Agricultural Engineering 2015 : 3 (155 ):

Podobne dokumenty
INŻYNIERIA ROLNICZA AGRICULTURAL ENGINEERING

Agricultural Engineering 2014: 2(150):

OCENA ENERGETYCZNA PROCESU ZAGĘSZCZANIA WYBRANYCH SUROWCÓW ROŚLINNYCH W BRYKIECIARCE ŚLIMAKOWEJ*

Has the heat wave frequency or intensity changed in Poland since 1950?

ANALIZA CECH FIZYCZNYCH BRYKIETÓW Z BIOMASY ROŚLINNEJ *

TYRE PYROLYSIS. REDUXCO GENERAL DISTRIBUTOR :: ::

OCENA GĘSTOŚCI USYPOWEJ I ENERGOCHŁONNOŚCI PRODUKCJI PELETÓW W PELECIARCE Z DWUSTRONNĄ MATRYCĄ PŁASKĄ*

WPŁYW CZYNNIKÓW AGROTECHNICZNYCH NA WŁAŚCIWOŚCI ENERGETYCZNE SŁOMY 1

INSPECTION METHODS FOR QUALITY CONTROL OF FIBRE METAL LAMINATES IN AEROSPACE COMPONENTS

ANALIZA WYBRANYCH CECH JAKOŚCIOWYCH PELETÓW WYTWORZONYCH Z SUROWCÓW ROŚLINNYCH *

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

ANALYSIS OF QUALITATIVE PROPERTIES OF BRIQUETTES MADE FROM PLANT BIOMASS WITH A HYDRAULIC PISTON BRIQUETTE MACHINE

Patients price acceptance SELECTED FINDINGS


ASSESSMENT OF QUALITATIVE CHARACTERISTICS OF BRIQUETTES PRODUCED FROM SELECTED PLANT RAW MATERIALS

WYKORZYSTANIE KOLEKTORÓW SŁONECZNYCH W SUSZARNICTWIE PRODUKTÓW ROLNYCH UTILIZATION OF SOLAR COLLECTORS FOR DRYING OF AGRICULTURAL PRODUCTS


Streszczenie rozprawy doktorskiej

OCENA CECH JAKOŚCIOWYCH PELETÓW WYTWORZONYCH Z BIOMASY ROŚLINNEJ *


DOI: / /32/37

WPŁYW TEMPERATURY NA GĘSTOŚĆ I TRWAŁOŚĆ BRYKIETÓW WYTWORZONYCH W BRYKIECIARCE ŚLIMAKOWEJ *

TRANSPORT W RODZINNYCH GOSPODARSTWACH ROLNYCH

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

Tychy, plan miasta: Skala 1: (Polish Edition)

OpenPoland.net API Documentation

OCENA TRWAŁOŚCI BRYKIETÓW WYTWORZONYCH Z MASY ROŚLINNEJ KUKURYDZY PASTEWNEJ

Ocena potrzeb pacjentów z zaburzeniami psychicznymi

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

OCENA WYDAJNOŚCI BRYKIETOWANIA ORAZ JAKOŚCI BRYKIETÓW WYTWORZONYCH Z WYBRANYCH SUROWCÓW ROŚLINNYCH*

Sargent Opens Sonairte Farmers' Market

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

GLOBAL METHANE INITIATIVE PARTNERSHIP-WIDE MEETING Kraków, Poland

WPŁYW PARAMETRÓW ZAGĘSZCZANIA BIOMASY ROŚLINNEJ NA WŁAŚCIWOŚCI MECHANICZNE BRYKIETÓW

CHEMICAL COMPOSITION AND SELECTED ENERGY PROPERTIES OF BLACK LOCUST BARK (ROBINIA PSEUDOACACIA L.)

Analiza porównawcza zmian w rozbiorach wody z uwzględnieniem sposobu jej dostarczania do odbiorców

ROZPRAWY NR 128. Stanis³aw Mroziñski

FIZYCZNE I MECHANICZNE WŁAŚCIWOŚCI PELETÓW Z TROCIN SOSNOWYCH Z DODATKIEM TROCIN DRZEW LIŚCIASTYCH

OCENA JAKOŚCI BRYKIETÓW Z BIOMASY ROŚLINNEJ WYTWORZONYCH W ŚLIMAKOWYM ZESPOLE ZAGĘSZCZAJĄCYM

Krytyczne czynniki sukcesu w zarządzaniu projektami

INSTYTUT GENETYKI I HODOWLI ZWIERZĄT POLSKIEJ AKADEMII NAUK W JASTRZĘBCU. mgr inż. Ewa Metera-Zarzycka

AKADEMIA MORSKA W SZCZECINIE WYDZIAŁ MECHANICZNY ROZPRAWA DOKTORSKA. mgr inż. Piotr Smurawski

Institutional Determinants of IncomeLevel Convergence in the European. Union: Are Institutions Responsible for Divergence Tendencies of Some

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

OPTYMALIZACJA STEROWANIA MIKROKLIMATEM W PIECZARKARNI

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

SZACOWANIE POTENCJAŁU ENERGETYCZNEGO BIOMASY RO LINNEJ POCHODZENIA ROLNICZEGO W WOJEWÓDZTWIE KUJAWSKO-POMORSKIM

MaPlan Sp. z O.O. Click here if your download doesn"t start automatically

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.

European Crime Prevention Award (ECPA) Annex I - new version 2014

Akademia Morska w Szczecinie. Wydział Mechaniczny


BILANS BIOMASY ROLNEJ (SŁOMY) NA POTRZEBY ENERGETYKI 1

ZAPOTRZEBOWANIE MOCY PODCZAS ROZDRABNIANIA BIOMASY ROŚLINNEJ DO PRODUKCJI BRYKIETÓW

ANALYSIS OF VOLUME CHANGES OF SELECTED CEREAL GROUND GRAIN IN RESULT OF LOADING*

pobrano z



ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:.

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

OBWIESZCZENIE MINISTRA INFRASTRUKTURY. z dnia 18 kwietnia 2005 r.

Reporting on dissemination activities carried out within the frame of the DESIRE project (WP8)

Zasady rejestracji i instrukcja zarządzania kontem użytkownika portalu

Agricultural Engineering 2014: 2(150):

FORMULARZ REKLAMACJI Complaint Form

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

Compression strength of pine wood (Pinus Sylvestris L.) from selected forest regions in Poland, part II

BLACKLIGHT SPOT 400W F

Unit of Social Gerontology, Institute of Labour and Social Studies ageing and its consequences for society

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

SPIS TREŚCI / INDEX OGRÓD GARDEN WYPOSAŻENIE DOMU HOUSEHOLD PRZECHOWYWANIE WINA WINE STORAGE SKRZYNKI BOXES

LEARNING AGREEMENT FOR STUDIES

Zakłady Pomiarowo-Badawcze Energetyki ENERGOPOMIAR Spółka z o.o.

Ekonomiczne i społeczno-demograficzne czynniki zgonów osób w wieku produkcyjnym w Polsce w latach

Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)

EPS. Erasmus Policy Statement

Wykaz linii kolejowych, które są wyposażone w urządzenia systemu ETCS

POLITECHNIKA WARSZAWSKA. Wydział Zarządzania ROZPRAWA DOKTORSKA. mgr Marcin Chrząścik

LIGNOCELLULOSIC BIOMASS PRODUCTION AND DELIVER FOR BIOREFINERIES

TECHNICAL CATALOGUE WHITEHEART MALLEABLE CAST IRON FITTINGS EE


Helena Boguta, klasa 8W, rok szkolny 2018/2019

Formularz recenzji magazynu. Journal of Corporate Responsibility and Leadership Review Form

Wykaz linii kolejowych, które są wyposażone w urzadzenia systemu ETCS

Euro Oil & Fuel Biokomponenty w paliwach do silników Diesla wpływ na emisję i starzenie oleju silnikowego

Latent Dirichlet Allocation Models and their Evaluation IT for Practice 2016

REGIONAL DIFFERENTIATION OF THE POWER OF AGRICULTURAL TRACTORS PURCHASED IN POLAND IN THE YEARS

ROZPRAWA DOKTORSKA. Model obliczeniowy ogrzewań mikroprzewodowych


PODAŻ CIĄGNIKÓW I KOMBAJNÓW ZBOŻOWYCH W POLSCE W LATACH

KOMBAJNY ZBOŻOWE W ROLNICTWIE POLSKIM W LATACH

HAPPY ANIMALS L01 HAPPY ANIMALS L03 HAPPY ANIMALS L05 HAPPY ANIMALS L07

HAPPY ANIMALS L02 HAPPY ANIMALS L04 HAPPY ANIMALS L06 HAPPY ANIMALS L08

DO MONTAŻU POTRZEBNE SĄ DWIE OSOBY! INSTALLATION REQUIRES TWO PEOPLE!

Tishreen University Journal. Eng. Sciences Series

PORÓWNANIE KOSZTÓW PRODUKCJI JĘCZMIENIA JAREGO I OZIMEGO W WYBRANYCH GOSPODARSTWACH WOJ. ZACHODNIOPOMORSKIEGO

Transkrypt:

Scientific quarterly journal e-isnn 2449-5999 Agricultural Engineering 2015 : 3 (155 ):1 49-1 56 Homepage: http://ir.ptir.org DOI: http://dx.medra.org/10.14654/ir.2015.155.145 IMPACT OF PLANT BIOMASS MOISTURE ON EFFICIENCY, UNIT ENERGY CONSUMPTION AND QUALITY OF PELLET Grażyna Paulina Wójcik *, Monika Kostrubiec Department of Production Organization and Engineering, Warsaw University of Life Sciences Contact details: ul. Nowoursynowska 164, 02-787 Warszawa, e-mail: grazyna_wojcik@sggw.pl ARTICLE INFO Article history: Received: January 2015 Received in the revised form: April 2015 Accepted: June 2015 Key words: straw types of straw moisture calorific value ABSTRACT The objective of the paper was to evaluate the impact of moisture in plant biomass designed for pellet production on its heating properties. The research was carried out in a pellet plant, located in Lubelskie Voivodeship. The research consisted in determination of moisture of the supplied biomass and the level of moisture of the manufactured pellet. The paper discusses the straw or hay pellet production process on the example of the selected enterprise with annual production of 60 thousand tonnes. During the period, when the tests were carried out, almost 6 thousand tonnes of raw materials i.e. grain, rapeseed, hay, camomile straw as well as a combination of straw and hay or rapeseed and rapeseed with hay were supplied to the plant. Average moisture of supplied raw materials was approximately 19%. On the other hand the manufactured heating pellet obtained moisture of approximately 14%. These values were within the range of those assumed by the company. Introduction The article evaluates heating properties of straw for pellet production depending on its moisture. Straw defined as stalks of grain plants or stalks of rapeseed, flax or leguminous plants (Gradziuk et al., 2002), which were subjected to drying, is a side product in agriculture. In farms, where animals are bred, straw is mainly used as litter and a component of feed. In farms which do not carry out animal production, straw is usually ploughed up on fields. Straw may be also used as a component for bases in common mushroom and mushroom production. Based on the literature, one may state that for few years, straw has been used to a higher extent in power energy (Gradziuk, 2012; Lewandowski, 2008; Zarajczyk, 2013). Investigation of its heating properties is not often undertaken. As a result, this is a still up-to-date activity. A characteristic property of straw is its ability to absorb water and gases and a high content of dry mass, which is approx 85%. Its basic components are polysaccharides namely multimolecular polysaccharides. It contains 45-55% of fibre cellulose, 26-32% of pentosan hemicellulose and 16-21% of lignine (Król and Smagacz, 2008). 149

Grażyna Paulina Wójcik, Monika Kostrubiec The objective of the study was to confirm the rightness of scientific hypothesis according to which moisture is the main factor which translates into both the quality of pellet as well as its calorific value. The intention was also to present pellet as a renewable energy source of the future at which the heating pellet obtains the highest quality and a high calorific value. The scope of the paper covers the research in the pellet production plant which processes plant biomass into fuel pellet, which was located in Lubelskie Voivodeship (the owner did not give his consent to provide the name and the city of the plant). The research was carried out in July and August of 2013. The structure of biomass supply was related to the period of vegetation of particular plants (the period of haymaking, harvesting etc.). The research concerned measurement of the plant biomass moisture (chaff from grain straw), from which fuel pellet was manufactured, and the production of the ready one in the agglomerated form. There are two types of straw in literature: yellow one fresh and grey wilted. Fresh straw is composed of many compounds of chloride and alkali metals. A high content of these compounds results in slag formation during combustion. Thus, straw, which was previously subjected to the process of wilting consisting in leaching of harmful compounds by atmospheric precipitation, is used for heating purposes (Grzybek et al., 2001). Composition of grain straw differs in relation to its type. Differences in the content of particular components are slight. Barley and rye straw includes chloride, whereas maize more sulphur. Bigger differences may be noticed when comparing rapeseed and grain straw since there is more sulphur, chloride, hydrogen and carbon in rapeseed straw (Kołodziej and Matyka, 2012). For heating purposes, each type of straw, both of grain origin as well as buckwheat or rapeseed one may be used. However, the best properties are in case of wheat, buckwheat, rye straw and rachis and maize straw. The use of straw from cultivation of oats is not recommended, because it has low temperature of ash formation. In order to use straw for heating purposes it must meet particular technological requirements. Evaluation of straw quality is made based on its moisture, calorific value and degree of wilting. A calorific value and heat of combustion depends mainly on straw moisture and its chemical composition (Grzybek, 2010) Table 1. Table 1 Relation of the calorific value of straw to its moisture Type of straw Moisture (%) Calorific value (MJ kg -1 ) in a fresh state dry Wheat 15-20 12.9-14.1 17.3 Barley 15-22 12.0-13.9 16.1 Rapeseed 30-40 10.3-12.5 15.0 Maize 45-60 5.3-8.2 16.8 Source: Niedziółka and Zuchniarz, 2006 Properties of straw in comparison to other fuels are presented in table 2. Fresh straw has moisture on the level of 12-22%, which may fluctuate in relation to the plant species and atmospheric conditions, where these plants are harvested. Extensively moist straw 150

Impact of plant biomass... contributes to the increase of emission of pollution during its combustion. It also causes reduction of its calorific values. Table 2 Properties of straw in comparison to other fuels Parameter Unit Straw Yellow Grey Carbon Gas Chips Moisture % 15 15 12 0 40 Content of ash % 4 3 12 0 0.6-1.5 Content of carbon % 42 43 59 75 50 Content of oxygen % 37 38 7.30 0.90 43 Content of hydrogen % 5.00 5.20 3.50 24 6 Content of chloride % 0.75 0.20 0.08-0.02 Content of nitrogen % 0.35 0.41 1.00 0.90 0.30 Content of sulphur % 0.16 0.13 0.80 0.00 0.05 Volatile components % 70 73 25 100 70 Source: Wichowski 1994 Straw, due to its structure incites problems with transport and storing. Thus, it is harvested with presses, which allow its compression. There are two types of presses: a forming press (a chamber one) and a rolling one table 3. Before harvesting, straw must be subject to wilting, and its moisture should not be lower than 16% (Lewandowski, 2008). Table 3 Basic division of presses Press type Bale size Bale shape Compression degree Forming Small Prismatic 130 kg m -3 Rolling Large-size Cylindrical 150 kg m -3 Forming Large-size Prismatic 180 kg m -3 Source: Author's own research based on Gradziuk et al., 2002 The amount of straw, which may be collected, depends mainly on the acreage of cultivated plants but also on other factors such as: yield, fertilization, atmospheric conditions and used cultivars (Lewandowski and Ryms, 2013). In recent years, there are more shortstraw varieties used, due to which a yield may be higher by 50% but the straw harvesting increases by 20% (Gradziuk et al., 2002). In Poland approx. 25 million tonnes of straw is produced each year which is comparable to 12.5 million tonne of coal. Even 8-10 million tonnes of straw may be used annually for heating purposes, which would cause reduction of coal consumption by 4-5 million tonnes. It would also contribute to the decrease of carbon dioxide emission to atmosphere by approximately 8-10 million tonnes (Sobierajski et al., 2009). Unfortunately, in 2011 only 500 thousand tonnes of straw were used for heating purposes (Gradziuk, 2012). 151

Grażyna Paulina Wójcik, Monika Kostrubiec The objective and scope of research The objective of the research was to evaluate physical properties of raw materials designed for pellet production. The moisture, type and form in which raw material is supplied were assessed. Plant biomass, which was subject to analysis, came from the enterprise which produces pellet in Lubelskie Voivodeship. The research was carried out in July and August 2013. Methodology of research Investigations were carried out in a pellet production enterprise. Moisture was measured with a gravimetirc method when raw materials were accepted to the plant. It was measured on the spot basis, during each supply of raw materials. Moisture was calculated with a dry-oven method, whereas the weight - with a truck scale. Raw materials, which were used for production of heating pellet, came from farms in Lubelskie Voivodeship. A pellet plant bought raw material such as: hay, straw, rapeseed, mixture of straw with rapeseed, straw with hay and hay with rapeseed. Plant biomass was supplied to the plant in the pressed form with assuming the following parameters: average moisture of straw: 15-25%, average bulk weight of pressed straw: 0.130 Mg m -3, average bulk density after the use of a shredder: 0.045 Mg m -3, average bulk density after the use of a beater grinder 0.065 Mg m -3 300 282 250 200 183 Moisture [%] 150 100 50 0 2 13 Camomile Rapeseed Rapeseed - hay 1 13 1 Hay Hay - straw Straw - rapeseed Straw t Figure 1. Distribution of raw material supplied to the plant in the research period 152

Impact of plant biomass... Distribution of raw material supplied to the plant is presented based on the weight of raw materials supplied within the research period. Straw is the main raw material, from which pellet is produced in the discussed enterprise. Distribution of raw materials accepted to the enterprise is presented in figure 1. From the plot we may read out that hay was most often supplied (57%). Straw constitutes 37% of all the supplied raw materials. Approx. 6 thousand tonnes of plant biomass were supplied to the enterprise in the research period. Moisture is the main parameter which describes straw and other raw materials, from which pellet is produced. It is the most significant at the evaluation of the calorific value of heating pellet. The discussed pellet plant assumes the following level of moisture for particular types of straw: wheat straw: 15-20%, barley straw: 15-22%, rapeseed straw: 30-40%, maize straw: 45-60%. Analysis and assessment of moisture of the investigated raw materials Figure 2 presents moisture of raw materials accepted to the plant. The highest moisture was 33% and the lowest was 10%. These values are not within the range of moisture which is determined by the plant, but they are within ranges for particular types of straw. Discrepancy between the highest and the lowest value was 23 units. For the process of agglomeration, raw materials with varied moisture were selected. The maximum accepted value was 23% (Fig. 2). Average moisture of raw materials supplied to the plant in the research period calculated with a weight method was 19%. In cases, when the level of moisture of raw materials designed for production of pellet exceeded the value of 23%, a component in the form of lime was added. The amount of lime was regulated automatically depending on the level of moisture of ground raw materials. The maximum amount of lime added to raw materials was limited to the amount of approx. 1% of raw material mass, whereas the recommended value was 0.5%. Figure 2. Moisture of raw materials supplied to the pellet plant with designation of the maximum (assumed by the pellet plant) moisture of raw material designed for production 153

Grażyna Paulina Wójcik, Monika Kostrubiec 25 20 Moisture (%) 15 10 5 0 Hay Straw Hay - straw Rapeseed Camomile t Figure 3. Average moisture of particular raw materials supplied to the plant Average moisture for particular raw materials is as follows: hay: 16.98%, straw: 19.55%, hay straw: 18.9%, rapeseed: 19.94%, camomile: 20.5%. Whereas, standard deviations for particular raw materials were: hay: 3.27%, straw: 4.41%, hay straw: 3.65%, rapeseed: 3.57%, camomile: 4.95%. Kraszkiewicz et al. (2013) claim that there are negative linear tendencies between the moisture and a calorific value and resistance and positive ones between the calorific value and resistance of the discussed pellets, but the strongest relation was between the moisture and the calorific value of agglomerate. The research carried out by the authors indicates the changes in mosture, the increase of which results in deterioration of the pellet quality and reduced their calorific value. A subsequent test, which was carried out in the pellet plant consisted in determination of forms in which raw materials are supplied to the plant. Figure 4 presents the distribution of raw materials accepted to the plant on account of the form in which it is supplied. Data show that during the research period, 75% of cylindrical bales with a compression degree of 150 kg m -3, were accepted to the plant, 24% of big-size prismatic bales with a compression degree of 180 kg m -3 and 1% of raw materials were supplied in the loose form. This data present how straw is pressed in Lubelskie Voivodeship. It may be also stated that rolling presses are more often used than the forming ones. 154

Impact of plant biomass... Cylindrical bales Big-size prismatic bales Loose 500 400 387 Weight (kg) 300 200 100 0 124 3 Cylindrical bales Big-size prismatic bales Loose t Figure 4. Distribution of particular forms in which raw materials were accepted Conclusion Moisture is a basic parameter, which translates into the calorific value of pellet. Thus, it is so important to supply raw materials with a level of moisture corresponding to the values assumed by the pellet plant: 15-25%. In order to obtain the heating pellet with the highest quality, the composition of plant biomass for production should be carefully selected (moisture, calorific value). The research shows that the moisture of raw materials supplied to the plant is at the level of 19% which corresponds to the sizes, assumed by the pellet plant. According to Zarajczyk (2013) both the variety of straw used for pellet production as well as its moisture have a significant impact on the efficiency and unit consumption of energy and the quality of pellet (determined as its bulk density and calorific value). Moisture is not the only factor, which translates into the quality of pellet. Moreover, a degree of plant biomass contamination and the raw materials cultivation culture are significant. A next factor is a bulk weight of the supplied biomass. According to the assumptions made by the pellet plant, bought raw materials should have a bulk weight at the level of 0.130 Mg m -3 (despite the fact that the plant bought raw materials with the bulk weight of 0.150 Mg m -3 and 0.180 Mg m -3 ). The observation of the production process in the pellet production plant (not from the algorithm or assumptions for the mixing process) it may be stated that there is no need to accept raw materials only with specific moisture because thanks to mixing of various types of plant biomass with varied parameters we may obtain a desired level of moisture. The described pellet production plant obtained the assumed level of moisture by mixing raw materials with moisture above 23% (it is a maximum moisture of raw materials designed for production), in some cases even 33% with material of 10% moisture. 155

Grażyna Paulina Wójcik, Monika Kostrubiec References Gradziuk, P., Grzybek, A., Kowalczyk, K., Kościk, B. (2002). Biopaliwa. Warszawa, Wydawnictwo Wieś Jutra Sp. z o. o., ISBN 83-7160-217-0. Gradziuk, P. (2012). Pozyskanie i wykorzystanie słomy na cele energetyczne w ciepłownictwie i energetyce zawodowej w Polsce. XI konferencja Odnawialne źródła energii obecnie i w nowej perspektywie po 2013 roku. Płońsk, Wydawnictwo MORD Warszawa Oddział Poświętne w Płońsku, 31. Grzybek, A. (2010). Modelling of biomass utilisation for energy purpose. Fokus Biofirsk Vol. 5 No. 6 Institute of Technology and Life Sciences, Copyright by Norwegian Institute for Agricultural and Enviromental Research Norway 2010, 134. Grzybek, A., Gradziuk, P., Kowalczyk, K. (2001). Słoma energetyczne paliwo. Warszawa, Wydawnictwo Wieś Jutra Sp. z o. o., 23-24. Kołodziej, B., Matyka, M. (red.). (2012). Odnawialne źródła energii. Rolnicze surowce energetyczne. Poznań, Państwowe Wydawnictwo Rolnicze i Leśne, ISBN 978-83-09-01139-2. Kraszkiewicz, A., Kachel-Jakubowska, M., Szpryngiel, M., Niedziółka, I. (2013). Analiza wybranych cech jakościowych peletów wytworzonych z surowców roślinnych. Inżynieria Rolnicza, 2(143), 167-173. Król, M.J., Smagacz, J. (2008). Rozkład resztek pozbiorowych w glebie. Puławy, Dział Upowszechniania i Wydawnictw IUNG - PIB, ISBN 8375620203. Lewandowski, W.M. (2008). Współczesne technologie wykorzystania biomasy do celów energetycznych, w rola biomasy w produkcji energii. Białowieża, Polski Komitet Naukowo-Techniczny FSNT-NOT, Federacja Stowarzyszeń Naukowo-Technicznych, 47. Lewandowski, W.M., Ryms, M. (2013). Biopaliwa. Proekologiczne odnawialne źródła energii. Warszawa, Wydawnictwo Naukowo-Techniczne, 141-143. Niedziółka, I., Zuchniarz, A. (2006). Analiza energetyczna wybranych rodzajów biomasy pochodzenia roślinnego. Metrol, 8A, 234. Sobierajski, J., Starzomska, M., Piotrowski, J. (2009). Odnawialne źródła energii, wiadomości ogólne. Kielce, Wydawnictwo Politechniki Świętokrzyskiej, 63. Wichowski, R. (1994). Wykorzystanie słomy jako źródła energii odnawialnej w rolnictwie na przykładzie Danii. Seminarium krajowe Wykorzystanie energii odnawialnej rolnictwie. IBMER, 28. Zarajczyk, J. (2013). Uwarunkowania techniczne i technologiczne produkcji peletu z biomasy roślinnej na cele energetyczne. Inżynieria Rolnicza, 1(142), 3. WPŁYW WILGOTNOŚCI BIOMASY ROŚLINNEJ NA WYDAJNOŚĆ, JEDNOSTKOWE ZUŻYCIE ENERGII ORAZ JAKOŚĆ PELETU Streszczenie. Celem opracowania była ocena wpływu poziomu wilgotności biomasy roślinnej przeznaczonej do produkcji peletu na jej właściwości opałowe. Badania przeprowadzono w wytwórni peletu, którego siedziba znajdowała się na terenie województwa lubelskiego. Badania polegały na wyznaczeniu wilgotności dostarczanej biomasy, a także poziomu wilgotności wyprodukowanego peletu. Omówiony został proces produkcji peletów ze słomy lub siana na przykładzie wybranego zakładu, którego roczna produkcja wynosi 60 tys. ton. Podczas okresu, w którym wykonywano badania do zakładu produkcyjnego dostarczono prawie 6 tys. ton surowców tj. słomy zbożowej, rzepakowej, siana, rumianku oraz mieszanki słomy z sianem lub rzepakiem, jak również rzepaku z sianem. Średnia wilgotność dostarczonych surowców wyniosła około 19%. Natomiast wyprodukowany pelet opałowy uzyskał wilgotność około 14%. Wartości te mieściły się w założeniach firmy. Słowa kluczowe: słoma, rodzaje słomy, wilgotność, wartość opałowa 156