTRONIKI AGH WYDZIAŁ EAIIE. Dydaktyczny model 4-bitowego przetwornika C/A z siecią rezystorów o wartościach wagowych KATEDRA ELEKTRONIKI AGH WYDZIAŁ EAIIE Przetworniki A/C i C/A Data wykonania LABORATORIUM TECHNIKI CYFROWEJ Skład zespołu: Dydaktyczny model 4-bitowego przetwornika C/A z siecią rezystorów o wartościach

Bardziej szczegółowo

Struktury specjalizowane wykorzystywane w mikrokontrolerach

Struktury specjalizowane wykorzystywane w mikrokontrolerach Struktury specjalizowane wykorzystywane w mikrokontrolerach Przetworniki analogowo-cyfrowe i cyfrowoanalogowe Interfejsy komunikacyjne Zegary czasu rzeczywistego Układy nadzorujące Układy generacji sygnałów

Bardziej szczegółowo

Zastosowania liniowe wzmacniaczy operacyjnych

Zastosowania liniowe wzmacniaczy operacyjnych UKŁADY ELEKTRONICZNE Instrukcja do ćwiczeń laboratoryjnych Zastosowania liniowe wzmacniaczy operacyjnych Laboratorium Układów Elektronicznych Poznań 2008 1. Cel i zakres ćwiczenia Celem ćwiczenia jest

Bardziej szczegółowo

Podstawowe funkcje przetwornika C/A

Podstawowe funkcje przetwornika C/A ELEKTRONIKA CYFROWA PRZETWORNIKI CYFROWO-ANALOGOWE I ANALOGOWO-CYFROWE Literatura: 1. Rudy van de Plassche: Scalone przetworniki analogowo-cyfrowe i cyfrowo-analogowe, WKŁ 1997 2. Marian Łakomy, Jan Zabrodzki:

Bardziej szczegółowo

Przetworniki cyfrowo analogowe oraz analogowo - cyfrowe

Przetworniki cyfrowo analogowe oraz analogowo - cyfrowe Przetworniki cyfrowo analogowe oraz analogowo - cyfrowe Przetworniki cyfrowo / analogowe W cyfrowych systemach pomiarowych często zachodzi konieczność zmiany sygnału cyfrowego na analogowy, np. w celu

Bardziej szczegółowo

Elektronika. Wzmacniacz operacyjny

Elektronika. Wzmacniacz operacyjny LABORATORIUM Elektronika Wzmacniacz operacyjny Opracował: mgr inż. Andrzej Biedka Wymagania, znajomość zagadnień: 1. Podstawowych parametrów elektrycznych wzmacniaczy operacyjnych. 2. Układów pracy wzmacniacza

Bardziej szczegółowo

Przetwarzanie AC i CA

Przetwarzanie AC i CA 1 Elektroniki Elektroniki Elektroniki Elektroniki Elektroniki Katedr Przetwarzanie AC i CA Instrukcja do ćwiczenia laboratoryjnego opracował: Łukasz Buczek 05.2015 1. Cel ćwiczenia 2 Celem ćwiczenia jest

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA EKS1A300024 ZASTOSOWANIE WZMACNIACZY OPERACYJNYCH W UKŁADACH

Bardziej szczegółowo

UKŁADY ELEKTRONICZNE Instrukcja do ćwiczeń laboratoryjnych Badanie transoptora

UKŁADY ELEKTRONICZNE Instrukcja do ćwiczeń laboratoryjnych Badanie transoptora UKŁADY ELEKTRONICZNE Instrukcja do ćwiczeń laboratoryjnych Badanie transoptora Laboratorium Układów Elektronicznych Poznań 2008 1. Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie studentów z jednym

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA KATEDRA STEROWANIA I INŻYNIERII SYSTEMÓW

POLITECHNIKA POZNAŃSKA KATEDRA STEROWANIA I INŻYNIERII SYSTEMÓW POLITECHNIKA POZNAŃSKA KATEDRA STEROWANIA I INŻYNIERII SYSTEMÓW Pracownia Układów Elektronicznych i Przetwarzania ELEKTRONICZNE SYSTEMY POMIAROWE Instrukcja do ćwiczeń laboratoryjnych Badanie transoptora

Bardziej szczegółowo

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego, poznanie jego charakterystyki przejściowej

Bardziej szczegółowo

Przetworniki AC i CA

Przetworniki AC i CA KATEDRA INFORMATYKI Wydział EAIiE AGH Laboratorium Techniki Mikroprocesorowej Ćwiczenie 4 Przetworniki AC i CA Cel ćwiczenia Celem ćwiczenia jest poznanie budowy i zasady działania wybranych rodzajów przetworników

Bardziej szczegółowo

Przetworniki A/C. Ryszard J. Barczyński, 2010 2015 Materiały dydaktyczne do użytku wewnętrznego

Przetworniki A/C. Ryszard J. Barczyński, 2010 2015 Materiały dydaktyczne do użytku wewnętrznego Przetworniki A/C Ryszard J. Barczyński, 2010 2015 Materiały dydaktyczne do użytku wewnętrznego Parametry przetworników analogowo cyfrowych Podstawowe parametry przetworników wpływające na ich dokładność

Bardziej szczegółowo

Przetworniki analogowo-cyfrowe

Przetworniki analogowo-cyfrowe POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH LABORATORIUM ELEKTRYCZNE Przetworniki analogowo-cyfrowe (E-11) opracował: sprawdził: dr inż. Włodzimierz

Bardziej szczegółowo

Pomiar podstawowych parametrów liniowych układów scalonych

Pomiar podstawowych parametrów liniowych układów scalonych Instytut Fizyki ul Wielkopolska 15 70-451 Szczecin 5 Pracownia Elektroniki Pomiar podstawowych parametrów liniowych układów scalonych Zakres materiału obowiązujący do ćwiczenia: wzmacniacz operacyjny,

Bardziej szczegółowo

Elektronika. Wzmacniacz tranzystorowy

Elektronika. Wzmacniacz tranzystorowy LABORATORIUM Elektronika Wzmacniacz tranzystorowy Opracował: mgr inż. Andrzej Biedka Wymagania, znajomość zagadnień: 1. Podstawowych parametrów elektrycznych i charakterystyk graficznych tranzystorów bipolarnych.

Bardziej szczegółowo

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W TARNOWIE INSTYTUT POLITECHNICZNY LABORATORIUM METROLOGII

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W TARNOWIE INSTYTUT POLITECHNICZNY LABORATORIUM METROLOGII PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W TARNOWIE INSTYTUT POLITECHNICZNY LABORATORIUM METROLOGII Instrukcja ćwiczenia laboratoryjnego: Przetworniki analogowo-cyfrowe zasada działania, własności statyczne i

Bardziej szczegółowo

Przetworniki C/A. Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego

Przetworniki C/A. Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego Przetworniki C/A Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego Przetwarzanie C/A i A/C Większość rzeczywistych sygnałów to sygnały analogowe. By je przetwarzać w dzisiejszych

Bardziej szczegółowo

ĆWICZENIE nr 3. Badanie podstawowych parametrów metrologicznych przetworników analogowo-cyfrowych

ĆWICZENIE nr 3. Badanie podstawowych parametrów metrologicznych przetworników analogowo-cyfrowych Politechnika Łódzka Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych WWW.DSOD.PL LABORATORIUM METROLOGII ELEKTRONICZNEJ ĆWICZENIE nr 3 Badanie podstawowych parametrów metrologicznych przetworników

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA EKS1A300024 Zastosowania wzmacniaczy operacyjnych w układach

Bardziej szczegółowo

Ćw. 7 Przetworniki A/C i C/A

Ćw. 7 Przetworniki A/C i C/A Ćw. 7 Przetworniki A/C i C/A 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z zasadami przetwarzania sygnałów analogowych na cyfrowe i cyfrowych na analogowe poprzez zbadanie przetworników A/C i

Bardziej szczegółowo

Przetwarzanie A/C i C/A

Przetwarzanie A/C i C/A Przetwarzanie A/C i C/A Instrukcja do ćwiczenia laboratoryjnego opracował: Łukasz Buczek 05.2015 Rev. 204.2018 (KS) 1 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z przetwornikami: analogowo-cyfrowym

Bardziej szczegółowo

BADANIE UKŁADÓW CYFROWYCH. CEL: Celem ćwiczenia jest poznanie właściwości statycznych układów cyfrowych serii TTL. PRZEBIEG ĆWICZENIA

BADANIE UKŁADÓW CYFROWYCH. CEL: Celem ćwiczenia jest poznanie właściwości statycznych układów cyfrowych serii TTL. PRZEBIEG ĆWICZENIA BADANIE UKŁADÓW CYFROWYCH CEL: Celem ćwiczenia jest poznanie właściwości statycznych układów cyfrowych serii TTL. PRZEBIEG ĆWICZENIA 1. OGLĘDZINY Dokonać oględzin badanego układu cyfrowego określając jego:

Bardziej szczegółowo

Imię i nazwisko (e mail) Grupa:

Imię i nazwisko (e mail) Grupa: Wydział: EAIiE Kierunek: Imię i nazwisko (e mail) Rok: Grupa: Zespół: Data wykonania: LABORATORIUM METROLOGII Ćw. 12: Przetworniki analogowo cyfrowe i cyfrowo analogowe budowa i zastosowanie. Ocena: Podpis

Bardziej szczegółowo

WZMACNIACZ OPERACYJNY

WZMACNIACZ OPERACYJNY 1. OPIS WKŁADKI DA 01A WZMACNIACZ OPERACYJNY Wkładka DA01A zawiera wzmacniacz operacyjny A 71 oraz zestaw zacisków, które umożliwiają dołączenie elementów zewnętrznych: rezystorów, kondensatorów i zwór.

Bardziej szczegółowo

Wzmacniacze operacyjne

Wzmacniacze operacyjne Wzmacniacze operacyjne Cel ćwiczenia Celem ćwiczenia jest badanie podstawowych układów pracy wzmacniaczy operacyjnych. Wymagania Wstęp 1. Zasada działania wzmacniacza operacyjnego. 2. Ujemne sprzężenie

Bardziej szczegółowo

Zastosowania nieliniowe wzmacniaczy operacyjnych

Zastosowania nieliniowe wzmacniaczy operacyjnych UKŁADY ELEKTRONICZNE Instrukcja do ćwiczeń laboratoryjnych Zastosowania nieliniowe wzmacniaczy operacyjnych Laboratorium Układów Elektronicznych Poznań 2008 1. Cel i zakres ćwiczenia Celem ćwiczenia jest

Bardziej szczegółowo

PRZETWORNIKI A/C I C/A.

PRZETWORNIKI A/C I C/A. Przetworniki A/C i C/A 0 z 8 PRACOWNIA ENERGOELEKTRONICZNA w ZST Radom 2006/2007 PRZETWORNIKI A/C I C/A. Przed wykonaniem ćwiczenia powinieneś znać odpowiedzi na 4 pierwsze pytania i polecenia. Po wykonaniu

Bardziej szczegółowo

Definicja kwantowania i próbkowania Sieci rezystorowe R-2R w przetwornikach C/A Klasyfikacja metody przetwarzania A/C Przetwarzanie A/C typu sigma

Definicja kwantowania i próbkowania Sieci rezystorowe R-2R w przetwornikach C/A Klasyfikacja metody przetwarzania A/C Przetwarzanie A/C typu sigma Ćwiczenie numer 8 Przetworniki analogowo/cyfrowe i cyfrowo/analogowe Zagadnienia do przygotowania Definicja kwantowania i próbkowania Sieci rezystorowe R-2R w przetwornikach C/A Klasyfikacja metody przetwarzania

Bardziej szczegółowo

Badanie wzmacniacza operacyjnego

Badanie wzmacniacza operacyjnego Badanie wzmacniacza operacyjnego CEL: Celem ćwiczenia jest poznanie właściwości wzmacniaczy operacyjnych i komparatorów oraz możliwości wykorzystania ich do realizacji bloków funkcjonalnych poprzez dobór

Bardziej szczegółowo

Badanie przetworników AC różnych typów

Badanie przetworników AC różnych typów WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego Badanie przetworników AC różnych typów Ćwiczenia Laboratoryjne - Metrologia II mgr inż. Bartosz Brzozowski Warszawa 2015 1 Cel ćwiczenia laboratoryjnego

Bardziej szczegółowo

ELEMENTY ELEKTRONICZNE. Układy polaryzacji i stabilizacji punktu pracy tranzystora

ELEMENTY ELEKTRONICZNE. Układy polaryzacji i stabilizacji punktu pracy tranzystora Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEMENTY ELEKTRONICZNE TS1C300 018 Układy polaryzacji i stabilizacji punktu

Bardziej szczegółowo

ĆWICZENIE LABORATORYJNE. TEMAT: Badanie liniowych układów ze wzmacniaczem operacyjnym (2h)

ĆWICZENIE LABORATORYJNE. TEMAT: Badanie liniowych układów ze wzmacniaczem operacyjnym (2h) ĆWICZENIE LABORATORYJNE TEMAT: Badanie liniowych układów ze wzmacniaczem operacyjnym (2h) 1. WPROWADZENIE Przedmiotem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego

Bardziej szczegółowo

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 1 ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 15.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie podstawowych właściwości wzmacniaczy mocy małej częstotliwości oraz przyswojenie umiejętności

Bardziej szczegółowo

LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH

LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE e LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH Ćwiczenie nr 3 Pomiary wzmacniacza operacyjnego Wykonując pomiary PRZESTRZEGAJ

Bardziej szczegółowo

Zakres wymaganych wiadomości do testów z przedmiotu Metrologia. Wprowadzenie do obsługi multimetrów analogowych i cyfrowych

Zakres wymaganych wiadomości do testów z przedmiotu Metrologia. Wprowadzenie do obsługi multimetrów analogowych i cyfrowych Zakres wymaganych wiadomości do testów z przedmiotu Metrologia Ćwiczenie 1 Wprowadzenie do obsługi multimetrów analogowych i cyfrowych budowa i zasada działania przyrządów analogowych magnetoelektrycznych

Bardziej szczegółowo

Próbkowanie czyli dyskretyzacja argumentów funkcji x(t)) polega na kolejnym pobieraniu próbek wartości sygnału w pewnych odstępach czasu.

Próbkowanie czyli dyskretyzacja argumentów funkcji x(t)) polega na kolejnym pobieraniu próbek wartości sygnału w pewnych odstępach czasu. Większość urządzeń pomiarowych lub rejestratorów sygnałów w systemach pomiarowych kontaktujących się bezpośrednio z obiektami badań reaguje na oddziaływania fizyczne (np. temperatura, napięcie elektryczne

Bardziej szczegółowo

ĆWICZENIE LABORATORYJNE. TEMAT: Badanie wzmacniacza różnicowego i określenie parametrów wzmacniacza operacyjnego

ĆWICZENIE LABORATORYJNE. TEMAT: Badanie wzmacniacza różnicowego i określenie parametrów wzmacniacza operacyjnego ĆWICZENIE LABORATORYJNE TEMAT: Badanie wzmacniacza różnicowego i określenie parametrów wzmacniacza operacyjnego 1. WPROWADZENIE Przedmiotem ćwiczenia jest zapoznanie się ze wzmacniaczem różnicowym, który

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego

Instrukcja do ćwiczenia laboratoryjnego Instrukcja do ćwiczenia laboratoryjnego adanie parametrów statycznych i dynamicznych ramek Logicznych Opracował: mgr inż. ndrzej iedka Wymagania, znajomość zagadnień: 1. Parametry statyczne bramek logicznych

Bardziej szczegółowo

Technika Cyfrowa. Badanie pamięci

Technika Cyfrowa. Badanie pamięci LABORATORIUM Technika Cyfrowa Badanie pamięci Opracował: mgr inż. Andrzej Biedka CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się studentów z budową i zasadą działania scalonych liczników asynchronicznych

Bardziej szczegółowo

Podstaw Elektroniki Cyfrowej Wykonał zespół w składzie (nazwiska i imiona): Dzień tygodnia:

Podstaw Elektroniki Cyfrowej Wykonał zespół w składzie (nazwiska i imiona): Dzień tygodnia: Wydział EAIiIB Katedra Laboratorium Metrologii i Elektroniki Podstaw Elektroniki Cyfrowej Wykonał zespół w składzie (nazwiska i imiona): Ćw. 5. Funktory CMOS cz.1 Data wykonania: Grupa (godz.): Dzień tygodnia:

Bardziej szczegółowo

Przetworniki cyfrowo-analogowe C-A CELE ĆWICZEŃ PODSTAWY TEORETYCZNE

Przetworniki cyfrowo-analogowe C-A CELE ĆWICZEŃ PODSTAWY TEORETYCZNE Przetworniki cyfrowo-analogowe C-A CELE ĆWICZEŃ Zrozumienie zasady działania przetwornika cyfrowo-analogowego. Poznanie podstawowych parametrów i działania układu DAC0800. Poznanie sposobu generacji symetrycznego

Bardziej szczegółowo

Ćwiczenie: "Mierniki cyfrowe"

Ćwiczenie: Mierniki cyfrowe Ćwiczenie: "Mierniki cyfrowe" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Próbkowanie

Bardziej szczegółowo

Przetworniki A/C i C/A w systemach mikroprocesorowych

Przetworniki A/C i C/A w systemach mikroprocesorowych Przetworniki A/C i C/A w systemach mikroprocesorowych 1 Przetwornik A/C i C/A Przetworniki analogowo-cyfrowe (A/C) i cyfrowoanalogowe (C/A) to układy elektroniczne umożliwiające przesyłanie informacji

Bardziej szczegółowo

Ćwiczenie nr 65. Badanie wzmacniacza mocy

Ćwiczenie nr 65. Badanie wzmacniacza mocy Ćwiczenie nr 65 Badanie wzmacniacza mocy 1. Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych parametrów wzmacniaczy oraz wyznaczenie charakterystyk opisujących ich właściwości na przykładzie wzmacniacza

Bardziej szczegółowo

Zastosowania mikrokontrolerów w przemyśle

Zastosowania mikrokontrolerów w przemyśle Zastosowania mikrokontrolerów w przemyśle Cezary MAJ Katedra Mikroelektroniki i Technik Informatycznych Współpraca z pamięciami zewnętrznymi Interfejs równoległy (szyna adresowa i danych) Multipleksowanie

Bardziej szczegółowo

Ćwiczenie 4 Badanie uogólnionego przetwornika pomiarowego

Ćwiczenie 4 Badanie uogólnionego przetwornika pomiarowego Ćwiczenie 4 Badanie uogólnionego przetwornika pomiarowego 1. Cel ćwiczenia Poznanie typowych układów pracy przetworników pomiarowych o zunifikowanym wyjściu prądowym. Wyznaczenie i analiza charakterystyk

Bardziej szczegółowo

Analiza właściwości filtrów dolnoprzepustowych

Analiza właściwości filtrów dolnoprzepustowych Ćwiczenie Analiza właściwości filtrów dolnoprzepustowych Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra dolnoprzepustowego (DP) rzędu i jego parametrami.. Analiza widma sygnału prostokątnego.

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa

Państwowa Wyższa Szkoła Zawodowa Państwowa Wyższa Szkoła Zawodowa w Legnicy Laboratorium Podstaw Elektroniki i Miernictwa Ćwiczenie nr 5 WZMACNIACZ OPERACYJNY A. Cel ćwiczenia. - Przedstawienie właściwości wzmacniacza operacyjnego - Zasada

Bardziej szczegółowo

Liniowe układy scalone. Komparatory napięcia i ich zastosowanie

Liniowe układy scalone. Komparatory napięcia i ich zastosowanie Liniowe układy scalone Komparatory napięcia i ich zastosowanie Komparator Zadaniem komparatora jest wytworzenie sygnału logicznego 0 lub 1 na wyjściu w zależności od znaku różnicy napięć wejściowych Jest

Bardziej szczegółowo

Uśrednianie napięć zakłóconych

Uśrednianie napięć zakłóconych Politechnika Rzeszowska Katedra Metrologii i Systemów Diagnostycznych Laboratorium Miernictwa Elektronicznego Uśrednianie napięć zakłóconych Grupa Nr ćwicz. 5 1... kierownik 2... 3... 4... Data Ocena I.

Bardziej szczegółowo

Zespół Szkół Łączności w Krakowie. Badanie parametrów wzmacniacza mocy. Nr w dzienniku. Imię i nazwisko

Zespół Szkół Łączności w Krakowie. Badanie parametrów wzmacniacza mocy. Nr w dzienniku. Imię i nazwisko Klasa Imię i nazwisko Nr w dzienniku espół Szkół Łączności w Krakowie Pracownia elektroniczna Nr ćw. Temat ćwiczenia Data Ocena Podpis Badanie parametrów wzmacniacza mocy 1. apoznać się ze schematem aplikacyjnym

Bardziej szczegółowo

Analiza właściwości filtra selektywnego

Analiza właściwości filtra selektywnego Ćwiczenie 2 Analiza właściwości filtra selektywnego Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra selektywnego 2 rzędu i zakresami jego parametrów. 2. Analiza widma sygnału prostokątnego..

Bardziej szczegółowo

4. Schemat układu pomiarowego do badania przetwornika

4. Schemat układu pomiarowego do badania przetwornika 1 1. Projekt realizacji prac związanych z uruchomieniem i badaniem przetwornika napięcie/częstotliwość z układem AD654 2. Założenia do opracowania projektu a) Dane techniczne układu - Napięcie zasilające

Bardziej szczegółowo

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO POLITECHNIKA ŚLĄSKA WYDZIAŁ TRANSPORTU KATEDRA LOGISTYKI I TRANSPORTU PRZEMYSŁOWEGO NR 1 POMIAR PRZESUNIĘCIA FAZOWEGO Katowice, październik 5r. CEL ĆWICZENIA Poznanie zjawiska przesunięcia fazowego. ZESTAW

Bardziej szczegółowo

TRANZYSTORY BIPOLARNE

TRANZYSTORY BIPOLARNE Instrukcja do ćwiczenia laboratoryjnego TRANZYSTORY BIPOLARNE Instrukcję opracował: dr inż. Jerzy Sawicki Wymagania, znajomość zagadnień: 1. Tranzystory bipolarne rodzaje, typowe parametry i charakterystyki,

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA 2 (EZ1C500 055) BADANIE DIOD I TRANZYSTORÓW Białystok 2006

Bardziej szczegółowo

Podstawy Elektroniki dla Informatyki. Generator relaksacyjny

Podstawy Elektroniki dla Informatyki. Generator relaksacyjny AGH Katedra Elektroniki Podstawy Elektroniki dla Informatyki 2015 r. Generator relaksacyjny Ćwiczenie 5 1. Wstęp Celem ćwiczenia jest zapoznanie się, poprzez badania symulacyjne, z działaniem generatorów

Bardziej szczegółowo

PODSTAWY ELEKTRONIKI TEMATY ZALICZENIOWE

PODSTAWY ELEKTRONIKI TEMATY ZALICZENIOWE PODSTAWY ELEKTRONIKI TEMATY ZALICZENIOWE 1. Wyznaczanie charakterystyk statycznych diody półprzewodnikowej a) Jakie napięcie pokaże woltomierz, jeśli wiadomo, że Uzas = 11V, R = 1,1kΩ a napięcie Zenera

Bardziej szczegółowo

Ćwiczenie 3 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH

Ćwiczenie 3 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH LABORATORIUM ELEKTRONIKI Ćwiczenie 3 Wybór i stabilizacja punktu pracy tranzystorów bipolarnego el ćwiczenia elem ćwiczenia jest poznanie wpływu ustawienia punktu pracy tranzystora na pracę wzmacniacza

Bardziej szczegółowo

Badanie wzmacniacza niskiej częstotliwości

Badanie wzmacniacza niskiej częstotliwości Instytut Fizyki ul Wielkopolska 5 70-45 Szczecin 9 Pracownia Elektroniki Badanie wzmacniacza niskiej częstotliwości (Oprac dr Radosław Gąsowski) Zakres materiału obowiązujący do ćwiczenia: klasyfikacje

Bardziej szczegółowo

P-1a. Dyskryminator progowy z histerezą

P-1a. Dyskryminator progowy z histerezą wersja 03 2017 1. Zakres i cel ćwiczenia Celem ćwiczenia jest zaprojektowanie dyskryminatora progowego z histerezą wykorzystując komparatora napięcia A710, a następnie zmontowanie i przebadanie funkcjonalne

Bardziej szczegółowo

Układy regulacji i pomiaru napięcia zmiennego.

Układy regulacji i pomiaru napięcia zmiennego. Układy regulacji i pomiaru napięcia zmiennego. 1. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie się z metodami regulacji napięcia zmiennego, stosowanymi w tym celu układami elektrycznymi, oraz metodami

Bardziej szczegółowo

Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający

Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający. Cel ćwiczenia. Celem ćwiczenia jest praktyczne poznanie właściwości wzmacniaczy operacyjnych i ich podstawowych

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: UKŁADY ELEKTRONICZNE 2 (TS1C500 030) Tranzystor w układzie wzmacniacza

Bardziej szczegółowo

Laboratorium z Układów Elektronicznych Analogowych

Laboratorium z Układów Elektronicznych Analogowych Laboratorium z Układów Elektronicznych Analogowych Wpływ ujemnego sprzężenia zwrotnego (USZ) na pracę wzmacniacza operacyjnego WYMAGANIA: 1. Klasyfikacja sprzężeń zwrotnych. 2. Wpływ sprzężenia zwrotnego

Bardziej szczegółowo

Klasyfikacja metod przetwarzania analogowo cyfrowego (A/C, A/D)

Klasyfikacja metod przetwarzania analogowo cyfrowego (A/C, A/D) Klasyfikacja metod przetwarzania analogowo cyfrowego (A/C, A/D) Metody pośrednie Metody bezpośrednie czasowa częstotliwościowa kompensacyjna bezpośredniego porównania prosta z podwójnym całkowaniem z potrójnym

Bardziej szczegółowo

Filtry aktywne filtr środkowoprzepustowy

Filtry aktywne filtr środkowoprzepustowy Filtry aktywne iltr środkowoprzepustowy. Cel ćwiczenia. Celem ćwiczenia jest praktyczne poznanie właściwości iltrów aktywnych, metod ich projektowania oraz pomiaru podstawowych parametrów iltru.. Budowa

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKI WZMACNIACZ MOCY

LABORATORIUM ELEKTRONIKI WZMACNIACZ MOCY ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKACJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 9 WZMACNIACZ MOCY DO UŻYTKU

Bardziej szczegółowo

POMIAR CZĘSTOTLIWOŚCI I INTERWAŁU CZASU

POMIAR CZĘSTOTLIWOŚCI I INTERWAŁU CZASU Nr. Ćwicz. 7 Politechnika Rzeszowska Zakład Metrologii i Systemów Pomiarowych Laboratorium Metrologii I POMIAR CZĘSOLIWOŚCI I INERWAŁU CZASU Grupa:... kierownik 2... 3... 4... Ocena I. CEL ĆWICZENIA Celem

Bardziej szczegółowo

POMIARY WYBRANYCH PARAMETRÓW TORU FONICZNEGO W PROCESORACH AUDIO

POMIARY WYBRANYCH PARAMETRÓW TORU FONICZNEGO W PROCESORACH AUDIO Politechnika Rzeszowska Katedra Metrologii i Systemów Diagnostycznych Laboratorium Elektroniczne przyrządy i techniki pomiarowe POMIARY WYBRANYCH PARAMETRÓW TORU FONICZNEGO W PROCESORACH AUDIO Grupa Nr

Bardziej szczegółowo

WZMACNIACZE OPERACYJNE Instrukcja do zajęć laboratoryjnych

WZMACNIACZE OPERACYJNE Instrukcja do zajęć laboratoryjnych WZMACNIACZE OPERACYJNE Instrukcja do zajęć laboratoryjnych Tematem ćwiczenia są zastosowania wzmacniaczy operacyjnych w układach przetwarzania sygnałów analogowych. Ćwiczenie składa się z dwóch części:

Bardziej szczegółowo

Podstawy Elektroniki dla Informatyki. Pętla fazowa

Podstawy Elektroniki dla Informatyki. Pętla fazowa AGH Katedra Elektroniki Podstawy Elektroniki dla Informatyki Pętla fazowa Ćwiczenie 6 2015 r. 1. Wstęp Celem ćwiczenia jest zapoznanie się, poprzez badania symulacyjne, z działaniem pętli fazowej. 2. Konspekt

Bardziej szczegółowo

Przetworniki analogowo-cyfrowe - budowa i działanie" anie"

Przetworniki analogowo-cyfrowe - budowa i działanie anie Przetworniki analogowo-cyfrowe - budowa i działanie" anie" Wprowadzenie Wiele urządzeń pomiarowych wyposaŝonych jest obecnie w przetworniki A/C. Końcówki takich urządzeń to najczęściej typowe interfejsy

Bardziej szczegółowo

Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI. Katedra Metrologii i Optoelektroniki. Metrologia. Ilustracje do wykładu

Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI. Katedra Metrologii i Optoelektroniki. Metrologia. Ilustracje do wykładu Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI Katedra Metrologii i Optoelektroniki Metrologia Studia I stopnia, kier Elektronika i Telekomunikacja, sem. 2 Ilustracje do wykładu

Bardziej szczegółowo

WIECZOROWE STUDIA NIESTACJONARNE LABORATORIUM UKŁADÓW ELEKTRONICZNYCH

WIECZOROWE STUDIA NIESTACJONARNE LABORATORIUM UKŁADÓW ELEKTRONICZNYCH POLITECHNIKA WASZAWSKA Instytut adioelektroniki Zakład adiokomunikacji WIECZOOWE STUDIA NIESTACJONANE Semestr III LABOATOIUM UKŁADÓW ELEKTONICZNYCH Ćwiczenie Temat: Przetwarzanie A/C i C/A Instrukcja v.

Bardziej szczegółowo

Ćw. 1: Wprowadzenie do obsługi przyrządów pomiarowych

Ćw. 1: Wprowadzenie do obsługi przyrządów pomiarowych Wydział: EAIiE Kierunek: Imię i nazwisko (e mail): Rok: 2018/2019 Grupa: Zespół: Data wykonania: Zaliczenie: Podpis prowadzącego: Uwagi: LABORATORIUM METROLOGII Ćw. 1: Wprowadzenie do obsługi przyrządów

Bardziej szczegółowo

PRZYRZĄDY POMIAROWE. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

PRZYRZĄDY POMIAROWE. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego PRZYRZĄDY POMIAROWE Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Przyrządy pomiarowe Ogólny podział: mierniki, rejestratory, detektory, charakterografy.

Bardziej szczegółowo

Ćwiczenie 21 Temat: Komparatory ze wzmacniaczem operacyjnym. Przerzutnik Schmitta i komparator okienkowy Cel ćwiczenia

Ćwiczenie 21 Temat: Komparatory ze wzmacniaczem operacyjnym. Przerzutnik Schmitta i komparator okienkowy Cel ćwiczenia Ćwiczenie 21 Temat: Komparatory ze wzmacniaczem operacyjnym. Przerzutnik Schmitta i komparator okienkowy Cel ćwiczenia Poznanie zasady działania układów komparatorów. Prześledzenie zależności napięcia

Bardziej szczegółowo

Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający

Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający. Cel ćwiczenia. Celem ćwiczenia jest praktyczne poznanie właściwości wzmacniaczy operacyjnych i ich podstawowych

Bardziej szczegółowo

LABORATORIUM ELEKTRONICZNYCH UKŁADÓW POMIAROWYCH I WYKONAWCZYCH. Badanie detektorów szczytowych

LABORATORIUM ELEKTRONICZNYCH UKŁADÓW POMIAROWYCH I WYKONAWCZYCH. Badanie detektorów szczytowych LABORATORIM ELEKTRONICZNYCH KŁADÓW POMIAROWYCH I WYKONAWCZYCH Badanie detektorów szczytoch Cel ćwiczenia Poznanie zasady działania i właściwości detektorów szczytoch Wyznaczane parametry Wzmocnienie detektora

Bardziej szczegółowo

Układy sekwencyjne. Podstawowe informacje o układach cyfrowych i przerzutnikach (rodzaje, sposoby wyzwalania).

Układy sekwencyjne. Podstawowe informacje o układach cyfrowych i przerzutnikach (rodzaje, sposoby wyzwalania). Ćw. 10 Układy sekwencyjne 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z sekwencyjnymi, cyfrowymi blokami funkcjonalnymi. W ćwiczeniu w oparciu o poznane przerzutniki zbudowane zostaną układy rejestrów

Bardziej szczegółowo

XXXII Olimpiada Wiedzy Elektrycznej i Elektronicznej. XXXII Olimpiada Wiedzy Elektrycznej i Elektronicznej

XXXII Olimpiada Wiedzy Elektrycznej i Elektronicznej. XXXII Olimpiada Wiedzy Elektrycznej i Elektronicznej Zestaw pytań finałowych numer : 1 1. Wzmacniacz prądu stałego: własności, podstawowe rozwiązania układowe 2. Cyfrowy układ sekwencyjny - schemat blokowy, sygnały wejściowe i wyjściowe, zasady syntezy 3.

Bardziej szczegółowo

BADANIE ELEMENTÓW RLC

BADANIE ELEMENTÓW RLC KATEDRA ELEKTRONIKI AGH L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE BADANIE ELEMENTÓW RLC REV. 1.0 1. CEL ĆWICZENIA - zapoznanie się z systemem laboratoryjnym NI ELVIS II, - zapoznanie się z podstawowymi

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKI WZMACNIACZ OPERACYJNY

LABORATORIUM ELEKTRONIKI WZMACNIACZ OPERACYJNY ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKACJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 8 WZMACNIACZ OPERACYJNY DO

Bardziej szczegółowo

BADANIE STATYCZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH

BADANIE STATYCZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH BADAIE STATYCZYCH WŁAŚCIWOŚCI PRZETWORIKÓW POMIAROWYCH 1. CEL ĆWICZEIA Celem ćwiczenia jest poznanie: podstawowych pojęć dotyczących statycznych właściwości przetworników pomiarowych analogowych i cyfrowych

Bardziej szczegółowo

Podstawy Elektroniki dla Teleinformatyki. Generator relaksacyjny

Podstawy Elektroniki dla Teleinformatyki. Generator relaksacyjny AGH Katedra Elektroniki Podstawy Elektroniki dla Teleinformatyki 2014 r. Generator relaksacyjny Ćwiczenie 6 1. Wstęp Celem ćwiczenia jest zapoznanie się, poprzez badania symulacyjne, z działaniem generatorów

Bardziej szczegółowo

Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Katedra Elektroniki

Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Katedra Elektroniki Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Na podstawie instrukcji Wtórniki Napięcia,, Laboratorium układów Elektronicznych Opis badanych układów Spis Treści 1. CEL ĆWICZENIA... 2 2.

Bardziej szczegółowo

WAT - WYDZIAŁ ELEKTRONIKI INSTYTUT SYSTEMÓW ELEKTRONICZNYCH. Przedmiot: CZUJNIKI I PRZETWORNIKI Ćwiczenie nr 1 PROTOKÓŁ / SPRAWOZDANIE

WAT - WYDZIAŁ ELEKTRONIKI INSTYTUT SYSTEMÓW ELEKTRONICZNYCH. Przedmiot: CZUJNIKI I PRZETWORNIKI Ćwiczenie nr 1 PROTOKÓŁ / SPRAWOZDANIE Grupa: WAT - WYDZIAŁ ELEKTRONIKI INSTYTT SYSTEMÓW ELEKTRONICZNYCH Przedmiot: CZJNIKI I PRZETWORNIKI Ćwiczenie nr 1 PROTOKÓŁ / SPRAWOZDANIE Temat: Przetworniki tensometryczne /POMIARY SIŁ I CIŚNIEŃ PRZY

Bardziej szczegółowo

Wzmacniacze różnicowe

Wzmacniacze różnicowe Wzmacniacze różnicowe 1. Cel ćwiczenia : Zapoznanie się z podstawowymi układami wzmacniaczy różnicowych zbudowanych z wykorzystaniem wzmacniaczy operacyjnych. 2. Wprowadzenie Wzmacniacze różnicowe są naj

Bardziej szczegółowo

Podstawy elektroniki i metrologii

Podstawy elektroniki i metrologii Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI Katedra Metrologii i Optoelektroniki Podstawy elektroniki i metrologii Studia I stopnia kier. Informatyka semestr 2 Ilustracje do

Bardziej szczegółowo

A-6. Wzmacniacze operacyjne w układach nieliniowych (diody)

A-6. Wzmacniacze operacyjne w układach nieliniowych (diody) A-6. Wzmacniacze operacyjne w układach nieliniowych (diody) I. Zakres ćwiczenia 1. Zastosowanie diod i wzmacniacza operacyjnego µa741 w następujących układach nieliniowych: a) generator funkcyjny b) wzmacniacz

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKA. I. Scalony, trzykońcówkowy stabilizator napięcia II. Odprowadzanie ciepła z elementów półprzewodnikowych

LABORATORIUM ELEKTRONIKA. I. Scalony, trzykońcówkowy stabilizator napięcia II. Odprowadzanie ciepła z elementów półprzewodnikowych LABORATORIUM ELEKTRONIKA I. Scalony, trzykońcówkowy stabilizator napięcia II. Odprowadzanie ciepła z elementów półprzewodnikowych Opracował: dr inż. Jerzy Sawicki Wymagania, znajomość zagadnień (I): 1.

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA EKS1A300024 BADANIE TRANZYSTORÓW BIAŁYSTOK 2015 1. CEL I ZAKRES

Bardziej szczegółowo

ĆWICZENIE 5. POMIARY NAPIĘĆ I PRĄDÓW STAŁYCH Opracowała: E. Dziuban. I. Cel ćwiczenia

ĆWICZENIE 5. POMIARY NAPIĘĆ I PRĄDÓW STAŁYCH Opracowała: E. Dziuban. I. Cel ćwiczenia ĆWICZEIE 5 I. Cel ćwiczenia POMIAY APIĘĆ I PĄDÓW STAŁYCH Opracowała: E. Dziuban Celem ćwiczenia jest zaznajomienie z przyrządami do pomiaru napięcia i prądu stałego: poznanie budowy woltomierza i amperomierza

Bardziej szczegółowo

Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II. 2013/14. Grupa: Nr. Ćwicz.

Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II. 2013/14. Grupa: Nr. Ćwicz. Politechnika Rzeszowska Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II WYZNACZANIE WŁAŚCIWOŚCI STATYCZNYCH I DYNAMICZNYCH PRZETWORNIKÓW Grupa: Nr. Ćwicz. 9 1... kierownik 2...

Bardziej szczegółowo

Komputerowa symulacja przetworników A/C i C/A

Komputerowa symulacja przetworników A/C i C/A ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKACJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 30 Komputerowa symulacja

Bardziej szczegółowo

Podstawowe zastosowania wzmacniaczy operacyjnych

Podstawowe zastosowania wzmacniaczy operacyjnych ĆWICZENIE 0 Podstawowe zastosowania wzmacniaczy operacyjnych I. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z budową i właściwościami wzmacniaczy operacyjnych oraz podstawowych układów elektronicznych

Bardziej szczegółowo

Liniowe stabilizatory napięcia

Liniowe stabilizatory napięcia . Cel ćwiczenia. Liniowe stabilizatory napięcia Celem ćwiczenia jest praktyczne poznanie właściwości stabilizatora napięcia zbudowanego na popularnym układzie scalonym. Zakres ćwiczenia obejmuje projektowanie

Bardziej szczegółowo