KOD UCZNIA PESEL EGZAMIN. jedna. zadaniach. 5. W niektórych. Czas pracy: do. 135 minut T N. miejsce. Powodzeni GM-M z kodem. egzaminu.

Wielkość: px
Rozpocząć pokaz od strony:

Download "KOD UCZNIA PESEL EGZAMIN. jedna. zadaniach. 5. W niektórych. Czas pracy: do. 135 minut T N. miejsce. Powodzeni GM-M7-132. z kodem. egzaminu."

Transkrypt

1 Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 2011 UZUPE NIA ZESPÓ NADZORUJ CY KOD UCZNIA PESEL miejsce na naklejk z kodem EGZAMIN W KLASIE TRZECIEJ GIMNAZJUMM CZ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA Instrukcja dla ucznia 1. Sprawd, czy zestaw zada ma 12 stron (zadania 1 23). Brak stron lub inne b dy zg o nauczycielowi. 2. Czytaj uwa nie wszystkie teksty i zadania. 3. Rozwi zaniaa zada zapisuj d ugopisem lub piórem z czarnym tuszem/atramentem. Nie u ywaj korektora. 4. W arkuszu znajduj si ró ne typy zada. Do niektórych zada s podane cztery odpowiedzi: A, B, C, D. Tylko jedna z nich jest poprawna. Wybierz j i zaznacz znakiem, np.: KWIECIE 2013 A. B. C. D. 5. W niektórych zadaniach zdecyduj, czy zdanie jest prawdziwe, czy fa szywe i zaznacz znakiem wybran odpowied, np.: P F lub T N Czas pracy: do 135 minut 6. Je li si pomylisz, otocz znak kó kiem i zaznacz inn odpowied, np.: A. B. C. D. 7. Pozosta e zadania wykonuj zgodnie z poleceniami. Rozwi zaniaa zada od 21. do 23. zapisuj czytelnie i starannie w wyznaczonych miejscach. Pomy ki przekre laj. 8. Pisz c odpowiedzi do zada, mo esz wykorzysta miejsce opatrzone napisem Brudnopis. Zapisy w brudnopisie nie b d sprawdzane i oceniane. Powodzeni a! GM-M7-132

2 Informacje do zada 1. i 2. W tabeli przedstawiono informacje dotycz ce wieku wszystkich uczestników obozu narciarskiego. Wiek uczestnika Liczba uczestników 10 lat 5 14 lat 3 15 lat 4 16 lat 8 Zadanie 1. (0 1) Doko cz zdanie. Zaznacz dobr odpowied. rednia wieku uczestników obozu jest równa A. 12 lat. B. 13 lat. C. 14 lat. D. 15 lat. Zadanie 2. (0 1) Na którym diagramie w a ciwie przedstawiono procentowy podzia uczestników obozu ze wzgl du na wiek? Zaznacz dobr odpowied. A. B. 100% 80% 60% 40% 20% 0% 25% 20% 15% 40% 10 lat 14 lat 15 lat 16 lat 10 lat 14 lat 15 lat 16 lat 0% 20% 40% 60% 80% 100% C. D. 16 lat 25% 15 lat 20% 14 lat 15% 10 lat 40% 0% 20% 40% 60% 80% 100% 16 lat 40% 15 lat 20% 10 lat 25% 14 lat 15% Strona 2 z 12

3 Zadanie 3. (0 1) W pewnej hurtowni za 120 takich samych paczek herbaty trzeba zap aci 1500 z. Ile takich paczek herbaty mo na kupi w tej hurtowni za 600 z? Zaznacz dobr odpowied. A. 48 B. 50 C. 52 D. 56 Zadanie 4. (0 1) Cena brutto = cena netto + podatek VAT Oce prawdziwo podanych zda. Zaznacz P, je li zdanie jest prawdziwe, lub F je li jest fa szywe. Je eli cena netto 1 kg jab ek jest równa 2,50 z, a cena brutto jest równa 2,70 z, to podatek VAT wynosi 8% ceny netto. Je eli cena netto podr cznika do matematyki jest równa 22 z, to cena tej ksi ki z 5% podatkiem VAT wynosi 24,10 z. P P F F Zadanie 5. (0 1) Która z liczb:,,, spe nia warunek x > 2? Zaznacz dobr odpowied A. x = 20 B. x = C. x = 25 D. x = 4 1 Zadanie 6. (0 1) Dane s liczby: a = ( 2) 12, b = ( 2) 11, c = Doko cz zdanie. Zaznacz dobr odpowied. Liczby te uporz dkowane od najmniejszej do najwi kszej to: A. c, b, a. B. a, b, c. C. c, a, b. D. b, c, a. Zadanie 7. (0 1) Dana jest liczba x spe niaj ca warunek: x < 0. Oce prawdziwo podanych zda. Zaznacz P, je li zdanie jest prawdziwe, lub F je li jest fa szywe. Liczba x jest ujemna. P F Iloczyn liczb: x i ( 6) jest liczb dodatni. P F Strona 3 z 12

4 Informacje do zada 8. i 9. Wykres przedstawia zale no ilo ci farby pozosta ej w pojemniku (w litrach) od powierzchni ciany (w m 2 ) pomalowanej farb z tego pojemnika. ilo farby w pojemniku (litr) pomalowana powierzchnia (m 2 ) Zadanie 8. (0 1) Ile farby pozosta o w pojemniku po pomalowaniu 30 m 2 ciany? Zaznacz dobr odpowied. A. 8 litrów B. 12 litrów C. 16 litrów D. 20 litrów Zadanie 9. (0 1) Ile farby wykorzystano na pomalowanie 10 m 2 ciany? Zaznacz dobr odpowied. A. 4 litry B. 8 litrów C. 10 litrów D. 16 litrów Zadanie 10. (0 1) W pude ku jest 20 kul bia ych i 10 kul czarnych. Oce prawdziwo podanych zda. Zaznacz P, je li zdanie jest prawdziwe, lub F je li jest fa szywe. Prawdopodobie stwo wylosowania kuli bia ej jest trzy razy wi ksze ni prawdopodobie stwo wylosowania kuli czarnej. Je eli dodamy jeszcze 10 kul bia ych i 15 kul czarnych, to prawdopodobie stwo wylosowania kuli czarnej b dzie wi ksze ni prawdopodobie stwo wylosowania kuli bia ej. P P F F Strona 4 z 12

5 Zadanie 11. (0 1) Pan Zieli ski przejecha samochodem tras o d ugo ci 240 km w czasie 4 godzin. Oce prawdziwo podanych zda. Zaznacz P, je li zdanie jest prawdziwe, lub F je li jest fa szywe. Aby czas przejazdu wynosi 3 godziny, rednia pr dko samochodu pana Zieli skiego na tej trasie musia aby wynosi 80 km. h Gdyby rednia pr dko samochodu by a równa 40 przejecha by t tras w czasie 6 godzin. km, to h pan Zieli ski P P F F Zadanie 12. (0 1) Ania ma w skarbonce 99 z w monetach o nomina ach 2 z i 5 z. Monet dwuz otowych jest 2 razy wi cej ni monet pi cioz otowych. x x liczba monet pi cioz otowych y liczba monet dwuz otowych y Który uk ad równa opisuje sytuacj przedstawion w zadaniu? Zaznacz dobr odpowied. A. = 2xy y = 2x x = 2y x = 2 y B. C. D. yx = yx = yx =+ 92 5yx =+ 999 Zadanie 13. (0 1) Do prostopad o ciennego 2 je ego wysoko ci. 3 akwarium, o wymiarach podanych na rysunku, wlano wod do 80 cm 60 cm 50 cm Ile litrów wody jest w akwarium? Zaznacz dobr odpowied. A litrów B litrów C. 160 litrów D. 16 litrów Strona 5 z 12

6 Zadanie 14. (0 1) W równoleg oboku ABCD bok AB jest dwa razy d u szy od boku AD. Punkt K jest rodkiem boku AB, a punkt L jest rodkiem boku CD. A D K L B C Oce prawdziwo podanych zda. Zaznacz P, je li zdanie jest prawdziwe, lub F je li jest fa szywe. Trójk t ABL ma takie samo pole, jak trójk t ABD. P F Pole równoleg oboku ABCD jest cztery razy wi ksze od pola trójk ta AKD. P F Zadanie 15. (0 1) Punkt B jest rodkiem okr gu. Prosta AC jest styczna do okr gu w punkcie C, AB = 20 cm i AC = 16 cm. C. A B Doko cz zdanie. Zaznacz dobr odpowied. Promie BC okr gu ma d ugo A. 12 cm B. 10 cm C. 4 cm D. 2 cm Zadanie 16. (0 1) Jeden z k tów wewn trznych trójk ta α = 30º, drugi ma miar o 30º wi ksz ni k t α, a trzeci ma miar trzy razy wi ksz ni k t α. Doko cz zdanie. Zaznacz dobr odpowied. Trójk t ten jest A. równoboczny. B. równoramienny. C. rozwartok tny. D. prostok tny. Strona 6 z 12

7 Zadanie 17. (0 1) Na rysunkach I IV przedstawiono cztery pary trójk tów. I II III.. 3 IV Na którym rysunku trójk ty nie s przystaj ce? Zaznacz dobr odpowied. A. I B. II C. III D. IV Zadanie 18. (0 1) Na rysunku przedstawiono równoleg obok ABCD. D C 4 cm A b 2 cm B Doko cz zdanie. Zaznacz dobr odpowied. Pole tego równoleg oboku (w cm 2 ) mo na obliczy, korzystaj c ze wzoru A. P = (b + 2) 2 B. P = (b + 2) 4 C. P = 4 b D. P = 2b 4 Strona 7 z 12

8 Zadanie 19. (0 1) Siatka ostros upa sk ada si z kwadratu oraz trójk tów równobocznych zbudowanych na bokach tego kwadratu. a a a wysoko ostros upa wysoko ciany bocznej Oce prawdziwo podanych zda. Zaznacz P, je li zdanie jest prawdziwe, lub F je li jest fa szywe. Wszystkie kraw dzie a tego ostros upa maj tak sam d ugo. P F Wysoko tego ostros upa jest mniejsza ni wysoko jego ciany bocznej. P F Zadanie 20. (0 1) Doko cz zdanie. Zaznacz dobr odpowied. Obj to kuli o promieniu r = 3 jest równa A. 4 B. 12 C. 27 D. 36 Strona 8 z 12

9 Zadanie 21. (0 3) W pewnej klasie ch opców jest o 3 mniej ni dziewczynek. Wszystkich uczniów jest 27. Ile dziewczynek i ilu ch opców jest w tej klasie? Zapisz obliczenia. Strona 9 z 12

10 Zadanie 22. (0 2) Na rysunku przedstawiono trapez ABCD. Wysoko h trapezu jest 3 razy krótsza od d ugo ci podstawy dolnej. Oblicz pole tego trapezu. Zapisz obliczenia. D 5 cm C h A 12 cm B Strona 10 z 12

11 Zadanie 23. (0 4) Na rysunku przedstawiono siatk ostros upa prawid owego czworok tnego. Pole powierzchni podstawy tego ostros upa jest równe 144 cm 2. Wysoko ciany bocznej ma d ugo 8 cm. Oblicz d ugo kraw dzi podstawy a i d ugo kraw dzi bocznej b tego ostros upa. Zapisz obliczenia. 8 cm a b 144 cm 2 Strona 11 z 12

12 Brudnopis Strona 12 z 12

MATEMATYKA Instrukcja dla ucznia

MATEMATYKA Instrukcja dla ucznia KOD UCZNIA Centralna Komisja Egzaminacyjna UZUPEŁNIA UCZEŃ PESEL miejsce na naklejkę z kodem E W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA Instrukcja dla ucznia UZUPEŁNIA ZESPÓŁ

Bardziej szczegółowo

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. PESEL

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. PESEL Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2011 KOD UCZNIA UZUPEŁNIA UCZEŃ PESEL miejsce na naklejkę z kodem E W KLASIE

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 9

Bardziej szczegółowo

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2013/2014

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2013/2014 Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2013/2014 KOD UCZNIA Etap: Data: Czas pracy: rejonowy 8 stycznia 2014 r. 120 minut Informacje dla

Bardziej szczegółowo

Czas pracy 170 minut

Czas pracy 170 minut ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 013 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. W zadaniach od

Bardziej szczegółowo

Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu.

Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. pobrano z www.sqlmedia.pl Uk ad graficzny CKE 00 KOD Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. WPISUJE ZDAJ CY PESEL Miejsce na naklejk

Bardziej szczegółowo

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013 Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013 KOD UCZNIA Etap: Data: Czas pracy: wojewódzki 4 marca 2013 r. 120 minut Informacje dla

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P1 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla pisz cego 1. Sprawd, czy arkusz zawiera 16 stron.. W zadaniach od 1. do 5. s podane 4 odpowiedzi:

Bardziej szczegółowo

MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI

MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI LUTY 01 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz zawiera strony (zadania 1 ).. Arkusz zawiera 4 zadania zamknięte i 9

Bardziej szczegółowo

Próbna Nowa Matura z WSiP Październik 2014 Egzamin maturalny z matematyki dla klasy 3 Poziom podstawowy

Próbna Nowa Matura z WSiP Październik 2014 Egzamin maturalny z matematyki dla klasy 3 Poziom podstawowy Wypełnia uczeń Numer PESEL Kod ucznia Próbna Nowa Matura z WSiP Październik 0 Egzamin maturalny z matematyki dla klasy Poziom podstawowy Informacje dla ucznia. Sprawdź, czy zestaw egzaminacyjny zawiera

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 014 Czas pracy: 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 1

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dyskalkulia dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY

Bardziej szczegółowo

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu.

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 2011 KOD UCZNIA UZUPE NIA UCZE PESEL miejsce na naklejk z kodem BADANIE

Bardziej szczegółowo

pobrano z (A1) Czas GRUDZIE

pobrano z  (A1) Czas GRUDZIE EGZAMIN MATURALNY OD ROKU SZKOLNEGO 014/015 MATEMATYKA POZIOM ROZSZERZONY PRZYK ADOWY ZESTAW ZADA (A1) W czasie trwania egzaminu zdaj cy mo e korzysta z zestawu wzorów matematycznych, linijki i cyrkla

Bardziej szczegółowo

BADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA

BADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA BADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO-RZYRODNICZA MATEMATYKA TEST 4 Zadanie 1 Dane są punkty A = ( 1, 1) oraz B = (3, 2). Jaką długość ma odcinek AB? Wybierz odpowiedź

Bardziej szczegółowo

Czas pracy 170 minut

Czas pracy 170 minut ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI DLA UCZNIÓW LICEUM MARZEC ROK 015 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron..

Bardziej szczegółowo

NUMER IDENTYFIKATORA:

NUMER IDENTYFIKATORA: Społeczne Liceum Ogólnokształcące z Maturą Międzynarodową im. Ingmara Bergmana IB WORLD SCHOOL 53 ul. Raszyńska, 0-06 Warszawa, tel./fax 668 54 5 www.ib.bednarska.edu.pl / e-mail: liceum.ib@rasz.edu.pl

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY ZESTAW ĆWICZENIOWY Z MATEMATYKI

ARKUSZ PRÓBNEJ MATURY ZESTAW ĆWICZENIOWY Z MATEMATYKI ARKUSZ PRÓBNEJ MATURY ZESTAW ĆWICZENIOWY Z MATEMATYKI Styczeń 2013 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron. 2. W zadaniach od 1. do 25. są

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego Kod ucznia Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP SZKOLNY Rok szkolny 2012/2013 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 12 stron.

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejk z kodem szko y dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-P1A1P-061 POZIOM PODSTAWOWY Czas pracy 10 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 1 stron.

Bardziej szczegółowo

Arkusz maturalny treningowy nr 7. W zadaniach 1. do 20. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Arkusz maturalny treningowy nr 7. W zadaniach 1. do 20. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. Czas pracy: 170 minut Liczba punktów do uzyskania: 50 Arkusz maturalny treningowy nr 7 W zadaniach 1. do 20. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. Zadanie 1. (0-1) Wyrażenie (-8x 3

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2011 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2011 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejk z kodem dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Czas pracy 10 minut Instrukcja dla zdaj cego 1. Prosz sprawdzi, czy arkusz egzaminacyjny zawiera 9 stron. Ewentualny brak nale

Bardziej szczegółowo

XIII KONKURS MATEMATYCZNY

XIII KONKURS MATEMATYCZNY XIII KONKURS MTMTYZNY L UZNIÓW SZKÓŁ POSTWOWYH organizowany przez XIII Liceum Ogólnokształcace w Szczecinie FINŁ - 19 lutego 2013 Test poniższy zawiera 25 zadań. Za poprawne rozwiązanie każdego zadania

Bardziej szczegółowo

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. UZUPEŁNIA ZESPÓŁ NADZORUJĄCY

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. UZUPEŁNIA ZESPÓŁ NADZORUJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. UZUPEŁNIA ZESPÓŁ NADZORUJĄCY Układ graficzny CKE 2011 KOD UCZNIA PESEL miejsce na naklejkę z

Bardziej szczegółowo

MATEMATYKA KWIECIEŃ 2014 EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA. Instrukcja dla ucznia

MATEMATYKA KWIECIEŃ 2014 EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA. Instrukcja dla ucznia Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę z kodem EGZAMIN W KLASIE TRZECIEJ

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 80 minut Instrukcja dla zdaj¹cego. SprawdŸ, czy arkusz egzaminacyjny zawiera stron (zadania 0). Ewentualny brak zg³oœ przewodnicz¹cemu

Bardziej szczegółowo

SPRAWDZIANY Z MATEMATYKI

SPRAWDZIANY Z MATEMATYKI SPRAWDZIANY Z MATEMATYKI dla klasy III gimnazjum dostosowane do programu Matematyka z Plusem opracowała mgr Marzena Mazur LICZBY I WYRAŻENIA ALGEBRAICZNE Grupa I Zad.1. Zapisz w jak najprostszej postaci

Bardziej szczegółowo

EGZAMIN MATURALNY Z JĘZYKA ROSYJSKIEGO POZIOM ROZSZERZONY MAJ 2011 CZĘŚĆ I. Czas pracy: 120 minut. Liczba punktów do uzyskania: 23 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z JĘZYKA ROSYJSKIEGO POZIOM ROZSZERZONY MAJ 2011 CZĘŚĆ I. Czas pracy: 120 minut. Liczba punktów do uzyskania: 23 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

14.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe.

14.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe. Matematyka 4/ 4.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe. I. Przypomnij sobie:. Wiadomości z poprzedniej lekcji... Że przy rozwiązywaniu zadań tekstowych wykorzystujących

Bardziej szczegółowo

Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu.

Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 2010 KOD WPISUJE ZDAJ CY PESEL Miejsce na naklejk z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA LISTOPAD ROK 2009

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA LISTOPAD ROK 2009 Miejsce na naklejk z kodem ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA LISTOPAD ROK 2009 Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy 170 minut 1. Sprawdê, czy arkusz zawiera 15 stron. 2. W zadaniach

Bardziej szczegółowo

ARKUSZ DIAGNOSTYCZNY Z MATEMATYKI KL. IV

ARKUSZ DIAGNOSTYCZNY Z MATEMATYKI KL. IV Kod ucznia ARKUSZ DIAGNOSTYCZNY Z MATEMATYKI KL. IV dysleksja Czas pracy: 40 minut Instrukcja dla ucznia: 1. Sprawdź, czy arkusz zawiera 8 stron. Ewentualny brak stron lub inne usterki zgłoś nauczycielowi.

Bardziej szczegółowo

MATEMATYKA. 1 Podstawowe informacje dotyczące zadań. 2 Zasady poprawnego zapisu odpowiedzi TEST DYDAKTYCZNY

MATEMATYKA. 1 Podstawowe informacje dotyczące zadań. 2 Zasady poprawnego zapisu odpowiedzi TEST DYDAKTYCZNY MATEMATYKA Poziom wyższy TEST DYDAKTYCZNY Maksymalna ilość punktów: 50 Próg zaliczenia: 33 % 1 Podstawowe informacje dotyczące zadań Test dydaktyczny zawiera 23 zadania. Czas pracy oznaczono w kartach

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII

PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII dysleksja PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII Instrukcja dla zdaj cego (poziom rozszerzony) Czas pracy 120 minut 1. Prosz sprawdzi, czy arkusz egzaminacyjny zawiera 8 stron. Ewentualny brak

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII

PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII dysleksja PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII Instrukcja dla zdającego (poziom rozszerzony) Czas pracy 120 minut 1. Proszę sprawdzić, czy arkusz egzaminacyjny zawiera 8 stron. Ewentualny brak

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI CZERWIEC 2011 POZIOM ROZSZERZONY WYBRANE: CZĘŚĆ I. Czas pracy: 90 minut. Liczba punktów do uzyskania: 20

EGZAMIN MATURALNY Z INFORMATYKI CZERWIEC 2011 POZIOM ROZSZERZONY WYBRANE: CZĘŚĆ I. Czas pracy: 90 minut. Liczba punktów do uzyskania: 20 Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WISUJE ZDAJĄCY ESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Instrukcja

Bardziej szczegółowo

IV Wojewódzki Konkurs Matematyczny dla uczniów szkół podstawowych województwa wielkopolskiego

IV Wojewódzki Konkurs Matematyczny dla uczniów szkół podstawowych województwa wielkopolskiego Kod ucznia Data urodzenia ucznia Dzień miesiąc rok IV Wojewódzki Konkurs Matematyczny dla uczniów szkół podstawowych ETAP REJONOWY Rok szkolny 2014/2015 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 2 CZERWCA 2015. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 2 CZERWCA 2015. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 013 KOD UZUPEŁNIA ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM

Bardziej szczegółowo

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. PESEL PESEL

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. PESEL PESEL Układ graficzny CKE 2011 Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. UZUPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA PESEL PESEL miejsce na naklejkę

Bardziej szczegółowo

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI ARKUSZ 0 MATURA 00 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 70 minut. Sprawdê, czy arkusz zawiera stron.. W zadaniach od. do 5. sà podane 4 odpowiedzi:

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkê z kodem (Wpisuje zdaj¹cy przed rozpoczêciem pracy) KOD ZDAJ CEGO MMA-P1A1P-021 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY ARKUSZ I MAJ ROK 2002 Instrukcja dla zdaj¹cego Czas pracy

Bardziej szczegółowo

wybierz właściwą odpowiedź i zamaluj kratkę z odpowiednimi literami, np. gdy wybierasz odpowiedź FP:

wybierz właściwą odpowiedź i zamaluj kratkę z odpowiednimi literami, np. gdy wybierasz odpowiedź FP: WPISUJE UCZEŃ KOD UCZNIA PESEL PRÓBNY EGZAMIN GIMNAZJALNY Z OPERONEM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA Instrukcja dla ucznia 1. Sprawdź, czy zestaw egzaminacyjny zawiera 7 stron (zadania 1. 2.).

Bardziej szczegółowo

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. PESEL

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. PESEL Układ graficzny CKE 2011 Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. KOD UCZNIA UZUPEŁNIA UCZEŃ PESEL miejsce na naklejkę z kodem EGZAMIN

Bardziej szczegółowo

ARKUSZ EGZAMINACYJNY Z MATEMATYKI

ARKUSZ EGZAMINACYJNY Z MATEMATYKI dysleksja Miejsce na naklejk z kodem szko y ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw 1 POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdajàcego 1. Sprawdê, czy arkusz zawiera 12 stron (zadania

Bardziej szczegółowo

WPISUJE UCZEŃ GRUDZIEŃ 2014. Czas pracy: 90 minut. Liczba punktów do uzyskania: 30

WPISUJE UCZEŃ GRUDZIEŃ 2014. Czas pracy: 90 minut. Liczba punktów do uzyskania: 30 WPISUJE UCZEŃ KOD UCZNIA PESEL PRÓBNY EGZAMIN GIMNAZJALNY Z OPERONEM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA Instrukcja dla ucznia. Sprawdź, czy zestaw egzaminacyjny zawiera 7 stron (zadania..). Ewentualny

Bardziej szczegółowo

Część matematyczna sprawdzian 2013 r.

Część matematyczna sprawdzian 2013 r. Część matematyczna sprawdzian 2013 r. 1. Szyfr zabezpieczający zamek jest liczbą czterocyfrową podzielną przez 9. Trzy cyfry szyfru są już ustawione. Brakującą cyfrą jest A. 5 B. 2 C. 0 D. 9 4 2? 7 2.

Bardziej szczegółowo

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2011/2012

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2011/2012 Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 20/202 KOD UCZNIA Etap: Data: Czas pracy: szkolny 5 listopada 20 r. 90 minut Informacje dla ucznia:.

Bardziej szczegółowo

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI ARKUSZ 11 MATURA 2010 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 170 minut 1. Sprawdê, czy arkusz zawiera 11 stron. 2. W zadaniach od 1. do 21.

Bardziej szczegółowo

KURS GEOMETRIA ANALITYCZNA

KURS GEOMETRIA ANALITYCZNA KURS GEOMETRIA ANALITYCZNA Lekcja 1 Działania na wektorach bez układu współrzędnych. ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie

Bardziej szczegółowo

Międzyszkolny Konkurs Matematyczny. dla klasy trzeciej

Międzyszkolny Konkurs Matematyczny. dla klasy trzeciej Międzyszkolny Konkurs Matematyczny dla klasy trzeciej Cele konkursu : - rozwijanie zainteresowań matematycznych u dzieci w młodszym wieku szkolnym; - wdrażanie do logicznego myślenia; - zwiększanie efektywności

Bardziej szczegółowo

nie zdałeś naszej próbnej matury z matematyki?

nie zdałeś naszej próbnej matury z matematyki? Szanowny Maturzysto, nie zdałeś naszej próbnej matury z matematyki? To prawie niemożliwe, ale jeżeli jednak tak, to Pewnie sądzisz, że przyczyna tkwi w bardzo trudnym arkuszu! Zobaczmy, jak to wygląda

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2012/2013

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2012/2013 Etap szkolny 13 listopada 2012 r. Godzina 10.00 Kod ucznia Instrukcja dla ucznia 1. Sprawdź, czy zestaw zawiera 7 stron. Ewentualny brak stron lub inne usterki zgłoś nauczycielowi. 2. Na tej stronie i

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdaj¹cego 1. SprawdŸ, czy arkusz egzaminacyjny zawiera 13 stron (zadania 1 11). Ewentualny brak zg³oœ przewodnicz¹cemu

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI 19 MAJA 2015

EGZAMIN MATURALNY Z INFORMATYKI 19 MAJA 2015 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UZUPEŁNIA ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY Z INFORMATYKI 19 MAJA 2015

Bardziej szczegółowo

INSTRUKCJE WEJŚCIA I WYJŚCIA

INSTRUKCJE WEJŚCIA I WYJŚCIA INSTRUKCJE WEJŚCIA I WYJŚCIA Zadanie nr 1 Napisz algorytm za pomocą a i schematów blokowych. Algorytm ma wczytywać z klawiatury wartości dwóch liczb, obliczać sumę tych liczb i wyświetlać jej wartość na

Bardziej szczegółowo

Analiza wyników egzaminu gimnazjalnego. Test matematyczno-przyrodniczy matematyka. Test GM-M1-122,

Analiza wyników egzaminu gimnazjalnego. Test matematyczno-przyrodniczy matematyka. Test GM-M1-122, Analiza wyników egzaminu gimnazjalnego Test matematyczno-przyrodniczy Test GM-M1-122, Zestaw zadań z zakresu matematyki posłużył w dniu 25 kwietnia 2012 r. do sprawdzenia, u uczniów kończących trzecią

Bardziej szczegółowo

14P2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM PODSTAWOWY

14P2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM PODSTAWOWY 14P2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM PODSTAWOWY Ruch jednostajny po okręgu Pole grawitacyjne Rozwiązania zadań należy zapisać w wyznaczonych miejscach pod treścią zadania

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 03 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI Instrukcja

Bardziej szczegółowo

MaTeMaTYka arkusz egzaminacyjny nr 2

MaTeMaTYka arkusz egzaminacyjny nr 2 02 arkusz egzaminacyjny Imię i nazwisko Data Klasa MaTeMaTYka arkusz egzaminacyjny nr 2 Drogi Gimnazjalisto, przed Tobą arkusz egzaminacyjny sprawdzający twoją wiedzę z matematyki. Przed przystąpieniem

Bardziej szczegółowo

MATEMATYKA KWIECIEŃ 2014. miejsce na naklejkę z kodem. dysleksja EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA

MATEMATYKA KWIECIEŃ 2014. miejsce na naklejkę z kodem. dysleksja EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę z kodem dysleksja EGZAMIN W KLASIE

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI 17 MAJA 2016

EGZAMIN MATURALNY Z INFORMATYKI 17 MAJA 2016 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z INFORMATYKI 17 MAJA 2016 POZIOM

Bardziej szczegółowo

TEMAT : Sprawdź sam siebie powtórzenie materiału (ewaluacja całoroczna)

TEMAT : Sprawdź sam siebie powtórzenie materiału (ewaluacja całoroczna) SCENARIUSZ ZAJĘĆ Z MATEMATYKI DLA KLASY III GIMNAZJUM AUTOR : HANNA MARCINKOWSKA TEMAT : Sprawdź sam siebie powtórzenie materiału (ewaluacja całoroczna) Szkoła z klasą 2.0 Zastosowanie technologii informacyjnej

Bardziej szczegółowo

Matematyka z plusemdla szkoły ponadgimnazjalnej WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ LICEUM. KATEGORIA B Uczeń rozumie:

Matematyka z plusemdla szkoły ponadgimnazjalnej WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ LICEUM. KATEGORIA B Uczeń rozumie: WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ LICEUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca P - podstawowy ocena dostateczna (dst.) R - rozszerzający ocena dobra (db.) D

Bardziej szczegółowo

Sprawdzian z matematyki na zakończenie nauki w drugiej klasie gimnazjum

Sprawdzian z matematyki na zakończenie nauki w drugiej klasie gimnazjum Wypełnia uczeń Kod ucznia Sprawdzian z matematyki na zakończenie nauki w drugiej klasie gimnazjum Informacje dla ucznia 1. Sprawdź, czy sprawdzian ma 6 stron. Ewentualny brak stron lub inne usterki zgłoś

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY LISTOPAD 015 Instrukcja dla zdającego Czas pracy: 180 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16

Bardziej szczegółowo

wybierz właściwą odpowiedź i zamaluj kratkę z odpowiednimi literami, np. gdy wybierzesz odpowiedź TN lub FF:

wybierz właściwą odpowiedź i zamaluj kratkę z odpowiednimi literami, np. gdy wybierzesz odpowiedź TN lub FF: WPISUJE UCZEŃ KOD UCZNIA PESEL PRÓBNY EGZAMIN W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA dysleksja Instrukcja dla ucznia 1. Sprawdź, czy zestaw zadań zawiera 12 stron (zadania

Bardziej szczegółowo

SPRAWDZIAN W KLASIE SZÓSTEJ SZKOŁY PODSTAWOWEJ OD ROKU SZKOLNEGO 2014/2015

SPRAWDZIAN W KLASIE SZÓSTEJ SZKOŁY PODSTAWOWEJ OD ROKU SZKOLNEGO 2014/2015 Centralna Komisja Egzaminacyjna ul. J. Lewartowskiego 6, 00-190 Warszawa www.cke.edu.pl sekret.cke@cke.edu.pl SPRAWDZIAN W KLASIE SZÓSTEJ SZKOŁY PODSTAWOWEJ OD ROKU SZKOLNEGO 2014/2015 Cześć! W kwietniu

Bardziej szczegółowo

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 D A D A A B A B B C B D C C C D B C C B. Schemat oceniania zadań otwartych.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 D A D A A B A B B C B D C C C D B C C B. Schemat oceniania zadań otwartych. Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych LICEUM Klucz odpowiedzi do zadań zamkniętych 6 7 8 9 0 6 7 8 9 0 D A D A A B A B B C B D C C C D B C C B Zadanie. (pkt) Rozwiąż

Bardziej szczegółowo

SPRAWDZIAN W KLASIE SZÓSTEJ SZKOŁY PODSTAWOWEJ

SPRAWDZIAN W KLASIE SZÓSTEJ SZKOŁY PODSTAWOWEJ Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę SPRAWDZIAN W KLASIE SZÓSTEJ SZKOŁY PODSTAWOWEJ CZĘŚĆ 1. JĘZYK

Bardziej szczegółowo

EGZAMIN POTWIERDZAJ CY KWALIFIKACJE W ZAWODZIE CZ PRAKTYCZNA

EGZAMIN POTWIERDZAJ CY KWALIFIKACJE W ZAWODZIE CZ PRAKTYCZNA azwa kwalifikacji: Monta systemów suchej zabudowy Oznaczenie kwalifikacji: B. Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu umer PESEL zdaj cego* Wype nia zdaj cy Miejsce

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 200 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. KOD UCZNIA UZUPEŁNIA UCZEŃ PESEL miejsce na naklejkę EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Instrukcja dla

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ. MATEMATYKA Instrukcja

Bardziej szczegółowo

Zadania. SiOD Cwiczenie 1 ;

Zadania. SiOD Cwiczenie 1 ; 1. Niech A będzie zbiorem liczb naturalnych podzielnych przez 6 B zbiorem liczb naturalnych podzielnych przez 2 C będzie zbiorem liczb naturalnych podzielnych przez 5 Wyznaczyć zbiory A B, A C, C B, A

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 00 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

DATA URODZENIA UCZNIA. rok

DATA URODZENIA UCZNIA. rok KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY DATA URODZENIA UCZNIA miejsce na naklejkę z kodem dzień miesiąc rok EGZAMIN W TRZECIEJ KLASIE GIMNAZJUM Z ZAKRESU PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Instrukcja

Bardziej szczegółowo

Czas pracy 170 minut

Czas pracy 170 minut PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 010 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 15 stron.. W zadaniach od 1. do 0. są podane 4 odpowiedzi:

Bardziej szczegółowo

KLASA 3 GIMNAZJUM. 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1. 2. System dziesiątkowy 2-4. 3. System rzymski 5-6

KLASA 3 GIMNAZJUM. 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1. 2. System dziesiątkowy 2-4. 3. System rzymski 5-6 KLASA 3 GIMNAZJUM TEMAT LICZBA GODZIN LEKCYJNYCH 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1 2. System dziesiątkowy 2-4 WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 2008 R.

Bardziej szczegółowo

EGZAMIN MATURALNY 2013 MATEMATYKA

EGZAMIN MATURALNY 2013 MATEMATYKA entralna Komisja Egzaminacyjna EGZMIN MTURLNY 0 MTEMTYK POZIOM PODSTWOWY Kryteria oceniania odpowiedzi MJ 0 Egzamin maturalny z matematyki Zadanie (0 ) Obszar standardów Zadanie (0 ) Opis wymagań pojęcia

Bardziej szczegółowo

Regulamin szkolnego konkursu matematycznego dla uczniów klasy II i III: Mały Matematyk

Regulamin szkolnego konkursu matematycznego dla uczniów klasy II i III: Mały Matematyk Marzena Kococik Olga Kuśmierczyk Szkoła Podstawowa im. Marii Konopnickiej w Krzemieniewicach Regulamin szkolnego konkursu matematycznego dla uczniów klasy II i III: Mały Matematyk Konkursy wyzwalają aktywność

Bardziej szczegółowo

Matematyka test dla uczniów klas piątych

Matematyka test dla uczniów klas piątych Matematyka test dla uczniów klas piątych szkół podstawowych w roku szkolnym 2011/2012 Etap szkolny (60 minut) Dysleksja [suma punktów] Imię i nazwisko... kl.5... Wśród uczniów klas piątych przeprowadzono

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY CZERWIEC 2013. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY CZERWIEC 2013. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 00 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15 stron

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. KOD UCZNIA UZUPEŁNIA UCZEŃ PESEL miejsce na naklejkę EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Instrukcja dla

Bardziej szczegółowo

Wojewódzki Konkurs Przedmiotowy z Matematyki. dla uczniów szkół podstawowych - etap szkolny

Wojewódzki Konkurs Przedmiotowy z Matematyki. dla uczniów szkół podstawowych - etap szkolny 25.10.2013r. Kod ucznia: Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych - etap szkolny Wypełnia komisja konkursowa Nr zadania Punktacja 1 2 3 4 5 A B C D A B C D A B C D A

Bardziej szczegółowo

TERMIN ODDAWANIA PRAC 29 LUTEGO KLASA IV ZESTAW 3

TERMIN ODDAWANIA PRAC 29 LUTEGO KLASA IV ZESTAW 3 KLASA IV Pierwszy autobus odjeżdża z przystanku o godzinie 5.30, a następne autobusy odjeżdżają z tego przystanku co 45 minut. Janek przyszedł na przystanek o godzinie 14.22. o ile minut przyszedł za późno

Bardziej szczegółowo

Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY 2014/2015 ETAP WOJEWÓDZKI

Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY 2014/2015 ETAP WOJEWÓDZKI Kuratorium Oświaty w Lublinie KOD UCZNIA ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY 2014/2015 ETAP WOJEWÓDZKI Instrukcja dla ucznia 1. Zestaw konkursowy zawiera 14

Bardziej szczegółowo

PESEL. wybierz właściwą odpowiedź i zamaluj kratkę z odpowiednimi literami, np. gdy wybrałeś odpowiedź PP:

PESEL. wybierz właściwą odpowiedź i zamaluj kratkę z odpowiednimi literami, np. gdy wybrałeś odpowiedź PP: KOD UCZNIA PESEL Instrukcja dla ucznia 1. Sprawdź, czy zestaw zawiera 23 zadania. 2. Na tej stronie i na karcie odpowiedzi wpisz swój kod i numer PESEL. 3. Czytaj uważnie wszystkie teksty i zadania. 4.

Bardziej szczegółowo

60 minut. Powodzenia! Pracuj samodzielnie. IX Edycja Gminnego Turnieju Matematycznego dla uczniów klas VI szkół podstawowych Rachmistrz Gminy Jedlicze

60 minut. Powodzenia! Pracuj samodzielnie. IX Edycja Gminnego Turnieju Matematycznego dla uczniów klas VI szkół podstawowych Rachmistrz Gminy Jedlicze Jedlicze, 6.03.2013r...... Szkoła Podstawowa w... imię i nazwisko ucznia klasa IX Edycja Gminnego Turnieju Matematycznego dla uczniów klas VI szkół podstawowych Rachmistrz Gminy Jedlicze Drogi Uczniu Jesteś

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2015 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 8

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-P1_1P-091 PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI STYCZEŃ ROK 2009 POZIOM PODSTAWOWY Czas pracy 120 minut

Bardziej szczegółowo

MATEMATYKA KWIECIEŃ 2014 UZUPEŁNIA UCZEŃ. miejsce na naklejkę z kodem EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA

MATEMATYKA KWIECIEŃ 2014 UZUPEŁNIA UCZEŃ. miejsce na naklejkę z kodem EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UCZNIA UZUPEŁNIA UCZEŃ PESEL miejsce na naklejkę z kodem EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-R1A1P-062 POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 14

Bardziej szczegółowo

Czas pracy 170 minut

Czas pracy 170 minut ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 04 POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla piszącego. Sprawdź, czy arkusz zawiera 6 stron.. W zadaniach od. do

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

ROZWIĄZANIA ZADAŃ Zestaw P3 Odpowiedzi do zadań zamkniętych

ROZWIĄZANIA ZADAŃ Zestaw P3 Odpowiedzi do zadań zamkniętych PRZYKŁADOWY ARKUSZ EGZAMINACYJNY POZIOM PODSTAWOWY ROZWIĄZANIA ZADAŃ Zestaw P3 Odpowiedzi do zadań zamkniętych Numer zadania 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 Odpowiedź A B B C C D C B B C

Bardziej szczegółowo