Fotodioda vs bateria słoneczna

Wielkość: px
Rozpocząć pokaz od strony:

Download "Fotodioda vs bateria słoneczna"

Transkrypt

1 Bateria słoneczna

2 Fotodioda vs bateria słoneczna -dla fotodiody interesujący jest tylko zakres długości fal l w pobliżu piku czułości; -dla baterii im szerszy zakres tym lepiej; -fotodioda powinna mieć małą pojemność C, gdyż stała czasowa decydująca o szybkości odpowiedzi fotodiody z punktu widzenia obwodu elektrycznego = R D C. Dlatego fotodioda powinna mieć małą powierzchnię; -bateria powinna mieć dużą powierzchnię aby duża ilość fotonów docierała do złącza; -dla fotodiody najważniejszym parametrem jest wydajność kwantowa; -dla baterii sprawność baterii.

3 R i = Parametry użytkowe fotodiody Wydajność kwantowa fotodiody: Czułość prądowa fotodiody: Czułość napięciowa fotodiody: R i R V I P I p hc qpl ql hc R i R D lqr hc Przy pracy fotodiody bez polaryzacji zewnętrznej dominuje szum Johnsona Nyquista i detekcyjność wyraża się wzorem: D D* l q l 2hc R D kt A 2 R V A ktr D

4 Fotodioda p-i-n InP E g =1.29eV GaInAs E g =0.75eV

5 Fotodioda M-S.

6 Rodzaje fotodiod Fotodiody na heterozłączach. Fotodiody lawinowe

7 Kopaliny konwencjonalne źródła energii Zasoby kopalin (optymistyczne prognozy) (Oil & Gas Journal, World Oil) przy obecnym poziomie konsumpcji energii, wystarczą na: Węgiel lat Olej - 43 lata Gaz lat Ze względu na rosnącą konsumpcję, przewiduje się, że każde z w.w źródeł energii wyczerpie się szybciej. Według teorii Hubberta, zależność wykorzystania źródeł w funkcji czasu podlega krzywej dzwonowej.

8 Odnawialne źródła energii Przewiduje się, że odnawialne źródła energii będą stanowić istotny składnik zasobów energetycznych w okresie najbliższych 25 lat Główne przyczyny: Rosnące zapotrzebowanie energetyczne Spadek produkcji paliw konwencjonalnych Spadek cen odnawialnych źródeł energii Ekologia

9 Ewolucja światowych zasobów oleju według teorii Hubberta

10 Konsumpcja energii

11 Instalacje solarne w USA

12 węgiel ropa gaz e. jądrowa biomasa woda wiatr Słońce Geo ExaJ Przyszłość odnawialnych źródeł energii exaJ=10 18 J Źródło: Royal Dutch Shell Group

13 Fotowoltaika Jest to metoda wytwarzania energii elektrycznej poprzez konwersję promieniowania słonecznego bezpośrednio na prąd elektryczny. Konwersja odbywa się w półprzewodnikach, w których zachodzi efekt fotowoltaiczny. Podstawowym elementem fotowoltaicznym jest ogniwo, z którego wykonuje się panele (zestaw wielu ogniw) i matryce paneli. Fotowoltaika rozwija się dynamicznie. Moc generowana przy pomocy ogniw fotowoltaicznych pod koniec roku 2011 wynosiła 69 GW. Całkowita energia wytwarzana w ciągu roku jest równa ok. 80 miliardów kwh. Jest to energia wystarczająca do pokrycia rocznego zapotrzebowania 20 millionów gospodarstw domowych. W chwili obecnej, fotowoltaika jest trzecim najważniejszym odnawialnym źródłem energii obok elektrowni wodnej i wiatrowej. Ponad 100 krajów stosuje fotowoltaiczne źródła energii. Instalacje fotowoltaiczne są montowane bądź w gruncie bądź na dachach.

14 Produkcja fotoogniw w latach

15 Ekonomia Cena ogniw z krzemu krystalicznego spadła z $76.67/W w r do ok. $0.74/W w r Prawo Swansona (założyciela firmy produkującej ogniwa słoneczne SunPower Corporation): każde podwojenie zdolności produkcyjnych przemysłu solarnego powoduje spadek ceny ogniw o 20%

16 Dlaczego energia słoneczna? Konwersja energii słonecznej z 1% obszaru Ziemi, z 10% wydajnością wystarczy na zaspokojenie zapotrzebowania energetycznego w ilości dwukrotnie większej niż konsumowane obecnie!

17

18 Zorza polarna Norwegia Efekt protuberancji Słońca, która miała miejsce dwa dni wcześniej

19 Słońce strefa konwekcji w strefie konwekcji energia jest transport. na zewnątrz hel wodór strefa reakcji termojądr. energia produkowana w rdzeniu jest transport. na zewnątrz przez fotony w jądrze zachodzą reakcje termojądrowe strefa radiacyjna

20 Równowaga hydrostatyczna Siła ciśnienia termicznego skierowana na zewnątrz jest równoważona przez siłę grawitacji

21 Cykl p-p Synteza termojądrowa na Słońcu H H H Q 144. MeV H+ H He + Q 55. MeV e He+ He He+ H+ H Q MeV

22 Energia słoneczna Synteza 1 kg wodoru daje 7.1 grama masy zamienionej na energię: E = mc 2 = kg x (3x10 8 m/s) 2 = 6.4x10 14 J Jasność Słońca 3.83x10 26 W, W każdej sekundzie 675 milionów ton H jest zamieniane na 653 milionów ton He z równoczesną zamianą około 22 milionów ton materii na energię.

23 Jednostki energetyczne Strumień fotonów: = liczba fotonów s m 2 Gęstość mocy fotonów o określonej długości fali: H W hc = m2 l H W m 2 = q l(μm) H W = q E(eV) m2 Spektralna gęstość promieniowania (irradiancja widmowa) F l = qe 1 l ( W ) H W = F l d m 2 μm m 2 0 l

24 Irradiancja widmowa F l = q 1.24 l(μm) 1 l ( W ) m 2 μm

25 Prawo odwrotnych kwadratów H 0 = R sun 2 (1A. U. ) 2 H sun = 1333 W m 2

26 Atmosfera

27 Promieniowanie słoneczne AM - ilość masy powietrza, przez którą przechodzi światło AMO - stała słoneczna 1.37 KW/m 2 AMX=AM1/cos φ Słońce jest najważniejszym źródłem energii na Ziemi: do powierzchni atmosfery w południe na równiku dociera H=1,37 kw/m 2 stała słoneczna. Energia promieniowania słonecznego jest częściowo absorbowana przez atmosferę, tak więc do powierzchni dociera ok. 73 % (A.M. 1). Na naszej szerokości geograficznej za standard przyjmuje się wartość H odpowiadającą ok. AM 1.5G = 1000 W/m 2. Wydajności ogniw słonecznych są podawane właśnie dla tej standardowej wartości H. Na obszarze Polski całkowita wartość energii słonecznej docierającej średnio w ciągu roku wynosi ok kwh/m 2. Zapotrzebowanie na energię elektryczną przeciętnego gospodarstwa domowego w Polsce wynosi ok kwh

28 Oprócz całkowitej mocy, ważnym parametrem promieniowania słonecznego, który trzeba uwzględniać projektując urządzenie do jego wykorzystywania, jest rozkład spektralny. Maksimum tego rozkładu znajduje się dla długości fali λ = 550 nm, ok. 90% fotonów zawiera się w obszarze energii odpowiadającym długościom fali pomiędzy 250 a 1540 nm, a sam rozkład dosyć dobrze można przybliżyć rozkładem promieniowania Plancka ciała doskonale czarnego w T=5520 K.

29 Bateria słoneczna - dlaczego jest to atrakcyjne źródło energii? Nie wymaga zasilania nie konsumuje paliwa Nie degraduje środowiska Posiada wysoki wskaźnik mocy do wagi

30 Bateria słoneczna Urządzenie, które zamienia energię słoneczną w energię elektryczną. P I V 0 Jest podobne do baterii, bo dostarcza mocy prądu stałego. Różni się od baterii, bo napięcie które wytwarza zależy od oporności obciążenia.

31 Promieniowanie słoneczne Światło widzialne długość fali 0.38mm < l 0.76mm fala E B strumień fotonów

32 Historia 1839 efekt PV zaobserwowany przez Becquerela. 1870s fotoogniwo selenowe 2% - Hertz wyjaśnienie zewnętrznego efektu fotoelektrycznego przez A. Einsteina. 1930s pierwszy miernik światła (fotoogniwo na bazie tlenku miedzi bądź selenu); zastosowanie w fotografice 1954 fotoogniwo krzemowe (4%) - Bell Laboratories 1958 fotoogniwo w kosmosie (satelita U.S. Vanguard).

33 Półprzewodniki - elektrony i dziury W półprzewodnikach występuje absorpcja światła, gdy energia fotonu jest większa od przerwy wzbronionej półprzewodnika

34 Absorpcja światła w półprzewodnikach Występuje, gdy energia fotonu jest większa od przerwy wzbronionej półprzewodnika Absorpcja światła w półprzewodniku (CdS)

35 Złącze p-n dioda półprzewodnikowa Charakterystyka I-V - nieliniowa p n A Polaryzacja zaporowa Polaryzacja w kier. przewodzenia I V

36 Bateria to też złącze p-n Jak to działa? jest to złącze p-n światło jest absorbowane dla h E g tworzą się pary elektron-dziura, które są separowane przez pole w złączu i transportowane przez złącze

37 Efekt fotowoltaiczny Tak nazywa się efekt pojawiania się prądu/napięcia w oświetlonym złączu p-n - baterii słonecznej

38 Bateria słoneczna gdy powstaje złącze p-n, dziury z obszaru p dyfundują do obszaru typu n, elektrony z n do p; powstaje pole elektryczne; to pole powoduje, że prąd łatwo płynie w jednym kierunku a przepływ w drugim kierunku jest utrudniony; to pole również separuje elektrony i dziury, które zostały wykreowane przez zaabsorbowane światło. dzięki tej separacji można uzyskać moc elektryczną. P Dodatnie dziury +ujemnie naładowane nieruchome akceptory P dziury E - + N Ujemne elektrony + dodatnio naładowane nieruchome donory Tylko naładowane donory/akceptory (obszar zubożony) N elektrony

39 Warunki wystąpienia efektu fotowoltaicznego Pod wpływem promieniowania muszą być generowane w półprzewodniku nadmiarowe nośniki ładunku dodatniego i ujemnego E f E g Nośniki nadmiarowe o różnych znakach muszą być rozdzielone przez pewną elektrostatyczną niejednorodność; Generowany swobodny nośnik musi zachować swoją ruchliwość dostatecznie długo, tak aby zdążył dotrzeć do niejednorodności powodującej rozdzielenie ładunku.

40 Efekt fotowoltaiczny hf E g Światło jest absorbowane, tworzą się pary elektron-dziura, które są separowane przez pole w złączu i transportowane przez złącze gdy złącze jest zwarte - płynie prąd zwarcia, I sc. I D (A) E C E F E V hf E C V D (V) 0 E V - I sc I sc = q N ph (E g )~ P

41 liczby fotonów (mocy promieniowania); Od czego zależy prąd zwarcia? powierzchni ogniwa; aby uniezależnić się od tej wielkości zamiast prądu zwarcia podaje się gęstość prądu zwarcia (J sc w ma/cm 2 ); I spektrum padającego światła. Standardowo oświetla się ogniwa spektrum AM 1.5; własności optycznych (absorpcji i odbicia) ogniwa; V prawdopodobieństwa zbierania nośników ( zależy ono od pasywacji powierzchni i czasu życia nośników mniejszościowych).

42 ) Złącze rozwarte E C I D (A) qv OC V oc E C E V V D (V) qv bi E V Gdy jest rozwarte pojawia się fotonapięcie, V oc. Temu napięciu towarzyszy prąd: I d = I o [exp(ev oc /kt)-1] Ten prąd równoważy w rozwartym oświetlonym złączu p-n maksymalny prąd fotogeneracji, czyli I sc : I sc I d = 0

43 Złącze rozwarte Po przekształceniu: I sc = I d = I o [exp(ev oc /kt)-1] V oc kt Isc kt I ln( 1) ln q I q I o sc o Ponieważ I sc ~P, to V oc ~ ln P

44 Od czego zależy napięcie rozwarcia? Im mniejsza rekombinacja (mniejszy prąd nasycenia ogniwa), tym wyższe napięcie rozwarcia I V

45 Rekombinacja i V oc V oc jest napięciem, przy którym prąd dyfuzyjny jest równy prądowi zwarcia. Im większa rekombinacja, tym większy prąd ciemny i mniejsze napięcie rozwarcia. Prąd, który jest prądem rekombinacji w kierunku przewodzenia to prąd nasycenia. Prąd rekombinacji zależy od koncentracji nośników na krawędzi złącza, jak szybko odpływają od złącza i jak szybko rekombinują. Zatem V oc można zwiększyć poprzez: Domieszkowanie, które powoduje, że koncentracja nośników mniejszościowych jest mniejsza od koncentracji nośników większościowych; Zwiększanie długości drogi dyfuzji nośników mniejszościowych; ten sposób pozostaje w sprzeczności z poprzednim konieczny kompromis; Pasywacja powierzchni, aby zmniejszyć rekombinację powierzchniową

46 Podniesienie sprawności poprzez ograniczenie procesów rekombinacji Tlenek krzemu pasywuje powierzchnię i redukuje rekombinację powierzchniową Silne domieszkowanie pod kontaktami powoduje, że nośniki mniejszościowe są odpychane od obszaru przypowierzchniowego, ograniczając rekombinację powierzchniową Silne domieszkowanie w tylnej części powoduje, że nośniki mniejszościowe (tym razem elektrony) są odpychane od obszaru przypowierzchniowego, ograniczając rekombinację powierzchniową

47 Charakterystyka I-V Światło generuje parę elektron-dziura Pole elektryczne porusza nośniki: elektrony w stronę n a dziury w stronę p Zatem przez opornik płynie prąd wsteczny I L Ten prąd powoduje pojawienie sią spadku napięcia V na oporze R L. Napięcie V polaryzuje złącze w kierunku przewodzenia: pojawia się więc prąd I F Całkowity prąd:

48 Bateria obciążona oporem RL

49 Parametry Współczynnik wypełnienia FF Sprawność IV m I V sc m oc I V sc oc FF P I m i V m prąd i napięcie odpowiadające punktowi mocy maksymalnej, I sc i V oc prąd zwarcia i napięcie rozwarcia W IV ćwiartce charakterystyki jest generowana moc:

50 Oporność szeregowa Rzeczywista charakterystyka I V baterii słonecznej. R s oporność szeregowa.

51 Oporność upływu Wpływ oporności upływu R sh na charakterystykę I-V baterii słonecznej

52 Rzeczywista charakterystyka I V q( V IRs) q( V IRs) sc s1 kt s2 2kT I I I ( e 1) I ( e 1) V R IR sh s V oc Eg (0) kt BT ( T) ln( ) q q I sc

53 Wydajność kwantowa Wydajność kwantowa (QE) Długość fali

54 Odpowiedź spektralna Idealne ogniwo Mierzone ogniwo S R ( A W ) = QE l nm S R ( A W ) = QE l μm

55 Straty sprawności w ogniwach 1 termalizacja 2 i 3 - straty na złączu i na kontaktach 4 - straty na rekombinację 55

56 Shockley-Queisser limit

57 Jak podnieść sprawność ogniw i obejść limit Shockley a-queissera? Czarne pole limit Shockley a-queissera; Różowe pole energia fotonów mniejsza od przerwy wzbronionej; Zielony obszar strata energii na termalizację nośników; Niebieski obszar straty na rekombinację, w wyniku których napięcie rozwarcia jest małe. Ogniwa, które mają większą sprawność aniżeli wynika to z limitu Shockley a- Queissera korzystają z jednego z wymienionych obszarów.

58 Straty sprawności w ogniwach 1 - termalizacja 1 A A cb pb N ph ( E ) E g E g 100% N ph jest liczbą fotonów o energii równej E g. 2 i 3 - straty na złączu i na kontaktach 4 2,3 ev E oc 4 - straty na rekombinację FF g IU m I V sc m oc 1 2,3 4

59 Straty optyczne Straty związane z odbiciem Przedni kontakt zasłania część ogniwa Straty związane z odbiciem Pokrycia antyrefleksyjne DLRAC podwójna warstwa antyrefleksyjna

60 Pokrycia antyrefleksyjne Optymalna grubość warstwy dla interferencji destruktywnej: Optymalne współczynniki załamania:

61 Warstwy antyrefleksyjne Krzem monokrystaliczny Warstwy antyrefleksyjne z tlenku krzemu odbijają więcej światła ultrafioletowego i niebieskiego niż czerwonego, dlatego mają niebieskie zabarwienie. Jeśli warstwa antyrefleksyjna jest wykonana z azotku krzemu, może mieć inną barwę.

62 DLARC i teksturyzacja powierzchni Powietrze - n 0

63 Grubość ogniwa i pułapkowanie światła Aby światło padające na ogniwo krzemowe zostało całkowicie zaabsorbowane potrzebny jest materiał o grubości ok. 1mm; Materiał o grubości 1mm absorbuje ok. 30% światła fotony światła pomarańczowego i czerwonego są tracone; Jeśli światło pada pod odpowiednim kątem na powierzchnię, to może odbijać się od przedniej i tylnej powierzchni tak, że efektywnie wielokrotnie przebędzie drogę w materiale wywołując fotoefekt

64 Fotoefekt zielona dioda świecąca jest jednocześnie fotodiodą czułą na światło zielone (lub mające większą energię niebieskie i fioletowe)

65 Krzem polikrystaliczny monokrystaliczny Średnica 300 mm, długość 1.5 m (bez stożkowych zakończeń) i waga 275 kg.

66 za: Ogniwa I generacji: krzem krystaliczny i polikrystaliczny Wysoka sprawność (14-25%) Opanowana technologia Stabilny przeciw: Droga produkcja Niski współczynnik absorpcji Potrzeba dużej ilości drogiego surowca wysokiej jakości (ok. 0.25mm aby zaabsorbować większość światła)

67 Materiały stosowane na ogniwa Współczynnik absorpcji w funkcji długości fali dla krzemu krystalicznego i amorficznego i innych materiałów stosowanych na baterie słoneczne.

68 Ogniwo krzemowe na złączu p-n. Górny rysunek widok z góry; dolny przekrój poprzeczny przez złącze.

69 Krystaliczny krzem Amorficzny krzem

70 Ogniwa II generacji: krzem amorficzny za: Duży współczynnik absorpcji (nie trzeba dużej ilości materiału) Opanowana technologia Łatwo zintegrować z budynkiem Doskonały pod względem ekologicznym Tańszy od szkła, metalu lub plastiku, na którym jest osadzany przeciw: Niskie sprawności 7-10% Niestabilny ulega degradacji pod wpływem światła

71 Ogniwa II generacji: ogniwa cienkowarstwowe Krzem amorficzny Ogniwa tandemowe na krzemie amorficznym CIGS (CuInGaSe 2 ) lub CIS (CuInS) CdTe Rekord wydajności dla ogniwa na podłożu polimerowym: 20.4%

72 Ogniwo II generacji CdTe/CdS CdTe : Eg =1.5 ev; współczynnik absorpcji 10x większy niż dla Si CdS : Eg=2.5 ev; okno Ograniczenia : Zła jakość kontaktu do p-cdte (~ 0.1 Wcm 2 )

73 Odwrócone ogniwo cienkowarstwowe p-diament (Eg= 5.5 ev) okno n-cdte layer jako warstwa absorbcyjna

74 III generacja Ogniwa wielozłączowe Ogniwa polimerowe i organiczne (niska wydajność 5%) Na nanorurkach węglowych (b. duża powierzchnia) Z kropkami kwantowymi Na gorących nośnikach

75 Widmo wykorzystywane przez ogniwo Si

76 Ogniwo wielozłączowe sprawność > 40%!

77 III generacja -ogniwa DSSC Roztwór TiO 2 (półprzewodnik) jest nakładany na szkło Warstwa jest wygrzewana aby utworzyć pory Całość jest zanurzana w elektrolicie zawierającym fotoczuły barwnik (np. pochodna chlorofilu) Kropla elektrolitu I - jest wpuszczana w pory warstwy TiO 2, elektrolit dyfunduje. Barwnik jest zaadsorbowany przez nanocząstkę TiO 2. Na wierzchu nakładana jest platynowa elektroda zliczająca

78 Ewolucja rekordowych sprawności

79 Panele Z reguły na pojedynczym ogniwie napięcie rozwarcia nieznacznie przekracza 0,5V i 2W mocy, dlatego aby uzyskać bardziej użyteczne napięcie i większą moc ogniwa są łączone. Z połączenia od kilku do kilkunastu, a czasem nawet kilkudziesięciu ogniw uzyskujemy moduł (panel), którego napięcie wynosi 12V, a moc nie przekracza 80W. Coraz częściej spotyka się również panele o napięciu 24V i więcej, których moc może przekraczać nawet 200W (zdjęcie po prawej).

80 Jak podnieść sprawność ogniw? Koncentratory światła Systemy śledzące

81 Ogniwa wielopasmowe Środkowe pasmo tworzone jest przez poziomy domieszkowe. W procesie 3 biorą udział fonony Graniczna sprawność teoretyczna %

82 Ogniwa wyżłobione Większa powierzchnia złącza Wyższa sprawność( > 20%)

83 Elektrownie słoneczne dziś Obecnie fotoogniwa wykorzystuje się do produkcji energii elektrycznej na coraz większą skalę. Na przykład, fotowoltaiczna elektrownia słoneczna w Beneixama (Hiszpania) ma moc 20 MW. Składa się ze paneli z ogniwami z polikrystalicznego krzemu o łącznej powierzchni 50 ha. Aktualnie w Arizonie, w Gila Bend planowana jest elektrownia o mocy 280 MW (ok ha).

84 Elektrownia słoneczna w Indiach

85 Alcatraz

86 Zastosowania Na Wyspach Kanaryjskich i w południowej Hiszpanii woda pitna jest uzyskiwana w procesie odsalania wody morskiej (odwrócona osmoza). Urządzenia odsalające pracują zasilane bateriami słonecznymi Latarki LED zasilane bateriami ładowanymi w ciągu dnia przy pomocy małego modułu fotowoltaicznego o mocy ~5W. Czas pracy 3h-8h Laptop

87 Solarny samochód i parking

88 Baza Nellis Air Force USA; panele śledzą trajektorię Słońca

89 Table: Solar simulator classification according to IEC Ed Class Spectral Match Irradiance inhomogeneity Temporal Instability Long Term A % 2% 0.5% 2% B % 5% 2% 5% C % 10% 10% 10% Short Term

90 Dziękuję za uwagę

Złącze p-n. Stan zaporowy

Złącze p-n. Stan zaporowy Anna Pietnoczka Stan zaporowy Jeżeli do złącza n-pprzyłożymy zewnętrzne napięcie U< 0, spowoduje to odsunięcie nośników ładunku od warstwy dipolowej i powiększenie bariery potencjału. Uniemożliwia to przepływ

Bardziej szczegółowo

IA. Fotodioda. Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody.

IA. Fotodioda. Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody. 1 A. Fotodioda Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody. Zagadnienia: Efekt fotowoltaiczny, złącze p-n Wprowadzenie Fotodioda jest urządzeniem półprzewodnikowym w którym zachodzi

Bardziej szczegółowo

Energia emitowana przez Słońce

Energia emitowana przez Słońce Energia słoneczna i ogniwa fotowoltaiczne Michał Kocyła Problem energetyczny na świecie Przewiduje się, że przy obecnym tempie rozwoju gospodarczego i zapotrzebowaniu na energię, paliw kopalnych starczy

Bardziej szczegółowo

Wykład 5 Fotodetektory, ogniwa słoneczne

Wykład 5 Fotodetektory, ogniwa słoneczne Wykład 5 Fotodetektory, ogniwa słoneczne 1 Generacja optyczna swobodnych nośników Fotoprzewodnictwo σ=e(µ e n+µ h p) Fotodioda optyczna generacja par elektron-dziura pole elektryczne złącza rozdziela parę

Bardziej szczegółowo

Wykład 5 Fotodetektory, ogniwa słoneczne

Wykład 5 Fotodetektory, ogniwa słoneczne Wykład 5 Fotodetektory, ogniwa słoneczne 1 Generacja optyczna swobodnych nośników Fotoprzewodnictwo σ=e(µ e n+µ h p) Fotodioda optyczna generacja par elektron-dziura pole elektryczne złącza rozdziela parę

Bardziej szczegółowo

EFEKT FOTOWOLTAICZNY OGNIWO SŁONECZNE

EFEKT FOTOWOLTAICZNY OGNIWO SŁONECZNE ĆWICZENIE 104 EFEKT FOTOWOLTAICZNY OGNIWO SŁONECZNE Cel ćwiczenia: Wyznaczenie charakterystyki prądowo napięciowej I(V) ogniwa słonecznego przed i po oświetleniu światłem widzialnym; prądu zwarcia, napięcia

Bardziej szczegółowo

Część 1. Wprowadzenie. Przegląd funkcji, układów i zagadnień

Część 1. Wprowadzenie. Przegląd funkcji, układów i zagadnień Część 1 Wprowadzenie Przegląd funkcji, układów i zagadnień Źródło energii w systemie fotowoltaicznym Ogniwo fotowoltaiczne / słoneczne photovoltaic / solar cell pojedynczy przyrząd półprzewodnikowy U 0,5

Bardziej szczegółowo

Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja

Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja Rekapitulacja Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje: czwartek

Bardziej szczegółowo

Teoria pasmowa ciał stałych Zastosowanie półprzewodników

Teoria pasmowa ciał stałych Zastosowanie półprzewodników Teoria pasmowa ciał stałych Zastosowanie półprzewodników Model atomu Bohra Niels Bohr - 1915 elektrony krążą wokół jądra jądro jest zbudowane z: i) dodatnich protonów ii) neutralnych neutronów Liczba atomowa

Bardziej szczegółowo

Wykład VIII. Detektory fotonowe

Wykład VIII. Detektory fotonowe Wykład VIII Detektory fotonowe Półprzewodnik w polu elektrycznym dep F dx dv e ( x) ( e) dx dv ( x) dx ( x) const c V cx E p cex Detektory fotoprzewodzące ( t) q[ n( t) p( t) ] n p n p g op n ( t) qg op

Bardziej szczegółowo

Ćwiczenie E17 BADANIE CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH MODUŁU OGNIW FOTOWOLTAICZNYCH I SPRAWNOŚCI KONWERSJI ENERGII PADAJĄCEGO PROMIENIOWANIA

Ćwiczenie E17 BADANIE CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH MODUŁU OGNIW FOTOWOLTAICZNYCH I SPRAWNOŚCI KONWERSJI ENERGII PADAJĄCEGO PROMIENIOWANIA Ćwiczenie E17 BADANIE CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH MODUŁU OGNIW FOTOWOLTAICZNYCH I SPRAWNOŚCI KONWERSJI ENERGII PADAJĄCEGO PROMIENIOWANIA Cel: Celem ćwiczenia jest zbadanie charakterystyk prądowo

Bardziej szczegółowo

1 Źródła i detektory. V. Fotodioda i diody LED Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody i diod LED.

1 Źródła i detektory. V. Fotodioda i diody LED Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody i diod LED. 1 V. Fotodioda i diody LED Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody i diod LED. Zagadnienia: Efekt fotowoltaiczny, złącze p-n Wprowadzenie Fotodioda jest urządzeniem półprzewodnikowym

Bardziej szczegółowo

BADANIA MODELOWE OGNIW SŁONECZNYCH

BADANIA MODELOWE OGNIW SŁONECZNYCH POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 70 Electrical Engineering 2012 Bartosz CERAN* BADANIA MODELOWE OGNIW SŁONECZNYCH W artykule przedstawiono model matematyczny modułu fotowoltaicznego.

Bardziej szczegółowo

V. Fotodioda i diody LED

V. Fotodioda i diody LED 1 V. Fotodioda i diody LED Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody i diod elektroluminescencyjnych. Wyznaczenie zależności prądu zwarcia i napięcia rozwarcia fotodiody od

Bardziej szczegółowo

Skończona studnia potencjału

Skończona studnia potencjału Skończona studnia potencjału U = 450 ev, L = 100 pm Fala wnika w ściany skończonej studni długość fali jest większa (a energia mniejsza) Teoria pasmowa ciał stałych Poziomy elektronowe atomów w cząsteczkach

Bardziej szczegółowo

Fotodetektory. Fotodetektor to przyrząd, który mierzy strumień fotonów bądź moc optyczną przetwarzając energię fotonów na inny użyteczny sygnał

Fotodetektory. Fotodetektor to przyrząd, który mierzy strumień fotonów bądź moc optyczną przetwarzając energię fotonów na inny użyteczny sygnał FOTODETEKTORY Fotodetektory Fotodetektor to przyrząd, który mierzy strumień fotonów bądź moc optyczną przetwarzając energię fotonów na inny użyteczny sygnał - detektory termiczne, wykorzystują zmiany temperatury

Bardziej szczegółowo

Podstawy fizyki ciała stałego półprzewodniki domieszkowane

Podstawy fizyki ciała stałego półprzewodniki domieszkowane Podstawy fizyki ciała stałego półprzewodniki domieszkowane Półprzewodnik typu n IV-Ge V-As Jeżeli pięciowartościowy atom V-As zastąpi w sieci atom IV-Ge to cztery elektrony biorą udział w wiązaniu kowalentnym,

Bardziej szczegółowo

Projektowanie systemów PV. Produkcja modułu fotowoltaicznego (PV)

Projektowanie systemów PV. Produkcja modułu fotowoltaicznego (PV) Projektowanie systemów PV Wykład 3 Produkcja modułu fotowoltaicznego (PV) dr inż. Janusz Teneta C-3 pok. 8 (parter), e-mail: romus@agh.edu.pl Wydział EAIiIB Katedra Automatyki i Inżynierii Biomedycznej

Bardziej szczegółowo

ZJAWISKA FOTOELEKTRYCZNE

ZJAWISKA FOTOELEKTRYCZNE ZJAWISKA FOTOELEKTRYCZNE ZEWNĘTRZNE, WEWNETRZNE I ICH RÓŻNE ZASTOSOWANIA ZJAWISKO FOTOELEKTRYCZNE ZEWNĘTRZNE Światło padając na powierzchnię materiału wybija z niej elektron 1 ZJAWISKO FOTOELEKTRYCZNE

Bardziej szczegółowo

Sprawozdanie z laboratorium proekologicznych źródeł energii

Sprawozdanie z laboratorium proekologicznych źródeł energii P O L I T E C H N I K A G D A Ń S K A Sprawozdanie z laboratorium proekologicznych źródeł energii Temat: Wyznaczanie charakterystyk prądowo-napięciowych modułu ogniw fotowoltaicznych i sprawności konwersji

Bardziej szczegółowo

Rys.2. Schemat działania fotoogniwa.

Rys.2. Schemat działania fotoogniwa. Ćwiczenie E16 BADANIE NATĘŻENIA PRĄDU FOTOELEKTRYCZNEGO W ZALEŻNOŚCI OD ODLEGŁOŚCI ŹRÓDŁA ŚWIATŁA Cel: Celem ćwiczenia jest zbadanie zależności natężenia prądu generowanego światłem w fotoogniwie od odległości

Bardziej szczegółowo

Ćwiczenie 134. Ogniwo słoneczne

Ćwiczenie 134. Ogniwo słoneczne Ćwiczenie 134 Ogniwo słoneczne Cel ćwiczenia Zapoznanie się z różnymi rodzajami półprzewodnikowych ogniw słonecznych. Wyznaczenie charakterystyki prądowo-napięciowej i sprawności przetwarzania energii

Bardziej szczegółowo

IV. Wyznaczenie parametrów ogniwa słonecznego

IV. Wyznaczenie parametrów ogniwa słonecznego 1 V. Wyznaczenie parametrów ogniwa słonecznego Cel ćwiczenia: 1.Zbadanie zależności fotoprądu zwarcia i fotonapięcia zwarcia od natężenia oświetlenia. 2. Wyznaczenie sprawności energetycznej baterii słonecznej.

Bardziej szczegółowo

1. Właściwości materiałów półprzewodnikowych 2. Półprzewodniki samoistne i domieszkowane 3. Złącze pn 4. Polaryzacja złącza

1. Właściwości materiałów półprzewodnikowych 2. Półprzewodniki samoistne i domieszkowane 3. Złącze pn 4. Polaryzacja złącza Elementy półprzewodnikowe i układy scalone 1. Właściwości materiałów półprzewodnikowych 2. Półprzewodniki samoistne i domieszkowane 3. Złącze pn 4. Polaryzacja złącza ELEKTRONKA Jakub Dawidziuk sobota,

Bardziej szczegółowo

Ogniwa fotowoltaiczne

Ogniwa fotowoltaiczne Ogniwa fotowoltaiczne Efekt fotowoltaiczny: Ogniwo słoneczne Symulacja http://www.redarc.com.au/solar/about/solarpanels/ Historia 1839: Odkrycie efektu fotowoltaicznego przez francuza Alexandre-Edmond

Bardziej szczegółowo

Fotowoltaika i sensory w proekologicznym rozwoju Małopolski

Fotowoltaika i sensory w proekologicznym rozwoju Małopolski Fotowoltaika i sensory w proekologicznym rozwoju Małopolski Photovoltaic and Sensors in Environmental Development of Malopolska Region ZWIĘKSZANIE WYDAJNOŚCI SYSTEMÓW FOTOWOLTAICZNYCH Plan prezentacji

Bardziej szczegółowo

Ciała stałe. Literatura: Halliday, Resnick, Walker, t. 5, rozdz. 42 Orear, t. 2, rozdz. 28 Young, Friedman, rozdz

Ciała stałe. Literatura: Halliday, Resnick, Walker, t. 5, rozdz. 42 Orear, t. 2, rozdz. 28 Young, Friedman, rozdz Ciała stałe Podstawowe własności ciał stałych Struktura ciał stałych Przewodnictwo elektryczne teoria Drudego Poziomy energetyczne w krysztale: struktura pasmowa Metale: poziom Fermiego, potencjał kontaktowy

Bardziej szczegółowo

zasada działania, prawidłowy dobór wielkości instalacji, usytuowanie instalacji, produkcja energii w cyklu rocznym dr inż. Andrzej Wiszniewski

zasada działania, prawidłowy dobór wielkości instalacji, usytuowanie instalacji, produkcja energii w cyklu rocznym dr inż. Andrzej Wiszniewski Fotowoltaika w teorii zasada działania, prawidłowy dobór wielkości instalacji, usytuowanie instalacji, produkcja energii w cyklu rocznym dr inż. Andrzej Wiszniewski Technicznie dostępny potencjał energii

Bardziej szczegółowo

Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE. Wpływ oświetlenia na półprzewodnik oraz na złącze p-n

Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE. Wpływ oświetlenia na półprzewodnik oraz na złącze p-n Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDA DZENNE LABORATORUM PRZYRZĄDÓW PÓŁPRZEWODNKOWYCH Ćwiczenie nr 5 Wpływ oświetlenia na półprzewodnik oraz na złącze p-n. Zagadnienia

Bardziej szczegółowo

Repeta z wykładu nr 6. Detekcja światła. Plan na dzisiaj. Metal-półprzewodnik

Repeta z wykładu nr 6. Detekcja światła. Plan na dzisiaj. Metal-półprzewodnik Repeta z wykładu nr 6 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 - kontakt omowy

Bardziej szczegółowo

Urządzenia półprzewodnikowe

Urządzenia półprzewodnikowe Urządzenia półprzewodnikowe Diody: - prostownicza - Zenera - pojemnościowa - Schottky'ego - tunelowa - elektroluminescencyjna - LED - fotodioda półprzewodnikowa Tranzystory - tranzystor bipolarny - tranzystor

Bardziej szczegółowo

Produkcja modułu fotowoltaicznego (PV)

Produkcja modułu fotowoltaicznego (PV) Czyste energie Wykład 3 Produkcja modułu fotowoltaicznego (PV) dr inż. Janusz Teneta C-3 pok. 8 (parter), e-mail: romus@agh.edu.pl Wydział EAIiIB Katedra Automatyki i Inżynierii Biomedycznej AGH Kraków

Bardziej szczegółowo

Złącza p-n, zastosowania. Własności złącza p-n Dioda LED Fotodioda Dioda laserowa Tranzystor MOSFET

Złącza p-n, zastosowania. Własności złącza p-n Dioda LED Fotodioda Dioda laserowa Tranzystor MOSFET Złącza p-n, zastosowania Własności złącza p-n Dioda LED Fotodioda Dioda laserowa Tranzystor MOSFET Złącze p-n, polaryzacja złącza, prąd dyfuzyjny (rekombinacyjny) Elektrony z obszaru n na złączu dyfundują

Bardziej szczegółowo

Wykład 7. Złącza półprzewodnikowe - przyrządy półprzewodnikowe

Wykład 7. Złącza półprzewodnikowe - przyrządy półprzewodnikowe Wykład 7 Złącza półprzewodnikowe - przyrządy półprzewodnikowe Złącze p-n Złącze p-n Tworzy się złącze p-n E Złącze po utworzeniu Pole elektryczne na styku dwóch półprzewodników powoduje, że prąd łatwo

Bardziej szczegółowo

LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH

LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE Ćwiczenie nr 8 Wpływ oświetlenia na półprzewodnik oraz na złącze p-n I. Zagadnienia do samodzielnego przygotowania

Bardziej szczegółowo

Wprowadzenie do energii słonecznej i fotowoltaiki

Wprowadzenie do energii słonecznej i fotowoltaiki Czyste Energie Wykład 1 Wprowadzenie do energii słonecznej i fotowoltaiki dr inż. Janusz Teneta C-3 pok. 8 (parter), e-mail: romus@agh.edu.pl Wydział EAIiE Katedra Automatyki AGH Kraków 2010 Geometria

Bardziej szczegółowo

WYZNACZANIE STAŁEJ PLANCKA Z POMIARU CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH DIOD ELEKTROLUMINESCENCYJNYCH. Irena Jankowska-Sumara, Magdalena Krupska

WYZNACZANIE STAŁEJ PLANCKA Z POMIARU CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH DIOD ELEKTROLUMINESCENCYJNYCH. Irena Jankowska-Sumara, Magdalena Krupska 1 II PRACOWNIA FIZYCZNA: FIZYKA ATOMOWA Z POMIARU CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH DIOD ELEKTROLUMINESCENCYJNYCH Irena Jankowska-Sumara, Magdalena Krupska Cel ćwiczenia Celem ćwiczenia jest wyznaczenie

Bardziej szczegółowo

Przejścia promieniste

Przejścia promieniste Przejście promieniste proces rekombinacji elektronu i dziury (przejście ze stanu o większej energii do stanu o energii mniejszej), w wyniku którego następuje emisja promieniowania. E Długość wyemitowanej

Bardziej szczegółowo

Aleksandra Banaś Dagmara Zemła WPPT/OPTOMETRIA

Aleksandra Banaś Dagmara Zemła WPPT/OPTOMETRIA Aleksandra Banaś Dagmara Zemła WPPT/OPTOMETRIA B V B C ZEWNĘTRZNE POLE ELEKTRYCZNE B C B V B D = 0 METAL IZOLATOR PRZENOSZENIE ŁADUNKÓW ELEKTRYCZNYCH B C B D B V B D PÓŁPRZEWODNIK PODSTAWOWE MECHANIZMY

Bardziej szczegółowo

Fotoelementy. Symbole graficzne półprzewodnikowych elementów optoelektronicznych: a) fotoogniwo b) fotorezystor

Fotoelementy. Symbole graficzne półprzewodnikowych elementów optoelektronicznych: a) fotoogniwo b) fotorezystor Fotoelementy Wstęp W wielu dziedzinach techniki zachodzi potrzeba rejestracji, wykrywania i pomiaru natężenia promieniowania elektromagnetycznego o różnych długościach fal, w tym i promieniowania widzialnego,

Bardziej szczegółowo

E12. Wyznaczanie parametrów użytkowych fotoogniwa

E12. Wyznaczanie parametrów użytkowych fotoogniwa 1/5 E12. Wyznaczanie parametrów użytkowych fotoogniwa Celem ćwiczenia jest poznanie podstaw zjawiska konwersji energii świetlnej na elektryczną, zasad działania fotoogniwa oraz wyznaczenie jego podstawowych

Bardziej szczegółowo

Repeta z wykładu nr 5. Detekcja światła. Plan na dzisiaj. Złącze p-n. złącze p-n

Repeta z wykładu nr 5. Detekcja światła. Plan na dzisiaj. Złącze p-n. złącze p-n Repeta z wykładu nr 5 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:

Bardziej szczegółowo

Widmo promieniowania elektromagnetycznego Czułość oka człowieka

Widmo promieniowania elektromagnetycznego Czułość oka człowieka dealna charakterystyka prądowonapięciowa złącza p-n ev ( V ) = 0 exp 1 kbt Przebicie złącza przy polaryzacji zaporowej Przebicie Zenera tunelowanie elektronów przez wąską warstwę zaporową w złączu silnie

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

IX Lubelskie Targi Energetyczne ENERGETICS 2016 Lublin, dnia 16 listopada 2016 roku

IX Lubelskie Targi Energetyczne ENERGETICS 2016 Lublin, dnia 16 listopada 2016 roku IX Lubelskie Targi Energetyczne ENERGETICS 2016 Lublin, dnia 16 listopada 2016 roku Budowa ogniw fotowoltaicznych różnych generacji i ich wykorzystanie Stanisław Tryka Instytut Przyrodniczo-Techniczny

Bardziej szczegółowo

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. DUALIZM ŚWIATŁA fala interferencja, dyfrakcja, polaryzacja,... kwant, foton promieniowanie ciała doskonale

Bardziej szczegółowo

SOLARNA. Moduły fotowoltaiczne oraz kompletne systemy przetwarzające energię słoneczną. EKOSERW BIS Sp. j. Mirosław Jedrzejewski, Zbigniew Majchrzak

SOLARNA. Moduły fotowoltaiczne oraz kompletne systemy przetwarzające energię słoneczną. EKOSERW BIS Sp. j. Mirosław Jedrzejewski, Zbigniew Majchrzak Moduły fotowoltaiczne oraz kompletne systemy przetwarzające energię słoneczną ENERGIA SOLARNA Fotowoltaika Do Ziemi dociera promieniowanie słoneczne zbliżone widmowo do promieniowania ciała doskonale czarnego

Bardziej szczegółowo

!!!DEL są źródłami światła niespójnego.

!!!DEL są źródłami światła niespójnego. Dioda elektroluminescencyjna DEL Element czynny DEL to złącze p-n. Gdy zostanie ono spolaryzowane w kierunku przewodzenia, to w obszarze typu p, w warstwie o grubości rzędu 1µm, wytwarza się stan inwersji

Bardziej szczegółowo

WPŁYW POSTĘPU TECHNICZNEGO NA WYDAJNOŚĆ SYSTEMÓW FOTOWOLTAICZNYCH ML SYSTEM S.A.

WPŁYW POSTĘPU TECHNICZNEGO NA WYDAJNOŚĆ SYSTEMÓW FOTOWOLTAICZNYCH ML SYSTEM S.A. WPŁYW POSTĘPU TECHNICZNEGO NA WYDAJNOŚĆ SYSTEMÓW FOTOWOLTAICZNYCH ML SYSTEM S.A. Anna Warzybok Z-ca Dyrektora ds. Badań i Rozwoju ML SYSTEM S. A. Rzeszów, 25.04.2017 ML SYSTEM S.A. ML SYSTEM S.A. ZAPOTRZEBOWANIE

Bardziej szczegółowo

I. DIODA ELEKTROLUMINESCENCYJNA

I. DIODA ELEKTROLUMINESCENCYJNA 1 I. DIODA LKTROLUMINSCNCYJNA Cel ćwiczenia : Pomiar charakterystyk elektrycznych diod elektroluminescencyjnych. Zagadnienia: misja spontaniczna, złącze p-n, zasada działania diody elektroluminescencyjnej

Bardziej szczegółowo

Wzrost pseudomorficzny. Optyka nanostruktur. Mody wzrostu. Ekscyton. Sebastian Maćkowski

Wzrost pseudomorficzny. Optyka nanostruktur. Mody wzrostu. Ekscyton. Sebastian Maćkowski Wzrost pseudomorficzny Optyka nanostruktur Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 naprężenie

Bardziej szczegółowo

Równanie Shockley a. Potencjał wbudowany

Równanie Shockley a. Potencjał wbudowany Wykład VI Diody Równanie Shockley a Potencjał wbudowany 2 I-V i potencjał wbudowany Temperatura 77K a) Ge E g =0.7eV b) Si E g =1.14eV c) GaAs E g =1.5eV d) GaAsP E g =1.9eV qv 0 (0. 5 0. 7)E g 3 I-V i

Bardziej szczegółowo

Instalacje fotowoltaiczne

Instalacje fotowoltaiczne Instalacje fotowoltaiczne mgr inż. Janusz Niewiadomski Eurotherm Technika Grzewcza Energia słoneczna - parametry 1 parametr : Promieniowanie słoneczne całkowite W/m 2 1000 W/m 2 700 W/m 2 300 W/m 2 50

Bardziej szczegółowo

Badanie ogniwa fotowoltaicznego

Badanie ogniwa fotowoltaicznego Badanie ogniwa fotowoltaicznego Cel ćwiczenia Zapoznanie się z podstawowymi wiadomościami na temat ogniw fotowoltaicznych oraz wyznaczenie: zależności prądu fotoogniwa od natężenia oświetlenia, charakterystyk

Bardziej szczegółowo

Produkcja energii z OZE w Polsce

Produkcja energii z OZE w Polsce Czyste energie Wykład 2 Wprowadzenie do energii słonecznej i fotowoltaiki dr inż. Janusz Teneta C-3 pok. 8 (parter), e-mail: romus@agh.edu.pl Wydział EAIiIB Katedra Automatyki i Inżynierii Biomedycznej

Bardziej szczegółowo

i elementy z półprzewodników homogenicznych część II

i elementy z półprzewodników homogenicznych część II Półprzewodniki i elementy z półprzewodników homogenicznych część II Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego

Bardziej szczegółowo

Fizyka i technologia złącza PN. Adam Drózd 25.04.2006r.

Fizyka i technologia złącza PN. Adam Drózd 25.04.2006r. Fizyka i technologia złącza P Adam Drózd 25.04.2006r. O czym będę mówił: Półprzewodnik definicja, model wiązań walencyjnych i model pasmowy, samoistny i niesamoistny, domieszki donorowe i akceptorowe,

Bardziej szczegółowo

IX. DIODY PÓŁPRZEWODNIKOWE Janusz Adamowski

IX. DIODY PÓŁPRZEWODNIKOWE Janusz Adamowski IX. DIODY PÓŁPRZEWODNIKOWE Janusz Adamowski 1 1 Dioda na złączu p n Zgodnie z wynikami, otrzymanymi na poprzednim wykładzie, natężenie prądu I przepływającego przez złącze p n opisane jest wzorem Shockleya

Bardziej szczegółowo

Badanie ogniw fotowoltaicznych

Badanie ogniw fotowoltaicznych POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Badanie ogniw fotowoltaicznych Laboratorium Energetyki Rozproszonej i Odnawialnych Źródeł Energii

Bardziej szczegółowo

Repeta z wykładu nr 8. Detekcja światła. Przypomnienie. Efekt fotoelektryczny

Repeta z wykładu nr 8. Detekcja światła. Przypomnienie. Efekt fotoelektryczny Repeta z wykładu nr 8 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 przegląd detektorów

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 13 Temat: Biostymulacja laserowa Istotą biostymulacji laserowej jest napromieniowanie punktów akupunkturowych ciągłym, monochromatycznym

Bardziej szczegółowo

Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych.

Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych. Politechnika Łódzka Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych Niekonwencjonalne źródła energii Laboratorium Ćwiczenie 1

Bardziej szczegółowo

Struktura pasmowa ciał stałych

Struktura pasmowa ciał stałych Struktura pasmowa ciał stałych dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Spis treści 1. Pasmowa teoria ciała stałego 2 1.1. Wstęp do teorii..............................................

Bardziej szczegółowo

E12. Wyznaczanie parametrów użytkowych fotoogniwa

E12. Wyznaczanie parametrów użytkowych fotoogniwa E12. Wyznaczanie parametrów użytkowych fotoogniwa 1/5 E12. Wyznaczanie parametrów użytkowych fotoogniwa Celem ćwiczenia jest zapoznanie z podstawami zjawiska konwersji energii świetlnej na elektryczną,

Bardziej szczegółowo

Elektryczne własności ciał stałych

Elektryczne własności ciał stałych Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności elektryczne trzeba zdefiniować kilka wielkości Oporność właściwa (albo przewodność) ładunek [C] = 1/

Bardziej szczegółowo

Złącze p-n powstaje wtedy, gdy w krysztale półprzewodnika wytworzone zostaną dwa obszary o odmiennym typie przewodnictwa p i n. Nośniki większościowe

Złącze p-n powstaje wtedy, gdy w krysztale półprzewodnika wytworzone zostaną dwa obszary o odmiennym typie przewodnictwa p i n. Nośniki większościowe Diody Dioda jest to przyrząd elektroniczny z dwiema elektrodami mający niesymetryczna charakterystykę prądu płynącego na wyjściu w funkcji napięcia na wejściu. Symbole graficzne diody, półprzewodnikowej

Bardziej szczegółowo

Wykład V Złącze P-N 1

Wykład V Złącze P-N 1 Wykład V Złącze PN 1 Złącze pn skokowe i liniowe N D N A N D N A p n p n zjonizowane akceptory + zjonizowane donory x + x Obszar zubożony Obszar zubożony skokowe liniowe 2 Złącze pn skokowe N D N A p n

Bardziej szczegółowo

Repeta z wykładu nr 4. Detekcja światła. Dygresja. Plan na dzisiaj

Repeta z wykładu nr 4. Detekcja światła. Dygresja. Plan na dzisiaj Repeta z wykładu nr 4 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:

Bardziej szczegółowo

Ogniwa fotowoltaiczne wykorzystanie w OZE

Ogniwa fotowoltaiczne wykorzystanie w OZE Ogniwa fotowoltaiczne wykorzystanie w OZE Fizyka IV Michał Trojgo, gr 1.3 Energia Słońca Do górnych warstw atmosfery Ziemi dociera promieniowanie słoneczne o natężeniu napromieniowania 1366,1 W/m². Oznacza

Bardziej szczegółowo

Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki

Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki Przewodność elektryczna ciał stałych Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności

Bardziej szczegółowo

Półprzewodniki. złącza p n oraz m s

Półprzewodniki. złącza p n oraz m s złącza p n oraz m s Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Publikacja współfinansowana ze środków Unii

Bardziej szczegółowo

Ć W I C Z E N I E N R E-19

Ć W I C Z E N I E N R E-19 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA ELEKTRYCZNOŚCI I MAGNETYZMU Ć W I C Z E N I E N R E-19 WYZNACZANIE CHARAKTERYSTYKI PRĄDOWO-NAPIĘCIOWEJ,

Bardziej szczegółowo

LABORATORIUM INŻYNIERII MATERIAŁOWEJ

LABORATORIUM INŻYNIERII MATERIAŁOWEJ Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM INŻYNIERII MATERIAŁOWEJ Podstawy

Bardziej szczegółowo

Część 2. Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych

Część 2. Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych Część 2 Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 23 Półprzewodniki

Bardziej szczegółowo

W1. Właściwości elektryczne ciał stałych

W1. Właściwości elektryczne ciał stałych W1. Właściwości elektryczne ciał stałych Względna zmiana oporu właściwego przy wzroście temperatury o 1 0 C Materiał Opór właściwy [m] miedź 1.68*10-8 0.0061 żelazo 9.61*10-8 0.0065 węgiel (grafit) 3-60*10-3

Bardziej szczegółowo

NOWE TECHNOLOGIE w FOTOWOLTAICE

NOWE TECHNOLOGIE w FOTOWOLTAICE NOWE TECHNOLOGIE w FOTOWOLTAICE Do wykorzystania mamy 46-51% energii słońca, która do nas dociera po odbiciu przez atmosferę, chmury i samą powierzchnię ziemi. W Polsce, rocznie suma energii słonecznej

Bardziej szczegółowo

W książce tej przedstawiono:

W książce tej przedstawiono: Elektronika jest jednym z ważniejszych i zarazem najtrudniejszych przedmiotów wykładanych na studiach technicznych. Co istotne, dogłębne zrozumienie jej prawideł, jak również opanowanie pewnej wiedzy praktycznej,

Bardziej szczegółowo

Teoria pasmowa. Anna Pietnoczka

Teoria pasmowa. Anna Pietnoczka Teoria pasmowa Anna Pietnoczka Opis struktury pasmowej we współrzędnych r, E Zmiana stanu elektronów przy zbliżeniu się atomów: (a) schemat energetyczny dla atomów sodu znajdujących się w odległościach

Bardziej szczegółowo

Spis treści. Wykaz ważniejszych oznaczeń i jednostek 13 Przedmowa 17 Wstęp Odnawialne źródła energii 72

Spis treści. Wykaz ważniejszych oznaczeń i jednostek 13 Przedmowa 17 Wstęp Odnawialne źródła energii 72 Spis treści Wykaz ważniejszych oznaczeń i jednostek 13 Przedmowa 17 Wstęp 19 1_ Charakterystyka obecnego stanu środowiska 21.1. Wprowadzenie 21.2. Energetyka konwencjonalna 23.2.1. Paliwa naturalne, zasoby

Bardziej szczegółowo

Złącze p-n: dioda. Przewodnictwo półprzewodników. Dioda: element nieliniowy

Złącze p-n: dioda. Przewodnictwo półprzewodników. Dioda: element nieliniowy Złącze p-n: dioda Półprzewodniki Przewodnictwo półprzewodników Dioda Dioda: element nieliniowy Przewodnictwo kryształów Atomy dyskretne poziomy energetyczne (stany energetyczne); określone energie elektronów

Bardziej szczegółowo

Elektryczne własności ciał stałych

Elektryczne własności ciał stałych Elektryczne własności ciał stałych Izolatory (w temperaturze pokojowej) w praktyce - nie przewodzą prądu elektrycznego. Ich oporność jest b. duża. Np. diament ma oporność większą od miedzi 1024 razy Metale

Bardziej szczegółowo

Elementy optoelektroniczne. Przygotował: Witold Skowroński

Elementy optoelektroniczne. Przygotował: Witold Skowroński Elementy optoelektroniczne Przygotował: Witold Skowroński Plan prezentacji Wstęp Diody świecące LED, Wyświetlacze LED Fotodiody Fotorezystory Fototranzystory Transoptory Dioda LED Dioda LED z elektrycznego

Bardziej szczegółowo

Pomiary fotometryczne - badanie właściwości fizycznych fotoogniw

Pomiary fotometryczne - badanie właściwości fizycznych fotoogniw POLITECHNIKA WROCŁAWSKA Wydział PPT KATEDRA INŻYNIERII BIOMEDYCZNEJ Laboratorium PODSTAWY BIOFOTONIKI Ćwiczenie nr 4 Pomiary fotometryczne - badanie właściwości fizycznych fotoogniw 1. WSTĘP TEORETYCZNY

Bardziej szczegółowo

Marek Lipiński WPŁYW WŁAŚCIWOŚCI FIZYCZNYCH WARSTW I OBSZARÓW PRZYPOWIERZCHNIOWYCH NA PARAMETRY UŻYTKOWE KRZEMOWEGO OGNIWA SŁONECZNEGO

Marek Lipiński WPŁYW WŁAŚCIWOŚCI FIZYCZNYCH WARSTW I OBSZARÓW PRZYPOWIERZCHNIOWYCH NA PARAMETRY UŻYTKOWE KRZEMOWEGO OGNIWA SŁONECZNEGO Marek Lipiński WPŁYW WŁAŚCIWOŚCI FIZYCZNYCH WARSTW I OBSZARÓW PRZYPOWIERZCHNIOWYCH NA PARAMETRY UŻYTKOWE KRZEMOWEGO OGNIWA SŁONECZNEGO Instytut Metalurgii i Inżynierii Materiałowej im. Aleksandra Krupkowskiego

Bardziej szczegółowo

Ćwiczenie 1 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH

Ćwiczenie 1 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH LABORAORUM ELEKRONK Ćwiczenie 1 Parametry statyczne diod półprzewodnikowych Cel ćwiczenia Celem ćwiczenia jest poznanie statycznych charakterystyk podstawowych typów diod półprzewodnikowych oraz zapoznanie

Bardziej szczegółowo

SYMBOLE GRAFICZNE. Tyrystory. Struktura Charakterystyka Opis

SYMBOLE GRAFICZNE. Tyrystory. Struktura Charakterystyka Opis SYMBOLE GRAFICZNE y Nazwa triasowy blokujący wstecznie SCR asymetryczny ASCR Symbol graficzny Struktura Charakterystyka Opis triasowy blokujący wstecznie SCR ma strukturę czterowarstwową pnpn lub npnp.

Bardziej szczegółowo

Instytut Technologii Materiałów Elektronicznych

Instytut Technologii Materiałów Elektronicznych WPŁYW TRAWIENIA CHEMICZNEGO NA PARAMETRY ELEKTROOPTYCZNE KRAWĘDZIOWYCH OGNIW FOTOWOLTAICZNYCH Joanna Kalbarczyk, Marian Teodorczyk, Elżbieta Dąbrowska, Konrad Krzyżak, Jerzy Sarnecki kontakt srebrowy kontakt

Bardziej szczegółowo

MINIELEKTROWNIE SŁONECZNE NA DACHACH SZKÓŁ W GM. GUBIN I BRODY

MINIELEKTROWNIE SŁONECZNE NA DACHACH SZKÓŁ W GM. GUBIN I BRODY Minielektrownie słoneczne zostały przygotowane dzięki współpracy Fundacji Greenpeace z samorządem i dyrekcją szkół. Wszystkie z zainstalowanych urządzeń należą do jednych z najnowocześniejszych i posiadają

Bardziej szczegółowo

Elementy optoelektroniczne. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego.

Elementy optoelektroniczne. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Elementy optoelektroniczne Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Półprzewodnikowe elementy optoelektroniczne Są one elementami sterowanymi natężeniem

Bardziej szczegółowo

Zaawansowane systemy fotowoltaiczne. Wprowadzenie do energii słonecznej i fotowoltaiki

Zaawansowane systemy fotowoltaiczne. Wprowadzenie do energii słonecznej i fotowoltaiki J. TENETA Wykłady "Zaawansowane systemy fotowoltaiczne" AGH 2015 1 Zaawansowane systemy fotowoltaiczne Wykład 1 Wprowadzenie do energii słonecznej i fotowoltaiki dr inż. Janusz Teneta C-3 pok. 8 (parter),

Bardziej szczegółowo

Czym jest prąd elektryczny

Czym jest prąd elektryczny Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,

Bardziej szczegółowo

Co to jest fotowoltaika? Okiem praktyka.

Co to jest fotowoltaika? Okiem praktyka. Co to jest fotowoltaika? Okiem praktyka. Fotowoltaika greckie słowo photos światło nazwisko włoskiego fizyka Allessandro Volta odkrywcy elektryczności Zjawisko pozyskiwania energii z przetworzonego światła

Bardziej szczegółowo

Ćwiczenie 3 WPŁYW NASŁONECZNIENIA I TECHNOLOGII PRODUKCJI KRZEMOWYCH OGNIW FOTOWOLTAICZNYCH NA ICH WŁASNOŚCI EKSPLOATACYJNE

Ćwiczenie 3 WPŁYW NASŁONECZNIENIA I TECHNOLOGII PRODUKCJI KRZEMOWYCH OGNIW FOTOWOLTAICZNYCH NA ICH WŁASNOŚCI EKSPLOATACYJNE Ćwiczenie WPŁYW NASŁONECZNIENIA I TECHNOLOGII PRODUKCJI KRZEMOWYCH OGNIW FOTOWOLTAICZNYCH NA ICH WŁASNOŚCI EKSPLOATACYJNE Opis stanowiska pomiarowego Stanowisko do wyznaczania charakterystyk prądowo napięciowych

Bardziej szczegółowo

EUROPEJSKIE SŁONECZNE DNI ENERGIA SŁOŃCA FOTOWOLTAIKA TECHNOLOGIE, OPŁACALNOSĆ, REALIZACJE Olsztyn 9 MAJA 2013 R.

EUROPEJSKIE SŁONECZNE DNI ENERGIA SŁOŃCA FOTOWOLTAIKA TECHNOLOGIE, OPŁACALNOSĆ, REALIZACJE Olsztyn 9 MAJA 2013 R. EUROPEJSKIE SŁONECZNE DNI ENERGIA SŁOŃCA FOTOWOLTAIKA TECHNOLOGIE, OPŁACALNOSĆ, REALIZACJE Olsztyn 9 MAJA 2013 R. Fotowoltaika - stan obecny oraz kierunki rozwoju w Polsce oraz UE Adam Cenian IMP PAN Słońce

Bardziej szczegółowo

Przewodność elektryczna półprzewodników

Przewodność elektryczna półprzewodników Przewodność elektryczna półprzewodników p koncentracja dziur n koncentracja elektronów Domieszkowanie półprzewodników donory i akceptory 1 Koncentracja nośników ładunku w półprzewodniku domieszkowanym

Bardziej szczegółowo

Badanie baterii słonecznych w zależności od natężenia światła

Badanie baterii słonecznych w zależności od natężenia światła POLITECHNIKA WARSZAWSKA Instytut Elektroenergetyki, Zakład Elektrowni i Gospodarki Elektroenergetycznej Przemiany energii laboratorium Ćwiczenie Badanie baterii słonecznych w zależności od natężenia światła

Bardziej szczegółowo

INSTRUKCJA LABORATORYJNA 11-FR. OBSŁUGA APLIKACJI ZINTEGROWANEJ Z INSTALACJĄ FOTOWOLTAICZNĄ O MOCY 2 kwp

INSTRUKCJA LABORATORYJNA 11-FR. OBSŁUGA APLIKACJI ZINTEGROWANEJ Z INSTALACJĄ FOTOWOLTAICZNĄ O MOCY 2 kwp LABORATORIUM ODNAWIALNYCH ŹRÓDEŁ ENERGII Katedra Aparatury i Maszynoznawstwa Chemicznego Wydział Chemiczny Politechniki Gdańskiej INSTRUKCJA LABORATORYJNA 11-FR OBSŁUGA APLIKACJI ZINTEGROWANEJ Z INSTALACJĄ

Bardziej szczegółowo

Organiczne ogniwa słonecznes. Ogniwa półprzewodnikowe. p przewodnikowe zasada ania. Charakterystyki fotoogniwa

Organiczne ogniwa słonecznes. Ogniwa półprzewodnikowe. p przewodnikowe zasada ania. Charakterystyki fotoogniwa j Elektronika plastikowa i organiczna Organiczne ogniwa słonecznes Ogniwa półprzewodnikowe p przewodnikowe zasada działania ania Charakterystyki fotoogniwa współczynnik wypełnienia, wydajność Moc w obwodzie

Bardziej szczegółowo

Zakres wykładu. Detekcja światła. Zakres wykładu. Zakres wykładu

Zakres wykładu. Detekcja światła. Zakres wykładu. Zakres wykładu Zakres wykładu Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje: czwartek

Bardziej szczegółowo