Fizyka: p. Ivona Malicka str. 2. p. Włodzimierz Waligóra str. 5. Wymagania edukacyjne na poszczególne oceny: kl 1 zakres podstawowy str.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Fizyka: p. Ivona Malicka str. 2. p. Włodzimierz Waligóra str. 5. Wymagania edukacyjne na poszczególne oceny: kl 1 zakres podstawowy str."

Transkrypt

1 XCIX Liceum Ogólnokształcące z Oddziałami Dwujęzycznymi im. Zbigniewa Herberta ul. Fundamentowa 38/ Warszawa Fizyka: p. Ivona Malicka str. 2 p. Włodzimierz Waligóra str. 5 Wymagania edukacyjne na poszczególne oceny: kl 1 zakres podstawowy str. 6 kl 2 zakres rozszerzony str. 12 kl 3 zakres rozszerzony str. 33

2 PRZEDMIOTOWE ZASADY OCENIANIA Z FIZYKI W ROKU SZKOLNYM 2017/ nauczyciel IVONA MALICKA 2. poziom nauczania poziom podstawowy poziom rozszerzony 3. program nauczania (nazwa i numer) Odkryć fizykę. Program nauczania fizyki dla szkół ponadgimnazjalnych zakres podstawowy (8/2017/2018) Program nauczania fizyki dla liceum ogólnokształcącego (kształcenie ogólne w zakresie rozszerzonym) (9/2017/2018) 4. klasa 1B 2B, 2C, 2D1, 2D2 3B 5. tygodniowy wymiar godzin 6. podręcznik 7. dodatkowe pomoce Autorzy: Marcin Braun, Weronika Śliwa Tytuł: Odkryć fizykę. Podręcznik dla szkół ponadgimnazjalnych. Zakres podstawowy (wyd. Nowa Era) ISBN Karty pracy ucznia dla szkół ponadgimnazjalnych. Zakres podstawowy Autorzy: Marcin Braun, Krzysztof Byczuk, Agnieszka Seweryn-Byczuk, Elżbieta Wójtowicz Tytuł: Zrozumieć fizykę 1 Podręcznik dla szkół ponadgimnazjalnych. Zakres rozszerzony (wyd. Nowa Era) ISBN Tytuł: Zrozumieć fizykę 2 Podręcznik dla szkół ponadgimnazjalnych. Zakres rozszerzony (wyd. Nowa Era) ISBN Zbiór zadań 1 do podręcznika Zbiór zadań 2 do podręcznika Autorzy: Marcin Braun, Krzysztof Byczuk, Agnieszka Seweryn-Byczuk, Elżbieta Wójtowicz Tytuł: Zrozumieć fizykę 3 Podręcznik dla szkół ponadgimnazjalnych. Zakres rozszerzony (wyd. Nowa Era) ISBN Zbiór zadań 3 do podręcznika 8. zeszyt Uczniowie są zobowiązani do posiadania i prowadzenia zeszytu. Zeszyty nie są oceniane.

3 sprawdzanie wiedzy i umiejętności (formy sprawdzania, liczba prac klasowych, kartkówek) szczegółowe kryteria oceniania możliwość i forma poprawy oceny niedostatecznej nieprzygotowanie do lekcji brak pracy domowej nieobecność na pracy klasowej informowanie rodziców o wynikach nauczania 1. prace klasowe po każdym przerobionym dziale 2. kartkówki 3. prace domowe 4. aktywność na lekcjach 5. wytwory pracy uczniów 6. odpowiedzi ustne 7. karty pracy ucznia 1. prace klasowe po każdym przerobionym dziale (3 4 w semestrze) 2. kartkówki (po każdym przerobionym paragrafie, średnio co 2 tygodnie) 3. prace domowe 4. aktywność na lekcjach 5. praca projektowa 6. praca projektowa 7. odpowiedzi ustne Wszystkie prace pisemne (prace klasowe, kartkówki, sprawdziany) są zapowiadane. Na lekcjach fizyki obowiązuje punktowy system oceniania. Uczeń może otrzymać dodatkowe punkty jeżeli spełnia chociaż jeden z podanych warunków: szczególnie interesuje się określoną dziedziną fizyki lub astronomii, samodzielnie dociera do różnych źródeł informacji naukowej, prowadzi badania, opracowuje wyniki i przedstawia je w formie projektów uczniowskich, samodzielnie wykonuje modele, przyrządy i pomoce dydaktyczne, jest co najmniej finalistą Olimpiady Fizycznej lub innego konkursu podobnej rangi. Nieobecność ucznia na lekcji na lekcji nie zwalnia ucznia z przygotowania się do lekcji i zobowiązuje go do uzupełnienia materiału we własnym zakresie. Zgodnie z WZO. Kartkówki nie podlegają poprawie. Uczeń ma prawo zgłosić nieprzygotowanie do lekcji według następujących zasad: 1. 3 nieprzygotowania w semestrze jeżeli nauczanie przedmiotu odbywa się w wymiarze 4 lub 5 godzin tygodniowo 2. 1 nieprzygotowanie w semestrze jeżeli nauczanie przedmiotu odbywa się w wymiarze 1 godziny tygodniowo 3. brak możliwości zgłoszenia nieprzygotowania w przypadku zapowiedzianych prac klasowych i kartkówek Za brak pracy domowej uczeń otrzymuje 0 punktów/3 punkty. Każdy uczeń ma obowiązek uzupełnić nieodrobioną pracę domową na następną lekcję. Zgodnie z WZO w ciągu dwóch tygodni w wyznaczonym przez nauczyciela terminie. Zgodnie z WZO podczas zebrań oraz przez dziennik librus.

4 zasady wystawiania ocen semestralnych i końcoworocznych zapoznanie uczniów z wymaganiami edukacyjnymi i powyższymi zasadami Średnia ocen nie jest podstawą do wystawienia oceny śródrocznej i końcoworocznej. Przy wystawianiu oceny końcoworocznej uwzględniana jest też ocena śródroczna. Opanowanie podstawy programowej zaliczenie wszystkich prac klasowych jest podstawą do uzyskania pozytywnej oceny śródrocznej lub końcoworocznej niezależnie od uzyskanych punktów procentowych. Zgodnie z WZO na pierwszej godzinie lekcyjnej w danym roku szkolnym.

5 PRZEDMIOTOWE ZASADY OCENIANIA Z FIZYKI W ROKU SZKOLNYM 2017/ Nauczyciel Włodzimierz Waligóra 2. Poziom nauczania poziom podstawowy 3. Program nauczania Odkryć fizykę. Program nauczania fizyki dla szkół (nazwa i numer) ponadgimnazjalnych zakres podstawowy.(8/2017/2018) 4. klasa 1A, 1D, 1E, 1F1, 1F2 5. Tygodniowy wymiar godzin 1 godzina 6. Podręcznik Tytuł: Odkryć fizykę. Podręcznik dla szkół ponadgimnazjalnych. Zakres podstawowy. (wyd. Nowa Era) ISBN Autorzy: Marcin Braun. Weronika Śliwa 7. Dodatkowe pomoce Pomoce znajdujące się na wyposażeniu pracowni fizycznej Zeszyt Sprawdzanie wiedzy i umiejętności (formy sprawdzania, liczba prac klasowych, kartkówek) Szczegółowe kryteria oceniania Możliwość i forma poprawy oceny niedostatecznej Nieprzygotowanie do lekcji Brak pracy domowej 14. Nieobecność na pracy klasowej 15. Informowanie rodziców o wynikach nauczania Zasady wystawiania ocen 16. semestralnych /końcoworocznych Zapoznanie uczniów z wymaganiami 17. edukacyjnymi i powyższymi zasadami Uczniowie są zobowiązani do posiadania i prowadzenia zeszytu oraz kart pracy. Karty pracy są oceniane Prace klasowe do dwóch w semestrze Kartkówki średnio co 4 tygodnie Prace domowe i karty pracy Aktywność na lekcjach Odpowiedzi ustne Projekty Średnia ważona. Praca klasowa waga 3. Kartkówka waga 2. Pozostałe waga 1. Poprawa prac klasowych w wyznaczonym terminie na konsultacjach. Wyjątkowo podczas lekcji fizyki. Możliwe jedno nieprzygotowanie w semestrze. Traktowane jest jako nieprzygotowanie do lekcji. W przypadku następnego braku pracy domowej uczeń otrzymuje minus. Uczeń ma obowiązek uzupełnić pracę domową na następną lekcje. Zgodnie z WZO wciągu dwóch tygodni w wyznaczonym przez nauczyciela terminie Zgodnie z WZO podczas zebrań z rodzicami i przez dziennik Librus Średnia ważona. Ocena na 1. semestr ma wpływ na ocenę końcoworoczną. Zgodnie z WZO na pierwszej godzinie lekcyjnej w danym roku szkolnym.

6 Wymagania edukacyjne na poszczególne oceny Fizyka - poziom podstawowy klasy pierwsze Zasady ogólne Wymagania na każdy stopień wyższy niż dopuszczający obejmują również wymagania na stopień poprzedni. Na podstawowym poziomie wymagań uczeń powinien wykonać zadania obowiązkowe (łatwe - na stopień dostateczny i bardzo łatwe - na stopień dopuszczający); niektóre czynności ucznia mogą być wspomagane przez nauczyciela (np. wykonywanie doświadczeń, rozwiązywanie problemów, przy czym na stopień dostateczny uczeń wykonuje je pod kierunkiem nauczyciela, na stopień dopuszczający - przy pomocy nauczyciela lub innych uczniów). Czynności wymagane na poziomach wymagań wyższych niż poziom podstawowy uczeń powinien wykonać samodzielnie (na stopień dobry niekiedy może jeszcze korzystać z niewielkiego wsparcia nauczyciela). W wypadku wymagań na stopnie wyższe niż dostateczny uczeń wykonuje zadania dodatkowe (na stopień dobry - umiarkowanie trudne; na stopień bardzo dobry trudne; na stopień celujący bardzo trudne wymagające niekonwencjonalnych pomysłów i metod). Wymagania umożliwiające uzyskanie stopnia celującego obejmują wymagania na stopień bardzo dobry a ponadto wykraczające poza obowiązujący program nauczania (uczeń jest twórczy, rozwiązuje zadania problemowe w sposób niekonwencjonalny, potrafi dokonać syntezy wiedzy i na tej podstawie sformułować hipotezy badawcze i zaproponować sposób ich weryfikacji, samodzielnie prowadzi badania o charakterze naukowym, z własnej inicjatywy pogłębia swoją wiedzę, korzystając z różnych źródeł, poszukuje zastosowań wiedzy w praktyce, dzieli się swoją wiedzą z innymi uczniami, osiąga sukcesy w konkursach pozaszkolnych). Wymagania ogólne uczeń: wykorzystuje wielkości fizyczne do opisu poznanych zjawisk lub rozwiązania prostych zadań obliczeniowych, przeprowadza doświadczenia i wyciąga wnioski z otrzymanych wyników wskazuje w otaczającej rzeczywistości przykłady zjawisk opisywanych za pomocą poznanych praw i zależności fizycznych, posługuje się informacjami pochodzącymi z analizy przeczytanych tekstów (w tym popularnonaukowych). Ponadto uczeń: wykorzystuje narzędzia matematyki oraz formułuje sądy oparte na rozumowaniu matematycznym, wykorzystuje wiedzę o charakterze naukowym do identyfikowania i rozwiązywania problemów, a także formułowania wniosków opartych na obserwacjach empirycznych dotyczących przyrody, wyszukuje, selekcjonuje i krytycznie analizuje informacje, potrafi pracować w zespole.

7 I. Astronomia i grawitacja Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra Ocena celująca Uczeń: podaje definicję roku świetlnego opisuje budowę Galaktyki i miejsce Układu Słonecznego w Galaktyce wskazuje czynniki istotne i nieistotne dla wyniku obserwacji wyjaśnia założenia teorii heliocentrycznej Mikołaja Kopernika opisuje miejsce Układu Słonecznego w Galaktyce i miejsce Ziemi w Układzie Słonecznym wyjaśnia, dlaczego zawsze widzimy tę samą stronę Księżyca opisuje gwiazdy jako naturalne źródła światła opisuje Słońce jako jedną z gwiazd, a Galaktykę (Drogę Mleczną) jako jedną z wielu galaktyk we Wszechświecie opisuje przebieg i wynik przeprowadzonego doświadczenia, wyjaśnia rolę użytych przyrządów, wykonuje schematyczny rysunek obrazujący układ doświadczalny podaje przykłady ruchu krzywoliniowego, szczególnie ruchu jednostajnego po okręgu opisuje ruch jednostajnego po okręgu, posługując się pojęciem siły dla oceny dopuszczającej, a ponadto: porównuje rozmiary i odległości we Wszechświecie (galaktyki, gwiazdy, planety, ciała makroskopowe, organizmy, cząsteczki, atomy, jądra atomowe) posługuje się pojęciem roku świetlnego odnajduje na niebie kilka gwiazdozbiorów i Gwiazdę Polarną opisuje przebieg i wynik przeprowadzonej obserwacji, wyjaśnia rolę użytych narzędzi lub przyrządów wyjaśnia ruch gwiazd na niebie za pomocą ruchu obrotowego Ziemi wymienia nazwy i podstawowe własności planet Układu Słonecznego i porządkuje je według odległości od Słońca wskazuje różnice miedzy planetami typu Ziemi (Merkury, Wenus, Ziemia i Mars) a planetami olbrzymimi (Jowisz, Saturn, Uran i Neptun) rozwiązuje proste zadania związane z budową Układu Słonecznego opisuje warunki panujące na Księżycu, wyjaśnia przyczynę występowania faz i zaćmień Księżyca wykorzystuje wiedzę o dla oceny dostatecznej, a ponadto: rozwiązuje zadania związane z przedstawianiem obiektów bardzo dużych i bardzo małych w odpowiedniej skali planuje proste obserwacje astronomiczne, wybiera właściwe narzędzia lub przyrządy opisuje i porównuje budowę planet Układu Słonecznego wymienia i charakteryzuje inne obiekty Układu Słonecznego (księżyce planet, planety karłowate, planetoidy, komety) określa, w której fazie Księżyca możemy obserwować zaćmienie Słońca, a w której Księżyca, i dlaczego nie następują one w każdej pełni i w każdym nowiu wyjaśnia, dlaczego typowy mieszkaniec Ziemi częściej obserwuje zaćmienia Księżyca niż zaćmienia Słońca oblicza odległość do gwiazdy (w parsekach) na podstawie jej kąta paralaksy posługuje się jednostkami: parsek, rok świetlny, jednostka astronomiczna wykonuje doświadczenia wykazujące, że prędkość w ruchu krzywoliniowym skierowana jest stycznie do toru planuje doświadczenie dla oceny dobrej, a ponadto: posługuje się informacjami dotyczącymi budowy Galaktyki pochodzącymi z analizy przeczytanych tekstów (w tym popularnonaukowych, zamieszczonych w internecie) odnajduje na niebie gwiazdy, gwiazdozbiory i planety, posługując się mapą nieba (obrotową lub komputerową) wyjaśnia obserwowany na niebie ruch planet wśród gwiazd jako złożenie ruchów obiegowych: Ziemi i obserwowanej planety wyjaśnia, dlaczego Galaktyka widziana jest z Ziemi w postaci smugi na nocnym niebie opisuje doświadczenie Cavendisha wyjaśnia wpływ siły grawitacji na ruch ciał w układzie podwójnym rozwiązuje złożone zadania obliczeniowe, korzystając: - ze wzoru na siłę grawitacji, - ze wzoru na pierwszą prędkość kosmiczną, m.in. oblicza prędkość satelity krążącego na danej wysokości, - z III prawa Keplera, - związane z przeciążeniem i niedociążeniem w układzie odniesienia poruszającym się dla oceny bardzo dobrej, a ponadto: potrafi rozwiązywać nietypowe zadania o podwyższonym stopniu trudności wymagające niekonwencjonalnych pomysłów i metod potrafi rozwiązywać zadania złożone, wymagające wykorzystania równocześnie wiedzy z różnych działów fizyki samodzielnie wykonuje projekty badawcze

8 dośrodkowej, zaznacza na rysunku kierunek i zwrot siły dośrodkowej wskazuje w otoczeniu przykłady sił pełniących funkcję siły dośrodkowej opisuje przebieg i wynik przeprowadzonego doświadczenia, wyjaśnia rolę użytych przyrządów, wykonuje schematyczny rysunek obrazujący układ doświadczalny wskazuje w otoczeniu przykłady oddziaływań grawitacyjnych podaje ogólne informacje na temat lotów kosmicznych, wskazując przykłady wykorzystania sztucznych satelitów i lotów kosmicznych podaje przykłady zastosowania sztucznych satelitów posługuje się pojęciem satelity geostacjonarnego przedstawia graficznie eliptyczną orbitę planety z uwzględnieniem położenia Słońca posługuje się pojęciem siły ciężkości, mierzy jej wartość za pomocą siłomierza, posługując się pojęciem niepewności pomiarowej wskazuje przykłady występowania stanu nieważkości charakterze naukowym do formułowania wniosków opartych na obserwacjach empirycznych dotyczących faz i zaćmień Księżyca wyjaśnia, na czym polega zjawisko paralaksy opisuje zasadę pomiaru odległości dzielącej Ziemię od Księżyca i planet opartą na paralaksie i zasadę pomiaru odległości od najbliższych gwiazd opartą na paralaksie rocznej przedstawia graficznie zasadę wyznaczania odległości za pomocą paralaks geocentrycznej i heliocetrycznej przedstawia graficznie wektor prędkości w ruchu prostoliniowym i krzywoliniowym opisuje ruch jednostajny po okręgu, posługując się pojęciem okresu i częstotliwości wykonuje doświadczenie związane z badaniem cech siły dośrodkowej opisuje zależność między siłą dośrodkową a masą, prędkością liniową i promieniem, wskazuje przykłady sił pełniących funkcję siły dośrodkowej wyjaśnia, dlaczego w praktyce nie obserwujemy oddziaływań grawitacyjnych między ciałami innymi niż ciała niebieskie wyjaśnia wpływ siły grawitacji Słońca na ruch planet i siły grawitacji planet na ruch ich związane z badaniem cech siły dośrodkowej wskazuje przykłady wykorzystania satelitów geostacjonarnych i III prawa Keplera wyjaśnia, w jaki sposób możliwe jest zachowanie stałego położenia satelity względem powierzchni Ziemi wyjaśnia, w jakich warunkach występuje przeciążenie i niedociążenie rozwiązuje proste zadania obliczeniowe związane z: - pierwszą prędkością kosmiczną, - siłą grawitacji, - a w szczególności: - rozróżnia wielkości dane i szukane szacuje rząd wielkości spodziewanego wyniku, i na tej podstawie ocenia wartości obliczanych wielkości fizycznych; zapisuje wynik obliczenia fizycznego jako przybliżony z dokładnością do 2-3 cyfr znaczących rozwiązuje złożone zadania obliczeniowe: - związane z ruchem jednostajnym po okręgu, korzystając ze wzoru na siłę dośrodkową posługuje się informacjami pochodzącymi z analizy przeczytanych tekstów, w tym popularnonaukowych, m.in. dotyczącymi: - budowy Układu Słonecznego, a także poszukiwań życia z przyspieszeniem skierowanym w górę lub w dół posługuje się informacjami pochodzącymi z analizy przeczytanych tekstów, w tym popularnonaukowych dotyczącymi: - zaćmień Księżyca i Słońca, - klasyfikacji gwiazd i galaktyk, - przykładów ruchu krzywoliniowego i sił spełniających funkcję siły dośrodkowej innych niż rozpatrywane na lekcji

9 księżyców, wskazuje siłę grawitacji jako przyczynę spadania ciał na powierzchnię Ziemi interpretuje zależności między wielkościami w prawie powszechnego ciążenia dla mas punktowych lub rozłącznych kul opisuje działanie siły grawitacji jako siły dośrodkowej przez analogię z siłami mechanicznymi wyjaśnia wpływ siły grawitacji Słońca na ruch planet i siły grawitacji planet na ruch ich księżyców, wskazuje siłę grawitacji jako przyczynę spadania ciał na powierzchnię Ziemi opisuje ruch sztucznych satelitów wokół Ziemi (jakościowo) posługuje się pojęciem pierwszej prędkości kosmicznej opisuje ruch satelity geostacjonarnego podaje i interpretuje treść III prawa Keplera wyznacza zależność okresu ruchu od promienia orbity (stosuje prawo Keplera) wyjaśnia, na czym polega stan nieważkości, i podaje warunki jego występowania rozwiązuje proste zadania obliczeniowe związane z: - budową Układu Słonecznego - wykorzystaniem pojęcia roku świetlnego - wykorzystaniem zjawiska paralaksy poza Ziemią - historii lotów kosmicznych i wykorzystania sztucznych satelitów - wykorzystania satelitów geostacjonarnych (innych niż omawiane na lekcji) oraz prac i odkryć Jana Keplera - występowania stanu nieważkości w statku kosmicznym, a także przeciążenia i niedociążenia wskazuje przykłady sił grawitacji inne niż rozpatrywane na lekcji, podaje przykłady ruchu pod wpływem siły grawitacji oraz odkrycia Izaaka Newtona

10 - ruchem jednostajnym po okręgu - siłą dośrodkową - ruchem satelity geostacjonarnego oraz wykorzystaniem III prawa Keplera - stanem nieważkości II. Fizyka atomowa Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra Ocena celująca Uczeń: wyodrębnia efekt fotoelektryczny z kontekstu, wskazuje czynniki istotne i nieistotne dla wyniku doświadczenia opisuje efekt fotoelektryczny, wyjaśnia pojęcie fotonu opisuje zależności energii fotonu od częstotliwości wyjaśnia, że wszystkie ciała emitują promieniowanie, wskazując przykłady opisuje przebieg i wynik przeprowadzonego doświadczenia, formułuje wnioski oparte na obserwacjach empirycznych dotyczących promieniowanie ciał opisuje budowę atomu wodoru podaje postulaty Bohra wykorzystuje postulaty Bohra i zasadę zachowania energii do opisu powstawania widma dla oceny dopuszczającej, a ponadto: opisuje przebieg doświadczenia, podczas którego można zaobserwować efekt fotoelektryczny oraz wykonuje schematyczny rysunek obrazujący układ doświadczalny i formułuje wnioski oparte na obserwacjach empirycznych dotyczących efektu fotoelektrycznego odczytuje dane z tabeli, ocenia na podstawie podanej pracy wyjścia dla danego metalu oraz długości fali lub barwy padającego nań promieniowania, czy zajdzie efekt fotoelektryczny opisuje promieniowanie ciał opisuje związek między promieniowaniem emitowanym przez dane ciało oraz jego temperaturą dla oceny dostatecznej, a ponadto: wykorzystuje zasadę zachowania energii do wyznaczenia energii i prędkości fotoelektronów wyjaśnia, dlaczego założenie o falowej naturze światła nie umożliwia wyjaśnienia efektu fotoelektrycznego podaje ograniczenia teorii Bohra podaje argumenty na rzecz falowej i korpuskularnej natury światła oraz granice stosowalności obu teorii i teorię łączącą je w jedną rozwiązuje proste zadania obliczeniowe dotyczące: - przejść elektronu między poziomami energetycznymi w atomie wodoru z udziałem fotonu, np. oblicza energię i długość fali fotonu dla oceny dobrej, a ponadto: opisuje doświadczenia, w których można zaobserwować falową naturę materii opisuje zjawisko emisji wymuszonej rozwiązuje złożone zadania obliczeniowe, dotyczące: - zjawiska fotoelektrycznego, - budowy atomu wodoru, - widma atomu wodoru i przejść elektronu między poziomami energetycznymi w atomie z udziałem fotonu, np. oblicza końcową prędkość elektronu poruszającego się po danej orbicie po pochłonięciu fotonu o podanej energii - fal de Broglie 'a posługuje się informacjami pochodzącymi z analizy przeczytanych tekstów, w tym dla oceny bardzo dobrej, a ponadto: potrafi rozwiązywać nietypowe zadania o podwyższonym stopniu trudności wymagające niekonwencjonalnych pomysłów i metod np. oblicza długość fali materii związanej z danym ciałem (fale de Broglie a) potrafi rozwiązywać zadania złożone, wymagające wykorzystania równocześnie wiedzy z różnych działów fizyki samodzielnie wykonuje projekty badawcze odróżnia widma absorpcyjne od emisyjnych i opisuje różnice między nimi opisuje w uproszczeniu zjawisko emisji wymuszonej

11 wodoru opisuje widmo wodoru opisuje stan podstawowy i stany wzbudzone stosuje zależność między promieniem n-tej orbity a promieniem pierwszej orbity w atomie wodoru interpretuje linie widmowe jako przejścia między poziomami energetycznymi atomów interpretuje zasadę zachowania energii przy przejściach elektronu między poziomami energetycznymi w atomie z udziałem fotonu formułuje wnioski oparte na obserwacjach empirycznych dotyczących natury światła opisuje falowe i kwantowe własności światła rozwiązuje proste zadania obliczeniowe dotyczące energii fotonu, budowy atomu wodoru, promieniowania ciał, a w szczególności: rozróżnia wielkości dane i szukane, szacuje rząd wielkości spodziewanego wyniku i ocenia na tej podstawie wartości obliczanych wielkości fizycznych, zapisuje wynik obliczenia fizycznego jako przybliżony z dokładnością do 2-3 cyfr znaczących emitowanego podczas przejścia elektronu między określonymi orbitami posługuje się informacjami pochodzącymi z analizy przeczytanych tekstów, w tym popularnonaukowych, m.in. dotyczącymi: poglądów na strukturę atomu wodoru oraz życia i pracy naukowej Nielsa Bohra, budowy i widm atomów wieloelektronowych, przykładów zastosowania laserów innych niż rozpatrywane na lekcji popularnonaukowych dotyczącymi: - urządzeń, w których wykorzystywane jest zjawisko fotoelektryczne - praktycznego wykorzystania analizy widmowej - badań nad naturą światła oraz zastosowań teorii kwantowej

12 III. Fizyka jądrowa Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra Ocena celująca Uczeń: wymienia cząstki, z których są zbudowane atomy podaje skład jądra atomowego na podstawie liczby masowej i atomowej odczytuje dane z tabeli opisuje zjawisko promieniotwórczości naturalnej, wskazując przykłady źródeł promieniowania jądrowego formułuje wnioski oparte na obserwacjach empirycznych dotyczących zjawiska promieniotwórczości odróżnia reakcje jądrowe od reakcji chemicznych posługuje się pojęciami jądra stabilnego i niestabilnego opisuje rozpad izotopu promieniotwórczego, posługując się pojęciem czasu połowicznego rozpadu podaje przykłady zastosowania zjawiska promieniotwórczości (datowania substancji na podstawie składu izotopowego) podaje przykłady zastosowania energii jądrowej posługuje się pojęciami: energii spoczynkowej, deficytu masy i energii wiązania podaje wiek Słońca i przewidywany czas jego życia wyjaśnia, że każda gwiazda zmienia się w czasie swojego dla oceny dopuszczającej, a ponadto: posługuje się pojęciami: pierwiastek, jądro atomowe, izotop, proton, neutron, elektron wskazuje przykłady izotopów wymienia właściwości promieniowania jądrowego,, opisuje wybrany sposób wykrywania promieniowania jonizującego wyjaśnia, jak promieniowanie jądrowe wpływa na materię oraz na organizmy, opisuje sposoby ochrony przed promieniowaniem podaje przykłady zastosowania zjawiska promieniotwórczości opisuje rozpady alfa, beta (nie są wymagane wiadomości o neutrinach) oraz sposób powstawania promieniowania gamma opisuje reakcje jądrowe, stosując zasady: zachowania liczby nukleonów i zasadę zachowania ładunku oraz zasadę zachowania energii rysuje wykres zależności liczby jąder, które uległy rozpadowi od czasu wyjaśnia zasadę datowania substancji na podstawie składu izotopowego, np. datowanie węglem l4c dla oceny dostatecznej, a ponadto: wyjaśnia, dlaczego jądro atomowe się nie rozpada opisuje zasadę działania licznika Geigera- Mullera porównuje przenikliwość znanych rodzajów promieniowania oraz szkodliwość różnych źródeł promieniowania sporządza wykres zależności liczby jąder, które uległy rozpadowi od czasu na podstawie danych z tabeli (oznaczenie wielkości i skali na osiach), a także odczytuje dane z wykresu opisuje działanie elektrowni atomowej przytacza i ocenia argumenty za energetyką jądrową i przeciw niej oblicza ilość energii wyzwolonej w podanych reakcjach jądrowych opisuje ewolucję gwiazdy w zależności od jej masy opisuje rozszerzanie się Wszechświata (ucieczkę galaktyk) wyjaśnia, skąd pochodzi większość pierwiastków, z których zbudowana jest materia wokół nas i nasze organizmy wyjaśnia, że proces rozszerzania Wszechświata przyspiesza i nie wiemy jeszcze, dlaczego się tak dla oceny dobrej, a ponadto: wyjaśnia pojęcie antymateria przedstawia trudności związane z kontrolowaniem fuzji termojądrowej opisuje przemiany jądrowe, które będą zachodziły w Słońcu w przyszłych etapach jego życia rozwiązuje zadania metodą graficzną, korzystając z wykresu przedstawiającego zmniejszanie się liczby jąder izotopu promieniotwórczego w czasie posługuje się informacjami pochodzącymi z analizy przeczytanych tekstów, w tym popularnonaukowych dotyczącymi: - doświadczenia Rutherforda nad rozpraszaniem cząstek na bardzo cienkiej folii ze złota i odkrycia jądra atomowego oraz doświadczeń wykonywanych w akceleratorach - życia i osiągnięć Marii Skłodowskiej- Curie oraz zastosowania zjawiska promieniotwórczości i wykrywania promieniowania jądrowego - korzyści i zagrożeń związanych z wytwarzaniem energii elektrycznej w elektrowniach konwencjonalnych (m.in. dla oceny bardzo dobrej, a ponadto: potrafi rozwiązywać nietypowe zadania o podwyższonym stopniu trudności wymagające niekonwencjonalnych pomysłów i metod np. oblicza długość fali materii związanej z danym ciałem (fale de Broglie a) potrafi rozwiązywać zadania złożone, wymagające wykorzystania równocześnie wiedzy z różnych działów fizyki samodzielnie wykonuje projekty badawcze

13 życia podaje przybliżony wiek Wszechświata opisuje reakcję rozszczepienia uranu 235U zachodzącą w wyniku pochłonięcia neutronu; podaje warunki zajścia reakcji łańcuchowej wymienia korzyści i zagrożenia płynące z energetyki jądrowej opisuje reakcje termojądrowe zachodzące w gwiazdach oraz w bombie wodorowej wyjaśnia, skąd pochodzi energia Słońca i innych gwiazd interpretuje zależność E = mc2 opisuje powstanie Słońca i jego przyszłe losy wymienia podstawowe właściwości czerwonych olbrzymów, białych karłów, gwiazd neutronowych i czarnych dziur opisuje Wielki Wybuch jako początek znanego nam Wszechświata opisuje zasadę określania orientacyjnego wieku Układu Słonecznego wyjaśnia, że obiekty położone daleko oglądamy takimi, jakimi były w przeszłości rozwiązuje proste zadania obliczeniowe dotyczące: - składu jądra atomowego - reakcji jądrowych - pojęcia czasu połowicznego rozpadu - deficytu masy i energii wiązania oblicza energię spoczynkową, deficyt masy i energię wiązania dla dowolnego pierwiastka układu okresowego, dzieje rozwiązuje proste zadania obliczeniowe związane z energią jądrową posługuje się informacjami pochodzącymi z analizy przeczytanych tekstów, w tym popularnonaukowych, m.in. dotyczącymi: występowania i właściwości omawianych izotopów promieniotwórczych (np. izotopu radonu), metody datowania radiowęglowego ewolucji Słońca opartych na spalaniu węgla) i elektrowniach atomowych, a także historii rozwoju energetyki jądrowej oraz tragicznych skutków zrzucenia pierwszych bomb atomowych na Japonię i awarii elektrowni jądrowej w Czarnobylu - życia i pracy A. Einsteina, a także jednej z najważniejszych zależności występujących w przyrodzie - zależności energii wiązania przypadającej na jeden nukleon od liczby masowej - ewolucji gwiazd - historii badań Wszechświata (np. prace E. Hubble'a, A. Wolszczana) oraz ewolucji gwiazd formułuje wnioski oparte na wynikach obserwacji i badań Wszechświata

14 a w szczególności: rozróżnia wielkości dane i szukane, odczytuje dane z tabeli i zapisuje dane w formie tabeli, przelicza wielokrotności, szacuje rząd wielkości spodziewanego wyniku i ocenia na tej podstawie wartości obliczanych wielkości fizycznych, zapisuje wynik obliczenia fizycznego jako przybliżony z dokładnością do 2-3 cyfr znaczących

15 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY FIZYKA POZIOM ROZSZERZONY KLASA DRUGA Zasady ogólne 1. Wymagania na każdy stopień wyższy niż dopuszczający obejmują również wymagania na stopień poprzedni. 2. Na podstawowym poziomie wymagań uczeń powinien wykonywać proste zadania obowiązkowe (łatwe na stopień dostateczny i bardzo łatwe na stopień dopuszczający); niektóre czynności ucznia mogą być wspomagane przez nauczyciela (np. wykonywanie doświadczeń, rozwiązywanie problemów, przy czym na stopień dostateczny uczeń wykonuje je pod kierunkiem nauczyciela, na stopień dopuszczający przy pomocy nauczyciela lub innych uczniów). 3. Czynności wymagane na poziomach wymagań wyższych niż poziom podstawowy uczeń powinien wykonać samodzielnie (na stopień dobry niekiedy może korzystać z niewielkiego wsparcia nauczyciela). 4. W wypadku wymagań na stopnie wyższe niż dostateczny uczeń wykonuje zadania bardziej złożone lub dodatkowe (na stopień dobry umiarkowanie trudne; na stopień bardzo dobry trudne i wymagające umiejętności złożonych). 5. Wymagania umożliwiające uzyskanie stopnia celującego obejmują wymagania na stopień bardzo dobry wykraczające poza obowiązujący program nauczania (uczeń jest twórczy; rozwiązuje zadania problemowe w sposób niekonwencjonalny; potrafi dokonać syntezy wiedzy, a na tej podstawie sformułować hipotezy badawcze i zaproponować sposób ich weryfikacji; samodzielnie prowadzi badania o charakterze naukowym; z własnej inicjatywy pogłębia wiedzę, korzystając z różnych źródeł; poszukuje zastosowania wiedzy w praktyce; dzieli się wiedzą z innymi uczniami; osiąga sukcesy (tytuł finalisty) w konkursach pozaszkolnych z dziedziny fizyki lub olimpiadzie fizycznej). Wymagania ogólne uczeń: zna i wykorzystuje pojęcia i prawa fizyki do wyjaśniania procesów i zjawisk w przyrodzie; analizuje teksty popularnonaukowe i ocenia ich treść; wykorzystuje i przetwarza informacje zapisane w postaci tekstu, tabel, wykresów, schematów i rysunków; buduje proste modele fizyczne i matematyczne do opisu zjawisk; planuje i wykonuje proste doświadczenia, analizuje ich wyniki. Ponadto: wykorzystuje narzędzia matematyki i formułuje sądy oparte na rozumowaniu matematycznym; wykorzystuje wiedzę o charakterze naukowym do identyfikowania i rozwiązywania problemów oraz formułowania wniosków opartych na obserwacjach empirycznych dotyczących przyrody;

16 wyszukuje, selekcjonuje i krytycznie analizuje informacje; potrafi pracować w zespole. Wymagania przekrojowe Oprócz wiedzy z wybranych działów fizyki, uczeń: 1) przedstawia jednostki wielkości fizycznych wymienionych w podstawie programowej, opisuje ich związki z jednostkami podstawowymi; 2) samodzielnie wykonuje poprawne wykresy (właściwe oznaczenie i opis osi, wybór skali, oznaczenie niepewności punktów pomiarowych); 3) przeprowadza złożone obliczenia liczbowe, posługując się kalkulatorem; 4) interpoluje, ocenia orientacyjnie wartość pośrednią (interpolowaną) między danymi w tabeli, także za pomocą wykresu; 5) dopasowuje prostą y = ax + b do wykresu i ocenia trafność tego postępowania; oblicza wartości współczynników a i b (ocena ich niepewności nie jest wymagana); 6) opisuje podstawowe zasady niepewności pomiaru (szacowanie niepewności pomiaru, obliczanie niepewności względnej, wskazywanie wielkości, której pomiar ma decydujący wkład na niepewność otrzymanego wyniku wyznaczanej wielkości fizycznej); 7) szacuje wartość spodziewanego wyniku obliczeń, krytycznie analizuje realność otrzymanego wyniku; 8) przedstawia własnymi słowami główne tezy poznanego artykułu popularnonaukowego z dziedziny fizyki lub astronomii. Wymagania doświadczalne Uczeń przeprowadza przynajmniej połowę z przedstawionych poniżej badań polegających na wykonaniu pomiarów, opisie i analizie wyników oraz, jeżeli to możliwe, wykonaniu i interpretacji wykresów dotyczących: 1) ruchu prostoliniowego jednostajnego i jednostajnie zmiennego (np. wyznaczenie przyspieszenia w ruchu jednostajnie zmiennym); 2) ruchu wahadła (np. wyznaczenie przyspieszenia ziemskiego); 3) ciepła właściwego (np. wyznaczenie ciepła właściwego danej cieczy); 4) kształtu linii pól magnetycznego i elektrycznego (np. wyznaczenie pola wokół przewodu w kształcie pętli, w którym płynie prąd); 5) charakterystyki prądowo-napięciowej opornika, żarówki, ewentualnie diody (np. pomiar i wykonanie wykresu zależności I(U); 6) drgań struny (np. pomiar częstotliwości podstawowej drgań struny dla różnej długości drgającej części struny); 7) dyfrakcji światła na siatce dyfrakcyjnej lub płycie CD (np. wyznaczenie gęstości ścieżek na płycie CD); 8) załamania światła (np. wyznaczenie współczynnika załamania światła z pomiaru kąta granicznego); 9) obrazów optycznych otrzymywanych za pomocą soczewek (np. wyznaczenie powiększenia obrazu i porównanie go z powiększeniem obliczonym teoretycznie).

17 Rozdział 1. Kinematyka Treści nauczania wymagania szczegółowe (zagadnienia) 1.1. Pomiary w fizyce i wzorce pomiarowe 1.2. Wstęp do analizy danych pomiarowych (Analiza danych pomiarowych) 1.3. Jak opisać położenie ciała 1.4. Opis ruchu prostoliniowego (Ruch prostoliniowy) 1.5. Prędkość w ruchu prostoliniowym 1.6. Ruch jednostajny prostoliniowy 1.7. Doświadczalne badanie ruchu jednostajnego prostoliniowego (Badanie ruchu jednostajnego prostoliniowego) 1.8. Ruch prostoliniowy zmienny 1.9. Ruch prostoliniowy jednostajnie zmienny (1. Ruch prostoliniowy jednostajnie zmienny; 2. Wyznaczanie przyspieszenia doświadczenie; 3. Spadek swobodny i rzut poziomy) Położenie w ruchu jednostajnie zmiennym Ruch krzywoliniowy Prędkość w ruchu krzywoliniowym (Ruch krzywoliniowy) Rzut poziomy Prędkość w różnych układach odniesienia Ruch po okręgu Przyspieszenie dośrodkowe OCENA DOPUSZCZAJĄCA OCENA DOSTATECZNA OCENA DOBRA OCENA BARDZO DOBRA OCENA CELUJĄCA Uczeń: podaje przykłady zjawisk fizycznych występujących w przyrodzie wyjaśnia, w jaki sposób fizyk zdobywa wiedzę o zjawiskach fizycznych wymienia przyczyny wprowadzenia Międzynarodowego Układu Jednostek Miar(układ SI) wymienia trzy podstawowe miary wzorcowe i jednostki długości, masy i czasu wyjaśnia rolę doświadczenia dla oceny dopuszczającej, a ponadto: wymienia podstawowe wielkości mierzone podczas badania ruchu wyjaśnia przyczyny wykonywania pomiarów wielokrotnych odczytuje dane z tabeli, zapisuje dane w formie tabeli zapisuje wynik pomiaru lub obliczenia fizycznego jako przybliżony (z dokładnością do 2 3 cyfr znaczących) interpretuje dane przedstawione za pomocą tabel, diagramów słupkowych, wykresów dla oceny dostatecznej, a ponadto: przygotowuje prezentację dotyczącą miar wzorcowych i jednostek wielkości mierzalnych podaje przykłady błędów grubych i systematycznych posługuje się niepewnością względną i niepewnością bezwzględną rysuje wektor w układzie współrzędnych przedstawia graficznie na wybranym przykładzie różnicę między drogą dla oceny dobrej, a ponadto: wyjaśnia, na czym polega modelowanie matematyczne posługuje się niepewnością standardową stosuje na wybranym przykładzie równanie ruchu jednostajnego prostoliniowego rozwiązuje złożone zadania, korzystając z wykresów zależności parametrów ruchu od czasu znajduje doświadczalnie, np. za pomocą przezroczystej linijki, prostą najlepszego dopasowania dla oceny bardzo dobrej, a ponadto: potrafi rozwiązywać nietypowe zadania o podwyższonym stopniu trudności wymagające niekonwencjonalnych pomysłów i metod potrafi rozwiązywać zadania złożone, wymagające wykorzystania równocześnie wiedzy z różnych działów fizyki samodzielnie wykonuje projekty badawcze

18 w fizyce zapisuje wyniki pomiarów i obliczeń wraz z jednostkami posługuje się pojęciem niepewność pomiarowa planuje prosty pomiar; zapisuje wynik pomiaru wraz z niepewnością wyznacza średnią arytmetyczną wyników pomiarów projektuje proste doświadczenie obrazujące ruch ciała i rejestruje je za pomocą kamery posługuje się modelem punktu materialnego odróżnia wielkości wektorowe od skalarnych wyjaśnia na wybranym przykładzie, co oznacza stwierdzenie ruch jest pojęciem względnym opisuje ruch, posługując się pojęciami droga i przemieszczenie rozróżnia pojęcia droga i przemieszczenie opisuje ruch, posługując się pojęciem prędkości jako wektora i jego współrzędną; przelicza jednostki prędkości posługuje się pojęciami prędkość średnia i prędkość chwilowa analizuje wykresy zależności drogi, położenia i prędkości od czasu; rysuje te wykresy na podstawie opisu słownego stosuje wzór na drogę w ruchu jednostajnie prostoliniowym klasyfikuje ruchy ze względu na prędkość wskazuje zależności między położeniem, prędkością przedstawia dane podane w tabeli za pomocą diagramu słupkowego wyznacza niepewność maksymalną wartości średniej na podstawie wzoru określa położenie ciała traktowanego jako punkt materialny w wybranym układzie współrzędnych, posługując się wektorem położenia definiuje wektor, określa jego cechy (właściwości) rozwiązuje proste zadania związane z działaniami na wektorach (dodawanie, odejmowanie, mnożenie przez liczbę) opisuje ruch jednowymiarowy w różnych układach odniesienia wskazuje przykłady ruchu względem różnych układów odniesienia rozróżnia wektor przemieszczenia i wektor położenia ciała przedstawia graficznie wektor przemieszczenia i wektory położenia w wybranym układzie odniesienia rozwiązuje proste zadania związane z działaniami na wektorach rozwiązuje proste przykłady dotyczące dodawania wektorów przemieszczenia wyjaśnia różnicę między prędkością średnią a prędkością chwilową; wyjaśnia, kiedy te prędkości są sobie równe wykorzystuje związki między a przemieszczeniem opisuje ruch, posługując się współrzędną wektora położenia i współrzędną wektora przemieszczenia rozwiązuje proste zadania związane z obliczaniem prędkości średniej i chwilowej szacuje wartość spodziewanego wyniku obliczeń; krytycznie analizuje realność otrzymanego wyniku szacuje niepewności pomiaru i oblicza niepewność względną opisuje ruch ciała za pomocą wykresu uwzględniającego niepewności pomiarowe sporządza wykresy zależności prędkości od czasu v(t) dla ruchu jednostajnie przyspieszonego i jednostajnie opóźnionego(samodzielnie wykonuje poprawne wykresy: właściwie oznacza i opisuje osie, dobiera jednostkę, oznacza niepewności punktów pomiarowych) przeprowadza doświadczenie polegające na badaniu ruchu jednostajnie zmiennego; analizuje wyniki oraz jeżeli to możliwe wykonuje i interpretuje wykresy dotyczące ruchu jednostajnie zmiennego wykorzystuje właściwości funkcji kwadratowej f(x) = ax 2 + bx + c do interpretacji wykresów zależności drogi od czasu i zależności położenia od czasu w ruchu jednostajnie zmiennym rozwiązuje złożone zadania do punktów na wykresie zależności x(t); na tej podstawie wyznacza prędkość ciała rozwiązuje złożone zadania obliczeniowe związane z ruchem jednostajnie zmiennym(przeprowadza złożone obliczenia liczbowe za pomocą kalkulatora) wykorzystuje właściwości funkcji liniowej f(x) = ax + b do interpretacji wykresów(dopasowuje prostą y = ax + b do wykresu i ocenia trafność tego postępowania; oblicza wartości współczynników a i b) samodzielnie wykonuje projekt badania dotyczącego ruchu jednostajnie zmiennego(np. wyznaczenia przyspieszenia w ruchu jednostajnie zmiennym); sporządza tabele wyników pomiaru wyprowadza wzór na drogę w ruchu jednostajnie zmiennym z wykresu zależności prędkości od czasu v(t) rozwiązuje złożone zadania obliczeniowe związane z ruchem jednostajnie zmiennym(przeprowadza złożone obliczenia liczbowe za pomocą kalkulatora) rozwiązuje złożone zadania obliczeniowe i konstrukcyjne dotyczące rzutu poziomego analizuje i rozwiązuje zadania dotyczące obserwatora poruszającego się względem wybranego układu odniesienia rozwiązuje złożone zadania

19 i przyspieszeniem w ruchu jednostajnie zmiennym wskazuje przykłady ruchów krzywoliniowych i prostoliniowych w przyrodzie i życiu codziennym wyjaśnia, czym tor różni się od drogi; klasyfikuje ruchy ze względu na tor zakreślany przez ciało wyznacza konstrukcyjnie styczną do krzywej przedstawia graficznie wektory prędkości średniej i chwilowej stosuje pojęcie wektor przemieszczenia; wyznacza wektor przemieszczenia jako różnicę wektorów położenia końcowego i położenia początkowego wskazuje przykłady względności ruchu opisuje ruch jednostajny po okręgu, posługując się pojęciami okres i częstotliwość stosuje radian jako miarę łukową kąta opisuje ruch jednostajny po okręgu i ruch jednostajnie zmienny po okręgu; wskazuje cechy wspólne i różnice położeniem a prędkością w ruchu jednostajnym do obliczania parametrów ruchu rysuje i interpretuje wykresy zależności parametrów ruchu jednostajnego od czasu rozwiązuje proste zadania obliczeniowe z wykorzystaniem równania ruchu jednostajnego projektuje doświadczenie i wykonuje pomiary związane z badaniem ruchu jednostajnego prostoliniowego opisuje i analizuje wyniki doświadczenia opisuje podstawowe zasady określania niepewności pomiaru (szacowanie niepewności pomiaru, obliczanie niepewności względnej, wskazywanie wielkości, której pomiar decydująco wpływa na niepewność otrzymanego wyniku) opisuje ruch ciała za pomocą tabeli i wykresu na podstawie pomiarów z bezpośredniej obserwacji lub z filmu; podaje czas i współrzędną położenia opisuje ruch, określając prędkość średnią i średnią wartość prędkości rysuje i interpretuje wykresy położenia, prędkości i drogi przy skokowych zmianach prędkości oraz zmianach zwrotu prędkości posługuje się pojęciami przyspieszenie średnie i przyspieszenie chwilowe wyjaśnia, czym charakteryzuje się ruch jednostajnie zmienny definiuje zależność prędkości w ruchu jednostajnie zmiennym obliczeniowe i konstrukcyjne dotyczące ruchu krzywoliniowego, posługując się pojęciami prędkość średnia i prędkość chwilowa wyjaśnia graficznie, że rzut poziomy jest złożeniem ruchu poziomego i pionowego; wykazuje doświadczalnie niezależność tych ruchów opisuje położenie ciała za pomocą współrzędnych x i y opisuje tor ruchu w rzucie poziomym jako parabolę; wyznacza współczynnik w równaniu paraboli y = ax 2 stosuje prawo składania wektorów do obliczania prędkości ciał względem różnych układów odniesienia oblicza prędkości względne ruchów na płaszczyźnie wyprowadza związek między prędkością liniową a prędkością kątową opisuje ruch zmienny po okręgu, posługując się pojęciami chwilowa prędkość kątowa i przyspieszenie kątowe; przelicza odpowiednie jednostki szacuje prędkość liniową na podstawie zdjęcia rozwiązuje złożone zadania obliczeniowe związane z ruchem jednostajnym po okręgu, posługując się kalkulatorem wyjaśnia, na czym polega różnica między przyspieszeniem kątowym a przyspieszeniem dośrodkowym; uzasadnia to graficznie obliczeniowe związane z ruchem jednostajnie zmiennym po okręgu, posługując się kalkulatorem

20 od czasu; wykorzystuje ją w zadaniach wyjaśnia dlaczego wykres v(t) jest funkcją liniową analizuje spadek swobodny i rzut pionowy w górę; opisuje te ruchy z zastosowaniem równań v(t) i s(t) oblicza parametry ruchu podczas swobodnego spadku i rzutu pionowego oblicza parametry ruchu, wykorzystując związki między położeniem, prędkością i przyspieszeniem w ruchu jednostajnie zmiennym rysuje i interpretuje wykresy zależności parametrów ruchu jednostajnie zmiennego od czasu wykresy v(t), s(t) i a(t) rozwiązuje proste zadania obliczeniowe związane z ruchem jednostajnie zmiennym: rozróżnia wielkości dane i szukane, przelicza wielokrotności i podwielokrotności, szacuje wartość spodziewanego wyniku, przeprowadza proste obliczenia liczbowe za pomocą kalkulatora, zapisuje wynik obliczenia fizycznego jako przybliżony (z znaczących), krytycznie analizuje realność otrzymanego wyniku opisuje położenie punktu materialnego na płaszczyźnie i w przestrzeni z wykorzystaniem współrzędnych x, y, z opisuje współrzędne wektora na płaszczyźnie (m.in. wektora położenia), posługując się dwuwymiarowym układem

21 współrzędnych konstrukcyjnie dodaje i odejmuje wektory o tych samych i różnych kierunkach, posługując się cyrklem, ekierką i linijką zapisuje w przyjętym układzie współrzędnych wektory sumy i różnicy dwóch wektorów rysuje wektory o różnych kierunkach w układzie współrzędnych; określa ich współrzędne rozwiązuje proste zadania obliczeniowe dotyczące ruchu krzywoliniowego, posługując się pojęciami prędkość średnia, prędkość chwilowa i przemieszczenie opisuje rzut poziomy, wykorzystując równanie ruchu jednostajnego dla współrzędnej poziomej i równanie ruchu jednostajnie zmiennego dla współrzędnej pionowej opisuje na wybranym przykładzie składanie prędkości, np. prędkości łodzi płynącej po rzece posługuje się układem odniesienia do opisu złożoności ruchu; opisuje ruch w różnych układach odniesienia oblicza prędkości względne ruchów wzdłuż prostej analizuje i rozwiązuje zadania dotyczące obserwatora opisującego ruch i pozostającego w spoczynku względem wybranego układu odniesienia opisuje ruch jednostajny po

22 okręgu, posługując się pojęciami promień wodzący, kąt w radianach, prędkość kątowa oblicza parametry ruchu jednostajnego po okręgu opisuje wektory prędkości i przyspieszenia dośrodkowego rozwiązuje proste zadania obliczeniowe związane z ruchem jednostajnym po okręgu Rozdział 2. Ruch i siły Treści nauczania wymagania szczegółowe (zagadnienia) 2.1. Oddziaływania 2.2. Dodawanie sił i rozkładanie ich na składowe 2.3. Pierwsza i druga zasada dynamiki Newtona 2.4. Trzecia zasada dynamiki Newtona 2.5. Siła tarcia 2.6. Siła dośrodkowa 2.7. Siły bezwładności Analiza tekstu Czy można biegać po wodzie OCENA DOPUSZCZAJĄCA OCENA DOSTATECZNA OCENA DOBRA OCENA BARDZO DOBRA OCENA CELUJĄCA Uczeń: podaje przykłady oddziaływań i rozpoznaje oddziaływania w sytuacjach praktycznych wymienia rodzaje oddziaływań fundamentalnych planuje i wykonuje doświadczenie ilustrujące wzajemność oddziaływań opisuje oddziaływania, posługując się pojęciem siła przedstawia siłę za pomocą wektora; wymienia cechy tego wektora dla oceny dopuszczającej, a ponadto: wskazuje przykłady oddziaływań fundamentalnych wyjaśnia znaczenie punktu przyłożenia siły wyznacza graficznie siłę wypadkową dwóch sił składa siły działające wzdłuż prostych równoległych rozkłada siłę, np. siłę ciężkości na równi pochyłej, na składowe rozróżnia siły wypadkową i równoważącą dla oceny dostatecznej, a ponadto: stosuje metodę dodawania wektorów (reguły równoległoboku lub trójkąta) do wyznaczania siły wypadkowej wskazuje przykłady praktycznego wykorzystania umiejętności składania i rozkładania sił rozwiązuje posługując się kalkulatorem proste zadania obliczeniowe; w obliczeniach stosuje drugą zasadę dynamiki i kinematyczne równania ruchu dla oceny dobrej, a ponadto: rozwiązuje posługując się kalkulatorem złożone zadania obliczeniowe; w obliczeniach stosuje drugą zasadę dynamiki i kinematyczne równania ruchu rozwiązuje złożone zadania problemowe i doświadczalne dotyczące trzeciej zasady dynamiki Newtona rozwiązuje trudne zadania obliczeniowe i problemowe z uwzględnieniem sił tarcia dla oceny bardzo dobrej, a ponadto: potrafi rozwiązywać nietypowe zadania o podwyższonym stopniu trudności wymagające niekonwencjonalnych pomysłów i metod potrafi rozwiązywać zadania złożone, wymagające wykorzystania równocześnie wiedzy z różnych działów fizyki samodzielnie wykonuje projekty badawcze podaje przykłady działania siły

23 wskazuje przykłady bezwładności ciał stosuje do obliczeń związek między masą ciała, przyspieszeniem i siłą obserwuje przebieg doświadczenia; zapisuje i analizuje wyniki pomiarów; wyciąga wnioski z doświadczenia podaje przykłady wzajemnego oddziaływania ciał opisuje wzajemne oddziaływanie ciał, posługując się trzecią zasadą dynamiki Newtona planuje korzystając z podręcznika i demonstruje doświadczenie ilustrujące trzecią zasadę dynamiki wyjaśnia (na przykładach) dlaczego siły wynikające z trzeciej zasady dynamiki się nie równoważą wskazuje negatywne i pozytywne skutki tarcia rozróżnia tarcie statyczne i tarcie kinetyczne dopasowuje prostą y = ax do wykresu; oblicza wartość współczynnika a opisuje zależności między siłą dośrodkową a masą, prędkością liniową i promieniem; wskazuje przykłady sił pełniących funkcję siły dośrodkowej rozróżnia układy inercjalny i nieinercjalny wskazuje różne przykłady działania sił bezwładności w ruchu prostoliniowym opisuje ruch ciał, wykorzystując pierwszą zasadę dynamiki Newtona opisuje ruch ciał, korzystając z drugiej zasady dynamiki Newtona wymienia jednostki siły i opisuje ich związek z jednostkami podstawowymi szacuje wartość spodziewanego wyniku obliczeń; krytycznie analizuje realność otrzymanego wyniku opisuje zachowanie ciał na podstawie trzeciej zasady dynamiki Newtona rozwiązuje proste zadania problemowe, wskazując siły wzajemnego oddziaływania rozróżnia tarcie toczne i tarcie poślizgowe opisuje ruch ciał, posługując się pojęciem siła tarcia wyjaśnia, kiedy występuje tarcie statyczne, a kiedy kinetyczne; opisuje rolę tarcia w przyrodzie i technice wyznacza współczynnik tarcia: planuje doświadczenie, mierzy siłę, która działa podczas jednostajnego ciągnięcia pudełka przy różnej sile nacisku, sporządza tabelę z wynikami pomiarów, oblicza średnią wartość współczynnika tarcia, szacuje niepewność pomiaru, oblicza niepewność względną, wskazuje wielkości, których pomiar decydująco wpływa na niepewność wyniku samodzielnie wykonuje wyjaśnia (mikroskopowo), na czym polega występowanie sił tarcia stosuje i zapisuje zasady dynamiki Newtona z uwzględnieniem sił tarcia wskazuje w życiu codziennym i w przyrodzie jaka siła pełni rolę siły dośrodkowej w ruchu po okręgu posługuje się pojęciem siła odśrodkowa i siła bezwładności; znając kierunek i zwrot przyspieszenia układu nieinercjalnego, przedstawia na rysunku kierunek i zwrot siły odśrodkowej przedstawia własnymi słowami główne tezy artykułu popularnonaukowego Czy można biegać po wodzie? rozwiązuje posługując się kalkulatorem złożone zadania obliczeniowe związane z ruchem jednostajnym po okręgu; w obliczeniach korzysta ze wzoru na siłę dośrodkową rozwiązuje posługując się kalkulatorem złożone zadania obliczeniowe; wybiera układ odniesienia odpowiedni do opisu ruchu ciała Coriolisa

FIZYKA IV etap edukacyjny zakres podstawowy

FIZYKA IV etap edukacyjny zakres podstawowy FIZYKA IV etap edukacyjny zakres podstawowy Cele kształcenia wymagania ogólne I. Wykorzystanie wielkości fizycznych do opisu poznanych zjawisk lub rozwiązania prostych zadań obliczeniowych. II. Przeprowadzanie

Bardziej szczegółowo

Ocena Stopień dopuszczający Stopień dostateczny Stopień dobry Stopień bardzo dobry

Ocena Stopień dopuszczający Stopień dostateczny Stopień dobry Stopień bardzo dobry SZCZEGÓŁOWE KRYTERIA OCENIANIA Z FIZYKI NA POZIOMIE PODSTAWOWYM I Astronomia i grawitacja Ocena Stopień dopuszczający Stopień dostateczny Stopień dobry Stopień bardzo dobry opisuje budowę Galaktyki i miejsce

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne z przedmiotu fizyka dla klasy IC, rok szkolny 2016/2017

Szczegółowe wymagania edukacyjne z przedmiotu fizyka dla klasy IC, rok szkolny 2016/2017 Szczegółowe wymagania edukacyjne z przedmiotu fizyka dla klasy IC, rok szkolny 2016/2017 I Astronomia i grawitacja podaje definicję roku świetlnego opisuje budowę Galaktyki i miejsce Układu Słonecznego

Bardziej szczegółowo

Spełnienie wymagań poziomu oznacza, że uczeń ponadto:

Spełnienie wymagań poziomu oznacza, że uczeń ponadto: Fizyka LO - 1, zakres podstawowy R - treści nadobowiązkowe. Wymagania podstawowe odpowiadają ocenom dopuszczającej i dostatecznej, ponadpodstawowe dobrej i bardzo dobrej Wymagania podstawowe Spełnienie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: FIZYKA W KLASIE I (ZAKRES PODSTAWOWY)

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: FIZYKA W KLASIE I (ZAKRES PODSTAWOWY) Zasady ogólne: WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: FIZYKA W KLASIE I (ZAKRES PODSTAWOWY) Wymagania na każdy stopień wyższy niż dopuszczający obejmują również wymagania na stopień poprzedni. Na podstawowym

Bardziej szczegółowo

Wymagania edukacyjne z fizyki Odkryć fizykę (zakres podstawowy)

Wymagania edukacyjne z fizyki Odkryć fizykę (zakres podstawowy) Wymagania edukacyjne z fizyki Odkryć fizykę (zakres podstawowy) Zasady ogólne Wymagania na każdy stopień wyższy niż dopuszczający obejmują również wymagania na stopień poprzedni. Na podstawowym poziomie

Bardziej szczegółowo

Zasady oceniania do programu nauczania Odkryć fizykę. Zakres podstawowy

Zasady oceniania do programu nauczania Odkryć fizykę. Zakres podstawowy Zasady oceniania do programu nauczania Odkryć fizykę Zakres podstawowy Zasady ogólne Wymagania na każdy stopień wyższy niż dopuszczający obejmują również wymagania na stopień poprzedni. Na podstawowym

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny fizyka klasy pierwsze ( szczegółowe warunki i sposób oceniania określa statut szkoły).

Wymagania edukacyjne na poszczególne oceny fizyka klasy pierwsze ( szczegółowe warunki i sposób oceniania określa statut szkoły). Wymagania edukacyjne na poszczególne oceny fizyka klasy pierwsze ( szczegółowe warunki i sposób oceniania określa statut szkoły). Zasady ogólne Wymagania na każdy stopień wyższy niż dopuszczający obejmują

Bardziej szczegółowo

Wymagania edukacyjne z fizyki dla klasy I liceum

Wymagania edukacyjne z fizyki dla klasy I liceum Wymagania edukacyjne z fizyki dla klasy I liceum Wymagania ogólne uczeń: wykorzystuje wielkości fizyczne do opisu poznanych zjawisk lub rozwiązania prostych zadań obliczeniowych, przeprowadza doświadczenia

Bardziej szczegółowo

Wymagania edukacyjne

Wymagania edukacyjne Wymagania edukacyjne Odkryć fizykę - Nowa Era poziom podstawowy Zasady ogólne Wymagania na każdy stopień wyższy niż dopuszczający obejmują również wymagania na stopień poprzedni. Na podstawowym poziomie

Bardziej szczegółowo

Astronomia i grawitacja Ocena Stopień dopuszczający Stopień dostateczny Stopień dobry Stopień bardzo dobry

Astronomia i grawitacja Ocena Stopień dopuszczający Stopień dostateczny Stopień dobry Stopień bardzo dobry FIZYKA PLAN WYNIKOWY opracowany przez wydawnictwo NOWA ERA wg podręcznika pt. Odkryć fizykę dla szkół ponadgimnazjalnych zakres podstawowy Marcin Braun, Weronika Śliwa Wymagania ogólne uczeń: wykorzystuje

Bardziej szczegółowo

Wymagania edukacyjne z fizyki dla zasadniczej szkoły zawodowej

Wymagania edukacyjne z fizyki dla zasadniczej szkoły zawodowej Wymagania edukacyjne z fizyki dla zasadniczej szkoły zawodowej Zasady ogólne Wymagania na każdy stopień wyższy niż dopuszczający obejmują również wymagania na stopień poprzedni. Na podstawowym poziomie

Bardziej szczegółowo

Przedmiotowy system oceniania - Odkryć fizykę - kl.i

Przedmiotowy system oceniania - Odkryć fizykę - kl.i Przedmiotowy system oceniania - Odkryć fizykę - kl.i Zasady ogólne Wymagania na każdy stopień wyższy niż dopuszczający obejmują również wymagania na stopień poprzedni. Na podstawowym poziomie wymagań uczeń

Bardziej szczegółowo

FIZYKA KLASA I LICEUM OGÓLNOKSZTAŁCĄCEGO

FIZYKA KLASA I LICEUM OGÓLNOKSZTAŁCĄCEGO 2016-09-01 FIZYKA KLASA I LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY SZKOŁY BENEDYKTA 1. Cele kształcenia i wychowania Ogólne cele kształcenia zapisane w podstawie programowej dla zakresu podstawowego

Bardziej szczegółowo

Przedmiotowy system oceniania z fizyki klasa 1 po gimnazjum - poziom podstawowy. Zasady ogólne

Przedmiotowy system oceniania z fizyki klasa 1 po gimnazjum - poziom podstawowy. Zasady ogólne Przedmiotowy system oceniania z fizyki klasa 1 po gimnazjum - poziom podstawowy Zasady ogólne Wymagania na każdy stopień wyższy niż dopuszczający obejmują również wymagania na stopień poprzedni. Na podstawowym

Bardziej szczegółowo

Przedmiotowy system oceniania (propozycja) (propozycja; szczegółowe warunki i sposób oceniania określa statut szkoły) Zasady ogólne

Przedmiotowy system oceniania (propozycja) (propozycja; szczegółowe warunki i sposób oceniania określa statut szkoły) Zasady ogólne Przedmiotowy system oceniania (propozycja) (propozycja; szczegółowe warunki i sposób oceniania określa statut szkoły) Zasady ogólne Wymagania na każdy stopień wyższy niż dopuszczający obejmują również

Bardziej szczegółowo

Przedmiotowy system oceniania z fizyki kl.i 2013/14 Zasady ogólne

Przedmiotowy system oceniania z fizyki kl.i 2013/14 Zasady ogólne Przedmiotowy system oceniania z fizyki kl.i 2013/14 Zasady ogólne Wymagania na każdy stopień wyższy niż dopuszczający obejmują również wymagania na stopień poprzedni. Na podstawowym poziomie wymagań uczeń

Bardziej szczegółowo

Przedmiotowy system oceniania z przedmiotu fizyka dla klas pierwszych

Przedmiotowy system oceniania z przedmiotu fizyka dla klas pierwszych Przedmiotowy system oceniania z przedmiotu fizyka dla klas pierwszych Zasady ogólne Wymagania na każdy stopień wyższy niż dopuszczający obejmują również wymagania na stopień poprzedni. Na podstawowym poziomie

Bardziej szczegółowo

(propozycja; szczegółowe warunki i sposób oceniania określa statut szkoły) korzystać z niewielkiego wsparcia nauczyciela).

(propozycja; szczegółowe warunki i sposób oceniania określa statut szkoły) korzystać z niewielkiego wsparcia nauczyciela). 146 Przedmiotowy system oceniania 8 Przedmiotowy system oceniania (propozycja)p (propozycja; szczegółowe warunki i sposób oceniania określa statut szkoły) Zasady ogólne Wymagania na każdy stopień wyższy

Bardziej szczegółowo

Wymagania edukacyjne z fizyki dla klas pierwszych: 1a,1b,1c,1d. Bożena lasko. Zasady ogólne

Wymagania edukacyjne z fizyki dla klas pierwszych: 1a,1b,1c,1d. Bożena lasko. Zasady ogólne Wymagania edukacyjne z fizyki dla klas pierwszych: 1a,1b,1c,1d Bożena lasko Zasady ogólne Wymagania na każdy stopień wyższy niż dopuszczający obejmują również wymagania na stopień poprzedni. Na podstawowym

Bardziej szczegółowo

Opis założonych osiągnięć ucznia Fizyka zakres podstawowy:

Opis założonych osiągnięć ucznia Fizyka zakres podstawowy: Opis założonych osiągnięć ucznia Fizyka zakres podstawowy: Zagadnienie podstawowy Poziom ponadpodstawowy Numer zagadnienia z Podstawy programowej Uczeń: Uczeń: ASTRONOMIA I GRAWITACJA Z daleka i z bliska

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne z fizyki do nowej podstawy programowej.

Szczegółowe wymagania edukacyjne z fizyki do nowej podstawy programowej. Szczegółowe wymagania edukacyjne z fizyki do nowej podstawy programowej. Zagadnienie podstawowy Uczeń: ponadpodstawowy Uczeń: Numer zagadnienia z Podstawy programowej ASTRONOMIA I GRAWITACJA Z daleka i

Bardziej szczegółowo

Przedmiotowy system oceniania z FIZYKI. Nauczyciel: mgr Magdalena Wieprzowska. VI LO im. J. Dąbrowskiego w Częstochowie.

Przedmiotowy system oceniania z FIZYKI. Nauczyciel: mgr Magdalena Wieprzowska. VI LO im. J. Dąbrowskiego w Częstochowie. Przedmiotowy system oceniania z FIZYKI Nauczyciel: mgr Magdalena Wieprzowska VI LO im. J. Dąbrowskiego w Częstochowie Zasady ogólne Wymagania na każdy stopień wyższy niż dopuszczający obejmują również

Bardziej szczegółowo

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z FIZYKI

WYMAGANIA EDUKACYJNE Z FIZYKI WYMAGANIA EDUKACYJNE Z FIZYKI Cele kształcenia wymagania ogólne I. Wykorzystanie wielkości fizycznych do opisu poznanych zjawisk lub rozwiązania prostych zadań obliczeniowych. II. Przeprowadzanie doświadczeń

Bardziej szczegółowo

Wymagania edukacyjne do nowej podstawy programowej z fizyki realizowanej w zakresie rozszerzonym Kinematyka

Wymagania edukacyjne do nowej podstawy programowej z fizyki realizowanej w zakresie rozszerzonym Kinematyka 1 edukacyjne do nowej podstawy programowej z fizyki realizowanej w zakresie rozszerzonym Kinematyka *W nawiasie podano alternatywny temat lekcji (jeśli nazwa zagadnienia jest długa) bądź tematy lekcji

Bardziej szczegółowo

Wymagania edukacyjne Fizyka, zakres podstawowy

Wymagania edukacyjne Fizyka, zakres podstawowy edukacyjne Fizyka, zakres podstawowy 1 Astronomia i grawitacja Zagadnienie Z bliska i z daleka porównuje rozmiary i odległości we Wszechświecie (galaktyki, gwiazdy, planety, ciała makroskopowe, organizmy,

Bardziej szczegółowo

ROZKŁAD MATERIAŁU Z FIZYKI - ZAKRES PODSTAWOWY

ROZKŁAD MATERIAŁU Z FIZYKI - ZAKRES PODSTAWOWY ROZKŁAD MATERIAŁU Z FIZYKI - ZAKRES PODSTAWOWY AUTORZY PROGRAMU: MARCIN BRAUN, WERONIKA ŚLIWA NUMER PROGRAMU: FIZP-0-06/2 PROGRAM OBEJMUJE OKRES NAUCZANIA: w kl. I TE, LO i ZSZ LICZBA GODZIN PRZEZNACZONA

Bardziej szczegółowo

Wymagania edukacyjne z fizyki dla klas pierwszych

Wymagania edukacyjne z fizyki dla klas pierwszych Zagadnienie Poziom Numer zagadnienia z Podstawy podstawowy ponadpodstawowy programowej Uczeń: Uczeń: ASTRONOMIA I GRAWITACJA Z daleka i z bliska porównuje rozmiary i odległości we Wszechświecie (galaktyki,

Bardziej szczegółowo

Szczegółowe kryteria ocen z fizyki w kl. I szkoły branżowej

Szczegółowe kryteria ocen z fizyki w kl. I szkoły branżowej Szczegółowe kryteria ocen z fizyki w kl. I szkoły branżowej 1. Astronomia I Grawitacja podaje definicję roku świetlnego wyjaśnia założenia teorii heliocentrycznej Mikołaja Kopernika wyjaśnia, dlaczego

Bardziej szczegółowo

Przedmiotowy system oceniania z fizyki dla klas IA, IC, ID, IE, IG, IK

Przedmiotowy system oceniania z fizyki dla klas IA, IC, ID, IE, IG, IK Przedmiotowy system oceniania z fizyki dla klas IA, IC, ID, IE, IG, IK I. Sposoby sprawdzania osiągnięć edukacyjnych uczniów ustna forma kontroli postępów i osiągnięć edukacyjnych obejmująca maksymalnie

Bardziej szczegółowo

Zasady ogólne. Wymagania ogólne uczeń:

Zasady ogólne. Wymagania ogólne uczeń: Wymagania programowe na poszczególne oceny IV etap edukacyjny LO, Technikum, ZSZ, opracowane na podstawie treści zawartych w podstawie programowej oraz w podręczniku Odkryć fizykę zakres podstawowy Autorstwa

Bardziej szczegółowo

Wymagania edukacyjne z fizyki dla kl. I Rok szkolny Klasy I Technikum i BS

Wymagania edukacyjne z fizyki dla kl. I Rok szkolny Klasy I Technikum i BS edukacyjne z fizyki dla kl. I Rok szkolny 2018-2019 Klasy I Technikum i BS Nauczyciel: Jadwiga Chwieduk Oznaczenia: K wymagania konieczne (dopuszczający); P wymagania (dostateczny); R wymagania rozszerzające

Bardziej szczegółowo

Przedmiotowy system oceniania z fizyki w XIII LO w Białymstoku.

Przedmiotowy system oceniania z fizyki w XIII LO w Białymstoku. Przedmiotowy system oceniania z fizyki w XIII LO w Białymstoku. System oceniania jest zgodny z rozporządzeniem MEN z dnia 30.04.2007r. w sprawie warunków i sposobu oceniania i klasyfikowania uczniów w

Bardziej szczegółowo

organizmy, cząsteczki, atomy, jądra atomowe) posługuje się pojęciem roku świetlnego X podaje definicję roku świetlnego X skali

organizmy, cząsteczki, atomy, jądra atomowe) posługuje się pojęciem roku świetlnego X podaje definicję roku świetlnego X skali 135 6 Plan wynikowy (propozycja) R treści nadprogramowe Plan wynikowy (propozycja), obejmujący treści nauczania zawarte w podręczniku Spotkania z fizyką, część 4 (a także w programie nauczania), jest dostępny

Bardziej szczegółowo

PROGRAM NAUCZANIA Z FIZYKI SZKOŁA PONADGIMNAZJALNA ZAKRES PODSTATOWY

PROGRAM NAUCZANIA Z FIZYKI SZKOŁA PONADGIMNAZJALNA ZAKRES PODSTATOWY PROGRAMY NAUCZANIA Z FIZYKI REALIZOWANE W RAMACH PROJEKTU INNOWACYJNEGO TESTUJĄCEGO Zainteresowanie uczniów fizyką kluczem do sukcesu PROGRAM NAUCZANIA Z FIZYKI SZKOŁA PONADGIMNAZJALNA ZAKRES PODSTATOWY

Bardziej szczegółowo

Plan wynikowy. 1 Astronomia i grawitacja

Plan wynikowy. 1 Astronomia i grawitacja Plan wynikowy Plan wynikowy, obejmujący treści nauczania zawarte w podręczniku dla szkół ponadgimnazjalnych Odkryć fizykę" autorstwa Marcina Brauna i Weroniki Śliwy. 1 Astronomia i grawitacja Zagadnienie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POZSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z FIZYKI

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POZSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z FIZYKI WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POZSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z FIZYKI ZAKRES PODSTAWOWY Wymagania na poszczególne oceny. Zasady ogólne Wymagania na każdy stopień

Bardziej szczegółowo

Plan wynikowy (propozycja)

Plan wynikowy (propozycja) Plan wynikowy (propozycja) Plan wynikowy (propozycja), obejmujący treści nauczania zawarte w podręczniku dla szkół ponadgimnazjalnych Odkryć fizykę" autorstwa Marcina Brauna i Weroniki Śliwy (a także w

Bardziej szczegółowo

Wymagania edukacyjne z fizyki poziom rozszerzony część 1

Wymagania edukacyjne z fizyki poziom rozszerzony część 1 1 Wymagania edukacyjne z fizyki poziom rozszerzony część 1 Kinematyka podaje przykłady zjawisk fizycznych występujących w przyrodzie wyjaśnia, w jaki sposób fizyk zdobywa wiedzę o zjawiskach fizycznych

Bardziej szczegółowo

R podaje przykłady działania siły Coriolisa

R podaje przykłady działania siły Coriolisa SZCZEGÓŁOWE WYMAGANIA Z FIZYKI CZĘŚĆ I KINEMATYKA podaje przykłady zjawisk fizycznych występujących w przyrodzie wyjaśnia, w jaki sposób fizyk zdobywa wiedzę o zjawiskach fizycznych wymienia przyczyny

Bardziej szczegółowo

SZCZEGÓŁOWE KRYTERIA OCENIANIA Z FIZYKI NA POZIOMIE ROZSZERZONYM

SZCZEGÓŁOWE KRYTERIA OCENIANIA Z FIZYKI NA POZIOMIE ROZSZERZONYM SZCZEGÓŁOWE KRYTERIA OCENIANIA Z FIZYKI NA POZIOMIE ROZSZERZONYM Kinematyka Ocena Stopień dopuszczający Stopień dostateczny Stopień dobry Stopień bardzo dobry podaje przykłady zjawisk fizycznych występujących

Bardziej szczegółowo

1. Kinematyka 8 godzin

1. Kinematyka 8 godzin Plan wynikowy (propozycja) część 1 1. Kinematyka 8 godzin Wymagania Treści nauczania (tematy lekcji) Cele operacyjne podstawowe ponadpodstawowe Uczeń: konieczne podstawowe rozszerzające dopełniające Jak

Bardziej szczegółowo

Kinematyka. zmiennym(przeprowadza złożone. kalkulatora)

Kinematyka. zmiennym(przeprowadza złożone. kalkulatora) Kinematyka Ocena podaje przykłady zjawisk fizycznych występujących w przyrodzie wyjaśnia, w jaki sposób fizyk zdobywa wiedzę o zjawiskach fizycznych wymienia przyczyny wprowadzenia Międzynarodowego Układu

Bardziej szczegółowo

Plan wynikowy (propozycja 61 godzin)

Plan wynikowy (propozycja 61 godzin) 1 Plan wynikowy (propozycja 61 godzin) Kinematyka (19 godzin) *W nawiasie podano alternatywny temat lekcji (jeśli nazwa zagadnienia jest długa) bądź tematy lekcji realizowanych w ramach danego zagadnienia.

Bardziej szczegółowo

Przedmiotowy system oceniania FIZYKA klasa I LO

Przedmiotowy system oceniania FIZYKA klasa I LO Przedmiotowy system oceniania FIZYKA klasa I LO Przedmiotowy system oceniania z fizyki został opracowany w oparciu o: 1) Podstawę programową; 2) Rozporządzenie MEN z dnia 03.08.2017 w sprawie oceniania,

Bardziej szczegółowo

PRZEDMIOTOWE ZASADY OCENIANIA z FIZYKI w LICEUM OGÓLNOKSZTAŁCĄCYM w BARCINIE

PRZEDMIOTOWE ZASADY OCENIANIA z FIZYKI w LICEUM OGÓLNOKSZTAŁCĄCYM w BARCINIE PRZEDMIOTOWE ZASADY OCENIANIA z FIZYKI w LICEUM OGÓLNOKSZTAŁCĄCYM w BARCINIE Przedmiotowe Zasady Oceniania (PZO) z FIZYKI zostały opracowane na podstawie: Rozporządzenie Ministra Edukacji Narodowej z 27

Bardziej szczegółowo

Cele operacyjne Uczeń: Konieczne K. Dopełniające D podaje przykłady zjawisk fizycznych występujących w przyrodzie

Cele operacyjne Uczeń: Konieczne K. Dopełniające D podaje przykłady zjawisk fizycznych występujących w przyrodzie 1 WYMAGANIA EDUKACYJNE Z FIZYKI KLASA 2bA ZAKRES ROZSZERZONY (61godz.) Klasa 2bA Rok szkolny 2018-2019 Nauczyciel: Lech Skała Oznaczenia: K wymagania konieczne (dopuszczający); P wymagania (dostateczny);

Bardziej szczegółowo

PRZEDMIOTOWE ZASADY OCENIANIA z FIZYKI w LICEUM OGÓLNOKSZTAŁCĄCYM w BARCINIE

PRZEDMIOTOWE ZASADY OCENIANIA z FIZYKI w LICEUM OGÓLNOKSZTAŁCĄCYM w BARCINIE PRZEDMIOTOWE ZASADY OCENIANIA z FIZYKI w LICEUM OGÓLNOKSZTAŁCĄCYM w BARCINIE Przedmiotowe Zasady Oceniania (PZO) z FIZYKI zostały opracowane na podstawie: Rozporządzenie Ministra Edukacji Narodowej z 27

Bardziej szczegółowo

FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego)

FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego) 2019-09-01 FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego) Treści z podstawy programowej przedmiotu POZIOM ROZSZERZONY (PR) SZKOŁY BENEDYKTA Podstawa programowa FIZYKA KLASA 1 LO (4-letnie po szkole

Bardziej szczegółowo

Wymagania edukacyjne z fizyki Technikum Mechaniczne nr 15 poziom rozszerzony

Wymagania edukacyjne z fizyki Technikum Mechaniczne nr 15 poziom rozszerzony Wymagania edukacyjne z fizyki Technikum Mechaniczne nr 15 poziom rozszerzony Zasady ogólne 1. Wymagania na każdy stopień wyższy niż dopuszczający obejmują również wymagania na stopień poprzedni. 2. Na

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z FIZYKI W KLASIE I

PRZEDMIOTOWY SYSTEM OCENIANIA Z FIZYKI W KLASIE I NAUCZYCIEL BARBARA PAPUSZKA PRZEDMIOTOWY SYSTEM OCENIANIA Z FIZYKI W KLASIE I KONTRAKT NAUCZYCIEL UCZEŃ 1. Uczeń zobowiązany jest do bycia przygotowanym na każdą lekcję tj. wymagane jest posiadanie zeszytu,

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z FIZYKI

PRZEDMIOTOWY SYSTEM OCENIANIA Z FIZYKI PRZEDMIOTOWY SYSTEM OCENIANIA Z FIZYKI Na początku każdego roku szkolnego (I-sza godzina lekcyjna) nauczyciel zapoznaje uczniów z: wymaganiami edukacyjnymi wynikającymi z realizowanego przez siebie programu

Bardziej szczegółowo

FIZYKA KLASA I LO LICEUM OGÓLNOKSZTAŁCĄCEGO wymagania edukacyjne

FIZYKA KLASA I LO LICEUM OGÓLNOKSZTAŁCĄCEGO wymagania edukacyjne FIZYKA KLASA I LO LICEUM OGÓLNOKSZTAŁCĄCEGO wymagania edukacyjne TEMAT (rozumiany jako lekcja) 1.1. Kinematyka ruchu jednostajnego po okręgu 1.2. Dynamika ruchu jednostajnego po okręgu 1.3. Układ Słoneczny

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH OCEN ŚRÓROCZNYCH I ROCZNYCH FIZYKA - ZAKRES PODSTAWOWY KLASA I

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH OCEN ŚRÓROCZNYCH I ROCZNYCH FIZYKA - ZAKRES PODSTAWOWY KLASA I WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH OCEN ŚRÓROCZNYCH I ROCZNYCH FIZYKA - ZAKRES PODSTAWOWY KLASA I GRAWITACJA opowiedzieć o odkryciach Kopernika, Keplera i Newtona, opisać ruchy

Bardziej szczegółowo

fizyka w zakresie podstawowym

fizyka w zakresie podstawowym mi edukacyjne z przedmiotu fizyka w zakresie podstawowym dla klasy pierwszej szkoły ponadgimnazjalnej Poziom Kategoria celów Zakres Poziom podstawowy - Uczeń opanował pewien zakres WIADOMOŚCI Poziom ponadpodstawowy

Bardziej szczegółowo

Przedmiotowy system oceniania w Zespole Szkół Ogólnokształcących nr 3 we Wrocławiu

Przedmiotowy system oceniania w Zespole Szkół Ogólnokształcących nr 3 we Wrocławiu Przedmiotowy system oceniania w Zespole Szkół Ogólnokształcących nr 3 we Wrocławiu Przedmiotowy System Ocenia jest zgodny z Wewnątrzszkolnym Systemem Oceniania i jest jego integralną częścią. Zasady ogólne

Bardziej szczegółowo

Przedmiotowy system oceniania (propozycja)

Przedmiotowy system oceniania (propozycja) 4 Przedmiotowy system oceniania (propozycja) Zasady ogólne 1. Na 2. 3. 4. 42 Przedmiotowy system oceniania Wymagania ogólne uczeń: Szczegółowe wymagania na poszczególne stopnie R Wprowadzenie wyjaśnia,

Bardziej szczegółowo

FIZYKA klasa 1 LO (4-letnie) Wymagania na poszczególne oceny szkolne Zakres podstawowy

FIZYKA klasa 1 LO (4-letnie) Wymagania na poszczególne oceny szkolne Zakres podstawowy FIZYKA klasa 1 LO (4-letnie) Wymagania na poszczególne oceny szkolne Zakres podstawowy Wprowadzenie wyjaśnia, jakie obiekty stanowią przedmiot zainteresowania fizyki i astronomii; wskazuje ich przykłady

Bardziej szczegółowo

Fizyka: p. Ivona Malicka. p. Włodzimierz Waligóra. Wymagania edukacyjne na poszczególne oceny

Fizyka: p. Ivona Malicka. p. Włodzimierz Waligóra. Wymagania edukacyjne na poszczególne oceny XCIX Liceum Ogólnokształcące z Oddziałami Dwujęzycznymi im. Zbigniewa Herberta ul. Fundamentowa 38/42 04-036 Warszawa www.herbert99lo.edu.pl Fizyka: p. Ivona Malicka p. Włodzimierz Waligóra Wymagania edukacyjne

Bardziej szczegółowo

Przedmiotowy system oceniania. Zasady ogólne

Przedmiotowy system oceniania. Zasady ogólne Przedmiotowy system oceniania Zasady ogólne Wymagania na kaŝdy stopień wyŝszy niŝ dopuszczający obejmują równieŝ wymagania na stopień poprzedni. Na podstawowym poziomie wymagań uczeń powinien wykonać zadania

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA - WYMAGANIA OGÓLNE Z FIZYKI

PRZEDMIOTOWY SYSTEM OCENIANIA - WYMAGANIA OGÓLNE Z FIZYKI PRZEDMIOTOWY SYSTEM OCENIANIA - WYMAGANIA OGÓLNE Z FIZYKI I. Podstawa prawna 1. Rozporządzenie MENiS z dnia 7 września 2004r. w sprawie warunków i sposobu oceniania, klasyfikowania i promowania uczniów

Bardziej szczegółowo

Wymagania edukacyjne z fizyki Zakres podstawowy

Wymagania edukacyjne z fizyki Zakres podstawowy Wymagania edukacyjne z fizyki Zakres podstawowy Klasy: 1a, 1b, 1c, 1d, 1e Rok szkolny 2019/2020 Nauczyciele : Aneta Patrzałek, Stefan Paszkiewicz 1 Zasady ogólne: 1. Na podstawowym poziomie wymagań uczeń

Bardziej szczegółowo

rok szkolny 2017/2018

rok szkolny 2017/2018 NiezbĘdne wymagania edukacyjne Z fizyki w XXI LO w Krakowie rok szkolny 2017/2018 1 Wymagania edukacyjne z fizyki dla klasy I I. Wiadomości i umiejętności konieczne do uzyskania oceny dopuszczającej. Uczeń

Bardziej szczegółowo

fizyka w zakresie podstawowym

fizyka w zakresie podstawowym Plan wynikowy z wymaganiami edukacyjnymi przedmiotu fizyka w zakresie podstawowym dla klasy pierwszej szkoły ponadgimnazjalnej W trakcie nauczania fizyki w szkole realizujemy założone na początku cele

Bardziej szczegółowo

Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów

Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Przedmiot Klasa Fizyka 1 LO, T, ZSZ I. Wymagania ogólne wykorzystuje wielkości fizyczne do opisu poznanych zjawisk lub rozwiązania

Bardziej szczegółowo

GRAWITACJA I ELEMENTY ASTRONOMII

GRAWITACJA I ELEMENTY ASTRONOMII MODUŁ 1 SCENARIUSZ TEMATYCZNY GRAWITACJA I ELEMENTY ASTRONOMII OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES PODSTAWOWY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI

Bardziej szczegółowo

Fizyka: p. Ivona Malicka str. 2. p. Włodzimierz Waligóra str. 4. Wymagania edukacyjne na poszczególne oceny: kl 1 zakres podstawowy str.

Fizyka: p. Ivona Malicka str. 2. p. Włodzimierz Waligóra str. 4. Wymagania edukacyjne na poszczególne oceny: kl 1 zakres podstawowy str. XCIX Liceum Ogólnokształcące z Oddziałami Dwujęzycznymi im. Zbigniewa Herberta ul. Fundamentowa 38/42 04-036 Warszawa www.herbert99lo.edu.pl Fizyka: p. Ivona Malicka str. 2 p. Włodzimierz Waligóra str.

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH Krzysztof Horodecki, Artur Ludwikowski, Fizyka 1. Podręcznik dla gimnazjum, Gdańskie Wydawnictwo Oświatowe

Bardziej szczegółowo

Wymagania edukacyjne z fizyki zakres podstawowy. Grawitacja

Wymagania edukacyjne z fizyki zakres podstawowy. Grawitacja Wymagania edukacyjne z fizyki zakres podstawowy opowiedzieć o odkryciach Kopernika, Keplera i Newtona, Grawitacja opisać ruchy planet, podać treść prawa powszechnej grawitacji, narysować siły oddziaływania

Bardziej szczegółowo

Fizyka - zakres podstawowy Opis założonych osiągnięć ucznia część ogólna

Fizyka - zakres podstawowy Opis założonych osiągnięć ucznia część ogólna Fizyka - zakres podstawowy Opis założonych osiągnięć ucznia część ogólna Opis planowanych ogólnych osiągnięć ucznia podajemy z podziałem na poszczególne poziomy, co ułatwi nauczycielom określenie szczegółowych

Bardziej szczegółowo

II Liceum Ogólnokształcące im. Ks. Prof. Józefa Tischnera W Wodzisławiu Śl. WYMAGANIA EDUKACYJNE FIZYKA

II Liceum Ogólnokształcące im. Ks. Prof. Józefa Tischnera W Wodzisławiu Śl. WYMAGANIA EDUKACYJNE FIZYKA II Liceum Ogólnokształcące im. Ks. Prof. Józefa Tischnera W Wodzisławiu Śl. WYMAGANIA EDUKACYJNE FIZYKA Opracował: Tadeusz Winkler Obowiązuje od 1 września 2018r. 1 Narzędzia i częstotliwość pomiaru dydaktycznego

Bardziej szczegółowo

Plan wynikowy z wymaganiami edukacyjnymi przedmiotu fizyka w zakresie podstawowym dla I klasy liceum ogólnokształcącego i technikum

Plan wynikowy z wymaganiami edukacyjnymi przedmiotu fizyka w zakresie podstawowym dla I klasy liceum ogólnokształcącego i technikum Plan wynikowy z mi edukacyjnymi przedmiotu fizyka w zakresie podstawowym dla I klasy liceum ogólnokształcącego i technikum Temat (rozumiany jako lekcja) Wymagania konieczne (ocena dopuszczająca) Dział

Bardziej szczegółowo

Plan wynikowy. z fizyki dla klasy pierwszej liceum profilowanego

Plan wynikowy. z fizyki dla klasy pierwszej liceum profilowanego Plan wynikowy z fizyki dla klasy pierwszej liceum profilowanego Kurs podstawowy z elementami kursu rozszerzonego koniecznymi do podjęcia studiów technicznych i przyrodniczych do programu DKOS-5002-38/04

Bardziej szczegółowo

PROGRAM NAUCZANIA Z FIZYKI ZASADNICZA SZKOŁA ZAWODOWA

PROGRAM NAUCZANIA Z FIZYKI ZASADNICZA SZKOŁA ZAWODOWA PROGRAMY NAUCZANIA Z FIZYKI REALIZOWANE W RAMACH PROJEKTU INNOWACYJNEGO TESTUJĄCEGO Zainteresowanie uczniów fizyką kluczem do sukcesu PROGRAM NAUCZANIA Z FIZYKI ZASADNICZA SZKOŁA ZAWODOWA IV etap edukacyjny

Bardziej szczegółowo

Treści dopełniające Uczeń potrafi:

Treści dopełniające Uczeń potrafi: P Lp. Temat lekcji Treści podstawowe 1 Elementy działań na wektorach podać przykłady wielkości fizycznych skalarnych i wektorowych, wymienić cechy wektora, dodać wektory, odjąć wektor od wektora, pomnożyć

Bardziej szczegółowo

Anna Nagórna Wrocław, r. nauczycielka chemii i fizyki

Anna Nagórna Wrocław, r. nauczycielka chemii i fizyki Anna Nagórna Wrocław, 1.09.2015 r. nauczycielka chemii i fizyki Plan pracy dydaktycznej na fizyce wraz z wymaganiami edukacyjnymi na poszczególne oceny w klasach pierwszych w roku szkolnym 2015/2016 na

Bardziej szczegółowo

Zasady ogólne. Wymagania ogólne uczeń:

Zasady ogólne. Wymagania ogólne uczeń: Wymagania programowe na poszczególne oceny IV etap edukacyjny opracowane na podstawie treści zawartych w podstawie programowej oraz w podręczniku Odkryć fizykę zakres podstawowy Autorstwa Marcina Brauna

Bardziej szczegółowo

Szczegółowe wymagania z fizyki w klasie I L.O. Wymagania konieczne i podstawowe- ocena dopuszczająca i dostateczna

Szczegółowe wymagania z fizyki w klasie I L.O. Wymagania konieczne i podstawowe- ocena dopuszczająca i dostateczna 12 Szczegółowe wymagania z fizyki w klasie I L.O. Wymagania konieczne i podstawowe- ocena dopuszczająca i dostateczna Wymagania rozszerzone i dopełniające- ocena dobra, bardzo dobra i celująca 1.Grawitacja

Bardziej szczegółowo

Program nauczania fizyki w szkole ponadgimnazjalnej z wykorzystaniem e-doświadczeń w fizyce. Poziom podstawowy

Program nauczania fizyki w szkole ponadgimnazjalnej z wykorzystaniem e-doświadczeń w fizyce. Poziom podstawowy Program nauczania fizyki w szkole ponadgimnazjalnej z wykorzystaniem e-doświadczeń w fizyce. Poziom podstawowy SPIS TREŚCI: 1. WPROWADZENIE. 2. PODSTAWOWE ZAŁOŻENIA PROGRAMU. 3. CELE NAUCZANIA FIZYKI NA

Bardziej szczegółowo

Fizyka zakres podstawow y

Fizyka zakres podstawow y 12 Fizyka zakres podstawow y (dopuszczający) (dostateczny) (dobry) (bardzo dobry) 1 O odkryciach Kopernika, Keplera i o geniuszu Newtona. Prawo powszechnej grawitacji opowiedzieć o odkryciach Kopernika,

Bardziej szczegółowo

Zasady oceniania do programu nauczania Z fizyką w przyszłość. Zakres rozszerzony

Zasady oceniania do programu nauczania Z fizyką w przyszłość. Zakres rozszerzony Zasady oceniania do programu nauczania Z fizyką w przyszłość Zakres rozszerzony Zasady ogólne: 1. Wymagania na każdy stopień wyższy niż dopuszczający obejmują również wymagania na stopień poprzedni. 2.

Bardziej szczegółowo

Na ocenę dostateczną uczeń potrafi:

Na ocenę dostateczną uczeń potrafi: Plan wynikowy fizyka podstawowa klasa 1 technikum 1. Grawitacja Lp. Temat lekcji Na ocenę dopuszczającą 1 O odkryciach Kopernika, Keplera i o geniuszu Newtona. Prawo powszechnej grawitacji opowiedzieć

Bardziej szczegółowo

I. Poziom: poziom rozszerzony (nowa formuła)

I. Poziom: poziom rozszerzony (nowa formuła) Analiza wyników egzaminu maturalnego wiosna 2017 + poprawki Przedmiot: FIZYKA I. Poziom: poziom rozszerzony (nowa formuła) 1. Zestawienie wyników. Liczba uczniów zdających - LO 6 Zdało egzamin 4 % zdawalności

Bardziej szczegółowo

Zasady oceniania do programu nauczania Z fizyką w przyszłość. Zakres rozszerzony

Zasady oceniania do programu nauczania Z fizyką w przyszłość. Zakres rozszerzony Zasady oceniania do programu nauczania Z fizyką w przyszłość Zakres rozszerzony Zasady ogólne: 1. Wymagania na każdy stopień wyższy niż dopuszczający obejmują również wymagania na stopień poprzedni. 2.

Bardziej szczegółowo

VI. CELE OPERACYJNE, CZYLI PLAN WYNIKOWY

VI. CELE OPERACYJNE, CZYLI PLAN WYNIKOWY 12 1. Grawitacja 1 O odkryciach Kopernika, Keplera i o geniuszu Newtona. Prawo powszechnej grawitacji VI. CELE OPERACYJNE, CZYLI PLAN WYNIKOWY opowiedzieć o odkryciach Kopernika, Keplera i Newtona, opisać

Bardziej szczegółowo

Fizyka - klasa I (mat.-fiz) Wymagania edukacyjne

Fizyka - klasa I (mat.-fiz) Wymagania edukacyjne Fizyka - klasa I (mat.-fiz) Wymagania edukacyjne Wymagania na każdy stopień wyższy obejmują również wymagania na stopień poprzedni. Wymagania umożliwiające uzyskanie stopnia celującego obejmują wymagania

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA

WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA PRZEDMIOT: FIZYKA TYP SZKOŁY: PONADGIMNAZJALNA IV ETAP EDUKACYJNY ZAKRES: PODSTAWOWY 1. grawitacja Lp. Temat lekcji Uczeń potrafi: CELE OPERACYJNE, CZYLI PLAN

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY Z FIZYKI DO KLASY PIERWSZEJ SZKOŁY PONADGIMNAZJALNEJ DO CYKLU ŚWIAT FIZYKI

WYMAGANIA NA POSZCZEGÓLNE OCENY Z FIZYKI DO KLASY PIERWSZEJ SZKOŁY PONADGIMNAZJALNEJ DO CYKLU ŚWIAT FIZYKI WYMAGANIA NA POSZCZEGÓLNE OCENY Z FIZYKI DO KLASY PIERWSZEJ SZKOŁY PONADGIMNAZJALNEJ DO CYKLU ŚWIAT FIZYKI Lp. 1 Trochę historii, czyli o odkryciach Kopernika, Keplera i o geniuszu Newtona. O Newtonie

Bardziej szczegółowo

FIZYKA klasa 1 LO (4-letnie) Wymagania na poszczególne oceny szkolne Zakres rozszerzony

FIZYKA klasa 1 LO (4-letnie) Wymagania na poszczególne oceny szkolne Zakres rozszerzony FIZYKA klasa 1 LO (4-letnie) Wymagania na poszczególne oceny szkolne Zakres rozszerzony Ocena Stopień dopuszczający Stopień dostateczny Stopień dobry Stopień bardzo dobry 1. Wprowadzenie podaje przykłady

Bardziej szczegółowo

Plan wynikowy (propozycja)

Plan wynikowy (propozycja) 3 (propozycja) R ponad konieczne rozszerzające dopełniające 1. Wprowadzenie (2 godziny) 1.1. Przedmiot i metody badań fizyki podaje przykłady zjawisk fizycznych występujących w przyrodzie podaje rzędy

Bardziej szczegółowo

1 Maków Podhalański r. Wymagania edukacyjne z fizyki - kurs podstawowy - rok szkolny 2016/ dla klasy I technikum

1 Maków Podhalański r. Wymagania edukacyjne z fizyki - kurs podstawowy - rok szkolny 2016/ dla klasy I technikum 1 Maków Podhalański. 1.09.2016 r. Wymagania edukacyjne z fizyki - kurs podstawowy - rok szkolny 2016/2017 - dla klasy I technikum Temat lekcji O odkryciach Kopernika, Keplera i o geniuszu Newtona. Prawo

Bardziej szczegółowo

KLASA I PROGRAM NAUCZANIA DLA GIMNAZJUM TO JEST FIZYKA M.BRAUN, W. ŚLIWA (M. Małkowska)

KLASA I PROGRAM NAUCZANIA DLA GIMNAZJUM TO JEST FIZYKA M.BRAUN, W. ŚLIWA (M. Małkowska) KLASA I PROGRAM NAUZANIA LA GIMNAZJUM TO JEST FIZYKA M.RAUN, W. ŚLIWA (M. Małkowska) Kursywą oznaczono treści dodatkowe Temat lekcji ele operacyjne - uczeń: Kategoria celów podstawowe Wymagania ponadpodstawowe

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE PRZEDMIOT : FIZYKA ROZSZERZONA

WYMAGANIA EDUKACYJNE PRZEDMIOT : FIZYKA ROZSZERZONA WYMAGANIA EDUKACYJNE PRZEDMIOT : FIZYKA ROZSZERZONA ROK SZKOLNY: 2018/2019 KLASY: 2mT OPRACOWAŁ: JOANNA NALEPA OCENA CELUJĄCY OCENA BARDZO DOBRY - w pełnym zakresie - w pełnym opanował zakresie opanował

Bardziej szczegółowo

CELE OPERACYJNE, CZYLI PLAN WYNIKOWY

CELE OPERACYJNE, CZYLI PLAN WYNIKOWY 1.Grawitacja Lp. Temat lekcji Treści konieczne 1 O odkryciach Kopernika, Keplera i o geniuszu Newtona. Prawo powszechnej grawitacji T1 (3,7) CELE OPERACYJNE, CZYLI PLAN WYNIKOWY opowiedzieć o odkryciach

Bardziej szczegółowo

Wymagania programowe z fizyki na poszczególne oceny

Wymagania programowe z fizyki na poszczególne oceny 1. Grawitacja Lp. Temat lekcji 1. O odkryciach Kopernika, Keplera i o geniuszu Newtona. Prawo powszechnej grawitacji Wymagania programowe z fizyki na poszczególne oceny opowiedzieć o odkryciach Kopernika,

Bardziej szczegółowo

Wymagania edukacyjne z fizyki dla klasy ITI, ITE, ITM w roku szkolnym 2012/2013

Wymagania edukacyjne z fizyki dla klasy ITI, ITE, ITM w roku szkolnym 2012/2013 Wymagania edukacyjne z fizyki dla klasy ITI, ITE, ITM w roku szkolnym 2012/2013 1. Grawitacja 1 O odkryciach Kopernika, Keplera i o geniuszu Newtona. Prawo powszechnej grawitacji opowiedzieć o odkryciach

Bardziej szczegółowo

Plan wynikowy fizyka rozszerzona klasa 2

Plan wynikowy fizyka rozszerzona klasa 2 Plan wynikowy fizyka rozszerzona klasa 2 1. Opis ruchu postępowego Temat lekcji Elementy działań na wektorach dostateczną uczeń podać przykłady wielkości fizycznych skalarnych i wektorowych, wymienić cechy

Bardziej szczegółowo