Obsługa sygnałów. Tomasz Borzyszkowski

Wielkość: px
Rozpocząć pokaz od strony:

Download "Obsługa sygnałów. Tomasz Borzyszkowski"

Transkrypt

1 Obsługa sygnałów Tomasz Borzyszkowski

2 Wprowadzenie Zaawansowane systemy operacyjne często realizując duże zadania, wykorzystują do ich realizacji wiele współdziałających ze sobą programów/procesów. Do dobrego współdziałania procesy te muszą komunikować się ze sobą. W systemach Unixowych istnieje wiele mechanizmów komunikacji międzyprocesowej. Najczęściej używane to: sygnały, potoki i kolejki FIFO. Na bieżącym wykładzie przyjrzymy się bliżej sygnałom. Sygnały dostarczają prostej metody przekazywania przerwań programowych do procesu Unixowego. Z powodu swojej natury, sygnały są używane raczej do obsługi nietypowych sytuacji, a nie do prostego przesyłania danych pomiędzy procesami. Proces może zrobić z sygnałem następujące rzeczy: Wybrać sposób reakcji po otrzymaniu sygnału (obsługa sygnału) Blokować sygnał, tj. pozostawić go na później; dotyczy krytycznych fragmentów kodu Wysłać sygnał do innego procesu 2

3 Nazwy sygnałów Sygnały nie mogą bezpośrednio przenosić informacji, co ogranicza ich użyteczność jako ogólnego mechanizmu komunikacji między procesami. Jadnak każdy typ sygnału posiada nadaną mnemoniczną nazwę, wskazującą cel w jakim sygnał jest zwykle używany. Nazwy sygnałów są zdefiniowane w pliku nagłówkowym <signal.h>. Większość sygnałów Unixowych jest przeznaczona do użycia przez jądro, chociaż istnieje również kilka do przesyłania między zwykłymi procesami. Oto kilka wybranych, najczęściej używanych sygnałów: SIGABRT sygnał przerwania procesu wysyłany przez bieżący proces za pomocą funkcji abort. Obsługa tego syganłu powinna się zakończyć tzw. zakończeniem anormalnym. W rzeczywistości następuje zrzut rdzenia (core dump) do pliku w celu dalszej analizy. SIGALRM tzw. zegar alarmu. Wysyłany do procesu przez jądro, gdy upłynie ustalony czas. Wszystkie procesy mają w sumie do dyspozycji trzy czasomierze.czasomierz jest ustawiany przez proces za pomocą funkcji alarm. 3

4 Nazwy sygnałów cd SIGCHLD proces potomny zakończony lub zatrzymany. Zawsze, gdy proces potomny kończy się lub zatrzymuje, jądro zawiadamia o tym jego proces rodzicielski, wysyłając mu ten sygnał. Domyślnie proces rodzicielski ignoruje sygnał, więc jeżeli chce wiedzieć o każdym ukończonym procesie, musi jawnie przechwytywać sygnał. SIGCONT kontynuuj proces, jeżeli był zatrzymany. Jest to sygnał sterowania pracą, który powinien wznowić proces, jeżeli został zatrzymany. W przeciwnym przypadku proces powiniem ignorować sygnał. Stanowi on przeciwieństwo sygnału SIGSTOP. SIGFPE wyjątek zmiennoprzecinkowy. Wysyłany przez jądro, gdy wystapi błąd obliczeń zmiennoprzecinkowych, np. nadmiar lub niedomiar. Powoduje anormalne zakończenie. SIGINT przerwanie. Wysyłany przez jądro do wszystkich procesów powiązanych z sesją terminala, gdy użytkownik wciśnie klawisz przerwania (Ctrl-c). Jest to powszechnie stosowany sposób zatrzymania działającego programu. 4

5 Nazwy sygnałów cd II SIGHUP sygnał zawieszenia. Wysyłany przez jądro do wszystkich procesów powiązanych z terminalem sterujacym, jeśli zostaje on odłączony. Wysłany także do wszystkich członków sesji, gdy kończy się proces wiodący sesji, którym zwykle jest proces powłoki, pod warunkiem, że sesja jest powiązana z terminalem sterującym. Dzięki temu, po wylogowaniu użytkownika, jego procesy dziłające w tle są kończone (o ile nie wyłączono obsługi tego sygnału). SIGILL nielegalna instrukcja. Wysyłany przez system, gdy proces próbuje wykonać nielegalna instrukcję. Staje się to możliwe, gdy program uszkodzi swój własny kod lub próbuje wykonać instrukcję zmiennoprzecinkową bez odpowiedniego wsparcia sprzętowego. Sygnał powoduje anormalne zakończenie procesu. 5

6 Nazwy sygnałów cd III SIGKILL usunięcie. Specjalny sygnał wysyłany do jednego procesu przez inny, aby usunąć odbiorcę. Jest on także czasem wysyłany przez system, np. podczas zamykania systemu. Jest to jeden z dwóch sygnałów, które nie mogą być zignorowane lub przechwycone, tj. obsłużone przez procedurę zdefinowaną przez użytkownika. SIGSTOP zatrzymanie wykonania. Jest to sygnał kontroli zdarzeń, który zatrzymuje proces. Podobnie jak SIGKILL, nie może zostać przechwycony lub zignorowany. SIGTERM programowy sygnał zakończenia. Zwyczajowo jest używany do kończenia procesu. Programista może użyć tego sygnału, aby dać procesowi trochę czasu na działania porządkujące przed wysłaniem sygnału SIGKILL. SIGUSR1 i SIGUSR2 podobnie jak SIGTERM, sygnały te nigdy nie są wysyłane przez jądro. Mogą być wykorzystane przez użytkownika w dowolnym celu. 6

7 Obsługa sygnałów Po otrzymaniu sygnału proces ma do wyboru jeden z trzech sposobów działania: Podejmij działania domyślne, stosowne do otrzymanego sygnału Zignoruj sygnał całkowicie i kontynuuj przetwarzanie Podejmij działania zdefiniowane przez użytkownika W starszych wersjach Unixa obsługa sygnałów była względnie prosta, choć czasem zawodziła. Nowe procedury, które przedstawimy, są bardziej niezawodne i jednocześnie bardziej złożone. Jednym z głównych parametrów przekazywanych do funkcji systemowych obsługujących sygnały są tzw. zestawy sygnałów. Określają one listy sygnałów, z którymi chcemy coś zrobić. Zestawy sygnałów są definiowane za pomocą typu sigset_t, zdefiniowanego w pliku nagłówkowym <signal.h>. Typ ten jest wystarczająco pojemny, aby zapamiętać reprezentację wszystkich zdefiniowanych w systemie sygnałów. 7

8 Zestawy sygnałów implementacja Użytkownik może definiować zestawy potrzebnych mu sygnałów za pomocą następujących funkcji: int sigemptyset(sigset_t *set); int sigfillset (sigset_t *set); Pierwsza z funkcji inicjuje zestaw funkcji, wskazywany przez set tak, że wszystkie sygnały są wyłączone, natomiast druga inicjuje zestaw funkcji, wskazywany przez set tak, że wszystkie sygnały są włączone. Kolejne funkcje to: int sigaddset(sigset_t *set, int signo); int sigdelset(sigset_t *set, int signo); Funkcje te, odpowiednio, dodają do i usuwają z zestawu sygnałów wskazywajego przez set, sygnał signo. Zalecane jest by parametr signo był nazwą sygnału, taką jak np. SIGINT. Podanie rzeczywistego numeru sygnału jest możliwe ale niezalecane ze względu na przenośność kodu. 8

9 Ustalanie działania sygnału Po zdefiniowaniu zestawu sygnałów można wybrać konkretną metodę obsługi sygnałów używając funkcji: int sigaction(int signo, const struct sigaction *act, const struct sigaction *oact); Parametr signo identyfikuje sygnał, dla którego chcemy określić działanie. Może to być dowolny sygnał, z wyjątkiem SIGSTOP i SIGKILL. Drugi parametr określa działanie, jakie chcemy ustawić dla signo. Trzeci parametr jest ustawiany na NULL lub na aktualne ustawienia. Struktura sigaction składa się z następujących pól: void (* sa_handler)(int) identyfikuje działanie, jakie ma być podjęte po otrzymaniu sygnału. Może przyjmować jedną z następujących wartości: SIG_DFL domyślne działanie systemu, SIG_IGN zignoruj ten sygnał (nie dla SIGSTOP i SIGKILL) albo adres funkcji wywoływanej po otrzymaniu sygnału. Sygnał zostanie przekazany do funkcji jako jej argument. 9

10 Struktura sigaction sigset_t sa_mask maska sygnałów, które powinny być blokowane podczas wywoływania funkcji sa_handler. Dodatkowo, sygnał, który wywołał funkcję będzie zablokowany (dodany do sa_mask), chyba że użyto flagę SA_NODEFER lub SA_NOMASK. Blokowanie przekształca sygnały w bardziej, ale nie całkowicie, godny zaufania mechanizm komunikacji. int sa_flags zbiór flag, które modyfikują zachowanie procesu obsługi sygnałów. Jest to zbiór wartości połączonych bitowym OR. Zobacz man sigaction. Struktura sigaction posiada również wskaźnik do dodatkowej funkcji obsługi. Standard POSIX nie przewiduje jeszcze jego wykorzystania. Powyższy opis przedstawia tylko wybrane definicje zachowań jakie może podjąć program po otrzymaniu sygnału (patrz dokumnetacja systemowa). Poniższe programy ilustrują typowe wykorzystanie przechwytywania sygnałów. Zobacz: sygnaly1.c sygnaly2.c sygnaly3.c 10

11 Sygnały a funkcje systemowe W większości przypadków, jeżeli do procesu wysyłany jest sygnał w chwili, gdy wykonuje on funkcję systemową, sygnał nie odnosi żadnego skutku, dopóki funkcja się nie skończy. Jednak kilka funkcji systemowych zachowuje się inaczej i mogą być przerwane przez sygnał. Dotyczy to funkcji read, write i open w odniesieniu do powolnych urządzeń takich, jak: terminal, ale już nie plik dyskowy, oraz funkcji wait i pause. We wszystkich tych przypadkach przerwana funkcja systemowa zwraca -1 i umieszcza EINTR w zmiennej errno. Sygnały systemów Unixowych zwykle nie mogą być odkładane na stosie. Ściślej, dla danego procesu w danej chwili nie może istnieć więcej niż jeden zaległy sygnał danego typu, chociaż może występować więcej niż jeden zaległy typ sygnałów. Z tego względu nie powinno się używać sygnałów jako godnej zaufania metody komunikacji. 11

12 sigsetjmp i siglongjmp Zobacz: skoki.c Czasami w momencie otrzymania sygnału istnieje potrzeba przeskoczenia do poprzedniej pozycji w programie. Zachowanie takie jest możliwe dzięki podprogramom: int sigsetjmp (sigjmp_t env, int savemask); void siglongjmp(sigjmp_t env, int val); Pierwszy zachowuje bieżącą pozycję programu i maskę sygnału przez zapamiętanie środowiska stosu. Drugi przekazuje sterowanie wstecz, do zachowanej pozycji. Pozycja programu jest zachowana w obiekcie typu sigjmp_buf, zdefiniowanym w pliku nagłówkowym <setjmp.h>. Jeżeli w wywołaniu sigsetjmp wartość savemask jest niezerowa, to zachowana zostanie bieżąca maska sygnału, tj. stan i działania związane ze wszystkimi sygnałami, oraz środowisko. Mogą one więc być odtworzone przez siglongjmp. Powrót z sigsetjmp zwróci wartość val, gdy został wywołany z siglongjmp, gdy został wywołany jako kolejna instrukcja sekwencyjna 0. 12

13 Blokowanie sygnałów Jeżeli program wykonuje odpowiedzialne zadanie, np. aktualizuje bazę danych, należałoby go zabezpieczyć przed przerwaniami w kluczowych sytuacjach. Zamiast ignorowania wszystkich nadchodzących sygnałów proces może blokować sygnały. Oznacza to, że nie będą one obsługiwane, dopóki proces nie zkończy swojej krytycznej operacji. Funkcją systemową pozwalającą procesowi zablokować konkretny sygnał jest: int sigprocmask(int how, const sigset_t *set const sigset_t *oset); Parametr how informuje jakie działanie wykonać, np. SIG_SETMASK oznacza blokowanie sygnałów ustawionych w drugim parametrze set. Trzeci parametr jest wypełniany bieżącą maską blokowanych sygnałów. Zobacz: blokada.c 13

14 Wysyłanie sygnałów Do wysyłania sygnałów do procesów służy funkcja: int kill(pid_t pid, int sig); Pierwszy parametr pid określa proces albo procesy, do których będzie wysłany sygnał sig. Ponieważ proces, który wywołuje funkcja kill musi znać PID procesu, do którego wysyła sygnał, funkcji kill używa się najczęściej między procesami powiązanymi, np. procesem rodzicielskim i potomnym. Warto też zauważyć, że proces może wysyłać sygnał do samego siebie. Proces może wysyłać sygnały tylko do takich procesów, których RIUD lub EUID jest taki sam, co procesu wysyłającego. Jak zwykle, proces administratora może wysyłać sygnały do wszystkich procesów. Jeżeli proces zwykłego użytkownika wysyła sygnał do procesu innego użytkownika, to funkcja kill zwraca -1 i umieszcza wartość EPERM w errno. Inne możliwości, to ESRCH: nie ma takiego procesu i EINVAL: sig nie jest ważnym numerem sygnału. 14

15 Wysyłanie sygnałów cd Parametr pid funkcji kill może przybierać następujące wartości: Jeżeli pid jest równy zero, sygnał będzie wysłany do wszystkich procesów, które należą do tej samej grupy procesów co nadawca. Dotyczy to również nadawcy. Jeżeli pid jest równy -1, a efektywny EUID nie jest administratorem, wtedy sygnał zostanie wysłany do wszystkich procesów z RUID równym EUID nadawcy. Ponownie dotyczy to również nadawcy. Jeżeli pid jest równy -1, a efektywny EUID jest administratorem, wtedy sygnał zostanie wysłany do wszystkich procesów z wyjątkiem pewnych specjalnych procesów systemowych. Jeżeli pid jest mniejszy niż 0, ale różny od -1, wtedy sygnał zostanie wysłany do wszystkich procesów z GUID równym bezwzględnej wartości pid. Dotyczy również nadawcy, jeśli jego GUID spełnia ten warunek. Zobacz: synchro.c 15

16 Wysyłanie sygnałów do siebie Do wysyłania sygnału do procesu wywołującego służy funkcja: int raise(int sig); Sygnał o numerze sig jest wysyłany do procesu wywołującego. W przypadku powodzenia funkcja zwraca 0. Do ustawiania zegara alarmu procesu służy funkcja: int alarm(unsigned int sec); Parametr sec podaje czas w sekundach do alarmu. Kiedy czas upłynie, do procesu zostanie wysłany sygnał SIGALRM. Funkcja ta nie powoduje zawieszenia działania procesu, jak sleep(), proces kontynuuje wykonanie, przynajmniej do otrzymania sygnału. Aktywny zegar alarmu przedostaje się także przez wywołanie exec(), natomiast wywołanie funkcji fork() wyłącza zegar alarmu w procesie potomnym. Alarm może być wyłączony za pomocą wywołania funkcji alarm(0), ponieważ wywołania tej funkcji nie są odkładane na stosie, tj. drugie wywołanie zastąpi pierwsze. Jednak zwracany jest wówczas czas pozostający do poprzedniego alarmu. Zobacz: quick.c 16

17 Funkcja systemowa pause Systemy Unixowe dostarczają również funkcji systemowej: int pause(void); Funkcja ta zawiesza wywołujący proces, aż do otrzymania dowolnego sygnału. Jeżeli sygnał powoduje normalne zakończenie, wtedy zdarzy się tylko to. Jeżeli sygnał jest ignorowany przez proces, pause() ignoruje go również. Jeżeli jednak sygnał jest przechwytywany, to gdy kończy się procedura obsługi przerwania, funkcja zwraca -1 i umieszcza EINTR w errno. Przykład: Program w pliku tml.c używa kolejno funkcji alarm() i pause() do wyświetlenia komunikatu za określoną liczbę sekund. Wywołuje się go następująco: $ tml 10 koniec pracy Zobacz: tml.c 17

Sygnały. 7. Sygnały (2005/2006)

Sygnały. 7. Sygnały (2005/2006) Sygnały Sygnał jest to informacja dla procesu, że wystąpiło jakieś zdarzenie. Sygnały mogą być wysyłane: z procesu do innego procesu (grupy procesów) z procesu do siebie samego z jądra do procesu Sygnały

Bardziej szczegółowo

Instrukcja do laboratorium Systemów Operacyjnych. (semestr drugi)

Instrukcja do laboratorium Systemów Operacyjnych. (semestr drugi) Instrukcja do laboratorium Systemów Operacyjnych (semestr drugi) Ćwiczenie drugie (jedne zajęcia) Temat: Procesy i sygnały w Linuksie. Opracowanie: mgr in ż. Arkadiusz Chrobot Wprowadzenie 1. Budowa procesu

Bardziej szczegółowo

Komunikacja za pomocą potoków. Tomasz Borzyszkowski

Komunikacja za pomocą potoków. Tomasz Borzyszkowski Komunikacja za pomocą potoków Tomasz Borzyszkowski Wstęp Sygnały, omówione wcześniej, są użyteczne w sytuacjach błędnych lub innych wyjątkowych stanach programu, jednak nie nadają się do przekazywania

Bardziej szczegółowo

Programowanie Współbieżne. W Linuxie/Unixie

Programowanie Współbieżne. W Linuxie/Unixie Programowanie Współbieżne W Linuxie/Unixie Identyfikatory pid numer identyfikacyjny procesu zwykle od 0 do 32K przydzielany przez system każdemu nowemu procesowi uzyskać możemy go przez int getpid() 0

Bardziej szczegółowo

Systemy Operacyjne 1 Laboratorium 2 Procesy i sygnały w Linuksie (jeden tydzień) dr inż. Arkadiusz Chrobot

Systemy Operacyjne 1 Laboratorium 2 Procesy i sygnały w Linuksie (jeden tydzień) dr inż. Arkadiusz Chrobot Systemy Operacyjne 1 Laboratorium 2 Procesy i sygnały w Linuksie (jeden tydzień) dr inż. Arkadiusz Chrobot października 2018 Wstęp W tej instrukcji zawarte są informacje na temat tworzenia i obsługiwania

Bardziej szczegółowo

Poniższe funkcje opisane są w 2 i 3 części pomocy systemowej.

Poniższe funkcje opisane są w 2 i 3 części pomocy systemowej. Procesy Proces (zwany też zadaniem) jest jednostką aktywną, kontrolowaną przez system operacyjny i związaną z wykonywanym programem. Proces ma przydzielone zasoby typu pamięć (segment kodu, segment danych,

Bardziej szczegółowo

przerwany proces móg l zareagować na określone zdarzenie. Można je traktować jako software owe wersje przerwań sprz etowych.

przerwany proces móg l zareagować na określone zdarzenie. Można je traktować jako software owe wersje przerwań sprz etowych. c Wies law P laczek 9 3 Sygna ly 3.1 Opis sygna lów Najprostsz ametod akomunikacjimi edzyprocesowej w systenie UNIX s sygna ly. Umożliwiaj aoneasynchroniczne przerwanie dzia lania procesu przez inny proces

Bardziej szczegółowo

Wykład 5 Przerwania i wywołania systemowe. Wojciech Kwedlo, Systemy Operacyjne II -1- Wydział Informatyki PB

Wykład 5 Przerwania i wywołania systemowe. Wojciech Kwedlo, Systemy Operacyjne II -1- Wydział Informatyki PB Wykład 5 Przerwania i wywołania systemowe Wojciech Kwedlo, Systemy Operacyjne II -1- Wydział Informatyki PB Porty wejścia-wyjścia Intel x86 posiada 65536 portów wejścia-wyjścia, do których dostęp możliwy

Bardziej szczegółowo

Procesy, pliki, potoki, sygnały - uzupełnienie

Procesy, pliki, potoki, sygnały - uzupełnienie Procesy, pliki, potoki, sygnały - uzupełnienie dr inż. Sławomir Samolej Katedra Informatyki i Automatyki Politechnika Rzeszowska Program przedmiotu oparto w części na materiałach opublikowanych na: http://wazniak.mimuw.edu.pl/

Bardziej szczegółowo

Sygnał mechanizm asynchronicznego powiadamiania procesów o zdarzeniach zwykle awaryjnych.

Sygnał mechanizm asynchronicznego powiadamiania procesów o zdarzeniach zwykle awaryjnych. J. Ułasiewicz 1 1. 1 INFORMACJE WSTĘPNE Sygnał mechanizm asynchronicznego powiadamiania procesów o zdarzeniach zwykle awaryjnych. Metoda powiadamiania procesów za pomocą sygnałów wywodzi się z systemu

Bardziej szczegółowo

Pliki. Funkcje tworzące pliki i operujące na nich opisane są w części 2 pomocy systemowej. Tworzenie i otwieranie plików:

Pliki. Funkcje tworzące pliki i operujące na nich opisane są w części 2 pomocy systemowej. Tworzenie i otwieranie plików: Pliki W celu wykonania jakiejkolwiek operacji na istniejącym pliku, plik ten musi zostać otwarty, natomiast jeśli plik jeszcze nie istnieje, to musi zostać utworzony. Plik może zostać otwarty w trybie:

Bardziej szczegółowo

UNIX. mgr inż. Marcin Borkowski

UNIX. mgr inż. Marcin Borkowski UNIX Cel Przedmiotu Doskonalenie umiejętności poprawnego programowania w systemach klasy UNIX Nabycie i rozwinięcie technik pisania przenośnego kodu w C Opanowanie standardu POSIX w zakresie funkcji systemowych

Bardziej szczegółowo

POSIX: IEEE Std 1003.1 2001 (Issue 6, 2004 edition)

POSIX: IEEE Std 1003.1 2001 (Issue 6, 2004 edition) POSIX: IEEE Std 1003.1 2001 (Issue 6, 2004 edition) Podstawowe rekomendacje przejęte z UNIXa wielodostęp wielozadaniowość system plików terminal gniazda Rekomendacje dla obszaru czasu rzeczywistego strategie

Bardziej szczegółowo

Systemy Operacyjne I: Procesy

Systemy Operacyjne I: Procesy Politechnika Poznańska 4 kwietnia 2013 Materiały Prezentacja oraz inne materiały zostały przygotowane na podstawie: Użytkowanie systemu operacyjnego UNIX - dr D.Wawrzyniak Systemy operacyjne - skrypt -

Bardziej szczegółowo

Instrukcja do laboratorium Systemów Operacyjnych (semestr drugi)

Instrukcja do laboratorium Systemów Operacyjnych (semestr drugi) Instrukcja do laboratorium Systemów Operacyjnych (semestr drugi) wiczenie trzecie Temat: Potoki i ł cza nazwane w Linuksie. Opracowanie: mgr in ż. Arkadiusz Chrobot Wprowadzenie 1. Komunikacja z wykorzystaniem

Bardziej szczegółowo

Linux: Procesy. Systemy Operacyjne. Mateusz Hołenko. 26 marca 2013

Linux: Procesy. Systemy Operacyjne. Mateusz Hołenko. 26 marca 2013 Linux: Procesy Systemy Operacyjne Mateusz Hołenko 26 marca 2013 Plan zajęć Co to jest sygnał? Polecenia systemowe Sygnały Zadania Mateusz Hołenko Linux: Procesy [2/18] Co to jest proces? Co to jest proces?

Bardziej szczegółowo

Sygnały i ich obsługa

Sygnały i ich obsługa J. Ułasiewicz Programowanie aplikacji współbieżnych 1 i ich obsługa 1. i ich obsługa...2 1.1 Informacje wstępne...2 1.2 Standardy obsługi sygnałów...3 1.3 Wysyłanie sygnałów...6 1.4 Maskowanie sygnałów...10

Bardziej szczegółowo

Laboratorium Procesy w systemach UNIX 3.2 Polecenia związane z procesami

Laboratorium Procesy w systemach UNIX 3.2 Polecenia związane z procesami Laboratorium 3 3.1 Procesy w systemach UNIX 3.2 Polecenia związane z procesami 1 3.1 Procesy w systemach UNIX Z systemami unixowymi związane jest pojęcie procesu. W takim ujęciu, proces, rozumiany jest

Bardziej szczegółowo

4. Procesy pojęcia podstawowe

4. Procesy pojęcia podstawowe 4. Procesy pojęcia podstawowe 4.1 Czym jest proces? Proces jest czymś innym niż program. Program jest zapisem algorytmu wraz ze strukturami danych na których algorytm ten operuje. Algorytm zapisany bywa

Bardziej szczegółowo

Podstawy programowania. Wykład Funkcje. Krzysztof Banaś Podstawy programowania 1

Podstawy programowania. Wykład Funkcje. Krzysztof Banaś Podstawy programowania 1 Podstawy programowania. Wykład Funkcje Krzysztof Banaś Podstawy programowania 1 Programowanie proceduralne Pojęcie procedury (funkcji) programowanie proceduralne realizacja określonego zadania specyfikacja

Bardziej szczegółowo

Model procesu w systemie Linux. Tomasz Borzyszkowski

Model procesu w systemie Linux. Tomasz Borzyszkowski Model procesu w systemie Linux Tomasz Borzyszkowski Definicja procesu klasyka Definicja [M.Bach WNT95] Proces jest wykonaniem programu i składa się ze zbiorowości bajtów, które CPU interpretuje jako instrukcje

Bardziej szczegółowo

procesy odrębne dzielone

procesy odrębne dzielone procesy odrębne Unikatowy PID (2-32000) Zmienne Zbiory deskryptorów plików Przestrzeń stosu (lokalne zmienne, wywołania funkcji) Środowisko Licznik rozkazów dzielone Kod programu brak możliwości zapisu

Bardziej szczegółowo

SYSTEMY OPERACYJNE I laboratorium 3 (Informatyka stacjonarne 2 rok, semestr zimowy)

SYSTEMY OPERACYJNE I laboratorium 3 (Informatyka stacjonarne 2 rok, semestr zimowy) Procesy i shell. Polecenia ps, sleep, exit, jobs, bg, fg, top, kill, bash, tcsh, which, type, whereis, touch. Metaznak & i >>. Dowiązania miękkie i twarde. Proces jest programem, który jest wykonywany

Bardziej szczegółowo

Projektowanie oprogramowania systemów PROCESY I ZARZĄDZANIE PROCESAMI

Projektowanie oprogramowania systemów PROCESY I ZARZĄDZANIE PROCESAMI Projektowanie oprogramowania systemów PROCESY I ZARZĄDZANIE PROCESAMI plan Cechy, właściwości procesów Multitasking Scheduling Fork czym jest proces? Działającą instancją programu Program jest kolekcją

Bardziej szczegółowo

Mechanizmy z grupy IPC

Mechanizmy z grupy IPC Mechanizmy z grupy IPC Podobnie jak łącza, IPC (Inter Process Communication) jest grupą mechanizmów komunikacji i synchronizacji procesów działających w ramach tego samego systemu operacyjnego. W skład

Bardziej szczegółowo

Wykład 5: Klasy cz. 3

Wykład 5: Klasy cz. 3 Programowanie obiektowe Wykład 5: cz. 3 1 dr Artur Bartoszewski - Programowanie obiektowe, sem. 1I- WYKŁAD - podstawy Konstruktor i destruktor (część I) 2 Konstruktor i destruktor KONSTRUKTOR Dla przykładu

Bardziej szczegółowo

4. Procesy pojęcia podstawowe

4. Procesy pojęcia podstawowe 4. Procesy pojęcia podstawowe 4.1 Czym jest proces? Proces jest czymś innym niż program. Program jest zapisem algorytmu wraz ze strukturami danych na których algorytm ten operuje. Algorytm zapisany bywa

Bardziej szczegółowo

Instrukcja do laboratorium Systemów Operacyjnych. (semestr drugi)

Instrukcja do laboratorium Systemów Operacyjnych. (semestr drugi) Instrukcja do laboratorium Systemów Operacyjnych (semestr drugi) Ćwiczenie trzecie (jedne zajęcia) Temat: Potoki i łącza nazwane w Linuksie. Opracowanie: dr in ż. Arkadiusz Chrobot Wprowadzenie 1. Komunikacja

Bardziej szczegółowo

Programowanie w języku C++

Programowanie w języku C++ Programowanie w języku C++ Część siódma Autor Roman Simiński Kontakt roman.siminski@us.edu.pl www.us.edu.pl/~siminski Niniejsze opracowanie zawiera skrót treści wykładu, lektura tych materiałów nie zastąpi

Bardziej szczegółowo

Podstawy Informatyki Układ przerwań

Podstawy Informatyki Układ przerwań maszyny W Podstawy Informatyki alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu maszyny W 1 Wprowadzenie Przerwania we współczesnych procesorach Rodzaje systemów przerwań Cykl rozkazowy

Bardziej szczegółowo

Informatyka I. Klasy i obiekty. Podstawy programowania obiektowego. dr inż. Andrzej Czerepicki. Politechnika Warszawska Wydział Transportu 2018

Informatyka I. Klasy i obiekty. Podstawy programowania obiektowego. dr inż. Andrzej Czerepicki. Politechnika Warszawska Wydział Transportu 2018 Informatyka I Klasy i obiekty. Podstawy programowania obiektowego dr inż. Andrzej Czerepicki Politechnika Warszawska Wydział Transportu 2018 Plan wykładu Pojęcie klasy Deklaracja klasy Pola i metody klasy

Bardziej szczegółowo

Wykład 8: klasy cz. 4

Wykład 8: klasy cz. 4 Programowanie obiektowe Wykład 8: klasy cz. 4 Dynamiczne tworzenie obiektów klas Składniki statyczne klas Konstruktor i destruktory c.d. 1 dr Artur Bartoszewski - Programowanie obiektowe, sem. 1I- WYKŁAD

Bardziej szczegółowo

Krótki kurs programowania współbieżnego

Krótki kurs programowania współbieżnego Krótki kurs programowania współbieżnego Procesy i sygnały w językach C oraz Python Semafory i pamięć dzielona (język C) Uproszczony semafor z Pythona Inne metody komunikowania urs systemu UNIX 1 Ale najpierw

Bardziej szczegółowo

Łącza nienazwane(potoki) Łącza nienazwane mogą być używane tylko pomiędzy procesami ze sobą powiązanymi.

Łącza nienazwane(potoki) Łącza nienazwane mogą być używane tylko pomiędzy procesami ze sobą powiązanymi. Przykład: $ ls more Łącza nienazwane(potoki) Łącza nienazwane mogą być używane tylko pomiędzy procesami ze sobą powiązanymi. Tworzenie łącza #include int pipe(int filedes[2]); Przykład: int

Bardziej szczegółowo

Zarządzanie procesami

Zarządzanie procesami Zarządzanie procesami Proces, najogólniej rzecz ujmując, jest wykonywanym programem. Na linuxowy proces składają się: Liniowa przestrzeń adresowa, w której z kolei można wydzielić sekcję tekstu zawierającą

Bardziej szczegółowo

Futex (Fast Userspace Mutex) Łukasz Białek

Futex (Fast Userspace Mutex) Łukasz Białek Futex (Fast Userspace Mutex) Łukasz Białek Futex informacje podstawowe Stworzony w 2002 roku przez Hubertusa Franke, Matthew Kirkwooda, Ingo Molnára i Rustiego Russella. Jest mechanizmem w Linuxie, który

Bardziej szczegółowo

4. Procesy pojęcia podstawowe

4. Procesy pojęcia podstawowe 4. Procesy pojęcia podstawowe 4.1 Czym jest proces? Proces jest czymś innym niż program. Program jest zapisem algorytmu wraz ze strukturami danych na których algorytm ten operuje. Algorytm zapisany bywa

Bardziej szczegółowo

Mechanizmy pracy równoległej. Jarosław Kuchta

Mechanizmy pracy równoległej. Jarosław Kuchta Mechanizmy pracy równoległej Jarosław Kuchta Zagadnienia Algorytmy wzajemnego wykluczania algorytm Dekkera Mechanizmy niskopoziomowe przerwania mechanizmy ochrony pamięci instrukcje specjalne Mechanizmy

Bardziej szczegółowo

Kolejki FIFO (łącza nazwane)

Kolejki FIFO (łącza nazwane) Kolejki FIFO (łącza nazwane) Systemy Operacyjne 2 laboratorium Mateusz Hołenko 6 listopada 2011 Plan zajęć 1 Łącza w systemie Linux kolejki FIFO vs. potoki specyfika łączy nazwanych schemat komunikacji

Bardziej szczegółowo

Języki programowania C i C++ Wykład: Typy zmiennych c.d. Operatory Funkcje. dr Artur Bartoszewski - Języki C i C++, sem.

Języki programowania C i C++ Wykład: Typy zmiennych c.d. Operatory Funkcje. dr Artur Bartoszewski - Języki C i C++, sem. Języki programowania C i C++ Wykład: Typy zmiennych c.d. Operatory Funkcje 1 dr Artur Bartoszewski - Języki C i C++, sem. 1I- WYKŁAD programowania w C++ Typy c.d. 2 Typy zmiennych Instrukcja typedef -

Bardziej szczegółowo

Autor: dr inż. Zofia Kruczkiewicz, Programowanie aplikacji internetowych 1

Autor: dr inż. Zofia Kruczkiewicz, Programowanie aplikacji internetowych 1 Wątki 1. Wątki - wprowadzenie Wątkiem nazywamy sekwencyjny przepływ sterowania w procesie, który wykonuje dany program np. odczytywanie i zapisywanie plików Program Javy jest wykonywany w obrębie jednego

Bardziej szczegółowo

Instrukcja obsługi. Kamera szybkoobrotowa IP LUMENA-12M1-147

Instrukcja obsługi. Kamera szybkoobrotowa IP LUMENA-12M1-147 Instrukcja obsługi Kamera szybkoobrotowa IP UWAGA: Dane techniczne oraz treść poniższej instrukcji mogą ulec zmianie bez uprzedzenia. Niektóre dane techniczne mogą różnić się w zależności od danego modelu

Bardziej szczegółowo

Wątki, sygnały i szeregowanie w systemach UNIX, Linux

Wątki, sygnały i szeregowanie w systemach UNIX, Linux SOE Systemy Operacyjne Wykład 6 Wątki, sygnały i szeregowanie w systemach UNIX, Linux dr inż. Andrzej Wielgus Instytut Mikroelektroniki i Optoelektroniki WEiTI PW Wątki w systemie Solaris Modele implementacji

Bardziej szczegółowo

Metody obsługi zdarzeń

Metody obsługi zdarzeń SWB - Przerwania, polling, timery - wykład 10 asz 1 Metody obsługi zdarzeń Przerwanie (ang. Interrupt) - zmiana sterowania, niezależnie od aktualnie wykonywanego programu, spowodowana pojawieniem się sygnału

Bardziej szczegółowo

Przerwania, polling, timery - wykład 9

Przerwania, polling, timery - wykład 9 SWB - Przerwania, polling, timery - wykład 9 asz 1 Przerwania, polling, timery - wykład 9 Adam Szmigielski aszmigie@pjwstk.edu.pl SWB - Przerwania, polling, timery - wykład 9 asz 2 Metody obsługi zdarzeń

Bardziej szczegółowo

Podstawy programowania komputerów

Podstawy programowania komputerów Podstawy programowania komputerów Wykład 14: Programowanie współbieżne w C Definicja programowania współbieżnego Programowanie współbieżne jest tworzeniem programów, których wykonanie powoduje uruchomienie

Bardziej szczegółowo

1 Obsługiwane funkcje wyzwalaczy

1 Obsługiwane funkcje wyzwalaczy 2016/10/11 12:29 1/10 1 Obsługiwane funkcje wyzwalaczy 1 Obsługiwane funkcje wyzwalaczy Wszystkie funkcje obsługiwane w: wyrażeniach wyzwalaczy są wyszczególnione poniżej: wartości: float, int, str, text,

Bardziej szczegółowo

SYSTEMY CZASU RZECZYWISTEGO - VxWorks

SYSTEMY CZASU RZECZYWISTEGO - VxWorks WZAJEMNE WYKLUCZANIE Wiele metod. Np. wyłączanie przerwań: funkcja() //... Int blokada = intlock(); // Obszar krytyczny, któremu nie możemy przerwać intunlock(blokada); wyłączanie wywłaszczania: funkcja()

Bardziej szczegółowo

Przesyłania danych przez protokół TCP/IP

Przesyłania danych przez protokół TCP/IP Przesyłania danych przez protokół TCP/IP PAKIETY Protokół TCP/IP transmituje dane przez sieć, dzieląc je na mniejsze porcje, zwane pakietami. Pakiety są często określane różnymi terminami, w zależności

Bardziej szczegółowo

w odróżnieniu od procesów współdzielą przestrzeń adresową mogą komunikować się za pomocą zmiennych globalnych

w odróżnieniu od procesów współdzielą przestrzeń adresową mogą komunikować się za pomocą zmiennych globalnych mechanizmy posix Wątki w odróżnieniu od procesów współdzielą przestrzeń adresową należą do tego samego użytkownika są tańsze od procesów: wystarczy pamiętać tylko wartości rejestrów, nie trzeba czyścić

Bardziej szczegółowo

Zwielokrotnianie wejścia wyjścia

Zwielokrotnianie wejścia wyjścia Zwielokrotnianie wejścia wyjścia Bartłomiej Świercz Katedra Mikroelektroniki i Technik Informatycznych Łódź, 21 marca 2006 Wstęp Zwielokrotnianie wejścia wyjścia informowanie przez jądro procesu użytkownika

Bardziej szczegółowo

Pracownia internetowa w każdej szkole (edycja Jesień 2007)

Pracownia internetowa w każdej szkole (edycja Jesień 2007) Instrukcja numer D1/05_03/Z Pracownia internetowa w każdej szkole (edycja Jesień 2007) Opiekun pracowni internetowej cz. 1 Ręczne zakładanie kont użytkowników (D1) Jak ręcznie założyć konto w systemie

Bardziej szczegółowo

Widoczność zmiennych Czy wartości każdej zmiennej można zmieniać w dowolnym miejscu kodu? Czy można zadeklarować dwie zmienne o takich samych nazwach?

Widoczność zmiennych Czy wartości każdej zmiennej można zmieniać w dowolnym miejscu kodu? Czy można zadeklarować dwie zmienne o takich samych nazwach? Część XVIII C++ Funkcje Widoczność zmiennych Czy wartości każdej zmiennej można zmieniać w dowolnym miejscu kodu? Czy można zadeklarować dwie zmienne o takich samych nazwach? Umiemy już podzielić nasz

Bardziej szczegółowo

Procesy, wątki i zasoby

Procesy, wątki i zasoby Procesy, wątki i zasoby Koncepcja procesu i zasobu, Obsługa procesów i zasobów, Cykl zmian stanów procesu i kolejkowanie, Klasyfikacja zasobów, Wątki, Procesy i wątki we współczesnych systemach operacyjnych.

Bardziej szczegółowo

Mikroprocesor Operacje wejścia / wyjścia

Mikroprocesor Operacje wejścia / wyjścia Definicja Mikroprocesor Operacje wejścia / wyjścia Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz Operacjami wejścia/wyjścia nazywamy całokształt działań potrzebnych

Bardziej szczegółowo

5. Model komunikujących się procesów, komunikaty

5. Model komunikujących się procesów, komunikaty Jędrzej Ułasiewicz str. 1 5. Model komunikujących się procesów, komunikaty Obecnie stosuje się następujące modele przetwarzania: Model procesów i komunikatów Model procesów komunikujących się poprzez pamięć

Bardziej szczegółowo

Wyjątki (exceptions)

Wyjątki (exceptions) Instrukcja laboratoryjna nr 6 Programowanie w języku C 2 (C++ poziom zaawansowany) Wyjątki (exceptions) dr inż. Jacek Wilk-Jakubowski mgr inż. Maciej Lasota dr inż. Tomasz Kaczmarek Wstęp Wyjątki (ang.

Bardziej szczegółowo

Działanie systemu operacyjnego

Działanie systemu operacyjnego Budowa systemu komputerowego Działanie systemu operacyjnego Jednostka centralna dysku Szyna systemowa (magistrala danych) drukarki pamięci operacyjnej I NIC sieci Pamięć operacyjna Przerwania Przerwania

Bardziej szczegółowo

Wykład 3. Procesy i wątki. Wojciech Kwedlo, Wykład z Systemów Operacyjnych -1- Wydział Informatyki PB

Wykład 3. Procesy i wątki. Wojciech Kwedlo, Wykład z Systemów Operacyjnych -1- Wydział Informatyki PB Wykład 3 Procesy i wątki Wojciech Kwedlo, Wykład z Systemów Operacyjnych -1- Wydział Informatyki PB Pojęcie procesu Program = plik wykonywalny na dysku Proces = uruchomiony i wykonywany program w pamięci

Bardziej szczegółowo

Budowa Mikrokomputera

Budowa Mikrokomputera Budowa Mikrokomputera Wykład z Podstaw Informatyki dla I roku BO Piotr Mika Podstawowe elementy komputera Procesor Pamięć Magistrala (2/16) Płyta główna (ang. mainboard, motherboard) płyta drukowana komputera,

Bardziej szczegółowo

Prezentacja systemu RTLinux

Prezentacja systemu RTLinux Prezentacja systemu RTLinux Podstawowe założenia RTLinux jest system o twardych ograniczeniach czasowych (hard real-time). Inspiracją dla twórców RTLinux a była architektura systemu MERT. W zamierzeniach

Bardziej szczegółowo

TEMAT : KLASY DZIEDZICZENIE

TEMAT : KLASY DZIEDZICZENIE TEMAT : KLASY DZIEDZICZENIE Wprowadzenie do dziedziczenia w języku C++ Język C++ możliwa tworzenie nowej klasy (nazywanej klasą pochodną) w oparciu o pewną wcześniej zdefiniowaną klasę (nazywaną klasą

Bardziej szczegółowo

Ustawienia ogólne. Ustawienia okólne są dostępne w panelu głównym programu System Sensor, po kliknięciu ikony

Ustawienia ogólne. Ustawienia okólne są dostępne w panelu głównym programu System Sensor, po kliknięciu ikony Ustawienia ogólne Ustawienia okólne są dostępne w panelu głównym programu System Sensor, po kliknięciu ikony Panel główny programu System Sensor (tylko dla wersja V2, V3, V4) Panel główny programu System

Bardziej szczegółowo

Podstawy programowania w języku C++

Podstawy programowania w języku C++ Podstawy programowania w języku C++ Część ósma Zmienne wskaźnikowe koncepcja, podstawowe zastosowania Wersja skrócona, tylko C++ Autor Roman Simiński Kontakt roman.siminski@us.edu.pl www.us.edu.pl/~siminski

Bardziej szczegółowo

Delphi Laboratorium 3

Delphi Laboratorium 3 Delphi Laboratorium 3 1. Procedury i funkcje Funkcja jest to wydzielony blok kodu, który wykonuje określoną czynność i zwraca wynik. Procedura jest to wydzielony blok kodu, który wykonuje określoną czynność,

Bardziej szczegółowo

Współbieżność w środowisku Java

Współbieżność w środowisku Java Współbieżność w środowisku Java Wątki i ich synchronizacja Zagadnienia Tworzenie wątków Stany wątków i ich zmiana Demony Synchronizacja wątków wzajemne wykluczanie oczekiwanie na zmiennych warunkowych

Bardziej szczegółowo

Działanie systemu operacyjnego

Działanie systemu operacyjnego Działanie systemu operacyjnego Budowa systemu komputerowego I NIC Jednostka centralna Sterownik dysku Sterownik drukarki Sterownik sieci Szyna systemowa (magistrala danych) Sterownik pamięci operacyjnej

Bardziej szczegółowo

Skrypty startowe. Tryb interaktywny tryb logowania: nie logowanie: Tryb nieinteraktywny

Skrypty startowe. Tryb interaktywny tryb logowania: nie logowanie: Tryb nieinteraktywny Powłoka Bash Skrypty startowe Tryb interaktywny tryb logowania:. /etc/profile if [ -f $HOME/.bash profile ]; then. $HOME/.bash profile elif [ -f $HOME/.bash login. $HOME/.bash login elif [ -f $HOME/.profile

Bardziej szczegółowo

Systemy operacyjne III

Systemy operacyjne III Systemy operacyjne III WYKŁAD Jan Kazimirski Pamięć wirtualna Stronicowanie Pamięć podzielona na niewielki bloki Bloki procesu to strony a bloki fizyczne to ramki System operacyjny przechowuje dla każdego

Bardziej szczegółowo

Wykład 4 Delegat (delegate), właściwości indeksowane, zdarzenie (event) Zofia Kruczkiewicz

Wykład 4 Delegat (delegate), właściwości indeksowane, zdarzenie (event) Zofia Kruczkiewicz Wykład 4 Delegat (delegate), właściwości indeksowane, zdarzenie (event) Zofia Kruczkiewicz Zagadnienia 1. Delegaty wiązane, właściwości indeksowane 2. Delegaty niewiązane 3. Nowa wersja kalkulatora, delegaty

Bardziej szczegółowo

Sesje, ciasteczka, wyjątki. Ciasteczka w PHP. Zastosowanie cookies. Sprawdzanie obecności ciasteczka

Sesje, ciasteczka, wyjątki. Ciasteczka w PHP. Zastosowanie cookies. Sprawdzanie obecności ciasteczka Sesje, ciasteczka, wyjątki Nie sposób wyobrazić sobie bez nich takich podstawowych zastosowań, jak logowanie użytkowników czy funkcjonowanie koszyka na zakupy. Oprócz tego dowiesz się, czym są wyjątki,

Bardziej szczegółowo

UWAGA!!! Przed przystąpieniem do zamknięcia roku proszę zrobić kopie bezpieczeństwa

UWAGA!!! Przed przystąpieniem do zamknięcia roku proszę zrobić kopie bezpieczeństwa UWAGA!!! Przed przystąpieniem do zamknięcia roku proszę zrobić kopie bezpieczeństwa Następnie należy sprawdzić czy w KOLFK w Słownik i-> Dokumenty-> znajduje się dokument BO- Bilans Otwarcia (w grupie

Bardziej szczegółowo

Modułowy programowalny przekaźnik czasowy firmy Aniro.

Modułowy programowalny przekaźnik czasowy firmy Aniro. Modułowy programowalny przekaźnik czasowy firmy Aniro. Rynek sterowników programowalnych Sterowniki programowalne PLC od wielu lat są podstawowymi systemami stosowanymi w praktyce przemysłowej i stały

Bardziej szczegółowo

kiedy znowu uzyska sterowanie, to podejmuje obliczenie od miejsca, w którym poprzednio przerwała, i z dotychczasowymi wartościami zmiennych,

kiedy znowu uzyska sterowanie, to podejmuje obliczenie od miejsca, w którym poprzednio przerwała, i z dotychczasowymi wartościami zmiennych, Korutyny Wykład13,str1 tak działa podprogram: PROGRAM GŁÓWNY wywołanie PODPROGRAM tak działają korutyny: KORUTYNA A resume B resume B KORUTYNA B resume A Korutyny Wykład13,str2 Korutyny mają zwykle więcej

Bardziej szczegółowo

Podstawy programowania. Wykład: 7. Funkcje Przekazywanie argumentów do funkcji. dr Artur Bartoszewski -Podstawy programowania, sem 1 - WYKŁAD

Podstawy programowania. Wykład: 7. Funkcje Przekazywanie argumentów do funkcji. dr Artur Bartoszewski -Podstawy programowania, sem 1 - WYKŁAD programowania Wykład: 7 Funkcje Przekazywanie argumentów do funkcji 1 dr Artur Bartoszewski - programowania, sem 1 - WYKŁAD programowania w C++ Funkcje 2 dr Artur Bartoszewski - programowania sem. 1 -

Bardziej szczegółowo

referencje Wykład 2. Programowanie (język C++) Referencje (1) int Num = 50; zdefiniowano zmienną Num (typu int) nadając jej wartość początkową 50.

referencje Wykład 2. Programowanie (język C++) Referencje (1) int Num = 50; zdefiniowano zmienną Num (typu int) nadając jej wartość początkową 50. Programowanie (język C++) referencje Wykład 2. Referencje (1) Referencja (odnośnik) jest zmienną identyfikującą inną zmienną. Wykonanie operacji na referencji ma taki sam skutek, jak wykonanie tejŝe operacji

Bardziej szczegółowo

Programowanie współbieżne Wykład 2. Iwona Kochańska

Programowanie współbieżne Wykład 2. Iwona Kochańska Programowanie współbieżne Wykład 2 Iwona Kochańska Miary skalowalności algorytmu równoległego Przyspieszenie Stały rozmiar danych N T(1) - czas obliczeń dla najlepszego algorytmu sekwencyjnego T(p) - czas

Bardziej szczegółowo

Temat zajęć: Obsługa procesów w systemie.

Temat zajęć: Obsługa procesów w systemie. Temat zajęć: Obsługa procesów w systemie. Czas realizacji zajęć: 90 min. Zakres materiału, jaki zostanie zrealizowany podczas zajęć: Procesy macierzyste i potomne, tworzenie procesów potomnych, uruchamianie

Bardziej szczegółowo

Działanie systemu operacyjnego

Działanie systemu operacyjnego Działanie systemu operacyjnego Budowa systemu komputerowego Jednostka centralna Sterownik dysku Sterownik drukarki Sterownik sieci Szyna systemowa (magistrala danych) Sterownik pamięci operacyjnej Pamięć

Bardziej szczegółowo

Spis treści. 1 Moduł RFID (APA) 3

Spis treści. 1 Moduł RFID (APA) 3 Spis treści 1 Moduł RFID (APA) 3 1.1 Konfigurowanie Modułu RFID..................... 3 1.1.1 Lista elementów Modułu RFID................. 3 1.1.2 Konfiguracja Modułu RFID (APA)............... 4 1.1.2.1

Bardziej szczegółowo

Tablice (jedno i wielowymiarowe), łańcuchy znaków

Tablice (jedno i wielowymiarowe), łańcuchy znaków Tablice (jedno i wielowymiarowe), łańcuchy znaków wer. 8 z drobnymi modyfikacjami! Wojciech Myszka Katedra Mechaniki i Inżynierii Materiałowej 2017-04-07 09:35:32 +0200 Zmienne Przypomnienie/podsumowanie

Bardziej szczegółowo

Wątki w Android OS. Matt Rutkowski. GynSoft sp. z o.o. http://gynsoft.net matt@gynsoft.net

Wątki w Android OS. Matt Rutkowski. GynSoft sp. z o.o. http://gynsoft.net matt@gynsoft.net Wątki w Android OS Matt Rutkowski GynSoft sp. z o.o. http://gynsoft.net matt@gynsoft.net Krótko o terminach związanych z Android OS... Android OS bazuje na Linuxie, każda aplikacja posiada własne User

Bardziej szczegółowo

Działanie systemu operacyjnego

Działanie systemu operacyjnego Budowa systemu komputerowego Działanie systemu operacyjnego Jednostka centralna dysku Szyna systemowa (magistrala danych) drukarki pamięci operacyjnej sieci Pamięć operacyjna Przerwania Przerwania Przerwanie

Bardziej szczegółowo

1.1 Definicja procesu

1.1 Definicja procesu 1 Procesy pojęcia podstawowe 1 1.1 Definicja procesu Proces jest czymś innym niż program. Program jest zapisem algorytmu wraz ze strukturami danych na których algorytm ten operuje. Algorytm zapisany bywa

Bardziej szczegółowo

MIERNIK T-SCALE BWS 1

MIERNIK T-SCALE BWS 1 MIERNIK T-SCALE BWS 1 2 Spis treści 1. WSTĘP... 4 2. OPIS KLAWIATURY... 4 3. PODSTAWOWE OPERACJE... 5 Zerowanie... 5 Tarowanie... 5 Ważenie przedmiotu... 5 4. WAŻENIE KONTROLNE... 6 Ustawianie limitów...

Bardziej szczegółowo

Sieci Komputerowe 2 / Ćwiczenia 2

Sieci Komputerowe 2 / Ćwiczenia 2 Tematyka Sieci Komputerowe 2 / Ćwiczenia 2 Opracował: Konrad Kawecki na podstawie materiałów: http://www.isi.edu/nsnam/ns/tutorial/index.html Na ćwiczeniach zapoznamy się z symulatorem

Bardziej szczegółowo

Część XVII C++ Funkcje. Funkcja bezargumentowa Najprostszym przypadkiem funkcji jest jej wersja bezargumentowa. Spójrzmy na przykład.

Część XVII C++ Funkcje. Funkcja bezargumentowa Najprostszym przypadkiem funkcji jest jej wersja bezargumentowa. Spójrzmy na przykład. Część XVII C++ Funkcje Funkcja bezargumentowa Najprostszym przypadkiem funkcji jest jej wersja bezargumentowa. Spójrzmy na przykład. 2 3 Tworzymy deklarację i definicję funkcji o nazwie pobierzln() Funkcja

Bardziej szczegółowo

PODRĘCZNIK UŻYTKOWNIKA programu Pilot

PODRĘCZNIK UŻYTKOWNIKA programu Pilot TRX Krzysztof Kryński Cyfrowe rejestratory rozmów seria KSRC PODRĘCZNIK UŻYTKOWNIKA programu Pilot Wersja 2.1 Maj 2013 Dotyczy programu Pilot w wersji 1.6.3 TRX ul. Garibaldiego 4 04-078 Warszawa Tel.

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania wykład 8 Agata Półrola Wydział Matematyki i Informatyki UŁ semestr zimowy 2018/2019 Podprogramy Czasami wygodnie jest wyodrębnić jakiś fragment programu jako pewną odrębną całość umożliwiają to podprogramy.

Bardziej szczegółowo

IIIIIIIIIIIIIIIMMIMMIII

IIIIIIIIIIIIIIIMMIMMIII IIIIIIIIIIIIIIIMMIMMIII O programie Program Itelix itender Manager przeznaczony jest do zarządzania zapytaniami ofertowymi przesyłanymi za pomocą poczty elektronicznej przez firmy korzystające z systemu

Bardziej szczegółowo

Rozdział 5. Administracja kontami użytkowników

Rozdział 5. Administracja kontami użytkowników Rozdział 5. Administracja kontami użytkowników Ćwiczenia zawarte w tym rozdziale pozwolą przygotować oddzielne środowisko pracy dla każdego użytkownika komputera. Windows XP, w porównaniu do systemów Windows

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Wykład 3 Jan Kazimirski 1 Podstawowe elementy komputera. Procesor (CPU) 2 Plan wykładu Podstawowe komponenty komputera Procesor CPU Cykl rozkazowy Typy instrukcji Stos Tryby adresowania

Bardziej szczegółowo

SYSTEMY OPERACYJNE: STRUKTURY I FUNKCJE (opracowano na podstawie skryptu PP: Królikowski Z., Sajkowski M. 1992: Użytkowanie systemu operacyjnego UNIX)

SYSTEMY OPERACYJNE: STRUKTURY I FUNKCJE (opracowano na podstawie skryptu PP: Królikowski Z., Sajkowski M. 1992: Użytkowanie systemu operacyjnego UNIX) (opracowano na podstawie skryptu PP: Królikowski Z., Sajkowski M. 1992: Użytkowanie systemu operacyjnego UNIX) W informatyce występują ściśle obok siebie dwa pojęcia: sprzęt (ang. hardware) i oprogramowanie

Bardziej szczegółowo

Zarządzanie procesami (omawiane zagadnienia)

Zarządzanie procesami (omawiane zagadnienia) Zarządzanie procesami (omawiane zagadnienia) Pojęcie procesu Stany procesu Blok kontrolny procesu Tworzenie procesu Sygnały Kończenie wykonania procesu Działanie interpretatora poleceń (shell-a) Koncepcja

Bardziej szczegółowo

Zaawansowane programowanie obiektowe - wykład 5

Zaawansowane programowanie obiektowe - wykład 5 Zaawansowane programowanie obiektowe - wykład 5 dr Piotr Jastrzębski (czynnościowe) opisują zachowanie obiektów, komunikację pomiędzy nimi i ich odpowiedzialność. Interpreter Iterator (kursor) Łańcuch

Bardziej szczegółowo

System operacyjny MACH

System operacyjny MACH Emulacja w systemie MCH System operacyjny MCH 4. SD Systemu V HP/UX MS-DOS VMS inne Mikrojądro Zbigniew Suski Zbigniew Suski Podstawowe cele projektu MCH! Dostarczenie podstawy do budowy innych systemów

Bardziej szczegółowo

Konfiguracja parametrów pozycjonowania GPS 09.05.2008 1/5

Konfiguracja parametrów pozycjonowania GPS 09.05.2008 1/5 Konfiguracja parametrów pozycjonowania GPS 09.05.2008 1/5 Format złożonego polecenia konfigurującego system pozycjonowania GPS SPY-DOG SAT ProSafe-Flota -KGPS A a B b C c D d E e F f G g H h I i J j K

Bardziej szczegółowo

java.util.* :Kolekcje Tomasz Borzyszkowski

java.util.* :Kolekcje Tomasz Borzyszkowski java.util.* :Kolekcje Tomasz Borzyszkowski Wstęp Kolekcje w Java dają programiście pewien standardowy sposób radzenia sobie z przetwarzaniem grup obiektów. Implementacja kolekcji w Java składa się z następujących

Bardziej szczegółowo

Programowanie obiektowe

Programowanie obiektowe Laboratorium z przedmiotu Programowanie obiektowe - zestaw 02 Cel zajęć. Celem zajęć jest zapoznanie z praktycznymi aspektami projektowania oraz implementacji klas i obiektów z wykorzystaniem dziedziczenia.

Bardziej szczegółowo

Lab 9 Podstawy Programowania

Lab 9 Podstawy Programowania Lab 9 Podstawy Programowania (Kaja.Gutowska@cs.put.poznan.pl) Wszystkie kody/fragmenty kodów dostępne w osobnym pliku.txt. Materiały pomocnicze: Wskaźnik to specjalny rodzaj zmiennej, w której zapisany

Bardziej szczegółowo