Potencjał grafenu 3D IMP

Wielkość: px
Rozpocząć pokaz od strony:

Download "Potencjał grafenu 3D IMP"

Transkrypt

1 BABUL Tomasz 1 TRZASKA Maria 2 JELEŃKOWSKI Jerzy 3 WOJCIECHOWSKI Andrzej 4 Potencjał grafenu 3D IMP WSTĘP Postęp techniczny, minimalizacja negatywnych skutków rozwoju transportu i przemysłu jak również przejście do gospodarki zamkniętego obiegu materiałowego nie ogranicza się wyłącznie do zmian technologicznych. Jej warunkiem są również zmiany fiskalne, społeczne i kulturowe. Na tym poziomie głównym wyzwaniem jest być może to, jak zmienić obecną koncepcję społeczeństwa przemysłowego oraz leżącego u jego podwalin marzenia o poskromieniu natury. Dotychczas rozwój społeczeństwa opierał się na surowcach naturalnych obecny okres transformacji ukierunkowany jest na innowacyjne technologie i nowe materiały w szczególności nanomateriały. Przykładowe schematy struktur węglowych przedstawiono na rysunku 1. Rys. 1. Schematyczne struktury węglowe a) diament, b) grafit, c) lonsdaleit, d) fuleren C60, e) fuleren C540, f) fuleren C70, g) węgiel amorficzny, h) nanorurka Nowe materiały i innowacyjne technologie wpływają na szybki postęp techniczny i rozwój nowych mikro/nano technologii. Jednym z takich materiałów jest grafen. Występowanie węgla w postaci grafenu przewidywano już kilkadziesiąt lat temu (termin grafen wprowadzono w latach 80 1 Dr hab. inż. T. Babul, Instytut Mechaniki Precyzyjnej, Dyrektor, Warszawa, ul. Duchnicka 3. Tel.: (22) , tomasz.babul@imp.edu.pl 2 Prof. dr hab. inż. M. Trzaska, Instytut Mechaniki Precyzyjnej, Zakład Galwanotechniki i Ochrony Środowiska, Warszawa, ul. Duchnicka 3. Tel.: (22) , maria.trzaska@imp.edu.pl 3 Prof. dr hab. inż. J. Jeleńkowski, Instytut Mechaniki Precyzyjnej, Zastępca Dyrektora ds. Naukowych, Warszawa, ul. Duchnicka 3. Tel.: (22) , jerzy.jelenkowski@imp.edu.pl 4 Dr hab. inż. A. Wojciechowski, Instytut Mechaniki Precyzyjnej, Zakład Galwanotechniki i Ochrony Środowiska, Warszawa, ul. Duchnicka 3. Tel.: (22) , andrzej.wojciechowski@imp.edu.pl 2282

2 ubiegłego wieku). Jednak trudno było wyizolować wystarczająco duże elementy grafenu, aby móc je zidentyfikować, zbadać i opisać ich podstawowe właściwości. Po raz pierwszy w 2004 roku dokonali tego rosyjscy badacze Andre Geim i Konstantin Novoselov z Uniwersytetu w Manchesterze, za co 5 października 2010 roku otrzymali Nagrodę Nobla w dziedzinie fizyka. Grafen to dwuwymiarowa, płaska forma węgla o heksagonalnym ułożeniu atomów [1]. Grafen to warstwa węgla o grubości pojedynczego atomu trzy miliony grafenowych arkuszy ułożonych jeden na drugim utworzą warstwę o grubości tylko 1 mm. W strukturze grafenu, charakteryzującej się tzw. ułożeniem atomów w plaster miodu przypada dwa atomy na komórkę elementarną - wiązania o hybrydyzacji sp2 długość 0,142 nm (rysunki 2, 3, 4, 5). Rys. 2. Model struktury grafemu Rys. 3. Proszek płatków grafenu Rys. 4. Obraz SEM płatków grafenu (G) 2283

3 Rys. 5. Obraz SEM płatków tlenku grafenu (GO) Grafen posiada unikatowe, niespotykane właściwości (giętkość, przewodność cieplną i elektryczną, wytrzymałość, jest praktycznie przezroczysty). Ponadto jest bardzo wytrzymały posiada sto razy większa wytrzymałość niż stal (o tych samych wymiarach próbek), a jednocześnie bardzo lekki arkusz o wymiarach 1 m2 waży mniej niż jedna tysięczna grama (0,77 mg) i jest w stanie wytrzymać nacisk około 4 kg. Grafen bez ryzyka uszkodzenia może uzyskać wydłużenie do 20% ( przy przekroczeniu którego zaczynają powstawać nieodwracalne odkształcenia). Grafen wykazuje bardzo wysokie przewodnictwo elektryczne, a jego zdolność przewodzenia ciepła nie ma sobie równych w naturze jest ponad 10 razy większa niż w przypadku miedzi i głównie z tego powodu cieszy się dużym zaintresowaniem producentów podzespołów elektronicznych. Niezwykłe elektronowe właściwości grafenu oraz jego duża stabilność chemiczna, czynią go bardzo atrakcyjnym dla przyszłej elektroniki [2]. Ruchliwości nośników w grafenie jest bardzo duże, rzędu cm2/vs, o przeszło rząd wielkości większe niż w tranzystorach krzemowych [3]. Zapewnia to balistyczny transport na odległości rzędu wielu mikrometrów. Dodatkowo, gęstość prądu w grafenie jest ponad 100 razy większa niż w miedzi (108 A/cm2) [4]. Badania nad grafenem trwają od blisko 60 lat, ale przełom nastąpił dopiero w 2011 roku, gdy pracownicy ITME opracowali nowatorską technologię pozyskiwania dużych fragmentów grafenu o interesującej jakości i dokonali badań wybranych właściwości. 1. METODY WYTWARZANIA GRAFENU Grafen można wytwarzać kilkoma metodami. Pierwsza opracowana przez K.S.Novoselova i A.K.Geima [2] polega na odrywaniu, za pomocą taśmy klejącej, małych płatków grafitu od grafitowego bloku. Wielokrotne przeklejanie płatków grafitowych prowadzi do ich ścieniania aż do uzyskania grubości rzędu pojedynczych warstw atomów węgla. Metoda umożliwiła wyodrębnienie płatka grafenu i stwierdzenie wysokiej ruchliwości nośników ładunku. Wadą metody są bardzo małe rozmiary otrzymywanych płatków, których powierzchnia wynosi zaledwie kilkaset do tysiąca mikrometrów kwadratowych, niezwykle mała wydajność procesu selekcji płatków wykonywanego ręcznie, a w związku z tym ich wysoka cena. Metoda niemożliwa do zastosowania w przemyśle elektronicznym. Druga metoda opracowana przez W. de Heera i C.Berger [5,6,7] na podstawie wcześniejszych doniesień [8,9] dotyczących grafityzacji powierzchni węglika krzemu polega na otrzymywaniu w warunkach próżni, cienkiej warstwy węgla na powierzchni SiC w wyniku sublimacji krzemu w wysokiej temperaturze powyżej 1100 C. W takiej temperaturze, krzem ulatnia się z powierzchni, która staje się bogata w węgiel. Węgiel znajdujący się na powierzchni jest stabilny nawet w postaci jednej, dwóch warstw atomów. W ten sposób można uzyskiwać grafen o grubości od kilku do kilkudziesięciu warstw atomów węgla. Szybkość wzrostu grafenu kontroluje się poprzez wytwarzanie 2284

4 w komorze reakcyjnej wstępnego ciśnienia parcjalnego krzemu pochodzącego z sublimacji SiC i prowadzenie dalszego procesu w warunkach bliskich równowagi. Zaproponowana w publikacji [10] odmiana metody umożliwia przeprowadzenie procesu wzrostu grafenu w atmosferze argonu w obniżonym lub atmosferycznym ciśnieniu. Dobierając odpowiednio ciśnienie (od 104Pa do 105Pa) i temperaturę procesu (od 1100 C do 1800 C) kontroluje się szybkość wzrostu grafenu. Opisana metoda jest obecnie wykorzystywana najczęściej. Wady metody to: trudność w uzyskiwaniu stanu równowagi ciśnienia Si w próżni, co ogranicza wykorzystanie przemysłowe oraz uzależnienie jakości grafenu od jakości podłoża SiC, z którego następuje sublimacja krzemu, co prowadzi do niejednorodności parametrów grafenu. Inna metoda polega na nanoszeniu warstw atomów węgla na podłoża metaliczne typu nikiel, wolfram, miedź. Wykorzystuje się tu znaną technikę nanoszenia cienkich warstw epitaksjalnych CVD (Chemical Vapor Deposition). Źródłem węgla jest metan, propan, acetylen, benzen, który rozkłada się w wysokiej temperaturze. Uwolniony węgiel osadza się na powierzchni podłoża metalicznego. W zastosowaniach elektronicznych konieczne jest odizolowanie grafenu od przewodzącego metalu (poprzez rozpuszczanie metalu w odczynnikach chemicznych) i umieszczenie na izolowanym podłożu [11]. Powyższa metoda przenoszenia grafenu jest poważnym utrudnieniem i ograniczeniem dla wdrożeń przemysłowych. W trakcie przenoszenia grafen ulega uszkodzeniu i pęka na mniejsze fragmenty. Ponadto powierzchnia metalu nie jest wystarczająco jednolita i gładka w porównaniu z powierzchnią węglika krzemu. Dodatkowo stosuje się metody wytwarzania grafenu wykorzystujące redukcję chemiczną tlenku grafemu [12,13] oraz rozpuszczanie grafitu [14,15], a następnie poprzez odparowywanie wyodrębnianie fazy stałej węgla w postaci cienkich płatków. Grafen uzyskiwany taką metodą charakteryzuje się bardzo niską jakością. 2. WYTWARZANIE GRAFENU NA PROSZKACH METALI I NIEMETALI W Instytucie Mechaniki Precyzyjnej po raz pierwszy w Polsce wytworzono grafen na ziarnach proszku, tzw. Grafen 3D IMP. Wszystkie urządzenia potrzebne do realizacji procesu zostały wytworzone w Instytucie Mechaniki Precyzyjnej, a opracowaną i zastosowaną technologię opatentowano pod nazwą CarboTermoFluid. Zalety technologii CarboTermoFluid : możliwość uzyskiwania dużych ilości grafenu w zależności od wymiaru ziaren proszku, wpływ na finalne parametry materiału kompozytowego poprzez kontrolę procesu formowania grafenu, tworzenie powłoki grafenowej na proszkach o sumarycznie dużej powierzchni, możliwość stosowania proszków o różnej granulacji, możliwość wytwarzania grafenu na proszkach z różnych metali i niemetali, miedź wchodzącą w skład proszku kompozytowego miedź/grafen można rozpuścić, a grafen przenieść na dowolne podłoże lub stosować do domieszkowania, tania metoda wytwarzania grafenu Grafen 3D IMP na proszkach miedzi W dotychczasowych pracach prowadzonych w Instytucie uzyskano proszek miedzi pokryty grafenem w ilości do 100 g (Cu + G) w jednym procesie. Oznacza to, że powierzchnia proszku miedzi pokryta grafenem wynosi ok. 1,0 1,5 m2 w zależności od zastosowanej granulacji. Na rysunku 6 przedstawiono wytwarzany grafen 3D IMP na podłożu miedzi w technologii wibrofluidyzacji oraz na rysunku 7 widmo Ramana uzyskane dla grafenu otrzymanego na proszku miedzi [16]. 2285

5 Rys. 6. Grafen 3D IMP na ziarnach miedzi Rys. 7. Widmo Ramana proszku miedzi pokrytego Grafenem 3D IMP Równolegle trwają prace, których celem jest: a) zwiększenie wydajności procesu, tzn. ilości wytwarzanego grafenu w jednym cyklu produkcyjnym, b) otrzymywanie wyprasek o różnych kształtach z proszku miedzi pokrytego grafenem (rysunek 8); prace ukierunkowane są na dopracowanie odpowiednich parametrów procesu spiekania, c) wytwarzanie grafenu na wyrobach o dużych gabarytach wykonanych lub pokrytych miedzią (rysunki 9, 10). Rys. 8. Proszek miedzi z grafemem 2286

6 Rys.9. Materiał spiekany z proszku miedź/grafen Rys. 10. Drut miedziany pokryty Grafenem 3D IMP 2.2. Struktury węglowe na proszkach srebra W wyniku przeprowadzonych prac nawęglono mikroproszek srebra, uzyskując warstwy z amorficznym węglem (silne pasmo D i G) rysunek 11. Występujące również pasmo 2D wskazuje na grafityzację, czyli porządkowanie struktury. Analiza zjawiska rozpuszczalności węgla w srebrze wskazuje na konieczność zmiany parametrów procesu, co jest możliwe do przeprowadzenia za pomocą istniejących urządzeń. Rys. 11. Widmo Ramana nawęglonego proszku srebra 2.3. Materiały kompozytowe z grafenem Materiały kompozytowe posiadają olbrzymi potencjał do wykorzystania w kształtowaniu nowych właściwości materiału. W tego typu materiałach bardziej niż w innych materiałach można kształtować i projektować właściwości wytwarzanego materiału poprzez dobór materiałów osnowy i fazy dyspersyjnej. Połączenie w materiale kompozytowym grafenu o unikalnych właściwościach jako faza dyspersyjna z osnową metalową, polimerową lub ceramiczną tworzy nową klasę materiałów. 2287

7 Duże możliwości w modyfikowaniu właściwości gotowych wyrobów zapewniają powłoki z materiałów kompozytowych o nanokrystalicznej osnowie metalowej z fazą dyspersyjną w postaci płatków grafenowych wytwarzane metodą elektrokrystalizacji. Połączenie w materiale kompozytowym osnowy metalowej o nanokrystalicznej strukturze z fazą dyspersyjną w postaci płatków grafenu stwarza potencjalnie duże możliwości w kształtowaniu właściwości mechanicznych, tribologicznych, antykorozyjnych, jak też cieplnych i elektrycznych wyrobów z taką powłoką. Ponadto w Instytucie wykonano próby uzyskania warstw kompozytowych z grafenem (G) lub tlenku grafenu (GO) w osnowie Ni lub Ni-P [17] co przedstawiono na rysunku 12. Rys. 12. Powierzchnie warstw kompozytowych: a) Ni-P/GO, b) Ni/GO, c) Ni/G Przewiduje się, że grafen 3D IMP posiada, jeśli nie analogiczne to bardzo podobne właściwości do grafenu płatkowego i również może znaleźć aplikacje np. w elektronice tak jak inne unikatowe struktury węglowe nanorurki czy fulareny, np. C 570, zbudowane również z heksagonalnych płaskich układów atomów węgla. Przykładem są już liczne patenty na wprowadzanie 3D in vivo i in vitro grafenu do organizmu człowieka [18]. Problemy do rozwiązania w osiągnięciu sukcesu z grafenem 3D IMP pozostaje opracowanie technologii oddzielenia go od podłoża o rozwiniętej powierzchni z ziaren miedzi, trudniejszej niż napotyka się w metodach otrzymywania grafenu płatkowego. Grafen 3D IMP jest całkowicie innowacyjnym materiałem wraz z technologią wytwarzania opracowaną w IMP, nie mająca wielkiej konkurencji na świecie, która może zrewolucjonizować przemysł i przyczynić się do szybszego postępu technologicznego szczególnie w elektronice, medycynie i przemyśle obronnym. Przykładowe obrazy uzyskanego grafenu 3D IMP na ziarnach/proszku miedzi [19] przedstawiono na rysunkach 13 i 14. Rys. 13. Przykładowe obrazy uzyskanego grafenu 3D IMP na ziarnach/proszku miedzi 2288

8 Rys. 14. Przykładowe obrazy uzyskanego grafenu 3D IMP na ziarnach/proszku miedzi Proces zarodkowania i wzrostu grafenu 3D IMP polega na poddaniu powierzchni ziaren miedzi działaniu gazu zawierającego węglowodór pod niskim ciśnieniem. W wysokiej temperaturze następuje rozkład węglowodorów i powstaje węgiel, który dyfunduje do powierzchni miedzi. Wytworzenie kompozytów z udziałem dwuwymiarowych struktur takich jak grafen może wpłynąć na poprawę przewodności cieplnej, elektrycznej, oraz odporności na kruche pękanie osnowy np. ceramicznej. Prowadzone od kilku lat badania wskazują że już niewielki dodatek grafenu skutecznie wpływa na modyfikację różnych właściwości w szcególności zwiększenie przewodności cieplnej i wzrost przewodności elektrycznej. Duże możliwości w modyfikowaniu właściwości gotowych wyrobów zapewniają powłoki z materiałów kompozytowych o nanokrystalicznej osnowie metalowej z fazą dyspersyjną w postaci płatków grafenowych wytwarzane metodą elektrokrystalizacji. Połączenie w materiale kompozytowym osnowy metalowej o nanokrystalicznej strukturze z fazą dyspersyjną w postaci płatków grafenu stwarza potencjalnie duże możliwości w kształtowaniu właściwości mechanicznych, tribologicznych, antykorozyjnych, jak też cieplnych i elektrycznych wyrobów z taką powłoką. PODSUMOWANIE Sumując przewiduje się, że grafen 3D IMP który posiada unikatowe właściwości stwarza wiele możliwości uzyskania nowych i innowacyjnych materiałów kompozytowych jak również zastosowania szczególnie w przemyśle elektronicznym, obronnym, elektrycznym i medycznym. Materiały zawierające grafen 3D IMP mogą znaleźć bardzo szerokie zastosowanie m.in. w następujących obszarach: do wytwarzania ścieżek na płytkach drukowanych zwiększenie przewodności i szybkości przepływu prądu elektrycznego, szczególnie oczekiwane w elektronice w pojazdach i sprzęcie AGD, styków elektrycznych o podwyższonej przewodności cieplnej i elektrycznej (zastosowanie w stycznikach energetycznych i aparaturze energoelektronicznej, jak złącza tyrystorów czy diod energetycznych), cewek o wysokiej dobroci (zastosowania w głośnikach, transformatorach, maszynach elektrycznych - w tym w przemyśle motoryzacyjnym i w energetyce OZE); kabli transmisyjnych i przesyłowych (pojazdy elektryczne i hybrydowe, sieci energetyczne, sieci transmisyjne, profesjonalny sprzęt audioakustyczny) - wyższa przewodność, niższe straty podczas przesyłu, lepsza jakość transmisji, wymienniki ciepła m.in. dla potrzeb odzyskiwania energii hamowania w samochodach oraz w przemyśle energetycznym - podwyższenie sprawności, radiatory do chłodzenia układów elektronicznych podwyższenie sprawności, zmniejszenie wymiarów, 2289

9 aparatura do procesów wysokotemperaturowych w przemyśle spożywczym - wykorzystanie właściwości bakteriobójczych i odporności na korozję w warunkach wysokiej temperatury, łożyska ślizgowe - zmniejszenie tarcia, podwyższenie trwałości i niezawodności, smary i pasty w zastosowaniach technologicznych (działanie antykorozyjne, przeciw zapiekaniu), w medycynie na narzędzia oraz w profilaktyce, w obszarach różnorodnego zastosowania na rzecz obronności i bezpieczeństwa kraju itd. Szczególnie przydatny może okazać się w transporcie i przemyśle w dziedzinie wzrostu niezawodności i bezpieczeństwa użytkowania. Streszczenie Grafen to mówiąc potocznie płaska struktura złożona z atomów węgla, połączonych w sześciokąty. Materiał ten kształtem przypomina plaster miodu, a ponieważ ma jednoatomową grubość, uważa się go za strukturę dwuwymiarową. Prace badawcze prowadzone w IMP nad wytwarzaniem grafenu 3D IMP należą obecnie do jednych z najbardziej rozwijających się w Polsce. Grafen 3D IMP, w odróżnieniu od grafenu (o grubości jednej płaskiej warstwy atomów) jest materiałem, który możliwy jest do uzyskania przy zastosowaniu ciągu procesów cieplno chemicznych, w prowadzeniu których IMP posiada wieloletnie doświadczenie. Grafen 3D IMP na podłożu miedzi (lub innych metali jak np. nikiel, srebro, chrom, tytan, kobalt itp.) wytwarzany jest w technologii wibrofluidyzacji w aktywnej atmosferze ochronnej. Innowacyjna technologia wytwarzania grafenu 3D IMP może stać się przedmiotem licencji eksportowych, zaś w kraju powinna zaowocować wdrożeniami w przemyśle motoryzacyjnym, elektronicznym i elektrotechnicznym. Grafen 3D IMP - może zrewolucjonizować niektóre dziedziny techniki w taki sam sposób jak obecnie czyni to grafen otrzymywany na powierzchniach płaskich. Szczególnie przydatny może okazać się w transporcie i przemyśle w dziedzinie wzrostu niezawodności i bezpieczeństwa użytkowania. Słowa kluczowe: grafen 3D IMP, materiały kompozytowe, właściwości, bezpieczeństwo użytkowania Advantages of Graphene 3D IMP Abstract Graphene is a flat structure of words commonly composed of carbon atoms connected in hexagons. This material is shaped like a honeycomb, and because it has a monatomic thickness is considered a twodimensional structure. Research conducted over the production of graphene IMP 3D IMP are now one of the most developing in Poland. Graphene 3D IMP, unlike traditional graphene (about the thickness of a flat layer of atoms) is a material that is obtainable using thermochemical processes within the chemical, in the course of which the IMP has many years of experience. Graphene 3D IMP on the substrate, copper (or other metals such as. Nickel, silver, chrome, titanium, cobalt, etc.) Is prepared wibrofluidyzacji technology in a protective atmosphere. Innovative technology for producing graphene 3D IMP may be subject to export license in the country and should result in implementations in the automotive, electronics and electrical engineering. Graphene 3D IMP - could revolutionize some art in the same way as is being done is graphene obtained on flat surfaces. May be particularly useful in the transportation and industrial growth in the field of reliability and safety. Keywords: graphene 3D IMP, composite materials, properties, use safety BIBLIOGRAFIA 1. K.S.Novoselov, et al. Science 306,666 (2004), A. K Geim, K.S. Novoselov, Nat. Mat. 6 (2007) 183, YB.Zhang, Y.W.Tan, H.L.Stormer, and P. Kim, Nature 438, 201 (2005) 2. Novoselov K.S., Geim A.Κ., Nature Materials 6, 183 (2007) 3. Lin Y.M. et al., Science 327, 662 (2010) 4. M. Wilson, Phys. Today, p. 21 (Jan. 2006) 5. C.Berger, Z.Song, T.Li, X.Li, et al., J.Phys.Chem., B 108, (2004) 6. W.A.de Heer, C.Berger, X.Wu, et al, Solid State Commun. 143, 92 (2007) 7. K. V.Emtsev et al., Nat. Mater. 8, 203 (2009) 8. AJ.Van Bommel, J.E.Crombeen, and A.Van Tooren, Surf. Sci. 48, 463 (1975) 9. I. Forbeaux, J.-M. Themlin, and J.-M. Debever Physical Review b Volume 58, Number 24 (1998) 2290

10 10. K.V.Emtsev et al., Nat. Mater. 8, 203 (2009), W.Strupiński, et al, Mater. Science Forum Vols (2009) 11. Kim, K S., et al., Nature 2009, 457, Reina, A., et al., J. Nano Lett. 2009, Park, S.; Ruoff, R. S. Nat. Nanotechnol. 2009, 4, Paredes, J. I.; Villar-Rodil, S., et al., Langmuir 2009, 25 (10), Blake, P. Brimicombe, P. D. Nair, et al., Nano Lett. 2008, 8 (6), Hernandez, Y. Nicolosi, V. Lotya, et al., J. N. Nat.Nanotechnol. 2008, 3, M. Trzaska, G. Cieślak: Powłoki z nowych nanokompozytowych materiałów nikiel/grafen o korzystnych właściwościach eksploatacyjnych. VIII Międzynarodowa Warszawska Wystawa Wynalazków IWIS r. Mat. s Ning Li, Yilin Cheng, i inni: Graphene meets biology Material Science, Chin. Sci. Bull. 2014, 59(13), M. Trzaska, T. Babul, Z. Obuchowicz, G. Cieślak: Production of graphene and nanocomposites of metal / graphene. Book of Abstracts. p Konferencja Nano PL 2014 Nanotechnology and Advanced Materials for Innovative Industry, Kielce INNO TECH EXPO 2014,

Grafen perspektywy zastosowań

Grafen perspektywy zastosowań Grafen perspektywy zastosowań Paweł Szroeder 3 czerwca 2014 Spis treści 1 Wprowadzenie 1 2 Właściwości grafenu 2 3 Perspektywy zastosowań 2 3.1 Procesory... 2 3.2 Analogoweelementy... 3 3.3 Czujniki...

Bardziej szczegółowo

GRAFEN. Prof. dr hab. A. Jeleński. Instytut Technologii MateriałówElektronicznych Ul.Wólczyńska 133 01-919 Warszawa www.itme.edu.

GRAFEN. Prof. dr hab. A. Jeleński. Instytut Technologii MateriałówElektronicznych Ul.Wólczyńska 133 01-919 Warszawa www.itme.edu. GRAFEN Prof. dr hab. A. Jeleński Instytut Technologii MateriałówElektronicznych Ul.Wólczyńska 133 01-919 Warszawa www.itme.edu.pl SPIS TREŚCI Czy potrzeba nowych materiałów? Co to jest grafen? Wytwarzanie

Bardziej szczegółowo

Grafen i jego własności

Grafen i jego własności Grafen i jego własności Jacek Baranowski Instytut Technologii Materiałów Elektronicznych Wydział Fizyki, Uniwersytet Warszawski W Polsce są duże pokłady węgla, niestety nie można ich przerobić na grafen,

Bardziej szczegółowo

Wpływ defektów punktowych i liniowych na własności węglika krzemu SiC

Wpływ defektów punktowych i liniowych na własności węglika krzemu SiC Wpływ defektów punktowych i liniowych na własności węglika krzemu SiC J. Łażewski, M. Sternik, P.T. Jochym, P. Piekarz politypy węglika krzemu SiC >250 politypów, najbardziej stabilne: 3C, 2H, 4H i 6H

Bardziej szczegółowo

Badania własności optycznych grafenu

Badania własności optycznych grafenu Badania własności optycznych grafenu Mateusz Klepuszewski 1, Aleksander Płocharski 1, Teresa Kulka 2, Katarzyna Gołasa 3 1 III Liceum Ogólnokształcące im. Unii Europejskiej, Berlinga 5, 07-410 Ostrołęka

Bardziej szczegółowo

KONSTRUKCYJNE MATERIAŁY KOMPOZYTOWE PRZEZNACZONE DO WYSOKOOBCIĄŻONYCH WĘZŁÓW TARCIA

KONSTRUKCYJNE MATERIAŁY KOMPOZYTOWE PRZEZNACZONE DO WYSOKOOBCIĄŻONYCH WĘZŁÓW TARCIA II Konferencja: Motoryzacja-Przemysł-Nauka ; Ministerstwo Gospodarki, dn. 26 listopada 2014 KONSTRUKCYJNE MATERIAŁY KOMPOZYTOWE PRZEZNACZONE DO WYSOKOOBCIĄŻONYCH WĘZŁÓW TARCIA Dr hab. inż. Jerzy Myalski

Bardziej szczegółowo

ZNACZENIE POWŁOKI W INŻYNIERII POWIERZCHNI

ZNACZENIE POWŁOKI W INŻYNIERII POWIERZCHNI ZNACZENIE POWŁOKI W INŻYNIERII POWIERZCHNI PAWEŁ URBAŃCZYK Streszczenie: W artykule przedstawiono zalety stosowania powłok technicznych. Zdefiniowano pojęcie powłoki oraz przedstawiono jej budowę. Pokazano

Bardziej szczegółowo

MATERIAŁ ELWOM 25. Mikrostruktura kompozytu W-Cu25: ciemne obszary miedzi na tle jasnego szkieletu wolframowego; pow. 250x.

MATERIAŁ ELWOM 25. Mikrostruktura kompozytu W-Cu25: ciemne obszary miedzi na tle jasnego szkieletu wolframowego; pow. 250x. MATERIAŁ ELWOM 25.! ELWOM 25 jest dwufazowym materiałem kompozytowym wolfram-miedź, przeznaczonym do obróbki elektroerozyjnej węglików spiekanych. Kompozyt ten jest wykonany z drobnoziarnistego proszku

Bardziej szczegółowo

MATERIAŁY SPIEKANE (SPIEKI)

MATERIAŁY SPIEKANE (SPIEKI) MATERIAŁY SPIEKANE (SPIEKI) Metalurgia proszków jest dziedziną techniki, obejmującą metody wytwarzania proszków metali lub ich mieszanin z proszkami niemetali oraz otrzymywania wyrobów z tych proszków

Bardziej szczegółowo

Zadania badawcze realizowane na Wydziale Inżynierii Materiałowej Politechniki Warszawskiej

Zadania badawcze realizowane na Wydziale Inżynierii Materiałowej Politechniki Warszawskiej Zadania badawcze realizowane na Wydziale Inżynierii Materiałowej Politechniki Warszawskiej Łukasz Ciupiński Politechnika Warszawska Wydział Inżynierii Materiałowej Zakład Projektowania Materiałów Zaangażowanie

Bardziej szczegółowo

PL 203790 B1. Uniwersytet Śląski w Katowicach,Katowice,PL 03.10.2005 BUP 20/05. Andrzej Posmyk,Katowice,PL 30.11.2009 WUP 11/09 RZECZPOSPOLITA POLSKA

PL 203790 B1. Uniwersytet Śląski w Katowicach,Katowice,PL 03.10.2005 BUP 20/05. Andrzej Posmyk,Katowice,PL 30.11.2009 WUP 11/09 RZECZPOSPOLITA POLSKA RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 203790 (13) B1 (21) Numer zgłoszenia: 366689 (51) Int.Cl. C25D 5/18 (2006.01) C25D 11/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)

Bardziej szczegółowo

Wytwarzanie niskowymiarowych struktur półprzewodnikowych

Wytwarzanie niskowymiarowych struktur półprzewodnikowych Większość struktur niskowymiarowych wytwarzanych jest za pomocą technik epitaksjalnych. Najczęściej wykorzystywane metody wzrostu: - epitaksja z wiązki molekularnej (MBE Molecular Beam Epitaxy) - epitaksja

Bardziej szczegółowo

MATERIAŁY SUPERTWARDE

MATERIAŁY SUPERTWARDE MATERIAŁY SUPERTWARDE Twarde i supertwarde materiały Twarde i bardzo twarde materiały są potrzebne w takich przemysłowych zastosowaniach jak szlifowanie i polerowanie, cięcie, prasowanie, synteza i badania

Bardziej szczegółowo

PL 213904 B1. Elektrolityczna, nanostrukturalna powłoka kompozytowa o małym współczynniku tarcia, zużyciu ściernym i korozji

PL 213904 B1. Elektrolityczna, nanostrukturalna powłoka kompozytowa o małym współczynniku tarcia, zużyciu ściernym i korozji PL 213904 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 213904 (13) B1 (21) Numer zgłoszenia: 390004 (51) Int.Cl. C25D 3/12 (2006.01) C25D 15/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej

Bardziej szczegółowo

Grafen: medyczny materiał przyszłości? Dr n. med. Dariusz Biały

Grafen: medyczny materiał przyszłości? Dr n. med. Dariusz Biały Grafen: medyczny materiał przyszłości? Dr n. med. Dariusz Biały Grafen Budowa: Jednoatomowa warstwa Zbudowany tylko z atomów węgla Heksagonalna sieć (jak grafit) Właściwości: Wysoka powierzchnia właściwa

Bardziej szczegółowo

WŁAŚCIWOŚCI MECHANICZNE PLASTYCZNOŚĆ. Zmiany makroskopowe. Zmiany makroskopowe

WŁAŚCIWOŚCI MECHANICZNE PLASTYCZNOŚĆ. Zmiany makroskopowe. Zmiany makroskopowe WŁAŚCIWOŚCI MECHANICZNE PLASTYCZNOŚĆ Zmiany makroskopowe Zmiany makroskopowe R e = R 0.2 - umowna granica plastyczności (0.2% odkształcenia trwałego); R m - wytrzymałość na rozciąganie (plastyczne); 1

Bardziej szczegółowo

Wykład 12 V = 4 km/s E 0 =.08 e V e = = 1 Å

Wykład 12 V = 4 km/s E 0 =.08 e V e  = = 1 Å Wykład 12 Fale materii: elektrony, neutrony, lekkie atomy Neutrony generowane w reaktorze są spowalniane w wyniku zderzeń z moderatorem (grafitem) do V = 4 km/s, co odpowiada energii E=0.08 ev a energia

Bardziej szczegółowo

Kompozyty Ceramiczne. Materiały Kompozytowe. kompozyty. ziarniste. strukturalne. z włóknami

Kompozyty Ceramiczne. Materiały Kompozytowe. kompozyty. ziarniste. strukturalne. z włóknami Kompozyty Ceramiczne Materiały Kompozytowe intencjonalnie wytworzone materiały składające się, z co najmniej dwóch faz, które posiadają co najmniej jedną cechę lepszą niż tworzące je fazy. Pozostałe właściwości

Bardziej szczegółowo

Wykorzystanie Grafenu do walki z nowotworami. Kacper Kołodziej, Jan Balcerak, Justyna Kończewska

Wykorzystanie Grafenu do walki z nowotworami. Kacper Kołodziej, Jan Balcerak, Justyna Kończewska Wykorzystanie Grafenu do walki z nowotworami Kacper Kołodziej, Jan Balcerak, Justyna Kończewska Spis treści: 1. Co to jest grafen? Budowa i właściwości. 2. Zastosowanie grafenu. 3. Dlaczego może być wykorzystany

Bardziej szczegółowo

Materiałoznawstwo optyczne CERAMIKA OPTYCZNA

Materiałoznawstwo optyczne CERAMIKA OPTYCZNA Materiałoznawstwo optyczne CERAMIKA OPTYCZNA Szkło optyczne i fotoniczne, A. Szwedowski, R. Romaniuk, WNT, 2009 POLIKRYSZTAŁY - ciała stałe o drobnoziarnistej strukturze, które są złożone z wielkiej liczby

Bardziej szczegółowo

MATERIAŁY KOMPOZYTOWE

MATERIAŁY KOMPOZYTOWE MATERIAŁY KOMPOZYTOWE 1 DEFINICJA KOMPOZYTU KOMPOZYTEM NAZYWA SIĘ MATERIAL BĘDĄCY KOMBINACJA DWÓCH LUB WIĘCEJ ROŻNYCH MATERIAŁÓW 2 Kompozyt: Włókna węglowe ciągłe (preforma 3D) Osnowa : Al-Si METALE I

Bardziej szczegółowo

STABILNOŚĆ STRUKTURALNA STALI P92 W KSZTAŁTOWANYCH PLASTYCZNIE ELEMENTACH RUROCIĄGÓW KOTŁÓW ENERGETYCZNYCH ANDRZEJ TOKARZ, WŁADYSŁAW ZALECKI

STABILNOŚĆ STRUKTURALNA STALI P92 W KSZTAŁTOWANYCH PLASTYCZNIE ELEMENTACH RUROCIĄGÓW KOTŁÓW ENERGETYCZNYCH ANDRZEJ TOKARZ, WŁADYSŁAW ZALECKI PL0400058 STABILNOŚĆ STRUKTURALNA STALI P92 W KSZTAŁTOWANYCH PLASTYCZNIE ELEMENTACH RUROCIĄGÓW KOTŁÓW ENERGETYCZNYCH ANDRZEJ TOKARZ, WŁADYSŁAW ZALECKI Instytut Metalurgii Żelaza im. S. Staszica, Gliwice

Bardziej szczegółowo

WPŁYW PROCESU TARCIA NA ZMIANĘ MIKROTWARDOŚCI WARSTWY WIERZCHNIEJ MATERIAŁÓW POLIMEROWYCH

WPŁYW PROCESU TARCIA NA ZMIANĘ MIKROTWARDOŚCI WARSTWY WIERZCHNIEJ MATERIAŁÓW POLIMEROWYCH WOJCIECH WIELEBA WPŁYW PROCESU TARCIA NA ZMIANĘ MIKROTWARDOŚCI WARSTWY WIERZCHNIEJ MATERIAŁÓW POLIMEROWYCH THE INFLUENCE OF FRICTION PROCESS FOR CHANGE OF MICROHARDNESS OF SURFACE LAYER IN POLYMERIC MATERIALS

Bardziej szczegółowo

Chemia nieorganiczna. Copyright 2000 by Harcourt, Inc. All rights reserved.

Chemia nieorganiczna. Copyright 2000 by Harcourt, Inc. All rights reserved. Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Pierwiastki 1 1 H 3 Li 11

Bardziej szczegółowo

Promotor: prof. nadzw. dr hab. Jerzy Ratajski. Jarosław Rochowicz. Wydział Mechaniczny Politechnika Koszalińska

Promotor: prof. nadzw. dr hab. Jerzy Ratajski. Jarosław Rochowicz. Wydział Mechaniczny Politechnika Koszalińska Promotor: prof. nadzw. dr hab. Jerzy Ratajski Jarosław Rochowicz Wydział Mechaniczny Politechnika Koszalińska Praca magisterska Wpływ napięcia podłoża na właściwości mechaniczne powłok CrCN nanoszonych

Bardziej szczegółowo

Materiały katodowe dla ogniw Li-ion wybrane zagadnienia

Materiały katodowe dla ogniw Li-ion wybrane zagadnienia Materiały katodowe dla ogniw Li-ion wybrane zagadnienia Szeroki zakres interkalacji y, a więc duża dopuszczalna zmiana zawartości litu w materiale, która powinna zachodzić przy minimalnych zaburzeniach

Bardziej szczegółowo

Metody łączenia metali. rozłączne nierozłączne:

Metody łączenia metali. rozłączne nierozłączne: Metody łączenia metali rozłączne nierozłączne: Lutowanie: łączenie części metalowych za pomocą stopów, zwanych lutami, które mają niższą od lutowanych metali temperaturę topnienia. - lutowanie miękkie

Bardziej szczegółowo

Nauka o Materiałach. Wykład XI. Właściwości cieplne. Jerzy Lis

Nauka o Materiałach. Wykład XI. Właściwości cieplne. Jerzy Lis Nauka o Materiałach Wykład XI Właściwości cieplne Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Stabilność termiczna materiałów 2. Pełzanie wysokotemperaturowe 3. Przewodnictwo cieplne 4. Rozszerzalność

Bardziej szczegółowo

Wykład XI: Właściwości cieplne. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych

Wykład XI: Właściwości cieplne. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Wykład XI: Właściwości cieplne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Treść wykładu: 1. Stabilność termiczna materiałów 2. Pełzanie wysokotemperaturowe

Bardziej szczegółowo

Filtralite Pure. Filtralite Pure UZDATNIANIE WODY. Przyszłość filtracji dostępna już dziś

Filtralite Pure. Filtralite Pure UZDATNIANIE WODY. Przyszłość filtracji dostępna już dziś Pure UZDATNIANIE WODY Przyszłość filtracji dostępna już dziś 1 Czy szukasz rozwiązania, które: Pozwala zwiększyć wydajność instalacji bez rozbudowy istniejącego układu, Obniża koszty eksploatacyjne, Zapewni

Bardziej szczegółowo

Peter Schramm pracuje w dziale technicznym FRIATEC AG, oddział ceramiki technicznej.

Peter Schramm pracuje w dziale technicznym FRIATEC AG, oddział ceramiki technicznej. FRIALIT -DEGUSSIT ZAAWANSOWANA CERAMIKA TECHNICZNA NIEWYCZERPANY POTENCJAŁ Peter Schramm pracuje w dziale technicznym FRIATEC AG, oddział ceramiki technicznej. Jak produkuje się zaawansowaną ceramikę techniczną?

Bardziej szczegółowo

MATERIAŁOZNAWSTWO. dr hab. inż. Joanna Hucińska Katedra Inżynierii Materiałowej Pok. 128 (budynek Żelbetu )

MATERIAŁOZNAWSTWO. dr hab. inż. Joanna Hucińska Katedra Inżynierii Materiałowej Pok. 128 (budynek Żelbetu ) MATERIAŁOZNAWSTWO dr hab. inż. Joanna Hucińska Katedra Inżynierii Materiałowej Pok. 128 (budynek Żelbetu ) jhucinsk@pg.gda.pl MATERIAŁOZNAWSTWO dziedzina nauki stosowanej obejmująca badania zależności

Bardziej szczegółowo

III Konferencja: Motoryzacja-Przemysł-Nauka ; Ministerstwo Gospodarki, dn. 23 czerwiec 2014

III Konferencja: Motoryzacja-Przemysł-Nauka ; Ministerstwo Gospodarki, dn. 23 czerwiec 2014 III Konferencja: Motoryzacja-Przemysł-Nauka ; Ministerstwo Gospodarki, dn. 23 czerwiec 2014 Praca została realizowana w ramach programu Innowacyjna Gospodarka, finansowanego przez Europejski fundusz Rozwoju

Bardziej szczegółowo

Okres realizacji projektu: r r.

Okres realizacji projektu: r r. PROJEKT: Wykorzystanie modułowych systemów podawania i mieszania materiałów proszkowych na przykładzie linii technologicznej do wytwarzania katod w bateriach termicznych wraz z systemem eksperckim doboru

Bardziej szczegółowo

(12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP 2526977. (96) Data i numer zgłoszenia patentu europejskiego: 31.01.2012 12153261.

(12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP 2526977. (96) Data i numer zgłoszenia patentu europejskiego: 31.01.2012 12153261. RZECZPOSPOLITA POLSKA (12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP 2526977 Urząd Patentowy Rzeczypospolitej Polskiej (96) Data i numer zgłoszenia patentu europejskiego: 31.01.2012 12153261.8

Bardziej szczegółowo

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342 ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342 wydany przez POLSKIE CENTRUM AKREDYTACJI 01-382 Warszawa ul. Szczotkarska 42 Wydanie nr 13, Data wydania: 22 kwietnia 2015 r. Nazwa i adres INSTYTUT

Bardziej szczegółowo

30/01/2018. Wykład X: Właściwości cieplne. Treść wykładu: Stabilność termiczna materiałów

30/01/2018. Wykład X: Właściwości cieplne. Treść wykładu: Stabilność termiczna materiałów Wykład X: Właściwości cieplne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Treść wykładu:. Stabilność termiczna materiałów 2. 3. 4. Rozszerzalność cieplna

Bardziej szczegółowo

PRACA DYPLOMOWA W BUDOWIE WKŁADEK FORMUJĄCYCH. Tomasz Kamiński. Temat: ŻYWICE EPOKSYDOWE. dr inż. Leszek Nakonieczny

PRACA DYPLOMOWA W BUDOWIE WKŁADEK FORMUJĄCYCH. Tomasz Kamiński. Temat: ŻYWICE EPOKSYDOWE. dr inż. Leszek Nakonieczny Politechnika Wrocławska - Wydział Mechaniczny Instytut Technologii Maszyn i Automatyzacji PRACA DYPLOMOWA Tomasz Kamiński Temat: ŻYWICE EPOKSYDOWE W BUDOWIE WKŁADEK FORMUJĄCYCH Promotor: dr inż. Leszek

Bardziej szczegółowo

Innowacyjne warstwy azotowane nowej generacji o podwyższonej odporności korozyjnej wytwarzane na elementach maszyn

Innowacyjne warstwy azotowane nowej generacji o podwyższonej odporności korozyjnej wytwarzane na elementach maszyn Tytuł projektu: Innowacyjne warstwy azotowane nowej generacji o podwyższonej odporności korozyjnej wytwarzane na elementach maszyn Umowa nr: TANGO1/268920/NCBR/15 Akronim: NITROCOR Planowany okres realizacji

Bardziej szczegółowo

Politechnika Koszalińska

Politechnika Koszalińska Politechnika Instytut Mechatroniki, Nanotechnologii i Technik Próżniowych Wytwarzanie, struktura i właściwości cienkich powłok na bazie węgla Andrzej Czyżniewski Dotacje na innowacje Dotacje na innowacje

Bardziej szczegółowo

Wykład IX: Odkształcenie materiałów - właściwości plastyczne

Wykład IX: Odkształcenie materiałów - właściwości plastyczne Wykład IX: Odkształcenie materiałów - właściwości plastyczne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych Treść wykładu: 1. Odkształcenie

Bardziej szczegółowo

Politechnika Politechnika Koszalińska

Politechnika Politechnika Koszalińska Politechnika Politechnika Instytut Mechatroniki, Nanotechnologii i Technik Próżniowych NOWE MATERIAŁY NOWE TECHNOLOGIE W PRZEMYŚLE OKRĘTOWYM I MASZYNOWYM IIM ZUT Szczecin, 28 31 maja 2012, Międzyzdroje

Bardziej szczegółowo

Chemia nieorganiczna. Pierwiastki. niemetale Be. 27 Co. 28 Ni. 26 Fe. 29 Cu. 45 Rh. 44 Ru. 47 Ag. 46 Pd. 78 Pt. 76 Os.

Chemia nieorganiczna. Pierwiastki. niemetale Be. 27 Co. 28 Ni. 26 Fe. 29 Cu. 45 Rh. 44 Ru. 47 Ag. 46 Pd. 78 Pt. 76 Os. Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Copyright 2000 by Harcourt,

Bardziej szczegółowo

Stal - definicja Stal

Stal - definicja Stal \ Stal - definicja Stal stop żelaza z węglem,plastycznie obrobiony i obrabialny cieplnie o zawartości węgla nieprzekraczającej 2,11% co odpowiada granicznej rozpuszczalności węgla w żelazie (dla stali

Bardziej szczegółowo

Technologie wytwarzania. Opracował Dr inż. Stanisław Rymkiewicz KIM WM PG

Technologie wytwarzania. Opracował Dr inż. Stanisław Rymkiewicz KIM WM PG Technologie wytwarzania Opracował Dr inż. Stanisław Rymkiewicz KIM WM PG Technologie wytwarzania Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki

Bardziej szczegółowo

Wpływ temperatury podłoża na właściwości powłok DLC osadzanych metodą rozpylania katod grafitowych łukiem impulsowym

Wpływ temperatury podłoża na właściwości powłok DLC osadzanych metodą rozpylania katod grafitowych łukiem impulsowym Dotacje na innowacje Wpływ temperatury podłoża na właściwości powłok DLC osadzanych metodą rozpylania katod grafitowych łukiem impulsowym Viktor Zavaleyev, Jan Walkowicz, Adam Pander Politechnika Koszalińska

Bardziej szczegółowo

INŻYNIERIA WYTWARZANIA WYROBÓW MECHATRONICZNYCH. Opiekun specjalności: Prof. nzw. dr hab. inż. Leszek Kudła

INŻYNIERIA WYTWARZANIA WYROBÓW MECHATRONICZNYCH. Opiekun specjalności: Prof. nzw. dr hab. inż. Leszek Kudła INŻYNIERIA WYTWARZANIA WYROBÓW MECHATRONICZNYCH Opiekun specjalności: Prof. nzw. dr hab. inż. Leszek Kudła Dydaktyka Dużo czasu wolnego na prace własną Wiedza + doświadczenie - Techniki mikromontażu elementów

Bardziej szczegółowo

KOROZJA KATASTROFALNA W ATMOSFERACH NAWĘGLAJĄCYCH

KOROZJA KATASTROFALNA W ATMOSFERACH NAWĘGLAJĄCYCH KOROZJA KATASTROFALNA W ATMOSFERACH NAWĘGLAJĄCYCH Mechanizm korozji typu metal dusting żelaza i stali niskostopowych 1. H.J. Grabke: Mat. Corr. Vol. 49, 303 (1998). 2. H.J. Grabke, E.M. Müller-Lorenz,

Bardziej szczegółowo

AlfaFusion Technologia stosowana w produkcji płytowych wymienników ciepła

AlfaFusion Technologia stosowana w produkcji płytowych wymienników ciepła AlfaFusion Technologia stosowana w produkcji płytowych wymienników ciepła AlfaNova to płytowy wymiennik ciepła wyprodukowany w technologii AlfaFusion i wykonany ze stali kwasoodpornej. Urządzenie charakteryzuje

Bardziej szczegółowo

Właściwości cieplne Stabilność termiczna materiałów. Stabilność termiczna materiałów

Właściwości cieplne Stabilność termiczna materiałów. Stabilność termiczna materiałów Właściwości cieplne Stabilność termiczna materiałów Temperatury topnienia lub mięknięcia (M) różnych materiałów Materiał T [ O K] Materiał T [ O K] Materiał T [ O K] diament, grafit 4000 żelazo 809 poliestry

Bardziej szczegółowo

Kompozyty i nanokompozyty ceramiczno-metalowe dla przemysłu lotniczego i samochodowego (KomCerMet)

Kompozyty i nanokompozyty ceramiczno-metalowe dla przemysłu lotniczego i samochodowego (KomCerMet) Instytut Metalurgii i Inżynierii Materiałowej im. Aleksandra Krupkowskiego Polskiej Akademii Nauk w Krakowie informuje o realizacji projektu: Kompozyty i nanokompozyty ceramiczno-metalowe dla przemysłu

Bardziej szczegółowo

Struktura krystaliczna i amorficzna metali

Struktura krystaliczna i amorficzna metali Co to jest ciało amorficzne? Ciało amorficzne (bezpostaciowe) jest to ciało stałe nie wykazujące charakterystycznego dla kryształu okresowego uporządkowania atomów (cząsteczek) i wynikających z niego właściwości.

Bardziej szczegółowo

A. PATEJUK 1 Instytut Materiałoznawstwa i Mechaniki Technicznej WAT Warszawa ul. S. Kaliskiego 2, Warszawa

A. PATEJUK 1 Instytut Materiałoznawstwa i Mechaniki Technicznej WAT Warszawa ul. S. Kaliskiego 2, Warszawa 56/4 Archives of Foundry, Year 22, Volume 2, 4 Archiwum Odlewnictwa, Rok 22, Rocznik 2, Nr 4 PAN Katowice PL ISSN 1642-538 WPŁYW CIŚNIENIA SPIEKANIA NA WŁAŚCIWOŚCI KOMPOZYTU Z OSNOWĄ ALUMINIOWĄ ZBROJONEGO

Bardziej szczegółowo

Energia emitowana przez Słońce

Energia emitowana przez Słońce Energia słoneczna i ogniwa fotowoltaiczne Michał Kocyła Problem energetyczny na świecie Przewiduje się, że przy obecnym tempie rozwoju gospodarczego i zapotrzebowaniu na energię, paliw kopalnych starczy

Bardziej szczegółowo

PL B1. POLITECHNIKA ŚWIĘTOKRZYSKA, Kielce, PL BUP 17/16. MAGDALENA PIASECKA, Kielce, PL WUP 04/17

PL B1. POLITECHNIKA ŚWIĘTOKRZYSKA, Kielce, PL BUP 17/16. MAGDALENA PIASECKA, Kielce, PL WUP 04/17 PL 225512 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 225512 (13) B1 (21) Numer zgłoszenia: 415204 (51) Int.Cl. C23C 10/28 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:

Bardziej szczegółowo

Targi POL-EKO-SYSTEM. Strefa RIPOK NANOODPADY JAKO NOWY RODZAJ ODPADÓW ZAGRAŻAJĄCYCH ŚRODOWISKU

Targi POL-EKO-SYSTEM. Strefa RIPOK NANOODPADY JAKO NOWY RODZAJ ODPADÓW ZAGRAŻAJĄCYCH ŚRODOWISKU NANOODPADY JAKO NOWY RODZAJ ODPADÓW ZAGRAŻAJĄCYCH ŚRODOWISKU Beata B. Kłopotek Departament Gospodarki Odpadami Poznań, dnia 28 października 2015 r. Zakres prezentacji 1. Nanomateriały definicja, zastosowania,

Bardziej szczegółowo

Kompozyty. Czym jest kompozyt

Kompozyty. Czym jest kompozyt Kompozyty Czym jest kompozyt Kompozyt jest to materiał utworzony z co najmniej dwóch komponentów mający właściwości nowe (lepsze) w stosunku do komponentów. MSE 27X Unit 18 1 Material Elastic Modulus GPa

Bardziej szczegółowo

43 edycja SIM Paulina Koszla

43 edycja SIM Paulina Koszla 43 edycja SIM 2015 Paulina Koszla Plan prezentacji O konferencji Zaprezentowane artykuły Inne artykuły Do udziału w konferencji zaprasza się młodych doktorów, asystentów i doktorantów z kierunków: Inżynieria

Bardziej szczegółowo

INSPECTION METHODS FOR QUALITY CONTROL OF FIBRE METAL LAMINATES IN AEROSPACE COMPONENTS

INSPECTION METHODS FOR QUALITY CONTROL OF FIBRE METAL LAMINATES IN AEROSPACE COMPONENTS Kompozyty 11: 2 (2011) 130-135 Krzysztof Dragan 1 * Jarosław Bieniaś 2, Michał Sałaciński 1, Piotr Synaszko 1 1 Air Force Institute of Technology, Non Destructive Testing Lab., ul. ks. Bolesława 6, 01-494

Bardziej szczegółowo

σ c wytrzymałość mechaniczna, tzn. krytyczna wartość naprężenia, zapoczątkowująca pękanie

σ c wytrzymałość mechaniczna, tzn. krytyczna wartość naprężenia, zapoczątkowująca pękanie Materiały pomocnicze do ćwiczenia laboratoryjnego Właściwości mechaniczne ceramicznych kompozytów ziarnistych z przedmiotu Współczesne materiały inżynierskie dla studentów IV roku Wydziału Inżynierii Mechanicznej

Bardziej szczegółowo

Metale nieżelazne - miedź i jej stopy

Metale nieżelazne - miedź i jej stopy Metale nieżelazne - miedź i jej stopy Miedź jest doskonałym przewodnikiem elektryczności, ustępuje jedynie srebru. Z tego powodu miedź znalazła duże zastosowanie w elektrotechnice na przewody. Miedź charakteryzuje

Bardziej szczegółowo

HSMG. Prawdziwy grafen jest tylko jeden. www.advancedgrapheneproducts.com

HSMG. Prawdziwy grafen jest tylko jeden. www.advancedgrapheneproducts.com HSMG TM Prawdziwy grafen jest tylko jeden. www.advancedgrapheneproducts.com 03. 05. 13. 20. 02 Grafen O firmie AGP O grafenie HSMG Współpraca i kontakt Czym jest grafen Grafen to płaska struktura złożona

Bardziej szczegółowo

LASEROWA OBRÓBKA MATERIAŁÓW

LASEROWA OBRÓBKA MATERIAŁÓW LASEROWA OBRÓBKA MATERIAŁÓW Cechy laserowych operacji technologicznych Promieniowanie laserowe umożliwia wykonanie wielu dokładnych operacji technologicznych Na różnych materiałach: o Trudno obrabialnych

Bardziej szczegółowo

BADANIA WARSTW FE NANOSZONYCH Z ELEKTROLITU NA BAZIE ACETONU

BADANIA WARSTW FE NANOSZONYCH Z ELEKTROLITU NA BAZIE ACETONU BADANIA WARSTW FE NANOSZONYCH Z ELEKTROLITU NA BAZIE ACETONU W. OLSZEWSKI 1, K. SZYMAŃSKI 1, D. SATUŁA 1, M. BIERNACKA 1, E. K. TALIK 2 1 Wydział Fizyki, Uniwersytet w Białymstoku, Lipowa 41, 15-424 Białystok,

Bardziej szczegółowo

Czynniki alternatywne - przyszłość chłodnictwa? Dr hab. inż. Artur Rusowicz Instytut Techniki Cieplnej Politechnika Warszawska

Czynniki alternatywne - przyszłość chłodnictwa? Dr hab. inż. Artur Rusowicz Instytut Techniki Cieplnej Politechnika Warszawska Czynniki alternatywne - przyszłość chłodnictwa? Dr hab. inż. Artur Rusowicz Instytut Techniki Cieplnej Politechnika Warszawska Wpływ na środowisko: ODP (ang. Ozone Depletion Potential) - potencjał niszczenia

Bardziej szczegółowo

DROGA ROZWOJU OD PROJEKTOWANIA 2D DO 3D Z WYKORZYSTANIEM SYSTEMÓW CAD NA POTRZEBY PRZEMYSŁU SAMOCHODOWEGO

DROGA ROZWOJU OD PROJEKTOWANIA 2D DO 3D Z WYKORZYSTANIEM SYSTEMÓW CAD NA POTRZEBY PRZEMYSŁU SAMOCHODOWEGO Marta KORDOWSKA, Andrzej KARACZUN, Wojciech MUSIAŁ DROGA ROZWOJU OD PROJEKTOWANIA 2D DO 3D Z WYKORZYSTANIEM SYSTEMÓW CAD NA POTRZEBY PRZEMYSŁU SAMOCHODOWEGO Streszczenie W artykule omówione zostały zintegrowane

Bardziej szczegółowo

LASEROWA OBRÓBKA MATERIAŁÓW

LASEROWA OBRÓBKA MATERIAŁÓW LASEROWA OBRÓBKA MATERIAŁÓW Promieniowanie laserowe umożliwia wykonanie wielu dokładnych operacji technologicznych na różnych materiałach: o trudno obrabialnych takich jak diamenty, metale twarde, o miękkie

Bardziej szczegółowo

Nowoczesne metody metalurgii proszków. Dr inż. Hanna Smoleńska Materiały edukacyjne DO UŻYTKU WEWNĘTRZNEGO Część III

Nowoczesne metody metalurgii proszków. Dr inż. Hanna Smoleńska Materiały edukacyjne DO UŻYTKU WEWNĘTRZNEGO Część III Nowoczesne metody metalurgii proszków Dr inż. Hanna Smoleńska Materiały edukacyjne DO UŻYTKU WEWNĘTRZNEGO Część III Metal injection moulding (MIM)- formowanie wtryskowe Metoda ta pozwala na wytwarzanie

Bardziej szczegółowo

TECHNOLOGIE ZABEZPIECZANIA POWIERZCHNI Technologies for protecting the surface Kod przedmiotu: IM.D1F.45

TECHNOLOGIE ZABEZPIECZANIA POWIERZCHNI Technologies for protecting the surface Kod przedmiotu: IM.D1F.45 Nazwa przedmiotu: Kierunek: Inżynieria Materiałowa Rodzaj przedmiotu: Kierunkowy do wyboru Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie

Bardziej szczegółowo

Urządzenie do rozkładu termicznego odpadów organicznych WGW-8 EU

Urządzenie do rozkładu termicznego odpadów organicznych WGW-8 EU GREEN ENERGY POLAND Sp. z o.o. Urządzenie do rozkładu termicznego odpadów organicznych WGW-8 EU dr hab. inż. Andrzej Wojciechowski e-mail: andrzej.wojciechowski@imp.edu.pl www.imp.edu.pl Ochrony Środowiska

Bardziej szczegółowo

Advanced Forming Hartowanie w procesie tłoczenia

Advanced Forming Hartowanie w procesie tłoczenia Advanced Forming Hartowanie w procesie tłoczenia ZAAWANSOWANE FORMOWANIE DLA PRZEMYSŁU SAMOCHODOWEGO Gdy klienci kładą silny nacisk na masę i wytrzymałość Wymagania odnośnie coraz lżejszych elementów z

Bardziej szczegółowo

Nauka o Materiałach. Wykład IX. Odkształcenie materiałów właściwości plastyczne. Jerzy Lis

Nauka o Materiałach. Wykład IX. Odkształcenie materiałów właściwości plastyczne. Jerzy Lis Nauka o Materiałach Wykład IX Odkształcenie materiałów właściwości plastyczne Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Odkształcenie plastyczne 2. Parametry makroskopowe 3. Granica plastyczności

Bardziej szczegółowo

Właściwości kryształów

Właściwości kryształów Właściwości kryształów Związek pomiędzy właściwościami, strukturą, defektami struktury i wiązaniami chemicznymi Skład i struktura Skład materiału wpływa na wszystko, ale głównie na: właściwości fizyczne

Bardziej szczegółowo

Drewno. Zalety: Wady:

Drewno. Zalety: Wady: Drewno Drewno to naturalny surowiec w pełni odnawialny. Dzięki racjonalnej gospodarce leśnej w Polsce zwiększają się nie tylko zasoby drewna, lecz także powierzchnia lasów. łatwość w obróbce, lekkość i

Bardziej szczegółowo

Rok akademicki: 2017/2018 Kod: NIM MM-s Punkty ECTS: 5. Kierunek: Inżynieria Materiałowa Specjalność: Materiałoznawstwo metali nieżelaznych

Rok akademicki: 2017/2018 Kod: NIM MM-s Punkty ECTS: 5. Kierunek: Inżynieria Materiałowa Specjalność: Materiałoznawstwo metali nieżelaznych Nazwa modułu: Kompozytowe materiały metaliczne II stopień Rok akademicki: 2017/2018 Kod: NIM-2-207-MM-s Punkty ECTS: 5 Wydział: Metali Nieżelaznych Kierunek: Inżynieria Materiałowa Specjalność: Materiałoznawstwo

Bardziej szczegółowo

Ich właściwości zmieniające się w szerokim zakresie w zależności od składu chemicznego (rys) i technologii wytwarzania wyrobu.

Ich właściwości zmieniające się w szerokim zakresie w zależności od składu chemicznego (rys) i technologii wytwarzania wyrobu. STOPY ŻELAZA Ich właściwości zmieniające się w szerokim zakresie w zależności od składu chemicznego (rys) i technologii wytwarzania wyrobu. Ze względu na bardzo dużą ilość stopów żelaza z węglem dla ułatwienia

Bardziej szczegółowo

RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) (13) B1

RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) (13) B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 174002 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 300055 (22) Data zgłoszenia: 12.08.1993 (5 1) IntCl6: H01L21/76 (54)

Bardziej szczegółowo

MATERIAŁY STOSOWANE NA POWŁOKI PRZECIWZUŻYCIOWE

MATERIAŁY STOSOWANE NA POWŁOKI PRZECIWZUŻYCIOWE MATERIAŁY STOSOWANE NA POWŁOKI PRZECIWZUŻYCIOWE PAWEŁ URBAŃCZYK Streszczenie: W artykule przedstawiono klasyfikację materiałów stosowanych na powłoki przeciwzużyciowe. Przeanalizowano właściwości fizyczne

Bardziej szczegółowo

INŻYNIERIA MATERIAŁOWA w elektronice

INŻYNIERIA MATERIAŁOWA w elektronice Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej... INŻYNIERIA MATERIAŁOWA w elektronice... Dr hab. inż. JAN FELBA Profesor nadzwyczajny PWr 1 PROGRAM WYKŁADU Struktura materiałów

Bardziej szczegółowo

Instrukcja "Jak stosować preparat CerMark?"

Instrukcja Jak stosować preparat CerMark? Instrukcja "Jak stosować preparat CerMark?" Co to jest CerMark? Produkt, który umożliwia znakowanie metali w technologii laserowej CO 2. Znakowanie uzyskane w technologii CerMark charakteryzuje idealna

Bardziej szczegółowo

Kierunek: Inżynieria Materiałowa Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia

Kierunek: Inżynieria Materiałowa Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia Wydział: Inżynierii Materiałowej i Ceramiki Kierunek: Inżynieria Materiałowa Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Rocznik: 2012/2013 Język wykładowy: Polski Semestr 1 Fizyka

Bardziej szczegółowo

STRUKTURA GEOMETRYCZNA POWIERZCHNI KOMPOZYTÓW ODLEWNICZYCH TYPU FeAl-Al 2 O 3 PO PRÓBACH TARCIA

STRUKTURA GEOMETRYCZNA POWIERZCHNI KOMPOZYTÓW ODLEWNICZYCH TYPU FeAl-Al 2 O 3 PO PRÓBACH TARCIA 60/18 ARCHIWUM ODLEWNICTWA Rok 2006, Rocznik 6, Nr 18 (1/2) ARCHIVES OF FOUNDRY Year 2006, Volume 6, N o 18 (1/2) PAN Katowice PL ISSN 1642-5308 STRUKTURA GEOMETRYCZNA POWIERZCHNI KOMPOZYTÓW ODLEWNICZYCH

Bardziej szczegółowo

Nawęglanie Niskociśnieniowe ( Nawęglanie Próżniowe) Dlaczego stosowane?

Nawęglanie Niskociśnieniowe ( Nawęglanie Próżniowe) Dlaczego stosowane? Nawęglanie Niskociśnieniowe ( Nawęglanie Próżniowe) Dlaczego stosowane? Historia Lata sześćdziesiąte, prace laboratoryjne. Wydział Metalurgii i Materiałów Uniwersytetu w Birmingham. Początek lat siedemdziesiątych.

Bardziej szczegółowo

!!!DEL są źródłami światła niespójnego.

!!!DEL są źródłami światła niespójnego. Dioda elektroluminescencyjna DEL Element czynny DEL to złącze p-n. Gdy zostanie ono spolaryzowane w kierunku przewodzenia, to w obszarze typu p, w warstwie o grubości rzędu 1µm, wytwarza się stan inwersji

Bardziej szczegółowo

Projekt kluczowy. Nowoczesne technologie materiałowe stosowane w przemyśle lotniczym. Segment nr 10

Projekt kluczowy. Nowoczesne technologie materiałowe stosowane w przemyśle lotniczym. Segment nr 10 Projekt kluczowy Nowoczesne technologie materiałowe stosowane w przemyśle lotniczym Segment nr 10 Nowoczesne pokrycia barierowe na krytyczne elementy silnika lotniczego Uzasadnienie podjęcia zagadnienia

Bardziej szczegółowo

Dobór materiałów konstrukcyjnych cz.13

Dobór materiałów konstrukcyjnych cz.13 Dobór materiałów konstrukcyjnych cz.13 dr inż. Hanna Smoleńska Katedra Inżynierii Materiałowej i Spajania Wydział Mechaniczny, Politechnika Gdańska Materiały edukacyjne ROZSZERZALNOŚĆ CIEPLNA LINIOWA Ashby

Bardziej szczegółowo

ZASADY KONSTRUKCJI APARATURY ELEKTRONICZNEJ

ZASADY KONSTRUKCJI APARATURY ELEKTRONICZNEJ Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej ZASADY KONSTRUKCJI APARATURY ELEKTRONICZNEJ Dr hab. inż. JAN FELBA Profesor nadzwyczajny PWr 1 PROGRAM WYKŁADU Cele i bariery Ogólne

Bardziej szczegółowo

http://www.chem.uw.edu.pl/people/ AMyslinski/Kaim/cze14.pdf BOEING 747 VERSUS 787: COMPOSITES BUDOWNICTWO Materiały kompozytowe nadają się do użycia w budownictwie w szerokiej gamie zastosowań:

Bardziej szczegółowo

= a (a c-c )x(3) 1/2. Grafit i nanorurki węglowe Grafen sieć rombowa (heksagonalna) z bazą dwuatomową. Metody wytwarzania

= a (a c-c )x(3) 1/2. Grafit i nanorurki węglowe Grafen sieć rombowa (heksagonalna) z bazą dwuatomową. Metody wytwarzania Grafit i nanorurki węglowe Grafen sieć rombowa (heksagonalna) z bazą dwuatomową a 1 = a (a c-c )x(3) 1/ ( 3 a, ), ( 3 a a a = a, ) wektory bazowe sieci odwrotnej definiuje się inaczej niż w 3D musi zachodzić

Bardziej szczegółowo

Leszek Stobiński kierownik laboratorium

Leszek Stobiński kierownik laboratorium Laboratorium Grafenowe Politechniki Warszawskiej - potencjał badawczy, możliwości współpracy Leszek Stobiński kierownik laboratorium e-mail: LGPW@ichip.pw.edu.pl L.Stobiński@ichip.pw.edu.pl telefon: 0048

Bardziej szczegółowo

Analiza ryzyka - EGZAMIN 10wE - Analiza ryzyka - 20ćw. Bezpieczeństwo informacji - EGZAMIN 10wE - Bezpieczeństwo informacji

Analiza ryzyka - EGZAMIN 10wE - Analiza ryzyka - 20ćw. Bezpieczeństwo informacji - EGZAMIN 10wE - Bezpieczeństwo informacji Niniejszym podaje się do wiadomości studentów studiów niestacjonarnych inżynierskich i magisterskich uzupełniających, że w semestrze letnim roku akademickiego 011/01 obowiązuje uzyskanie zaliczeń i egzaminów

Bardziej szczegółowo

Wybrane prace badawcze naukowców z Wydziału Metali Nieżelaznych AGH w zakresie technologii przetwórstwa metali nieżelaznych

Wybrane prace badawcze naukowców z Wydziału Metali Nieżelaznych AGH w zakresie technologii przetwórstwa metali nieżelaznych XXIII Walne Zgromadzenie Izby 8-9 czerwca 20017 w Krakowie. Wybrane prace badawcze naukowców z Wydziału Metali Nieżelaznych AGH w zakresie technologii przetwórstwa metali nieżelaznych dr inż. Grzegorz

Bardziej szczegółowo

Teoria pasmowa ciał stałych

Teoria pasmowa ciał stałych Teoria pasmowa ciał stałych Poziomy elektronowe atomów w cząsteczkach ulegają rozszczepieniu. W kryształach zjawisko to prowadzi do wytworzenia się pasm. Klasyfikacja ciał stałych na podstawie struktury

Bardziej szczegółowo

Synteza Nanoproszków Metody Chemiczne II

Synteza Nanoproszków Metody Chemiczne II Synteza Nanoproszków Metody Chemiczne II Bottom Up Metody chemiczne Wytrącanie, współstrącanie, Mikroemulsja, Metoda hydrotermalna, Metoda solwotermalna, Zol-żel, Synteza fotochemiczna, Synteza sonochemiczna,

Bardziej szczegółowo

PL B1. INSTYTUT MASZYN PRZEPŁYWOWYCH PAN, Gdańsk, PL JASIŃSKI MARIUSZ, Wągrowiec, PL GOCH MARCIN, Braniewo, PL MIZERACZYK JERZY, Rotmanka, PL

PL B1. INSTYTUT MASZYN PRZEPŁYWOWYCH PAN, Gdańsk, PL JASIŃSKI MARIUSZ, Wągrowiec, PL GOCH MARCIN, Braniewo, PL MIZERACZYK JERZY, Rotmanka, PL PL 215139 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 215139 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 383703 (22) Data zgłoszenia: 06.11.2007 (51) Int.Cl.

Bardziej szczegółowo

Dobór materiałów konstrukcyjnych cz. 10

Dobór materiałów konstrukcyjnych cz. 10 Dobór materiałów konstrukcyjnych cz. 10 dr inż. Hanna Smoleńska Katedra Inżynierii Materiałowej i Spajania Wydział Mechaniczny, Politechnika Gdańska DO UŻYTKU WEWNĘTRZNEGO Zniszczenie materiału w wyniku

Bardziej szczegółowo

Rok akademicki: 2016/2017 Kod: RBM ET-s Punkty ECTS: 3. Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne

Rok akademicki: 2016/2017 Kod: RBM ET-s Punkty ECTS: 3. Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Nazwa modułu: Współczesne materiały inżynierskie Rok akademicki: 2016/2017 Kod: RBM-2-205-ET-s Punkty ECTS: 3 Wydział: Inżynierii Mechanicznej i Robotyki Kierunek: Mechanika i Budowa Maszyn Specjalność:

Bardziej szczegółowo

Pozyskiwanie wodoru na nanostrukturalnych katalizatorach opartych o tlenki żelaza

Pozyskiwanie wodoru na nanostrukturalnych katalizatorach opartych o tlenki żelaza IKiP P Pozyskiwanie wodoru na nanostrukturalnych katalizatorach opartych o tlenki żelaza. Węgrzynowicz, M. ćwieja, P. Michorczyk, Z. damczyk Projektu nr PIG.01.01.02-12-028/09 unkcjonalne nano i mikrocząstki

Bardziej szczegółowo

Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i Techniki Wysokich Napięć. Dr hab.

Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i Techniki Wysokich Napięć. Dr hab. Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i Techniki Wysokich Napięć Dr hab. Paweł Żukowski Materiały magnetyczne Właściwości podstawowych materiałów magnetycznych

Bardziej szczegółowo