EKOLOGICZNE ŹRÓDŁA ENERGII

Wielkość: px
Rozpocząć pokaz od strony:

Download "EKOLOGICZNE ŹRÓDŁA ENERGII"

Transkrypt

1 II Krajowa Konferencja Naukowo-Techniczna EKOLOGIA W ELEKTRONICE Przemysłowy Instytut Elektroniki Warszawa, EKOLOGICZNE ŹRÓDŁA ENERGII Włodzimierz MOCNY Przemysłowy Instytut Elektroniki Warszawa, ul. Długa 44/50, w. 270, wmocny@pie.edu.pl W artykule zostały omówione zagadnienia związane z przetwarzaniem energii słonecznej w energią elektryczną. Omówiony został również system pomiarowy przeznaczony do określania jakości materiałów używanych przy produkcji ogniw słonecznych. Badana próbka jest oświetlana światłem monochromatycznym. Dla różnych długości fali promieniowania padającego mierzony jest prąd zwarcia fotoogniwa. Na tej podstawie wyliczana jest droga dyfuzji. Metoda pozwala ocenić gęstość defektów i poziom zanieczyszczeń w badanej próbce. 1. POZYSKIWANIE ENERGII SŁONECZNEJ Rozwój społeczny i gospodarczy każdego państwa wiąże się ze zwiększonym zapotrzebowaniem na energię elektryczną. Z tego powodu światowa produkcja surowców energetycznych systematycznie wzrasta. W krajach wysoko rozwiniętych udało się utrzymać zużycie energii na tym samym poziomie. Było to możliwe dzięki oszczędzaniu energii i polepszaniu współczynnika sprawności przy jej wytwarzaniu. Według przewidywań do pokrycia zapotrzebowania na energię elektryczną wybieranych będzie wiele dróg: umocni się korzystanie z kopalnych źródeł energii, w coraz szerszym zakresie korzystać się będzie z alternatywnych źródeł energii. Klasyczne źródła ropy naftowej wystarczą na 100 lat. Złoża ropy w piaskach i łupkach wystarczą na kolejne 100 lat. Złoża węgla kamiennego mogą być eksploatowane przez 1000 lat. Do tej pory do wytwarzania energii elektrycznej wykorzystywano głównie energię powstającą podczas spalanie węgla. Dziś wiemy, że istnieją inne źródła energii, z których możemy korzystać. 82

2 Perspektywy wyczerpania się zapasów paliw kopalnych oraz obawy o stan środowiska naturalnego człowieka znacznie zwiększyły zainteresowanie odnawialnymi źródłami energii. Światowe zużycie energii Światowe złoża gazu Światowe złoża ropy Światowe złoża uranu Światowe złoża węgla Energia słoneczna Zużyta w fotosyntezie Rys. 1. Światowe zasoby energetyczne W konsekwencji nastąpił poważny wzrostu ich zastosowań w wielu krajach. Od roku 1990 ilość energii (ciepła i energii elektrycznej) wytwarzanej z energii promieniowania słonecznego wzrosła ponad dwukrotnie, a z energii wiatru czterokrotnie. Po podpisaniu Protokołu z Kioto w grudniu 1997 roku odnawialne źródła energii weszły w nowy i ważny etap rozwoju. Technologie odnawialnych źródeł energii rozwinęły się już do takiego stopnia, że mogą konkurować z konwencjonalnymi systemami energetycznymi. Odnawialne źródła energii są źródłami lokalnymi. Mogą one: - zwiększyć poziom bezpieczeństwa energetycznego zmniejszając eksport paliw kopalnych, - stworzyć nowe miejsca pracy, szczególnie w małych i średnich przedsiębiorstwach, - promować rozwój regionalny. Modułowy charakter większości technologii odnawialnych źródeł energii pozwala na ich stopniową rozbudowę w miarę potrzeb, co ułatwia ich finansowanie. Pamiętać należy również o olbrzymich korzyściach dla środowiska naturalnego człowieka płynących ze stosowania tych technologii. Moduł Układy regulacji Falownik Bateria akumulatorów Ogniwo Zespół modułów Sieć energetyczna Licznik Gniazdo zasilające Rys. 2. Przykładowe rozwiązanie systemu fotowoltaicznego System fotowoltaiczny składa się z modułów fotowoltaicznych, oraz elementów dostosowujących wytwarzany w fotoogniwach prąd stały do potrzeb zasilanych urządzeń. Jeżeli system jest przewidziany do dostarczania energii elektrycznej w nocy, 83

3 konieczne jest stosowanie odpowiedniego układu magazynowania energii (akumulatory) wyprodukowanej w ciągu dnia. Jeżeli system zasila urządzenie stałoprądowe potrzebny jest kontroler napięcia. Do zasilania z systemu fotowoltaicznego urządzeń zmiennoprądowych konieczne jest użycie falownika. Najpowszechniejszym materiałem używanym do produkcji ogniw słonecznych jest krzem. Największe sprawności przetwarzania promieniowania słonecznego (do 30 %) uzyskuje się z ogniw wytworzonych z arsenku galu (GaAs), ale jednocześnie ogniwa te są najdroższe. Typowe fotoogniwo to płytka półprzewodnikowa z krzemu krystalicznego lub polikrystalicznego. W materiale płytki uformowana jest bariera potencjału w postaci złącza p-n. Grubość płytek zawiera się w granicach mikrometrów. Na przednią i tylną stronę płytki naniesione są metaliczne połączenia. Stanowią kontakty przewodzące prąd wytworzony w fotoogniwie. a) b) Rys. 3. Płytka fotoogniwa a) krzem monokrystaliczny b) krzem polikrystaliczny Ogniwa z krzemu monokrystalicznego wykonywane są z płytek o kształcie okrągłym, a następnie przycinane na kwadraty dla zwiększenia upakowania na powierzchni modułu. Monokrystaliczne fotoogniwa wykazują najwyższe sprawności przetwarzania energii ze wszystkich ogniw krzemowych. Są jednak najdroższe w produkcji. W badaniach laboratoryjnych pojedyncze ogniwa osiągają sprawności rzędu 24%. Ogniwa produkowane na skalę masową mają sprawności około 17%. Polikrystaliczne fotoogniwa krzemowe wykonane są z dużych prostopadłościennych bloków krzemu o dużych ziarnach. Bloki te są cięte na prostokątne płytki, w których również formowana jest bariera potencjału. Polikrystaliczne fotoogniwa są mniej wydajne niż monokrystaliczne, jednak ich koszt produkcji jest niższy. Podstawowymi zaletami technologii wykorzystującej krzem są: możliwość wykorzystania doświadczeń przemysłu półprzewodnikowego, relatywnie wysokie sprawności przetwarzania promieniowania słonecznego, prostota i bardzo dobra stabilność pracy. Ich wady to duże zużycie dużo drogiego materiału w produkcji. Mają też ograniczoną wielkość i muszą być łączone w moduły. Przewiduje się, że następna generacja fotoogniw będzie się opierać na technologiach cienkowarstwowych. Dzięki stosowaniu jedynie bardzo cienkich warstw (grubości pojedynczych mikrometrów) drogiego materiału półprzewodnikowego na tanich podłożach o dużej powierzchni można będzie znacznie zredukować całkowity koszt fotoogniwa. Ogniwa cienkowarstwowe są wprawdzie mniej sprawne od najlepszych ogniw z krzemu krystalicznego, ale oczekuje się, że w przyszłości, przy produkcji na skalę masową, będą one znacznie tańsze. Obecnie najbardziej zaawansowane ogniwa cienkowarstwowe wykonywane są z krzemu amorficznego (a-si) i jego stopów (a-sige, a-sic). Technologia pojedynczych, podwójnych i potrójnych ogniw jest dobrze rozwinięta. Ogniwa potrójne osiągnęły w 84

4 skali laboratoryjnej sprawność 13%. Ogniwa z krzemu amorficznego są powszechnie używane w produktach wymagających małej mocy zasilania (kalkulatory kieszonkowe, zegarki, itp.). Zaletami ogniw wytworzonych z krzemu amorficznego są: mały koszt materiału, niewielkie zużycie energii przy produkcji, możliwość osadzania na giętkich podłożach, zintegrowane połączenia i możliwość uzyskania dużych powierzchni ogniw. Fotoogniwo jest podstawowym elementem systemu fotowoltaicznego. Pojedyncze ogniwo produkuje zazwyczaj pomiędzy 1 a 2 W mocy elektrycznej co jest niewystarczające dla większości zastosowań. Dla uzyskania większych napięć lub prądów ogniwa łączone są szeregowo lub równolegle tworząc moduł fotowoltaiczny. Moc takich modułów (dostępne na rynku maja powierzchnię od 0,3 do 1 m 2 ) wyrażana jest w watach mocy szczytowej zdefiniowanych jako moc dostarczana przez nie w warunkach standardowych (STC), tj. przy promieniowaniu słonecznym AM1.5 o mocy 1000 W/m2 i temperaturze otoczenia 25 C i zwykle kształtuje się pomiędzy 30 a 120 Wp. Moduły są hermetyzowane, aby uchronić je przed korozją, wilgocią, zanieczyszczeniami i wpływami atmosfery. Obudowy ogniw muszą być trwałe, ponieważ od modułów fotowoltaicznych oczekuje się czasów życia przynajmniej lat. Na rynku znajduje się szeroki wachlarz modułów o różnej wielkości pokrywający zapotrzebowanie na szybko rosnącą ilość zastosowań fotowoltaicznych. Wytwarza się specjalne moduły, które są zintegrowane z dachami lub fasadami budynków. Produkowane są również moduły szczególnie odporne na korozję wywołaną słoną wodą morską. Znajdują one zastosowanie na łodziach żaglowych, znakach nawigacyjnych i latarniach morskich. Czas zwrotu kosztów energii waha się od 2 do 6 lat w zależności od regionu i klimatu. Cienkowarstwowe moduły fotowoltaiczne są tańsze, przy produkcji masowej, niż moduły z krzemu krystalicznego, ale mają niższe wydajności. Większość dostępnych obecnie na rynku modułów z krzemu amorficznego ma sprawności pomiędzy 4 % a 8 %. Zwrot kosztów energii szacowany jest na 1 do 3 lat. Rys. 4. Przykłady modułów fotowoltaicznych Nie istnieją praktycznie żadne ograniczenia w zastosowaniu modułów fotowoltaicznych. Mogą być instalowane w dowolnej ilości i konfiguracji. Instalacja może dostarczać zarówno prąd stały jak i przemienny. Może być podłączona do sieci energetycznej (sprzedając wyprodukowaną energię) lub też być zupełnie autonomiczną. Moduły fotowoltaiczne mogą mieć następujące zastosowania: w domach mieszkalnych i domkach letniskowych - zasilanie całości lub części obiektu, do zasilanie pomp obiegowych do kolektorów słonecznych, przy zasilaniu nadajników radiowych, telewizyjnych, telekomunikacyjnych, BTSów, itp., 85

5 w instalacjach oświetleniowych, w tym w oświetleniu pasów startowych na lotniskach, w instalacjach alarmowych i TV przemysłowej - jako pewne i niezależne źródło zasilania, w reklamach świetlnych i oświetleniu tablic reklamowych - jest to często tańsze niż podłączenie do sieci, do zasilania urządzeń na łodziach i statkach oraz w samochodach kempingowych, jako niezależne źródło energii dla pomp, przepompowni i linii produkcyjnych, jako jedyne źródło energii dla stacji meteorologicznych i innej aparatury badawczo - pomiarowej, w miejscach trudnodostępnych, gdzie nie ma sieci energetycznej, do produkcji prądu w elektrowniach słonecznych, 2. KONTROLA MATERIAŁÓW DO PRODUKCJI FOTOOGNIW Aby zapewnić możliwie wysoką sprawność produkowanych fotoogniw niezmiernie ważne jest posiadanie możliwości oceny materiałów używanych do ich produkcji. W ostatnich latach zaczęto stosować do badań defektów w krzemie oprócz metody EBIC (Elektron Beam Induced Current) metodę indukcji fotoprądów wiązką światła. Nosi ona nazwę LBIC (Light Beam Induced Current). Pomiar prądu indukowanego wiązką światła pozwala wyznaczyć długość drogi dyfuzji nośników mniejszościowych L oraz gęstość rekombinacji defektowej krzemu γ. Wartości L i γ silnie zależą od gęstości defektów lub poziomu zanieczyszczeń. Nie jest możliwe bezpośrednie wyznaczanie tych wartości z danych pomiarowych. Zwykle do analizy LBIC używa się danych pomiarowych określonych zależnością (1): C ( I I ) / I = (1) o gdzie: I o prąd podłoża, I def prąd mierzony w obszarze defektu. Według modelu matematycznego przedstawionego w pracy [2] współczynnik C dla idealnego defektu można określić wg zależności (2): 86 def o C = f ( γ ) g( w, L) (2) gdzie: w - szerokość warstwy zubożonej, L droga dyfuzji nośników mniejszościowych. Znajomość rozkładu przestrzennego L(x, y) w obszarze defektu pozwala na prawidłową ocenę gęstości rekombinacji defektowej. Mapa L(x, y) zawiera informację o aktywności rekombinacji i jej rozkładzie przestrzennym na płytce Zasady pracy systemu Cechą charakterystyczną próbek, które są badane przy pomocy omawianego stanowiska jest duża wartość rezystancji szeregowej. Uniemożliwia to praktycznie zapełnienie głębokich poziomów za pomocą skokowej zmiany polaryzacji złącza.

6 Najlepszą metodą zapełnienia centrów defektowych jest w tej sytuacji użycie impulsowego przebiegu świetlnego i rejestracja zmian koncentracji nośników ładunków w próbce. Schemat blokowy systemu został przedstawiony na rysunku 5. W jego skład wchodzą następujące podsystemy przeznaczone do realizacji poszczególnych zadań: komputer sterujący, podsystem optyczny, podsystem pomiarowy, podsystem pozycjonowania. Źródło światła białego Zasilacz źródła światła Chopper Sterownik choppera RS 232 (1) RS 232 (2) Monochromator DataScan2 Moduł sterowania silnikami krokowymi optyka zwierciadlana Z Mikromanipulator ostrzowy WY X Wzmacniacz Lock-in WE Y Sygnał referencyjny Sterowanie choppera TTL Sterowanie silnikiem monochromatora Rys. 5. Schemat blokowy sytemu System umożliwia wyznaczenie drogi dyfuzji Ln w ogniwie słonecznym, poprzez pomiar fotoprądu wywołanego zmodulowanym światłem z zakresu 400 nm do 1100nm. Płytka ogniwa, w wybranym miejscu x i, y i, jest oświetlona światłem monochromatycznym zmodulowanym. Modulację światła monochromatycznego zapewnia chopper mechaniczny. Przebieg sterujący chopperem jest również sygnałem referencyjnym wzmacniacza Lock-in. Prąd zwarciowy jest przetwarzany na napięcie przez przetwornik elektrometryczny I/U. Napięcie proporcjonalne do prądu zwarciowego jest wzmacniane we wzmacniaczu Lock-in. Wyniki pomiaru są przetwarzane na wartość cyfrową przez moduł DataScan2. System jest wyposażony w stolik x, y (z silnikami krokowymi) umożliwiający skaning po powierzchni standardowych ogniw o wymiarach 50 mm x 50 mm. Blat stolika umożliwia również pomiar ogniw większych o rozmiarach do 100 mm x 100 mm. Minimalny skok stolika 1mm z rozdzielczością 0.1 mm, maksymalny krok do 10 mm, długość skoku jest programowana Oprogramowanie systemu Możliwe są dwa typy pomiarów: a. pomiar punktowy prądu zwarcia lub odpowiedzi widmowej SR(λ), b. pomiar rozkładu prądu zwarcia lub drogi dyfuzji L n (x, y). 87

7 Pomiar punktowy prądu zwarcia lub współczynnika SR(λ) Zakres zmian długości światła monochromatycznego: 400nm do 1100nm. Przy wyznaczaniu współczynnika SR(λ) pomiary badanego ogniwa są odnoszone do wyników ogniwa wzorcowego. Przykładowe charakterystyki prądu zwarcia ogniwa słonecznego wykonanego z krzemu monokrystalicznego pokazane są na rysunku I [µa] λ [nm] Rys. 6. Prąd zwarcia ogniwa dla różnych skoków λ Pomiar rozkładu prądu zwarcia lub drogi dyfuzji w funkcji współrzędnych x, y Zakres zmian długości światła monochromatycznego: 400 nm do 1100 nm. Do obliczenia Ln(x, y) konieczne jest wprowadzenie przez użytkownika współczynnika odbicia, dla każdej użytej długości fali światła, który jest niezbędny do wykonania obliczeń. Przy pomiarze prądu zwarcia mierzony jest prąd fotoogniwa. W obu wypadkach wyniki przetwarzania są przedstawione w postaci kolorowej mapy płaskiej. Przykładowe rozkłady prądu zwarcia pokazane są na rysunkach 7 i 8. Rys. 7. Rozkład prądu pomiar I Rys. 8. Rozkład prądu pomiar II Oprogramowanie systemu pracuje pod kontrolą systemu operacyjnego Windows98. Komunikacja urządzeń zewnętrznych jest realizowana za pośrednictwem 88

8 interfejsu RS232. Wymagane są dwa takie interfejsy. Jeden dla podsystemu pozycjonowania a drugi dla podsystemu pomiarowego. 3. WNIOSKI System został opracowany w Przemysłowym Instytucie Elektroniki. Został on uruchomiony we wrześniu 2001 w Laboratorium fotowoltaicznym PAN w Kozach i jest wykorzystywany do realizacji tematu "Rozwój fotowoltaiki celem uzyskiwania energii elektrycznej w warunkach krajowych. Dużą zaletą użytej metody jest bardzo dobra rozdzielczość przestrzenna, która umożliwia tworzenie dwuwymiarowych map elektrofizycznych właściwości płytek krzemowych służących do produkcji fotoogniw. LITERARURA 1. Stemmer M., Martinuzzi S.: Mapping of local minority carrier diffusion length applied to multicrystaline silicon cells. 11th EC Photovoltaic solar energy conference. 2. Emery K., Dunlavy D., Field H., Moriarty T.: Photovoltaic spectral responsivity measurements. Natinal Renevable Energy Laboratory. 3. Jaint S. C., Tsao J., Kerwin W. J.: The spectral response and efficiency of heavily doped emitters in silicon photovoltaic devices. Solid State Electronics Vol. 30 No. 9 pp , Mills T. B.: The phase locked loop IC as a communication system building block. National Semicondactor Application Note 46. ECOLOGICAL SOURCES OF ENERGY In article became talked over problems connected with transformation of solar energy in electric energy. Talked over became also measuring - system intended to qualifying qualities of used materials at production of solar cell. Examined sample is lighted up monochrome - light. For different lengths of wave of radiation system measured current of short-circuit solar cell. On this to base enumerated way of diffusion. Method permits rate of thickness of defects and level of impurity in investigated examined sample. 89

Sprawozdanie z laboratorium proekologicznych źródeł energii

Sprawozdanie z laboratorium proekologicznych źródeł energii P O L I T E C H N I K A G D A Ń S K A Sprawozdanie z laboratorium proekologicznych źródeł energii Temat: Wyznaczanie charakterystyk prądowo-napięciowych modułu ogniw fotowoltaicznych i sprawności konwersji

Bardziej szczegółowo

BADANIA MODELOWE OGNIW SŁONECZNYCH

BADANIA MODELOWE OGNIW SŁONECZNYCH POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 70 Electrical Engineering 2012 Bartosz CERAN* BADANIA MODELOWE OGNIW SŁONECZNYCH W artykule przedstawiono model matematyczny modułu fotowoltaicznego.

Bardziej szczegółowo

Badanie baterii słonecznych w zależności od natężenia światła

Badanie baterii słonecznych w zależności od natężenia światła POLITECHNIKA WARSZAWSKA Instytut Elektroenergetyki, Zakład Elektrowni i Gospodarki Elektroenergetycznej Przemiany energii laboratorium Ćwiczenie Badanie baterii słonecznych w zależności od natężenia światła

Bardziej szczegółowo

Fotowoltaika i sensory w proekologicznym rozwoju Małopolski

Fotowoltaika i sensory w proekologicznym rozwoju Małopolski Fotowoltaika i sensory w proekologicznym rozwoju Małopolski Photovoltaic and Sensors in Environmental Development of Malopolska Region ZWIĘKSZANIE WYDAJNOŚCI SYSTEMÓW FOTOWOLTAICZNYCH Plan prezentacji

Bardziej szczegółowo

Ćwiczenie E17 BADANIE CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH MODUŁU OGNIW FOTOWOLTAICZNYCH I SPRAWNOŚCI KONWERSJI ENERGII PADAJĄCEGO PROMIENIOWANIA

Ćwiczenie E17 BADANIE CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH MODUŁU OGNIW FOTOWOLTAICZNYCH I SPRAWNOŚCI KONWERSJI ENERGII PADAJĄCEGO PROMIENIOWANIA Ćwiczenie E17 BADANIE CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH MODUŁU OGNIW FOTOWOLTAICZNYCH I SPRAWNOŚCI KONWERSJI ENERGII PADAJĄCEGO PROMIENIOWANIA Cel: Celem ćwiczenia jest zbadanie charakterystyk prądowo

Bardziej szczegółowo

Ćwiczenie 3 WPŁYW NASŁONECZNIENIA I TECHNOLOGII PRODUKCJI KRZEMOWYCH OGNIW FOTOWOLTAICZNYCH NA ICH WŁASNOŚCI EKSPLOATACYJNE

Ćwiczenie 3 WPŁYW NASŁONECZNIENIA I TECHNOLOGII PRODUKCJI KRZEMOWYCH OGNIW FOTOWOLTAICZNYCH NA ICH WŁASNOŚCI EKSPLOATACYJNE Ćwiczenie WPŁYW NASŁONECZNIENIA I TECHNOLOGII PRODUKCJI KRZEMOWYCH OGNIW FOTOWOLTAICZNYCH NA ICH WŁASNOŚCI EKSPLOATACYJNE Opis stanowiska pomiarowego Stanowisko do wyznaczania charakterystyk prądowo napięciowych

Bardziej szczegółowo

PL B1. Johnson Peter Herbert, Solvesborg, SE BUP 18/10. PETER HERBERT JOHNSON, Solvesborg, SE

PL B1. Johnson Peter Herbert, Solvesborg, SE BUP 18/10. PETER HERBERT JOHNSON, Solvesborg, SE PL 220819 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 220819 (13) B1 (21) Numer zgłoszenia: 387368 (51) Int.Cl. H01L 25/00 (2006.01) H01L 31/00 (2006.01) Urząd Patentowy Rzeczypospolitej

Bardziej szczegółowo

Rys.2. Schemat działania fotoogniwa.

Rys.2. Schemat działania fotoogniwa. Ćwiczenie E16 BADANIE NATĘŻENIA PRĄDU FOTOELEKTRYCZNEGO W ZALEŻNOŚCI OD ODLEGŁOŚCI ŹRÓDŁA ŚWIATŁA Cel: Celem ćwiczenia jest zbadanie zależności natężenia prądu generowanego światłem w fotoogniwie od odległości

Bardziej szczegółowo

Ogniwa fotowoltaiczne

Ogniwa fotowoltaiczne Ogniwa fotowoltaiczne Systemy fotowoltaiczne wykorzystują zjawisko konwersji energii słonecznej na energię elektryczną. Wykonane są z głównie z krzemu. Gdy na ogniwo padają promienie słoneczne pomiędzy

Bardziej szczegółowo

Energia emitowana przez Słońce

Energia emitowana przez Słońce Energia słoneczna i ogniwa fotowoltaiczne Michał Kocyła Problem energetyczny na świecie Przewiduje się, że przy obecnym tempie rozwoju gospodarczego i zapotrzebowaniu na energię, paliw kopalnych starczy

Bardziej szczegółowo

Dr inż. Wiesław Madej Katedra Systemów Cyfrowego Przetwarzania Sygnałów Wydział Elektroniki i Informatyki Politechniki.

Dr inż. Wiesław Madej Katedra Systemów Cyfrowego Przetwarzania Sygnałów Wydział Elektroniki i Informatyki Politechniki. Analiza teoretyczna i doświadczalna możliwości zautomatyzowania oraz zastosowania metod fototermicznych i rekombinacyjnych do badań wybranych półprzewodników i struktur półprzewodnikowych Dr inż. Wiesław

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA Wydział Elektryczny Instytut Elektroenergetyki Zakład Elektrowni i Gospodarki Elektroenergetycznej

POLITECHNIKA WARSZAWSKA Wydział Elektryczny Instytut Elektroenergetyki Zakład Elektrowni i Gospodarki Elektroenergetycznej POLITECHNIKA WARSZAWSKA Wydział Elektryczny Instytut Elektroenergetyki Zakład Elektrowni i Gospodarki Elektroenergetycznej INSTRUKCJA DO ĆWICZENIA: BADANIE BATERII SŁONECZNYCH W ZALEśNOŚCI OD NATĘśENIA

Bardziej szczegółowo

108 Rozwiązania materiałowe, konstrukcyjne i eksploatacyjne ogniw fotowoltaicznych

108 Rozwiązania materiałowe, konstrukcyjne i eksploatacyjne ogniw fotowoltaicznych 108 Rozwiązania materiałowe, konstrukcyjne i eksploatacyjne ogniw fotowoltaicznych Rys. 4.6. Panel fotowoltaiczny z ogniw polikrystalicznych w parku ITER na Teneryfie Rys. 4.7. Wybrane etapy ewolucji sprawności

Bardziej szczegółowo

FOTOWOLTAIKA - wytwarzanie energii elektrycznej ze światła

FOTOWOLTAIKA - wytwarzanie energii elektrycznej ze światła FOTOWOLTAIKA - wytwarzanie energii elektrycznej ze światła Energetyka słoneczna z roku na rok cieszy się rosnącym zainteresowaniem inwestorów. Każda wyprodukowana ze słońca kilowatogodzina pozwala ograniczyć

Bardziej szczegółowo

Instalacje fotowoltaiczne

Instalacje fotowoltaiczne Instalacje fotowoltaiczne mgr inż. Janusz Niewiadomski Eurotherm Technika Grzewcza Energia słoneczna - parametry 1 parametr : Promieniowanie słoneczne całkowite W/m 2 1000 W/m 2 700 W/m 2 300 W/m 2 50

Bardziej szczegółowo

BADANIE OGNIWA FOTOWOLTAICZNEGO

BADANIE OGNIWA FOTOWOLTAICZNEGO BADANIE OGNIWA FOTOWOLTAICZNEGO Wiadomości wprowadzające 1. Efekt fotoelektryczny Energia promieniowania elektromagnetycznego E przenoszona przez pojedynczy foton wyraża się w dżulach wzorem: E = c h/

Bardziej szczegółowo

LABORATORIUM INŻYNIERII MATERIAŁOWEJ

LABORATORIUM INŻYNIERII MATERIAŁOWEJ Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM INŻYNIERII MATERIAŁOWEJ Protokół

Bardziej szczegółowo

IV. Wyznaczenie parametrów ogniwa słonecznego

IV. Wyznaczenie parametrów ogniwa słonecznego 1 V. Wyznaczenie parametrów ogniwa słonecznego Cel ćwiczenia: 1.Zbadanie zależności fotoprądu zwarcia i fotonapięcia zwarcia od natężenia oświetlenia. 2. Wyznaczenie sprawności energetycznej baterii słonecznej.

Bardziej szczegółowo

!!!DEL są źródłami światła niespójnego.

!!!DEL są źródłami światła niespójnego. Dioda elektroluminescencyjna DEL Element czynny DEL to złącze p-n. Gdy zostanie ono spolaryzowane w kierunku przewodzenia, to w obszarze typu p, w warstwie o grubości rzędu 1µm, wytwarza się stan inwersji

Bardziej szczegółowo

Ćwiczenie 2 WSPÓŁPRACA JEDNAKOWYCH OGNIW FOTOWOLTAICZNYCH W RÓŻNYCH KONFIGURACJACH POŁĄCZEŃ. Opis stanowiska pomiarowego. Przebieg ćwiczenia

Ćwiczenie 2 WSPÓŁPRACA JEDNAKOWYCH OGNIW FOTOWOLTAICZNYCH W RÓŻNYCH KONFIGURACJACH POŁĄCZEŃ. Opis stanowiska pomiarowego. Przebieg ćwiczenia Ćwiczenie WSPÓŁPRACA JEDNAKOWYCH OGNIW FOTOWOLTAICZNYCH W RÓŻNYCH KONFIGURACJACH POŁĄCZEŃ Opis stanowiska pomiarowego Stanowisko do analizy współpracy jednakowych ogniw fotowoltaicznych w różnych konfiguracjach

Bardziej szczegółowo

Co to jest fotowoltaika? Okiem praktyka.

Co to jest fotowoltaika? Okiem praktyka. Co to jest fotowoltaika? Okiem praktyka. Fotowoltaika greckie słowo photos światło nazwisko włoskiego fizyka Allessandro Volta odkrywcy elektryczności Zjawisko pozyskiwania energii z przetworzonego światła

Bardziej szczegółowo

Ogniwa fotowoltaiczne wykorzystanie w OZE

Ogniwa fotowoltaiczne wykorzystanie w OZE Ogniwa fotowoltaiczne wykorzystanie w OZE Fizyka IV Michał Trojgo, gr 1.3 Energia Słońca Do górnych warstw atmosfery Ziemi dociera promieniowanie słoneczne o natężeniu napromieniowania 1366,1 W/m². Oznacza

Bardziej szczegółowo

E12. Wyznaczanie parametrów użytkowych fotoogniwa

E12. Wyznaczanie parametrów użytkowych fotoogniwa 1/5 E12. Wyznaczanie parametrów użytkowych fotoogniwa Celem ćwiczenia jest poznanie podstaw zjawiska konwersji energii świetlnej na elektryczną, zasad działania fotoogniwa oraz wyznaczenie jego podstawowych

Bardziej szczegółowo

Stanowisko do pomiaru fotoprzewodnictwa

Stanowisko do pomiaru fotoprzewodnictwa Stanowisko do pomiaru fotoprzewodnictwa Kraków 2008 Układ pomiarowy. Pomiar czułości widmowej fotodetektorów polega na pomiarze fotoprądu w funkcji długości padającego na detektor promieniowania. Stanowisko

Bardziej szczegółowo

FOTOOGNIWA SŁONECZNE. Rys. 1 Moduł fotowoltaiczny cienkowarstwowy CIS firmy Sulfurcell typu STP SCG 50 HV (Powierzchnia ok.

FOTOOGNIWA SŁONECZNE. Rys. 1 Moduł fotowoltaiczny cienkowarstwowy CIS firmy Sulfurcell typu STP SCG 50 HV (Powierzchnia ok. FOTOOGNIWA SŁONECZNE Nasz ośrodek wyposaŝony jest w dwa typy fotoogniw fotowoltaicznych moduł fotowoltaiczny monokrystaliczny firmy Suntech Power typu STP 180S 24/AC (przedstawiony na Rys. 1) oraz moduł

Bardziej szczegółowo

Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych.

Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych. Politechnika Łódzka Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych Niekonwencjonalne źródła energii Laboratorium Ćwiczenie 1

Bardziej szczegółowo

Wykład 5 Fotodetektory, ogniwa słoneczne

Wykład 5 Fotodetektory, ogniwa słoneczne Wykład 5 Fotodetektory, ogniwa słoneczne 1 Generacja optyczna swobodnych nośników Fotoprzewodnictwo σ=e(µ e n+µ h p) Fotodioda optyczna generacja par elektron-dziura pole elektryczne złącza rozdziela parę

Bardziej szczegółowo

IA. Fotodioda. Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody.

IA. Fotodioda. Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody. 1 A. Fotodioda Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody. Zagadnienia: Efekt fotowoltaiczny, złącze p-n Wprowadzenie Fotodioda jest urządzeniem półprzewodnikowym w którym zachodzi

Bardziej szczegółowo

MOBILNE STANOWISKO DO BADAŃ EFEKTYWNOSCI MODUŁÓW PV.

MOBILNE STANOWISKO DO BADAŃ EFEKTYWNOSCI MODUŁÓW PV. MOBILNE STANOWISKO DO BADAŃ EFEKTYWNOSCI MODUŁÓW PV www.oze.utp.edu.pl MOBILNE STANOWISKO DO BADAŃ EFEKTYWNOSCI MODUŁÓW PV Prezentacja stanowiska łącznie z mobilnym układem instalacji solarnej z kolektorem

Bardziej szczegółowo

Cienkowarstwowe ogniwa słoneczne: przegląd materiałów, technologii i sytuacji rynkowej

Cienkowarstwowe ogniwa słoneczne: przegląd materiałów, technologii i sytuacji rynkowej Cienkowarstwowe ogniwa słoneczne: przegląd materiałów, technologii i sytuacji rynkowej Przez ostatnie lata, rynek fotowoltaiki rozwijał się, wraz ze sprzedażą niemal zupełnie zdominowaną przez produkty

Bardziej szczegółowo

Część 1. Wprowadzenie. Przegląd funkcji, układów i zagadnień

Część 1. Wprowadzenie. Przegląd funkcji, układów i zagadnień Część 1 Wprowadzenie Przegląd funkcji, układów i zagadnień Źródło energii w systemie fotowoltaicznym Ogniwo fotowoltaiczne / słoneczne photovoltaic / solar cell pojedynczy przyrząd półprzewodnikowy U 0,5

Bardziej szczegółowo

SOLARNA. Moduły fotowoltaiczne oraz kompletne systemy przetwarzające energię słoneczną. EKOSERW BIS Sp. j. Mirosław Jedrzejewski, Zbigniew Majchrzak

SOLARNA. Moduły fotowoltaiczne oraz kompletne systemy przetwarzające energię słoneczną. EKOSERW BIS Sp. j. Mirosław Jedrzejewski, Zbigniew Majchrzak Moduły fotowoltaiczne oraz kompletne systemy przetwarzające energię słoneczną ENERGIA SOLARNA Fotowoltaika Do Ziemi dociera promieniowanie słoneczne zbliżone widmowo do promieniowania ciała doskonale czarnego

Bardziej szczegółowo

Fotoelementy. Symbole graficzne półprzewodnikowych elementów optoelektronicznych: a) fotoogniwo b) fotorezystor

Fotoelementy. Symbole graficzne półprzewodnikowych elementów optoelektronicznych: a) fotoogniwo b) fotorezystor Fotoelementy Wstęp W wielu dziedzinach techniki zachodzi potrzeba rejestracji, wykrywania i pomiaru natężenia promieniowania elektromagnetycznego o różnych długościach fal, w tym i promieniowania widzialnego,

Bardziej szczegółowo

Ćwiczenie Nr 5. Badanie różnych konfiguracji modułów fotowoltaicznych

Ćwiczenie Nr 5. Badanie różnych konfiguracji modułów fotowoltaicznych Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych Laboratorium Fotowoltaiki Ćwiczenie Nr 5 Badanie różnych konfiguracji modułów fotowoltaicznych I. Cel ćwiczenia Celem ćwiczenia jest zapoznanie

Bardziej szczegółowo

TEHACO Sp. z o.o. ul. Barniewicka 66A 80-299 Gdańsk. Ryszard Dawid

TEHACO Sp. z o.o. ul. Barniewicka 66A 80-299 Gdańsk. Ryszard Dawid TEHACO Sp. z o.o. ul. Barniewicka 66A 80-299 Gdańsk Ryszard Dawid Olsztyn, Konferencja OZE, 23 maja 2012 Firma TEHACO Sp. z o.o. została założona w Gdańsku w 1989 roku -Gdańsk - Bielsko-Biała - Bydgoszcz

Bardziej szczegółowo

Instytut Technologii Materiałów Elektronicznych

Instytut Technologii Materiałów Elektronicznych WPŁYW TRAWIENIA CHEMICZNEGO NA PARAMETRY ELEKTROOPTYCZNE KRAWĘDZIOWYCH OGNIW FOTOWOLTAICZNYCH Joanna Kalbarczyk, Marian Teodorczyk, Elżbieta Dąbrowska, Konrad Krzyżak, Jerzy Sarnecki kontakt srebrowy kontakt

Bardziej szczegółowo

Spis treści. Wykaz ważniejszych oznaczeń i jednostek 13 Przedmowa 17 Wstęp Odnawialne źródła energii 72

Spis treści. Wykaz ważniejszych oznaczeń i jednostek 13 Przedmowa 17 Wstęp Odnawialne źródła energii 72 Spis treści Wykaz ważniejszych oznaczeń i jednostek 13 Przedmowa 17 Wstęp 19 1_ Charakterystyka obecnego stanu środowiska 21.1. Wprowadzenie 21.2. Energetyka konwencjonalna 23.2.1. Paliwa naturalne, zasoby

Bardziej szczegółowo

Wykład 5 Fotodetektory, ogniwa słoneczne

Wykład 5 Fotodetektory, ogniwa słoneczne Wykład 5 Fotodetektory, ogniwa słoneczne 1 Generacja optyczna swobodnych nośników Fotoprzewodnictwo σ=e(µ e n+µ h p) Fotodioda optyczna generacja par elektron-dziura pole elektryczne złącza rozdziela parę

Bardziej szczegółowo

fotowoltaika Katalog produktów

fotowoltaika Katalog produktów fotowoltaika Katalog produktów Fotowoltaika: efektywne wytwarzanie prądu i ciepła Fotowoltaika, technologia umożliwiająca przemianę promieniowania słonecznego bezpośrednio na energię elektryczną, jest

Bardziej szczegółowo

Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja

Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja Rekapitulacja Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje: czwartek

Bardziej szczegółowo

Ćwiczenie 134. Ogniwo słoneczne

Ćwiczenie 134. Ogniwo słoneczne Ćwiczenie 134 Ogniwo słoneczne Cel ćwiczenia Zapoznanie się z różnymi rodzajami półprzewodnikowych ogniw słonecznych. Wyznaczenie charakterystyki prądowo-napięciowej i sprawności przetwarzania energii

Bardziej szczegółowo

Ćwiczenie nr 3. Badanie instalacji fotowoltaicznej DC z akumulatorem

Ćwiczenie nr 3. Badanie instalacji fotowoltaicznej DC z akumulatorem Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych Laboratorium Fotowoltaiki Ćwiczenie nr 3 Badanie instalacji fotowoltaicznej DC z akumulatorem OPIS STANOWISKA ORAZ INSTALACJI OGNIW SŁONECZNYCH.

Bardziej szczegółowo

BADANIE CHARAKTERYSTYK FOTOELEMENTU

BADANIE CHARAKTERYSTYK FOTOELEMENTU Ćwiczenie E7 BADANIE CHARAKTERYSTYK FOTOELEMENTU Przyrzady: Przyrząd do badania zjawiska fotoelektrycznego, płytki absorbenta suwmiarka, fotoelementy (fotoopór, fotodioda, lub fototranzystor). Zjawisko

Bardziej szczegółowo

Wprowadzenie do energii słonecznej i fotowoltaiki

Wprowadzenie do energii słonecznej i fotowoltaiki Czyste Energie Wykład 1 Wprowadzenie do energii słonecznej i fotowoltaiki dr inż. Janusz Teneta C-3 pok. 8 (parter), e-mail: romus@agh.edu.pl Wydział EAIiE Katedra Automatyki AGH Kraków 2010 Geometria

Bardziej szczegółowo

Które panele wybrać? Europe Solar Production sp. z o.o. Opracował : Sławomir Suski

Które panele wybrać? Europe Solar Production sp. z o.o. Opracował : Sławomir Suski Które panele wybrać? Europe Solar Production sp. z o.o. Opracował : Sławomir Suski Rodzaje modułów fotowoltaicznych Rodzaj modułu fotowoltaicznego Monokrystaliczny Polikrystaliczny Amorficzny A- Si - Amorphous

Bardziej szczegółowo

Instalacje fotowoltaiczne / Bogdan Szymański. Wyd. 6. Kraków, Spis treści

Instalacje fotowoltaiczne / Bogdan Szymański. Wyd. 6. Kraków, Spis treści Instalacje fotowoltaiczne / Bogdan Szymański. Wyd. 6. Kraków, 2017 Spis treści 1. MODUŁY FOTOWOLTAICZNE 10 1.1. MODUŁ FOTOWOLTAICZNY - DEFINICJA I BUDOWA 10 1.2. PODZIAŁ OGNIW I MODUŁÓW FOTOWOLTAICZNYCH

Bardziej szczegółowo

Projektowanie systemów PV. Produkcja modułu fotowoltaicznego (PV)

Projektowanie systemów PV. Produkcja modułu fotowoltaicznego (PV) Projektowanie systemów PV Wykład 3 Produkcja modułu fotowoltaicznego (PV) dr inż. Janusz Teneta C-3 pok. 8 (parter), e-mail: romus@agh.edu.pl Wydział EAIiIB Katedra Automatyki i Inżynierii Biomedycznej

Bardziej szczegółowo

Marek Lipiński WPŁYW WŁAŚCIWOŚCI FIZYCZNYCH WARSTW I OBSZARÓW PRZYPOWIERZCHNIOWYCH NA PARAMETRY UŻYTKOWE KRZEMOWEGO OGNIWA SŁONECZNEGO

Marek Lipiński WPŁYW WŁAŚCIWOŚCI FIZYCZNYCH WARSTW I OBSZARÓW PRZYPOWIERZCHNIOWYCH NA PARAMETRY UŻYTKOWE KRZEMOWEGO OGNIWA SŁONECZNEGO Marek Lipiński WPŁYW WŁAŚCIWOŚCI FIZYCZNYCH WARSTW I OBSZARÓW PRZYPOWIERZCHNIOWYCH NA PARAMETRY UŻYTKOWE KRZEMOWEGO OGNIWA SŁONECZNEGO Instytut Metalurgii i Inżynierii Materiałowej im. Aleksandra Krupkowskiego

Bardziej szczegółowo

Wyznaczanie parametrów baterii słonecznej

Wyznaczanie parametrów baterii słonecznej Wyznaczanie parametrów baterii słonecznej Obowiązkowa znajomość zagadnień Działanie ogniwa fotowoltaicznego. Złącze p-n. Parametry charakteryzujące ogniwo fotowoltaiczne. Zastosowanie ogniw fotowoltaicznych.

Bardziej szczegółowo

Lokalne systemy energetyczne

Lokalne systemy energetyczne 2. Układy wykorzystujące OZE do produkcji energii elektrycznej: elektrownie wiatrowe, ogniwa fotowoltaiczne, elektrownie wodne (MEW), elektrownie i elektrociepłownie na biomasę. 2.1. Wiatrowe zespoły prądotwórcze

Bardziej szczegółowo

Ćwiczenie 1 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH

Ćwiczenie 1 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH LABORAORUM ELEKRONK Ćwiczenie 1 Parametry statyczne diod półprzewodnikowych Cel ćwiczenia Celem ćwiczenia jest poznanie statycznych charakterystyk podstawowych typów diod półprzewodnikowych oraz zapoznanie

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 13 Temat: Biostymulacja laserowa Istotą biostymulacji laserowej jest napromieniowanie punktów akupunkturowych ciągłym, monochromatycznym

Bardziej szczegółowo

PL B1. WOJSKOWY INSTYTUT MEDYCYNY LOTNICZEJ, Warszawa, PL BUP 23/13

PL B1. WOJSKOWY INSTYTUT MEDYCYNY LOTNICZEJ, Warszawa, PL BUP 23/13 PL 222455 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 222455 (13) B1 (21) Numer zgłoszenia: 399143 (51) Int.Cl. H02M 5/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:

Bardziej szczegółowo

Stanowisko do badania zjawiska tłumienia światła w ośrodkach materialnych

Stanowisko do badania zjawiska tłumienia światła w ośrodkach materialnych Stanowisko do badania zjawiska tłumienia światła w ośrodkach materialnych Na rys. 3.1 przedstawiono widok wykorzystywanego w ćwiczeniu stanowiska pomiarowego do badania zjawiska tłumienia światła w ośrodkach

Bardziej szczegółowo

Ćwiczenie nr 34. Badanie elementów optoelektronicznych

Ćwiczenie nr 34. Badanie elementów optoelektronicznych Ćwiczenie nr 34 Badanie elementów optoelektronicznych 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z elementami optoelektronicznymi oraz ich podstawowymi parametrami, a także doświadczalne sprawdzenie

Bardziej szczegółowo

Model układu z diodami LED na potrzeby sygnalizacji świetlnej. Czujniki zasolenia przegląd dostepnych rozwiązań

Model układu z diodami LED na potrzeby sygnalizacji świetlnej. Czujniki zasolenia przegląd dostepnych rozwiązań Model układu z diodami LED na potrzeby sygnalizacji świetlnej Projekt i wykonanie modelu sygnalizacji świetlnej na bazie diod LED. Program sterujący układem diod LED na potrzeby sygnalizacji świetlnej

Bardziej szczegółowo

Badanie wyspowej instalacji fotowoltaicznej

Badanie wyspowej instalacji fotowoltaicznej LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 6 Badanie wyspowej instalacji fotowoltaicznej Cel ćwiczenia: Zapoznanie studentów z działaniem wyspowej instalacji fotowoltaicznej. Badane elementy: Laboratoryjna

Bardziej szczegółowo

E12. Wyznaczanie parametrów użytkowych fotoogniwa

E12. Wyznaczanie parametrów użytkowych fotoogniwa E12. Wyznaczanie parametrów użytkowych fotoogniwa 1/5 E12. Wyznaczanie parametrów użytkowych fotoogniwa Celem ćwiczenia jest zapoznanie z podstawami zjawiska konwersji energii świetlnej na elektryczną,

Bardziej szczegółowo

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego, poznanie jego charakterystyki przejściowej

Bardziej szczegółowo

Ćwiczenie 2a. Pomiar napięcia z izolacją galwaniczną Doświadczalne badania charakterystyk układów pomiarowych CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE

Ćwiczenie 2a. Pomiar napięcia z izolacją galwaniczną Doświadczalne badania charakterystyk układów pomiarowych CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych 90-924 Łódź, ul. Wólczańska 221/223, bud. B18 tel. 42 631 26 28 faks 42 636 03 27 e-mail secretary@dmcs.p.lodz.pl http://www.dmcs.p.lodz.pl

Bardziej szczegółowo

Ćwiczenie Nr 4. Badanie instalacji fotowoltaicznej AC o parametrach sieciowych

Ćwiczenie Nr 4. Badanie instalacji fotowoltaicznej AC o parametrach sieciowych Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych Laboratorium Fotowoltaiki Ćwiczenie Nr 4 Badanie instalacji fotowoltaicznej AC o parametrach sieciowych 1. OPIS STANOWISKA SERWISOWO POMIAROWEGO

Bardziej szczegółowo

Zał. nr 4 do ZW 33/2012 WYDZIAŁ PPT

Zał. nr 4 do ZW 33/2012 WYDZIAŁ PPT Zał. nr do ZW 33/01 WYDZIAŁ PPT KARTA PRZEDMIOTU Nazwa w języku polskim: Ogniwa Fotowoltaiczne Nazwa w języku angielskim: Solar cells Kierunek studiów: Fizyka Specjalność: FOZE Stopień studiów i forma:

Bardziej szczegółowo

12. FOTOWOLTAIKA IMMERGAS EFEKTYWNE WYTWARZANIE PRĄDU I CIEPŁA

12. FOTOWOLTAIKA IMMERGAS EFEKTYWNE WYTWARZANIE PRĄDU I CIEPŁA 12. FOTOWOLTAIKA IMMERGAS EFEKTYWNE WYTWARZANIE PRĄDU I CIEPŁA 266 www.immergas.com.pl FOTOWOLTAIKA IMMERGAS NOWOCZESNE SYSTEMY GRZEWCZE 12. Nowoczesna fotowoltaika Immergas - efektywne wytwarzanie prądu

Bardziej szczegółowo

PANELE I FARMY FOTOWOLTAICZNE (SOLARNE)

PANELE I FARMY FOTOWOLTAICZNE (SOLARNE) JAK CZERPAĆ ENERGIĘ ZE SŁOŃCA? PANELE I FARMY FOTOWOLTAICZNE (SOLARNE) Produkcja energii pochodzącej ze źródeł odnawialnych nie jest już dziś kaprysem jest ekonomiczną i ekologiczną koniecznością. Kto

Bardziej szczegółowo

Źródła energii nieodnawialne, czyli surowce energetyczne, tj. węgiel kamienny, węgiel brunatny, ropa naftowa, gaz ziemny, torf, łupki i piaski

Źródła energii nieodnawialne, czyli surowce energetyczne, tj. węgiel kamienny, węgiel brunatny, ropa naftowa, gaz ziemny, torf, łupki i piaski Źródła Źródła energii energii nieodnawialne, czyli surowce energetyczne, tj. węgiel kamienny, węgiel brunatny, ropa naftowa, gaz ziemny, torf, łupki i piaski bitumiczne, pierwiastki promieniotwórcze (uran,

Bardziej szczegółowo

Zasada działania. 2. Kolektory słoneczne próżniowe

Zasada działania. 2. Kolektory słoneczne próżniowe Kolektory słoneczne służą do zamiany energii promieniowania słonecznego na energie cieplną w postaci ciepłej wody. Taka metoda przetwarzania energii słonecznej uważana jest za szczególnie wydajna i funkcjonalną.

Bardziej szczegółowo

Przedsiębiorstwo. Klient. Projekt

Przedsiębiorstwo. Klient. Projekt Przedsiębiorstwo SIG Energia Ul.Przemyska 24 E 38-500 Sanok Polska Osoba kontaktowa: Adam Mazur Klient Projekt 3D, Instalacja PV podłączona do sieci - Pełne zasilanie Dane klimatyczne Moc generatora PV

Bardziej szczegółowo

Tematy prac dyplomowych na kierunku Energetyka

Tematy prac dyplomowych na kierunku Energetyka Tematy prac dyplomowych na kierunku Energetyka Lp. 1. 2. Temat Wykorzystanie kolejowej sieci energetycznej SN jako źródło zasilania obiektu wielkopowierzchniowego o przeznaczeniu handlowo usługowym Zintegrowany

Bardziej szczegółowo

ZAŁĄCZNIK NR 10 Symulacja uzysku rocznego dla budynku stacji transformatorowej

ZAŁĄCZNIK NR 10 Symulacja uzysku rocznego dla budynku stacji transformatorowej ZAŁĄCZNIK NR 10 Symulacja uzysku rocznego dla budynku stacji transformatorowej Podłączona do sieci instalacja fotowoltaiczna (PV) Dane klimatyczne Warszawa, POL (1991-2010) Moc generatora PV 9,57 kwp Powierzchnia

Bardziej szczegółowo

UNIWERSYTET SZCZECIŃSKI INSTYTUT FIZYKI ZAKŁAD FIZYKI CIAŁA STAŁEGO. Ćwiczenie laboratoryjne Nr.2. Elektroluminescencja

UNIWERSYTET SZCZECIŃSKI INSTYTUT FIZYKI ZAKŁAD FIZYKI CIAŁA STAŁEGO. Ćwiczenie laboratoryjne Nr.2. Elektroluminescencja UNIWERSYTET SZCZECIŃSKI INSTYTUT FIZYKI ZAKŁAD FIZYKI CIAŁA STAŁEGO Ćwiczenie laboratoryjne Nr.2 Elektroluminescencja SZCZECIN 2002 WSTĘP Mianem elektroluminescencji określamy zjawisko emisji spontanicznej

Bardziej szczegółowo

Czy mamy szansę wygrać walkę ze smogiem?...

Czy mamy szansę wygrać walkę ze smogiem?... Czy mamy szansę wygrać walkę ze smogiem?... pewnie że TAK tylko jak? 1 Czy mamy szansę wygrać walkę ze smogiem? Odnawialne źródła energii OZE Odnawialne źródło energii źródło wykorzystujące w procesie

Bardziej szczegółowo

Laboratorium Systemów Fotowoltaicznych. Ćwiczenie 3

Laboratorium Systemów Fotowoltaicznych. Ćwiczenie 3 Ćwiczenie 3 Badania autonomicznego systemu fotowoltaicznego współpracującego z regulatorami ładowania oraz układem zabezpieczającym magazyn energii przed rozładowaniem Celem ćwiczenia jest zapoznanie się

Bardziej szczegółowo

RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) (13) B1

RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) (13) B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 174002 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 300055 (22) Data zgłoszenia: 12.08.1993 (5 1) IntCl6: H01L21/76 (54)

Bardziej szczegółowo

Instalacja fotowoltaiczna o mocy 36,6 kw na dachu oficyny ratusza w Żywcu.

Instalacja fotowoltaiczna o mocy 36,6 kw na dachu oficyny ratusza w Żywcu. Przedsiębiorstwo VOTRE Projekt Sp. z o.o. Henryka Pobożnego 1/16 Strzelce Opolskie Polska Osoba kontaktowa: Kamil Brudny Telefon: 533-161-381 E-mail: k.brudny@votreprojekt.pl Klient Urząd Miast Żywiec

Bardziej szczegółowo

Ćwiczenie 16. Temat: Wzmacniacz w układzie Darlingtona. Cel ćwiczenia

Ćwiczenie 16. Temat: Wzmacniacz w układzie Darlingtona. Cel ćwiczenia Temat: Wzmacniacz w układzie Darlingtona. Cel ćwiczenia Ćwiczenie 16 1. Poznanie zasady pracy układu Darlingtona. 2. Pomiar parametrów układu Darlingtona i użycie go w różnych aplikacjach sterowania. INSTRUKCJA

Bardziej szczegółowo

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 1 ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 15.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie podstawowych właściwości wzmacniaczy mocy małej częstotliwości oraz przyswojenie umiejętności

Bardziej szczegółowo

Schemat układu zasilania diod LED pokazano na Rys.1. Na jednej płytce połączone są różne diody LED, które przełącza się przestawiając zworkę.

Schemat układu zasilania diod LED pokazano na Rys.1. Na jednej płytce połączone są różne diody LED, które przełącza się przestawiając zworkę. Ćwiczenie 3. Parametry spektralne detektorów. Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z podstawowymi parametrami detektorów i ich podstawowych parametrów. Poznanie zależności związanych z oddziaływaniem

Bardziej szczegółowo

Akumulator Seria NP Nr produktu

Akumulator Seria NP Nr produktu INSTRUKCJA OBSŁUGI Akumulator Seria NP1.2-12 Nr produktu 000250812 Strona 1 z 9 Niezawodność to bezpieczeństwo Akumulatory Yuasa NP, NPC i NPH. Stosując najnowszą, zaawansowaną technologię rekombinacji

Bardziej szczegółowo

zasada działania, prawidłowy dobór wielkości instalacji, usytuowanie instalacji, produkcja energii w cyklu rocznym dr inż. Andrzej Wiszniewski

zasada działania, prawidłowy dobór wielkości instalacji, usytuowanie instalacji, produkcja energii w cyklu rocznym dr inż. Andrzej Wiszniewski Fotowoltaika w teorii zasada działania, prawidłowy dobór wielkości instalacji, usytuowanie instalacji, produkcja energii w cyklu rocznym dr inż. Andrzej Wiszniewski Technicznie dostępny potencjał energii

Bardziej szczegółowo

INSTRUKCJA LABORATORYJNA NR 10-PV MODUŁ FOTOWOLTAICZNY

INSTRUKCJA LABORATORYJNA NR 10-PV MODUŁ FOTOWOLTAICZNY LABORATORIUM ODNAWIALNYCH ŹRÓDEŁ ENERGII Katedra Aparatury i Maszynoznawstwa Chemicznego Wydział Chemiczny Politechniki Gdańskiej INSTRUKCJA LABORATORYJNA NR 10-PV MODUŁ FOTOWOLTAICZNY 1. Cel i zakres

Bardziej szczegółowo

Czujniki. Czujniki służą do przetwarzania interesującej nas wielkości fizycznej na wielkość elektryczną łatwą do pomiaru. Najczęściej spotykane są

Czujniki. Czujniki służą do przetwarzania interesującej nas wielkości fizycznej na wielkość elektryczną łatwą do pomiaru. Najczęściej spotykane są Czujniki Ryszard J. Barczyński, 2010 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Czujniki Czujniki służą do przetwarzania interesującej

Bardziej szczegółowo

Budowa. Metoda wytwarzania

Budowa. Metoda wytwarzania Budowa Tranzystor JFET (zwany też PNFET) zbudowany jest z płytki z jednego typu półprzewodnika (p lub n), która stanowi tzw. kanał. Na jego końcach znajdują się styki źródła (ang. source - S) i drenu (ang.

Bardziej szczegółowo

Proekologiczne odnawialne źródła energii : kompendium / Witold M. Lewandowski, Ewa Klugmann-Radziemska. Wyd. 1 (WN PWN). Warszawa, cop.

Proekologiczne odnawialne źródła energii : kompendium / Witold M. Lewandowski, Ewa Klugmann-Radziemska. Wyd. 1 (WN PWN). Warszawa, cop. Proekologiczne odnawialne źródła energii : kompendium / Witold M. Lewandowski, Ewa Klugmann-Radziemska. Wyd. 1 (WN PWN). Warszawa, cop. 2017 Spis treści Wykaz ważniejszych oznaczeń i jednostek 13 Przedmowa

Bardziej szczegółowo

Stosowanie wieloźródłowych systemów bioenergetycznych w celu osiągnięcia efektu synergicznego

Stosowanie wieloźródłowych systemów bioenergetycznych w celu osiągnięcia efektu synergicznego Stosowanie wieloźródłowych systemów bioenergetycznych w celu osiągnięcia efektu synergicznego mgr inż. Jakub Lenarczyk Oddział w Poznaniu Zakład Odnawialnych Źródeł Energii Czym są wieloźródłowe systemy

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 13

Instrukcja do ćwiczenia laboratoryjnego nr 13 Instrukcja do ćwiczenia laboratoryjnego nr 13 Temat: Charakterystyki i parametry dyskretnych półprzewodnikowych przyrządów optoelektronicznych Cel ćwiczenia. Celem ćwiczenia jest poznanie budowy, zasady

Bardziej szczegółowo

Produkcja modułu fotowoltaicznego (PV)

Produkcja modułu fotowoltaicznego (PV) Czyste energie Wykład 3 Produkcja modułu fotowoltaicznego (PV) dr inż. Janusz Teneta C-3 pok. 8 (parter), e-mail: romus@agh.edu.pl Wydział EAIiIB Katedra Automatyki i Inżynierii Biomedycznej AGH Kraków

Bardziej szczegółowo

Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE. Wpływ oświetlenia na półprzewodnik oraz na złącze p-n

Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE. Wpływ oświetlenia na półprzewodnik oraz na złącze p-n Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDA DZENNE LABORATORUM PRZYRZĄDÓW PÓŁPRZEWODNKOWYCH Ćwiczenie nr 5 Wpływ oświetlenia na półprzewodnik oraz na złącze p-n. Zagadnienia

Bardziej szczegółowo

LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH

LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE Ćwiczenie nr 8 Wpływ oświetlenia na półprzewodnik oraz na złącze p-n I. Zagadnienia do samodzielnego przygotowania

Bardziej szczegółowo

Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych.

Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych. Politechnika Łódzka Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych Niekonwencjonalne źródła energii Laboratorium Ćwiczenie 3

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH

LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 Parametry statyczne tranzystorów polowych złączowych Cel ćwiczenia Podstawowym celem ćwiczenia jest poznanie statycznych charakterystyk tranzystorów polowych złączowych

Bardziej szczegółowo

FOTOWOLTAIKA KATALOG PRODUKTÓW

FOTOWOLTAIKA KATALOG PRODUKTÓW FOTOWOLTAIKA KATALOG PRODUKTÓW 2 20 LAT DOŚWIADCZENIA FOTOWOLTAIKA: EFEKTYWNE WYTWARZANIE PRĄDU I CIEPŁA Fotowoltaika, technologia umożliwiająca przemianę promieniowania słonecznego bezpośrednio na energię

Bardziej szczegółowo

ZAŁĄCZNIK NR 09 Symulacja uzysku rocznego dla budynku garażowo-magazynowego

ZAŁĄCZNIK NR 09 Symulacja uzysku rocznego dla budynku garażowo-magazynowego ZAŁĄCZNIK NR 09 Symulacja uzysku rocznego dla budynku garażowo-magazynowego Podłączona do sieci instalacja fotowoltaiczna (PV) Dane klimatyczne Warszawa, POL (1991-2010) Moc generatora PV 18,48 kwp Powierzchnia

Bardziej szczegółowo

INSTRUKCJA LABORATORYJNA NR 4-EW ELEKTROWNIA WIATROWA

INSTRUKCJA LABORATORYJNA NR 4-EW ELEKTROWNIA WIATROWA LABORATORIUM ODNAWIALNYCH ŹRÓDEŁ ENERGII Katedra Aparatury i Maszynoznawstwa Chemicznego Wydział Chemiczny Politechniki Gdańskiej INSTRUKCJA LABORATORYJNA NR 4-EW ELEKTROWNIA WIATROWA ELEKTROWNIA WIATROWA

Bardziej szczegółowo

Wyjścia analogowe w sterownikach, regulatorach

Wyjścia analogowe w sterownikach, regulatorach Wyjścia analogowe w sterownikach, regulatorach 1 Sygnały wejściowe/wyjściowe w sterowniku PLC Izolacja galwaniczna obwodów sterownika Zasilanie sterownika Elementy sygnalizacyjne Wejścia logiczne (dwustanowe)

Bardziej szczegółowo

LABORATORIUM PRZEMIAN ENERGII

LABORATORIUM PRZEMIAN ENERGII LABORATORIUM PRZEMIAN ENERGII BADANIE OGNIWA PALIWOWEGO TYPU PEM I. Wstęp Ćwiczenie polega na badaniu ogniwa paliwowego typu PEM. Urządzenia tego typy są obecnie rozwijane i przystosowywane do takich aplikacji

Bardziej szczegółowo

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Struktura pasmowa ciał stałych. 2. Klasyfikacja ciał stałych w oparciu o teorię

Bardziej szczegółowo

Elementy optoelektroniczne. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego.

Elementy optoelektroniczne. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Elementy optoelektroniczne Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Półprzewodnikowe elementy optoelektroniczne Są one elementami sterowanymi natężeniem

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 6a

Instrukcja do ćwiczenia laboratoryjnego nr 6a Instrukcja do ćwiczenia laboratoryjnego nr 6a Temat: Charakterystyki i parametry półprzewodnikowych przyrządów optoelektronicznych. Cel ćwiczenia: Zapoznać z budową, zasadą działania, charakterystykami

Bardziej szczegółowo

Możliwości zastosowania technologii fotowoltaicznej w Polsce północnej w szczególności w domowych instalacjach autonomicznych.

Możliwości zastosowania technologii fotowoltaicznej w Polsce północnej w szczególności w domowych instalacjach autonomicznych. Możliwości zastosowania technologii fotowoltaicznej w Polsce północnej w szczególności w domowych instalacjach autonomicznych. Tomasz Karaś 1. Wykorzystanie zjawiska fotowoltaiki czyli wytwarzania napięcia

Bardziej szczegółowo

Komputerowe systemy pomiarowe. Dr Zbigniew Kozioł - wykład Mgr Mariusz Woźny - laboratorium

Komputerowe systemy pomiarowe. Dr Zbigniew Kozioł - wykład Mgr Mariusz Woźny - laboratorium Komputerowe systemy pomiarowe Dr Zbigniew Kozioł - wykład Mgr Mariusz Woźny - laboratorium 1 - Cel zajęć - Orientacyjny plan wykładu - Zasady zaliczania przedmiotu - Literatura Klasyfikacja systemów pomiarowych

Bardziej szczegółowo