Układy nieliniowe tranzystor bipolarny (n p n, p n p)

Podobne dokumenty
Tranzystor bipolarny wzmacniacz OE

Układy nieliniowe tranzystor bipolarny (n p n, p n p)

IV. TRANZYSTOR POLOWY

Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska

Układy nieliniowe - przypomnienie

Układy cyfrowe. Najczęściej układy cyfrowe służą do przetwarzania sygnałów o dwóch poziomach napięć:

Tranzystor JFET i MOSFET zas. działania

Budowa. Metoda wytwarzania

Przyrządy półprzewodnikowe część 5 FET

Tranzystory polowe FET(JFET), MOSFET

Tranzystory polowe. Klasyfikacja tranzystorów polowych

6. TRANZYSTORY UNIPOLARNE

III. TRANZYSTOR BIPOLARNY

Wykład VIII TRANZYSTOR BIPOLARNY

Wykład X TRANZYSTOR BIPOLARNY

Ćwiczenie 5. Zastosowanie tranzystorów bipolarnych cd. Wzmacniacze MOSFET

Tranzystory. bipolarne (NPN i PNP), polowe (MOSFET), fototranzystory

Instrukcja nr 5. Wzmacniacz różnicowy Stabilizator napięcia Tranzystor MOSFET

Badanie charakterystyk elementów półprzewodnikowych

TRANZYSTORY MOCY. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi tranzystorami i ich charakterystykami.

Tranzystory bipolarne elementarne układy pracy i polaryzacji

10. Tranzystory polowe (unipolarne FET)

Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE. Badanie tranzystorów unipolarnych typu JFET i MOSFET

Zasada działania tranzystora bipolarnego

Tranzystory polowe FET(JFET), MOSFET

Ćwiczenie 4. Parametry statyczne tranzystorów polowych JFET i MOSFET

płytka montażowa z tranzystorami i rezystorami, pokazana na rysunku 1. płytka montażowa do badania przerzutnika astabilnego U CC T 2 masa

Część 3. Przegląd przyrządów półprzewodnikowych mocy. Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 51

Ćwiczenie - 3. Parametry i charakterystyki tranzystorów

(12) OPIS PATENTOWY (19) PL (11) (13) B1

WSTĘP DO ELEKTRONIKI

TRANZYSTORY BIPOLARNE ZŁĄCZOWE

ELEMENTY UKŁADÓW ENERGOELEKTRONICZNYCH

Urządzenia półprzewodnikowe

Ćwiczenie 10 Temat: Własności tranzystora. Podstawowe własności tranzystora Cel ćwiczenia

LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH

Elementy półprzewodnikowe. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego.

Ćwiczenie nr 7 Tranzystor polowy MOSFET

Elektronika. Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej.

Politechnika Białostocka

Tranzystory bipolarne elementarne układy pracy i polaryzacji

Przyrządy półprzewodnikowe część 4

Zapoznanie się z podstawowymi strukturami funktorów logicznych realizowanymi w technice RTL (Resistor Transistor Logic) oraz zasadą ich działania.

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych

Politechnika Białostocka

Laboratorium Przyrządów Półprzewodnikowych test kompetencji zagadnienia

Tranzystory. 1. Tranzystory bipolarne 2. Tranzystory unipolarne. unipolarne. bipolarny

WSTĘP. Budowa bramki NAND TTL, ch-ka przełączania, schemat wewnętrzny, działanie 2

Złącza p-n, zastosowania. Własności złącza p-n Dioda LED Fotodioda Dioda laserowa Tranzystor MOSFET

Tranzystory polowe JFET, MOSFET

Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych pokój:

Temat i cel wykładu. Tranzystory

WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ

Materiały używane w elektronice

5. Tranzystor bipolarny

Diody, tranzystory, tyrystory. Materiały pomocnicze do zajęć.

Tranzystor. C:\Program Files (x86)\cma\coach6\full.en\cma Coach Projects\PTSN Coach 6 \Elektronika\Tranzystor_cz2b.cmr

Politechnika Białostocka

Bramki logiczne Podstawowe składniki wszystkich układów logicznych

Opracowane przez D. Kasprzaka aka 'master' i D. K. aka 'pastakiller' z Technikum Elektronicznego w ZSP nr 1 w Inowrocławiu.

Wiadomości podstawowe

E104. Badanie charakterystyk diod i tranzystorów

Dioda półprzewodnikowa

Układy TTL i CMOS. Trochę logiki

Właściwości tranzystora MOSFET jako przyrządu (klucza) mocy

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych

Elementy elektroniczne Wykłady 5,6: Tranzystory bipolarne

LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH

Ćwiczenie 22. Tranzystor i układy tranzystorowe

UKŁADY CYFROWE. Układ kombinacyjny

3.4 Badanie charakterystyk tranzystora(e17)

Laboratorium elektroniki i miernictwa

Ćwiczenie 24 Temat: Układy bramek logicznych pomiar napięcia i prądu. Cel ćwiczenia

Aleksandra Banaś Dagmara Zemła WPPT/OPTOMETRIA

ĆWICZENIE 4 CHARAKTERYSTYKI STATYCZNE TRANZYSTORA BIPOLARNEGO

Wprowadzenie do techniki Cyfrowej i Mikroelektroniki

Pracownia pomiarów i sterowania Ćwiczenie 3 Proste przyrządy elektroniczne

Tranzystory polowe. Podział. Tranzystor PNFET (JFET) Kanał N. Kanał P. Drain. Gate. Gate. Source. Tranzystor polowy (FET) Z izolowaną bramką (IGFET)

Cyfrowe Elementy Automatyki. Bramki logiczne, przerzutniki, liczniki, sterowanie wyświetlaczem

TEORIA TRANZYSTORÓW MOS. Charakterystyki statyczne

Liniowe układy scalone w technice cyfrowej

BADANIE PRZERZUTNIKÓW ASTABILNEGO, MONOSTABILNEGO I BISTABILNEGO

Ćwiczenie 2 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH

TRANZYSTORY BIPOLARNE ZŁĄCZOWE

PL B1. POLITECHNIKA GDAŃSKA, Gdańsk, PL BUP 19/09. MACIEJ KOKOT, Gdynia, PL WUP 03/14. rzecz. pat.

PRACOWNIA ELEKTRONIKI

1. Zarys właściwości półprzewodników 2. Zjawiska kontaktowe 3. Diody 4. Tranzystory bipolarne

TRANZYSTORY BIPOLARNE ZŁĄCZOWE

SYMBOLE GRAFICZNE. Tyrystory. Struktura Charakterystyka Opis

Politechnika Białostocka

PODSTAWY ELEKTRONIKI I TECHNIKI CYFROWEJ

Tranzystory bipolarne

Stan wysoki (H) i stan niski (L)

2 Dana jest funkcja logiczna w następującej postaci: f(a,b,c,d) = Σ(0,2,5,8,10,13): a) zminimalizuj tę funkcję korzystając z tablic Karnaugh,

Podstawy fizyki ciała stałego półprzewodniki domieszkowane

Spis treści Przełączanie złożonych układów liniowych z pojedynczym elementem reaktancyjnym 28

Podstawy elektroniki cz. 2 Wykład 2

Bramki logiczne. 2. Cele ćwiczenia Badanie charakterystyk przejściowych inwertera. tranzystorowego, bramki 7400 i bramki

Zadania z podstaw elektroniki. Zadanie 1. Wyznaczyć pojemność wypadkową układu (C1=1nF, C2=2nF, C3=3nF):

Ćwiczenie 1: Pomiar parametrów tranzystorowego wzmacniacza napięcia w układzie wspólnego emitera REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU

Transkrypt:

Układy nieliniowe tranzystor bipolarny (n p n, p n p) Złącze emiterowe: polaryzacja przewodzenia IB B E Złącze kolektorowe: polaryzacja zaporowa C IE IC IE IB1 IB2 rekombinacja Silne domieszkowanie emitera: IE duży w stosunku do IB IB Nośniki wstrzykiwane z emitera do bazy mogą dyfundować do kolektora bez ich znacznego ubytku spowodowanego rekombinacją. w.11, p.1 IB=IB1+ IB2 mały Sterownie IC: I C =β I B

Tranzystor bipolarny. Punkt pracy, rozkład prądów i napięć (KCL) (KVL) Prąd emitera i kolektora: P kt pracy (Q point) I C I E Napięcia baza emiter (dla krzemu): U BE=0.6 0.7 V Mając ustalony p kt pracy tranzystora, możemy zbudować wzmacniacz sygnałów zmiennych. w.11, p.2

Tranzystor bipolarny wzmacniacz OE projektowanie poradnikowe I1 C1 RC R1 u1(t) I2 w.11, p.3 C2 T UC0 IB0 UB0 R2 VCC IC0 RE IE0 UE0 CE u2(t) Zadania elementów: T tranzystor- sterowane źródło prądu R1, R2 dzielnik nap. -polaryzacja złącza baza-emiter RC przetwornik prąd napięcie -wzmocnienie napięciowe RE przetwornik prąd napięcie -ujemne sprzężenie zwrotne -stabilizacja punktu pracy CE pojemność emiterowa -likwidacja ujemnego sprzężenia zwrotnego dla sygnału zmiennego. C1, C2 pojemności odcinające - separacja składowej stałej - punkt pracy nie reaguje na podłączone, zewnętrzne napięcia stałe.

Tranzystor bipolarny projektowanie poradnikowe dla OE UBE0=UB0-UE0 =const IC0 W układzie zapewnione jest stałe napięcie UB0, natomiast napięcie UE0 = IB0 UBE0 UB0 R2 RE UE0 IE0 IE0RE, zależy od wielkości prądu IB0. Prąd określamy w oparciu o parametry katalogowe tranzystora. Dla tranzystora BC107 można przyjąć, że IE0 jest równe od 0.5 ma do 10 ma, natomiast stała wartość napięcia UE0 powinna zawierać się w granicach 0.1VCC do 0.3VCC. Pozwala to na osiągnięcie optymalnej stabilności układu. Powyższe założenia pozwalają na obliczenie wartości U BE 0 opornika RE=UE0 /IE0 Zasada stabilizacji prądu IE0 IE0 UBE0 IE0 w efekcie stałe! w.11, p.4 I B0 =I ( e nut S Źródło zadanego prądu stałego zbudowane na tranzystorze: IC0 IE0=UE0/RE=(UB0 UBE0)/RE (UB0 0.6)/RE 1 )

Tranzystor bipolarny projektowanie poradnikowe dla OE I1 C1 RC R1 u1(t) I2 C2 UC0 IB0 UB0 R2 VCC IC0 RE IE0 UE0 CE Następnie określamy wartości oporników R1 i R2 tak by określone przez ich wartości napięcie UB0 było w dobrym przybliżeniu stałe. Zakładamy, że tak jest, gdy zależny od temperatury prąd IB0 jest od 10 do 20 razy mniejszy od prądu I1. Prąd IB0=IE0/β gdzie β u2(t) znajdujemy w katalogu. Przyjmując że UB0=UE0+0.7 mamy: R1= (VCC-UB0)/I1 R2=UB0 /I1 w.11, p.5

Tranzystor bipolarny projektowanie poradnikowe dla OE RC VCC- UC0 KU= β RC/ r VCC UC0 RE w.11, p.6 Wartość opornika RC obliczamy w oparciu o żądaną wartość wzmocnienia układu UT UE0 Lub np. żądając maksymalnych możliwych zmian dla napięcia wyjściowego (patrz tabela na dalszych slajdach)

Tranzystor bipolarny projektowanie poradnikowe dla OE krok Określenie napięć i prądów I UE0 =2V VCC =12V II IE0=1 ma III IB0= IE0/β =0.005mA IV RE=UE0/IE0 = 2k VI IC0=IE0-IB0 IE0=1 ma UC0=VCC-IC0RC napięcie UBE0=0.7 V założenie I2 =20 IB0, założenie R1=(VCC-UB0) /I1 = 93k IE0>>IB0 UC0=(VCC+UT+UE0)/2=7.5V RC=(VCC-UC0)/IC0=4.5k RC=Kur /β w.11, p.7 IE0= 1mA, założenie β=200, wartość przykładowa R2=UB0 /I2 =27 k I1 I2 =20 IB0=0.1mA Uwagi VCC=12V, UE0 =2V, założenie UB0=UE0+ 0.7V=2.7 V V VII Określenie elementów Maksymalny zakres zmian napięcia wyjściowego u2(t) UT=1V, założenie Opór RC określony przez żądane wzmocnienie napięciowe układu KU

Rezystancja dynamiczna re Występuje w emiterze i określona jest jako: du BE du BE U T 0.025 V 25 mv 1 re = = = = = =25 di E di C di C IC IC 1 ma du BE U BE (Pominięto elementy ustalające punkt pracy tr.) Rg ug u1 I C =I s e UT IC C B E u2 re zależy głównie od prądu kolektora, IC. w.11, p.8

Wzmocnienie napięciowe wzmacniacza o OE Pamiętając, że dla sygnałów zmiennych rezystor RE jest zwarty do masy (nieobecny) poprzez kondensator CE, możemy napisać: u1 =r e i E u2 =RC i C u2 RC k= u1 r e (Pominięto elementy ustalające punkt pracy tr.) RC Rg ug w.11, p.9 (i E i C ) B u1 IC C E u2

Wzmocnienie k, przykład. RC 1.2 k 1.2 k k = = =260 re 25 mv 4.6 5.43 ma Jeśli by nie było kondensatora CE to k: u2 RC 1.2 k k= = =1.75 u1 r e + R E 4.6 + 680 w.11, p.10

Źródło prądu stałego przykład UE0=UB0 0.6 IC IE=UE0/RE a) VCC VCC b) A IC=(UB0-0.65)/RE R B R1 A IC=(UB0-0.65)/RE B DZ UB0 R 2 w.11, p.11 RE UE0 UB0 RE

Tranzystor polowy, unipolarny FET FET (ang. Field Effect Transistor) W tranzystorach polowych sterowanie przepływem prądu w kanale utworzonym pomiędzy elektrodami zwanymi źródłem (S) i drenem (D) odbywa się za pomocą zmian pola elektrycznego przyłożonego do elektrody nazywanej bramką (G). Prąd jest wynikiem ruchu jednego typu nośników, to jest nośników większościowych: dziur lub elektronów. Dwa główne typy tranzystorów polowych: Tranzystor złączowy JFET (junction FET); Tranzystor polowy z izolowaną bramką IGFET ( np.: MOSFET metal oxide semiconductor FET) w.11, p.12

Rodzaje FET w.11, p.13

Tranzystor JFET Tranzystor polowy złączowy zbudowany jest z półprzewodnika (w tym przykładzie typu n), w który wdyfundowano dwa obszary bramki (typu p). Pomiędzy źródłem i drenem prąd może płynąć tylko kanałem, którego szerokość ograniczona jest obszarami złącza z bramką, czyli strefami ładunku przestrzennego o wysokiej oporności. Rezystancję kanału można zmieniać przez zmianę jego szerokości, a więc przez zmianę napięcia UGS polaryzującego złącze p n w kierunku zaporowym. Odpowiednio duże napięcie UGS może spowodować połączenie warstw zaporowych i zamknięcie kanału. Rezystancja będzie wówczas bardzo duża ( M ). Tranzystor JFET stanowi rezystor sterowany napięciowo. w.11, p.14

Tranzystor JFET w.11, p.15

Tranzystor JFET model zastępczy w.11, p.16

Tranzystor MOSFET Metal Oxide Semiconductor FET w.11, p.17

Tranzystor MOSFET budowa, działanie Metal Oxide Semiconductor FET Polaryzacja drenu i bramki jest zerowa czyli UDS=0 i UGS=0. W takim przypadku struktura złożona z obszarów półprzewodnika typu n+ (dren i źródło) rozdzielonych półprzewodnikiem typu p (podłoże) zachowuje się tak jak dwie diody połączone ze sobą szeregowo przeciwstawnie (anodami do siebie) w.11, p.18

Tranzystor MOSFET działanie cd. Gdy bramka jest spolaryzowana napięciem UGS>0, dodatni ładunek spolaryzowanej bramki indukuje pod jej powierzchnią ładunek przestrzenny, który składa się z elektronów swobodnych o dużej koncentracji powierzchniowej (tzw. warstwa inwersyjna) i głębiej położonej warstwy ładunku przestrzennego jonów akceptorowych, z której wypchnięte zostały dziury. W takiej sytuacji zostaje utworzone połączenia elektryczne między drenem i źródłem w postaci kanału (warstwa inwersyjna). Przewodność tego połączenia zależy od koncentracji w.11, p.19 elektronów w indukowanym kanale, a więc od napięcia UGS.

Tranzystor MOSFET działanie cd. Jeżeli teraz zostanie podwyższony potencjał drenu UDS>0 to popłynie prąd drenu ID tym większy im większe będzie napięcie UDS. Zależność prądu drenu ID od napięcia drenu UDS nie jest jednak liniowa. Jest to spowodowane tym, że napięcie wzdłużne UDS zmienia stan polaryzacji bramki. Im bliżej drenu tym różnica potencjałów między bramką i podłożem jest mniejsza, a kanał płytszy. Ze wzrostem UDS całkowita rezystancja kanału rośnie i wzrost prądu jest więc mniejszy niż proporcjonalny. Przy UDS=UGS kanał w pobliżu drenu przestaje istnieć i prąd drenu ulegnie nasyceniu. Dalszy wzrost napięcia drenu UDS będzie powodował tylko nieznaczne zmiany prądu drenu ID. w.11, p.20

Tranzystor MOSFET charakterystyka w.11, p.21

Tranzystor FET rodzaje w.11, p.22

Elektronika cyfrowa w.11, p.23

Układy cyfrowe W układach cyfrowych sygnały napięciowe (lub prądowe) przyjmują tylko określoną liczbę poziomów, którym przyporządkowywane są wartości liczbowe. Najczęściej układy cyfrowe służą do przetwarzania sygnałów o dwóch poziomach napięć: wysokiego (H high) niskiego (L low). Zauważmy, że: dwa znaki (H, L) wystarczają aby w układach cyfrowych i komputerach zapisywać dowolną informację liczby, słowa, instrukcje (do wykonania przez urządzenie eketroniczne) itp. np.: A LL; F HH; I HL; S LH w.11, p.24 i kodujemy pewną wiadomość: HHLLHLLH

Układy cyfrowe W istocie dwa znaki odpowiadają binarnemu (dwójkowemu) systemowi liczbowemu. Podobnie jak w systemie dziesiętnym zapisujemy liczby stosując dziesięć znaków i podstawą jest liczba 10 (na przykład 256 = 2 102 + 5 101 + 6 100) tak w systemie binarnym wykorzystujemy tylko dwa znaki: H i L, wygodniej jest użyć 1 i 0, a podstawą jest liczba 2. Na przykład 11012 = 1 23 + 1 22 + 0 21 + 1 20. Teraz kod z poprzednego slajdu wygląda tak: A 00; F 11; I 10; S 01 a sama wiadomość ma postać: 11001001 Poziomom napięć H i L możemy przyporządkować wartości logiczne 1 (prawda) oraz 0 (fałsz). Można dokonać odwrotnego przyporządkowania. Przyporządkowanie H 1 oraz L 0 nazywa się logiką dodatnią. Przyporządkowanie H 0 oraz L 1 nazywa się logiką ujemną. w.11, p.25

Układy cyfrowe Pracę takich układów cyfrowych (układów logicznych) opisuje się za pomocą dwuwartościowej algebry Boole`a. Logika dodatnia (w standardzie TTL): 1 2.4 V 5.0 V 0 0.0 V 0.8 V Ze względu na obecność zakłóceń, wahania napięcia zasilającego sygnały w układach cyfrowych nie mają ściśle określonych wartości. Z tego powodu liczby przyporządkowuje się nie wartościom napięć, ale przedziałom napięć oddzielonych przerwami. W takiej sytuacji typowe zakłócenia nie stanowią poważnej przeszkody dla prawidłowej transmisji sygnałów cyfrowych. Jeżeli napięcie przyjmie wartość z zakresu przerwy to stan układu jest nieokreślony. w.11, p.26

Układy logiczne Algebra Boole'a: Zmienne przyjmują dwie wartości: 1 prawda (true), 0 fałsz (false) Podstawowe operacje na zmiennych A i B: Iloczyn logiczny: A*B A AND B Suma logiczba: A+B A OR B Negacja: ~A NOT A A 0 0 1 1 w.11, p.27 B 0 1 0 1 A*B A B A+B 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 A ~A 0 1 1 0

Układy logiczne Podstawowe tożsamości algebry Boole a w.11, p.28

Układy cyfrowe definicje Układ cyfrowy o m wejściach i n wyjściach. W układach logicznych na każdym z wejść /wyjść może występować stan 0 lub 1 będący jednostką informacji zwaną bitem. Wektory x=(x1, x2,..., xm) i y=(y1, y2,...,yn) nazywamy słowami logicznymi. Słowo ośmiobitowe nazywamy bajtem. Każde słowo logiczne może być interpretowane jako pewna liczba zapisana w kodzie binarnym. Na przykład czterobitowe słowo (1101) w kodzie dziesiętnym jest liczbą: 1 23 +1 22 +0 21 + 1 20 = 13 w.11, p.29

Układy cyfrowe klasyfikacja w.11, p.30

Układy cyfrowe kombinacyjne Bramki logiczne Bloki funkcjonalne komutatory (multipleksery, demultipleksery) konwertery kodów (kodery, dekodery, transkodery) bloki arytmetyczne (sumatory, komparatory,... ) w.11, p.31

Bramki logiczne (rodzaj, funkcja logiczna, symbol, tablica prawdy) w.11, p.32

Bramki logiczne wielowejściowe np.: wielowejściowa bramka AND Wartość logiczna 1 pojawia się na wyjściu jedynie wówczas, gdy stan logiczny wszystkich wejść wynosi 1. W innych przypadkach f = 0. Bramka taka bywa nazywana układem koincydencyjnym. w.11, p.33

Bramki logiczne Najbardziej uniwersalnymi bramkami są bramki NAND i NOR. Używając tyko bramek NAND lub tylko bramek NOR można zbudować układ realizujący dowolną funkcję logiczną. Przykłady realizacji podstawowych funkcji logicznych ( NOT, AND, OR ) przy użyciu bramek NAND : w.11, p.34

Bramki logiczne Przykłady realizacji podstawowych funkcji logicznych ( NOT, AND, OR ) przy użyciu bramek NOR: w.11, p.35