Profilaktyka zagrożenia siarkowodorem na przykładzie oddziału G-63 w kopalni Polkowice-Sieroszowice

Podobne dokumenty
CENTRALNA STACJA RATOWNICTWA GÓRNICZEGO S.A. W BYTOMIU

ZAGROŻENIE WYRZUTAMI GAZÓW I SKAŁ

MOŻLIWOŚCI WYKORZYSTANIA DLA CELÓW WENTYLACYJNYCH I TRANSPORTOWYCH WYROBISK W OBECNOŚCI ZROBÓW W ASPEKCIE LIKWIDACJI REJONU

ZAGROŻENIA NATURALNE W OTWOROWYCH ZAKŁADACH GÓRNICZYCH

EKSPLOATACJA W WARUNKACH WYSTĘPOWANIA W STROPIE WYROBISK DOLOMITU KAWERNISTEGO NA PRZYKŁADZIE POLA G-12/7 KGHM POLSKA MIEDŹ SA O/ZG RUDNA

1. WSTĘP sprzętu ochronnego oczyszczającego sprzętu ochronnego izolującego

Aktywność sejsmiczna w strefach zuskokowanych i w sąsiedztwie dużych dyslokacji tektonicznych w oddziałach kopalń KGHM Polska Miedź S.A.

Odmetanowanie pokładów węgla w warunkach rosnącej koncentracji wydobycia

EMISJA GAZÓW CIEPLARNIANYCH Z NIECZYNNEGO SZYBU - UWARUNKOWANIA, OCENA I PROFILAKTYKA

Exploitation problems of rock bursts hazardous deposit in the conditions of coexisting gas hazard in Polkowice-Sieroszowice mine

ZAGROŻENIA GAZOWE CENTRALNA STACJA RATOWNICTWA GÓRNICZEGO G

115 CUPRUM Czasopismo Naukowo-Techniczne Górnictwa Rud nr 3 (76) 2015, s

Koncepcja docelowego modelu kopalni Lubin z budową nowego szybu

Dobór systemu eksploatacji

D Lekka ochrona oddechowa

Urządzenia i sprzęt do inertyzacji atmosfery kopalnianej

PL B1. Sposób podziemnej eksploatacji złoża minerałów użytecznych, szczególnie rud miedzi o jednopokładowym zaleganiu

Sprawozdanie ze stażu naukowo-technicznego

KARTA TECHNOLOGII System eksploatacji komorowo-filarowy z lokowaniem skały płonnej i likwidacją podsadzką hydrauliczną

Wentylacja wybranych obiektów podziemnych

Klimatyzacja centralna w Lubelskim Węglu Bogdanka S.A.

Informacja o zapaleniu metanu, pożarze i wypadku zbiorowym zaistniałych w dniu r. JSW S.A. KWK Krupiński

1. Wprowadzenie. Tadeusz Rembielak*, Leszek Łaskawiec**, Marek Majcher**, Zygmunt Mielcarek** Górnictwo i Geoinżynieria Rok 29 Zeszyt 3/1 2005

ANALIZA I OCENA PARAMETRÓW KSZTAŁTUJĄCYCH ZAGROŻENIE METANOWE W REJONACH ŚCIAN

(12) OPIS PATENTOWY (19) PL (11)

METODY ROZPOZNAWANIA STANU AKTYWNOŚCI SEJSMICZNEJ GÓROTWORU I STRATEGIA OCENY TEGO ZAGROŻENIA

PYTANIA EGZAMINACYJNE DLA STUDENTÓW STUDIÓW STACJONARNYCH I NIESTACJONARNYCH I-go STOPNIA

ZASTOSOWANIE GEOMETRII INŻYNIERSKIEJ W AEROLOGII GÓRNICZEJ

Pytania (w formie opisowej i testu wielokrotnego wyboru) do zaliczeń i egzaminów

AKTYWNOŚĆ SEJSMICZNA W GÓROTWORZE O NISKICH PARAMETRACH WYTRZYMAŁOŚCIOWYCH NA PRZYKŁADZIE KWK ZIEMOWIT

Wprowadzenie... 9 Akty normatywne CZĘŚĆ 1 OGÓLNE WYMAGANIA W ZAKRESIE BEZPIECZEŃSTWA I HIGIENY PRACY... 23

Warszawa, dnia 19 lutego 2013 r. Poz. 230 ROZPORZĄDZENIE MINISTRA ŚRODOWISKA 1) z dnia 29 stycznia 2013 r.

Centralna Stacja Ratownictwa Górniczego S.A. Marek Zawartka, Arkadiusz Grządziel

Schemat uzbrojenia odwiertu do zatłaczania gazów kwaśnych na złożu Borzęcin

ROZPORZĄDZENIE MINISTRA ŚRODOWISKA 1) z dnia 16 czerwca 2005 r. w sprawie podziemnych składowisk odpadów 2)

CUPRUM Czasopismo Naukowo-Techniczne Górnictwa Rud nr 4 (77) 2015, s

Wykład 1. Wiadomości ogólne

METODYKA POSZUKIWAŃ ZLÓŻ ROPY NAFTOWEJ I GAZU ZIEMNEGO

PL B1. KURZYDŁO HENRYK, Lubin, PL KIENIG EDWARD, Wrocław, PL BUP 08/11. HENRYK KURZYDŁO, Lubin, PL EDWARD KIENIG, Wrocław, PL

EKSPLOATACJA POKŁADU 510/1 ŚCIANĄ 22a W PARTII Z3 W KWK JAS-MOS W WARUNKACH DUŻEJ AKTYWNOŚCI SEJSMICZNEJ


STRATEGIA PROWADZENIA ROBÓT GÓRNICZYCH W CELU OGRANICZENIA AKTYWNOŚCI SEJSMICZNEJ POLA EKSPLOATACYJNEGO

Analiza wentylacyjna wykorzystania projektowanych otworów wielkośrednicowych jako wspomagającej drogi doprowadzenia powietrza do wyrobisk kopalni

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2018 CZĘŚĆ PRAKTYCZNA

ROZPORZĄDZENIE MINISTRA ŚRODOWISKA 1

Uwagi na temat stosowania gazów obojętnych (azotu, dwutlenku węgla) do gaszenia pożaru w otamowanym polu rejony wydobywczego

I. Technologia eksploatacji złóż węgla kamiennego (moduł kierunkowy)

1. Zagrożenie sejsmiczne towarzyszące eksploatacji rud miedzi w Lubińsko-Głogowskim Okręgu Miedziowym

KLIMATYZACJA CENTRALNA LGOM. SYSTEMY CENTRALNEJ KLIMATYZACJI ZAPROJEKTOWANE I ZBUDOWANE PRZEZ PeBeKa S.A. DLA KGHM POLSKA MIEDŹ S.A.

Badania zachowania się górotworu podczas doświadczalnej eksploatacji systemem ścianowym w ubierce A5/1 O/ZG Polkowice-Sieroszowice

Zwalczanie zagrożenia klimatycznego w wyrobiskach eksploatacyjnych na przykładzie rozwiązań stosowanych w Lubelskim Węglu,,Bogdanka S.A.

PL B1. Sposób podziemnej eksploatacji pokładowych i pseudopokładowych złóż minerałów użytecznych BUP 07/04

ZWIĘKSZENIE BEZPIECZEŃSTWA PODCZAS ROZRUCHU ŚCIANY 375 W KWK PIAST NA DRODZE INIEKCYJNEGO WZMACNIANIA POKŁADU 209 PRZED JEJ CZOŁEM****

KARTA PRZEDMIOTU. 2. Kod przedmiotu: S I-EZiZO/26

Informacja o kontrolach limitowanych zewnętrznych przeprowadzonych w 2011 roku

ROZPORZĄDZENIE MINISTRA ŚRODOWISKA. w sprawie zagrożeń naturalnych w zakładach górniczych 1

2. Kopalnia ČSA warunki naturalne i górnicze

Zagrożenia pogórnicze na terenach dawnych podziemnych kopalń węgla brunatnego w rejonie Piły-Młyna (woj. Kujawsko-Pomorskie)

ROZPORZĄDZENIE MINISTRA SPRAW WEWNĘTRZNYCH I ADMINISTRACJI. z dnia 14 czerwca 2002 r. w sprawie zagrożeń naturalnych w zakładach górniczych.

AKTYWNA PROFILAKTYKA TĄPANIOWA STOSOWANA W WYBRANYM ODDZIALE EKSPLOATACYJNYM O/ZG RUDNA KGHM POLSKA MIEDŹ S.A.W LATACH

Forma zajęć: Prowadzący: Forma zajęć: Prowadzący: ZAJĘCIA DLA SZKÓŁ O PROFILU GÓRNICZYM

WPŁYW DRENAŻU NA EFEKTYWNOŚĆ ODMETANOWANIA W KOPALNI WĘGLA**

Informacja o kontrolach limitowanych zewnętrznych przeprowadzonych w 2012 roku

Monitoring i ocena środowiska

Wpływ warunków górniczych na stan naprężenia

Wpływ charakterystyki zastępczej otoczenia rejonu wydobywczego na zagrożenie metanowe

2. Ocena warunków i przyczyn występowania deformacji nieciągłych typu liniowego w obrębie filara ochronnego szybów

KARTA PRZEDMIOTU. 2) Kod przedmiotu: N I z-ezizo/25

Eksploatacja złoża o dużym nachyleniu w warunkach pola XV/3 O/ZG RUDNA

Analiza przypadków ewakuacji załóg górniczych na drogach ucieczkowych w kopalniach węgla kamiennego

Umiejscowienie kierunku w obszarze kształcenia

Metody oceny stanu zagrożenia tąpaniami wyrobisk górniczych w kopalniach węgla kamiennego. Praca zbiorowa pod redakcją Józefa Kabiesza

Wydział Górnictwa i Geoinżynierii Górnictwo i Geologia stacjonarne/niestacjonarne II stopnia Górnictwo podziemne

Badania środowiskowe w procesie poszukiwania i rozpoznawania gazu z formacji łupkowych

(13) B1 (12) OPIS PATENTOWY (19) PL (11) PL B1. Fig 1 E21F 17/04 E21C 39/00

Szacowanie względnego ryzyka utraty funkcjonalności wyrobisk w rejonie ściany w oparciu o rozpoznane zagrożenia

Tabela odniesień efektów kierunkowych do efektów obszarowych (tabela odniesień efektów kształcenia)

AKADEMIA GÓRNICZO HUTNICZA im. Stanisława Staszica w Krakowie Wydział Górnictwa i Geoinżynierii Katedra Górnictwa Podziemnego PRACA DOKTORSKA

KSMD APN 2 lata pracy w kopalniach odkrywkowych

Stan zagrożenia metanowego w kopalniach Polskiej Grupy Górniczej sp. z o.o. Ujęcie metanu odmetanowaniem i jego gospodarcze wykorzystanie

Wiadomości pomocne przy ocenie zgodności - ATEX

Parametry wytrzymałościowe łupka miedzionośnego

System zarządzania złożem w LW Bogdanka SA. Katowice, r.

Działalność inspekcyjna i kontrolna okręgowych urzędów górniczych i UGBKUE

6. Charakterystyka systemu eksploatacji pokładów grubych z dennym wypuszczaniem urobku.

Ocena systemu eksploatacji w kierunku zrobów i stref upodatnionych w O/ZG Rudna

INFORMACJA DOTYCZĄCA BIOZ

STAN NAPRĘŻENIA W GÓROTWORZE W OTOCZENIU PÓL ŚCIANOWYCH W KOPALNI WĘGLA KAMIENNEGO BOGDANKA

Wpływ zaburzeń tektonicznych na przebieg deformacji masywu skalnego w obrębie eksploatowanego pola

Pytania (w formie opisowej i testu wielokrotnego wyboru)- zaliczenie lub egzamin

WYSTĘPOWANIE METANU W POKŁADACH WĘGLA BRUNATNEGO. 1. Wstęp. 2. Metodyka wykonania badań laboratoryjnych próbek węgla na zawartość metanu

Metody odmetanowania stosowane w polskich kopalniach węgla kamiennego

GOSPODARKA ZŁÓŻ SUROWCÓW MINERALNYCH i ICH OCHRONA

Oczyszczające urządzenie ucieczkowe

RZECZPOSPOLITAPOLSKA (12) OPIS PATENTOWY (19) PL (11) (13) B1

Koncepcja prowadzenia eksploatacji w polu I/9 w kopalni Lubin, w obustronnym sąsiedztwie lokalnych stref uskokowych

Spis treści. Od Autorów... 9

Zagrożenia naturalnymi źródłami promieniowania jonizującego w przemyśle wydobywczym. Praca zbiorowa pod redakcją Jana Skowronka

C S R G Seminarium Dyspozytorów Ruchu r.

1. Kształtowanie się zagrożenia metanowego w kopalniach węgla kamiennego.

Transkrypt:

43 CUPRUM Czasopismo Naukowo-Techniczne Górnictwa Rud nr 2 (71) 2014, s. 43-55 Profilaktyka zagrożenia siarkowodorem na przykładzie oddziału G-63 w kopalni Polkowice-Sieroszowice Sebastian Gola 1), Krzysztof Soroko 1), Władysław Turkiewicz 2) 1) KGHM Polska Miedź S.A. O/ZG Polkowice-Sieroszowice, 2) KGHM CUPRUM sp. z o.o. Centrum Badawczo-Rozwojowe, ul. Sikorskiego 2-8, 53-659 Wrocław, e-mail: w.turkiewicz@cuprum.wroc.pl Streszczenie Siarkowodór jest gazem bezbarwnym, o charakterystycznym zapachu zgniłych jaj, wyczuwalnym przy bardzo niewielkich stężeniach. W ostatnim okresie w kopalniach Polkowice- -Sieroszowice oraz Rudna wystąpiły zjawiska emanacji siarkowodoru z górotworu, stwarzając stan zagrożenia gazowego. Aby zapewnić bezpieczeństwo i ochronę zdrowia górników, kopalnie podjęły działania profilaktyczne, w celu ograniczenia lub eliminacji stanu zagrożenia siarkowodorem. W artykule przedstawiono przedmiotowe działania, prowadzone w kopalni Polkowice-Sieroszowice, na przykładzie oddziału G-63 oraz je scharakteryzowano. Skoncentrowano się na zagadnieniach rozpoznania zagrożenia gazami szkodliwymi dla zdrowia poprzez prognozę regionalną, lokalną i bieżącą. Przedstawiono metody ochrony załogi przed szkodliwym działaniem siarkowodoru oraz działania wentylacyjne w tym zakresie, przy jednoczesnym omówieniu sposobu izolowania stref zagrożenia siarkowodorem. Słowa kluczowe: bezpieczeństwo pracy w górnictwie, mikroklimat, środki ochrony osobistej Prevention of hydrogen sulfide hazard on the example of G-63 division in Polkowice-Sieroszowice Mine Abstract Hydrogen sulfide is a colourless gas of a specific smell of rotten eggs, perceptible in very low concentration. Recently in Polkowice-Sieroszowice and Rudna mines phenomena of hydrogen sulfide emanation from the rock mass has occurred, creating gas hazard. To ensure safety conditions of work and protection of miners health, some prevention measures to decrease or eliminate of this hazard were undertaken by the mines. In the paper prevention measures undertaken in division G-63 of Polkowice-Sieroszowice mine are presented and described. Authors focused on the issue of recognition of the hazard from harmful gases by regional, local and current predictions. Also means of personal safety for the crew were presented. Actions in the field of ventilation with the ways of insulation from the danger zones are discussed as well. Key words: safety in mining, microclimate, means of personal safety Wprowadzenie Przy rozpatrywaniu zagadnienia występowania zagrożenia siarkowodorem jednym z istotnych elementów profilaktyki jest właściwe rozpoznanie i zlokalizowanie miejsca występowania emanacji tego gazu z górotworu. Siarkowodór nieorganiczny związek chemiczny w warunkach normalnych jest gazem bezbarwnym, którego

44 charakterystyczny zapach zgniłych jaj jest wyczuwalny w bardzo niewielkich stężeniach, przy czym próg wyczuwalności w powietrzu wynosi od 0,0007 do 0,2 mg/m 3. Powyżej 4 mg/m 3 zapach jest odczuwany jako bardzo silny. Przy stężeniach przekraczających 300 mg/m 3 staje się niewyczuwalny z powodu natychmiastowego porażenia nerwu węchowego [5]. W kopalni Polkowice-Sieroszowice emanacje siarkowodoru występują głównie w oddziale górniczym G-63. Podwyższone stężenia tego gazu stwierdzane są lokalnie w wolnych przekrojach wyrobisk, znajdujących się przede wszystkim w strefach przyzrobowych oraz w samej przestrzeni zrobowej. Identyfikowanymi źródłami siarkowodoru są mikro- i makroskopowe spękania odsłoniętych płaszczyzn skał stropowych oraz otwory zabudowanej obudowy kotwowej, poprzez które, w wyniku eksploatacyjnego odkształcenia i degradacji warstw stropowych, następuje uwalnianie gazów ze spągowych warstw anhydrytowych, zalegających stosunkowo blisko nad złożem, do wolnych przestrzeni wyrobisk [6]. Aktywna profilaktyka, w celu ograniczenia lub likwidacji zagrożenia występowania zwiększonych stężeń siarkowodoru, realizowana jest głównie poprzez działania wentylacyjne, wyposażanie pracowników w stosowny sprzęt ochronny, odprowadzenie gazów szkodliwych specjalnie do tego celu przystosowanymi rurociągami bądź wyizolowanymi wyrobiskami górniczymi bezpośrednio do szybów wydechowych. 1. Rozpoznanie zagrożenia gazami szkodliwymi dla zdrowia Podstawą obecnie stosowanej profilaktyki gazowej oddziału górniczego G-63 kopalni Polkowice-Sieroszowice jest rozpoznanie geologiczne, prowadzone w oparciu o Wytyczne prognozowania, rozpoznania zagrożenia gazowego i możliwości wystąpienia zjawisk gazogeodynamicznych oraz prowadzenia robót udostępniających i przygotowawczych w warunkach występowania tych zagrożeń w O/ZG Polkowice- -Sieroszowice oraz Wytyczne rozpoznania zagrożenia gazowego i możliwości wystąpienia zjawisk gazogeodynamicznych oraz prowadzenia robót udostępniających i przygotowawczych w warunkach występowania tych zagrożeń w zakładach górniczych KGHM Polska Miedź S.A. wraz z załącznikami [6]. Wymienione wytyczne określają sposób prowadzenia rozpoznania zagrożenia gazowego poprzez wykonywanie prognoz: regionalnej, lokalnej i bieżącej oraz definiują, w oparciu o wymienione prognozy, zasady prowadzenia robót wiertniczych i prowadzenia robót górniczych w warunkach możliwości wystąpienia zagrożenia gazowego. Prognoza regionalna wykonywana jest w oparciu o analizę map strukturalno- -tektonicznych stropu piaskowca, strukturalnych stropu serii węglanowej, miąższości serii węglanowej, strukturalnej spągu soli oraz z wykorzystaniem danych z otworów wiertniczych, odwierconych z powierzchni i z długich otworów wiertniczych wierconych z poziomu wyrobisk. W przypadku stwierdzenia występowania struktur geologicznych, w których mogą być zgromadzone gazy, lub w razie stwierdzenia objawów gazowych w próbach z degazacji rdzeni, w próbach powietrza pobranych z otworu lub z wolnego przekroju wyrobiska sporządzana jest prognoza lokalna. Prognoza lokalna wykonywana jest na bazie rozpoznania regionalnego. Po analizie przesłanek geologicznych prowadzone jest z wyrobisk górniczych rozpoznanie otworami wiertniczymi potencjalnych miejsc występowania zagrożenia gazo-

45 wego. W przypadku stwierdzenia objawów gazowych o wartości 0,5 dopuszczalnych sporządzana jest prognoza bieżąca. Prognoza bieżąca po sporządzeniu prognozy lokalnej, w efekcie której stwierdzono występowanie zagrożenia gazowego, wykonywana jest geologiczna prognoza bieżąca. Na jej podstawie oraz w przypadku przekroczenia wartości dopuszczalnych stężeń gazów kopalniany zespół opiniodawczy do spraw rozpoznawania i zwalczania zagrożenia gazowego i zagrożenia wyrzutami gazów i skał określa szczegółowe zasady wykonywania robót górniczych w warunkach stwierdzonego zagrożenia gazowego. Na podstawie dotychczasowych doświadczeń oraz wyników prowadzonych badań opracowano dwie koncepcje występowania głównych źródeł pierwotnej akumulacji gazów szkodliwych, w tym siarkowodoru w złożach rud miedzi [4], a mianowicie: pierwsza koncepcja wiąże obserwowane wypływy siarkowodoru w wyrobiskach przestrzeni zrobowej z warstwami stropowymi anhydrytu dolnego, zalegającymi w bliskiej odległości od stropu łupka miedzionośnego, przy czym wydzielanie siarkowodoru do zrobów może występować lokalnie, najprawdopodobniej bezpośrednio za linią frontu eksploatacyjnego. Dotychczasowe obserwacje wskazują, że objawy występowania siarkowodoru w anhydrytach związane są zazwyczaj z anhydrytami smugowanymi, soczewkowatymi i gruzłowatymi, a kolektorem siarkowodoru są przede wszystkim fragmenty bogate w substancję węglanowo-ilastą i bitumiczną. Siarkowodór w anhydrytach jest zaokludowany, jego zawartość jest zmienna i tylko w pojedynczych próbkach podwyższona, nie wykazując związku z innymi gazami, jak również z porowatością; druga koncepcja natomiast główne źródło akumulacji i dopływu siarkowodoru upatruje w warstwach dolomitu głównego. W koncepcji tej założono, że dolomit główny jako warstwa o dobrych parametrach zbiornikowych może kumulować znaczne ilości gazu, w tym siarkowodoru, o stosunkowo wysokich ciśnieniach złożowych, a przez to stanowi szczególne zagrożenie znaczącymi emanacjami tego gazu w sprzyjających warunkach górniczo- -geologicznych, co jest obserwowane w rejonach zrobów poeksploatacyjnych. Wydaje się, że takiego potencjału nie mają warstwy anhydrytów. Koncepcja ta wymaga sprawdzenia i dalszych badań, dlatego na obecnym etapie nie jest możliwe nawet wstępne wyznaczenie miejsc akumulacji siarkowodoru w dolomicie głównym. Warunkiem zaistnienia dopływu siarkowodoru z warstw dolomitu głównego jest powstanie spękań ponad dokonaną eksploatacją górniczą, sięgających spągu tej warstwy. W dotychczasowych pracach wysokość strefy spękań określana jest w dość szerokim przedziale, tj. 8-9 wysokości wyrobisk eksploatacyjnych do ok. 200 m. Należy przy tym zauważyć, że w zasięgu wpływów eksploatacji zawałowej ponad strefą widocznych spękań może występować sieć mikrospękań, stanowiących drogi migracji dla gazu. Dla wstępnej oceny możliwości migracji siarkowodoru z wyżej zalegających warstw dolomitu głównego obszary określono na podstawie map izolinii między spągiem dolomitu głównego a spągiem wapienia cechsztyńskiego (w uproszczeniu strop wyrobisk poeksploatacyjnych), jako potencjalnie zagrożone objęciem drenażem warstw dolomitu głównego. Na podstawie powyższego określono obszary potencjalnie zagrożone znacznymi emanacjami siarkowodoru w rejonach zrobów poeksploatacyjnych. Obszary te występują w północnej części złóż: Sieroszowice

46 i Rudna. W obrębie złoża Głogów Głęboki Przemysłowy odległość pomiędzy spągiem dolomitu głównego a spągiem wapienia cechsztyńskiego znacznie wzrasta, co zmniejsza ryzyko zagrożenia siarkowodorem ze strony dolomitu głównego. Przedstawioną powyżej ocenę zagrożenia siarkowodorem, opartą na hipotezie występowania głównego źródła dopływu siarkowodoru z warstw dolomitu głównego, należy traktować z dużą ostrożnością, a jej założenia wymagają dalszych badań i weryfikacji. Należy pamiętać, że sposób kierowania stropem z ugięciem, stosowany podczas eksploatacji w kopalniach rud miedzi, w znaczący sposób zmniejsza destrukcję warstw stropowych, jak to ma miejsce podczas prowadzenia eksploatacji z zawałem stropu [1]. Dla robót górniczych prowadzonych w oddziale G-63 geologiczne rozpoznanie zagrożenia gazowego prowadzi się poprzez: wykonywanie otworu lub otworów wyprzedzających kierunkowych lub skośnych na odległość od 150 m do 250 m przed frontami eksploatacyjnymi; wykonywanie w odległości od 150 m do 250 m od otworu odwierconego z powierzchni, w którym stwierdzone były objawy gazowe, otworu lub otworów w jego kierunku, w celu rozpoznania ewentualnego zagrożenia gazowego w poziomie wyrobisk górniczych; rozpoznawanie właściwości petrofizycznych skał za pomocą otworów pionowych do spągu soli w siatce 500 m x 500 m; realizację wierceń z wyrobisk przygotowawczych, zgodnie z geologiczną prognozą regionalną i lokalną zagrożenia gazowego. Aktualnie rozpoznawanie zagrożenia gazowego oraz podejmowane działania profilaktyczne prowadzone są również na podstawie wniosków zawartych w pracy [3], z których najważniejsze dla oddziału G-63 to: a) występowanie gazów w obrębie złóż rud miedzi południowej części monokliny przedsudeckiej stwierdzane jest we wszystkich formacjach skalnych znajdujących się w bezpośrednim zasięgu robót górniczych, to jest utworach czerwonego spągowca (P1), wapienia cechsztyńskiego (Ca1), anhydrytów (A1di A1g) oraz soli kamiennej (Na1), a także w zalegającym powyżej dolomicie głównym (Ca2); b) poszczególne serie skalne występujące w otoczeniu złóż rud miedzi, to jest piaskowce czerwonego spągowca (P1) występujące w spągu złoża oraz występujące w części stropowej kolejno: serie skał węglanowych wapienia podstawowego (Ca1), anhydryty, dolny i górny (A1d i A1g), a także sól (Na1), mogą stanowić lokalnie odrębne strefy akumulacji gazów; c) w utworach czerwonego spągowca (P1) i wapienia cechsztyńskiego (Ca1), potencjalne akumulacje, związane głównie z pułapkami typu strukturalnego, należy wiązać ze: strefami tektoniki o różnym stopniu rozwoju, w tym z uskokami oraz deformacjami o charakterze fleksur i antyklin, a także towarzyszącymi im lokalnymi strefami spękań, strefami występowania elewacji w stropie piaskowców czerwonego spągowca, wykazujących podwyższone parametry kolektorskie, budową i rozkładem miąższości skał węglanowych (Ca1), a zwłaszcza strefą niskich miąższości skał węglanowych, oszacowaną na poziomie poniżej 25 m, związaną z facją przedbarierową, strefami brachyantyklinalnymi skał węglanowych,

47 lokalnymi strefami porowo-szczelinowymi, występującymi w różnych poziomach skał węglanowych, zwłaszcza w sąsiedztwie kontaktu z anhydrytami (potwierdzona w większości przypadków obecność gazu miała miejsce w odległości 2-4 m od spągu anhydrytów), strefą występowania soli kamiennej (Na1), stanowiącej wraz z anhydrytami poziom izolujący; d) nagromadzenia siarkowodoru obserwowane są przede wszystkim w zrobach poeksploatacyjnych, to jest w rejonach stosowania komorowo-filarowego systemu eksploatacji z ugięciem stropu. System ten stosowany w oddziale G-63, w którym stwierdzono największe emanacje siarkowodoru, powoduje powstawanie spękań skał stropowych w fazie likwidacji przestrzeni wybranej. Spękania te mogą stanowić drogi emanacji siarkowodoru z nadległych skał stropowych do stref likwidowanych wyrobisk; e) ze względu na powszechność występowania siarkowodoru należy się liczyć z jego emanacjami z różnych warstw równocześnie, szczególnie przy rozległych wpływach eksploatacji górniczej. Dotychczas wykonane w oddziale G-63 roboty wiertnicze, prace geologiczne oraz badania laboratoryjne, stwierdzają występowanie stref w górotworze o podwyższonym nasyceniu gazami szkodliwymi (głównie siarkowodorem), pochodzenia naturalnego. Strefy te występują bezpośrednio nad pokładem złoża rud miedzi, na kontakcie skał węglanowych i spągu anhydrytu dolnego. W otworach wyprzedzających kierunkowych, wykonywanych przed frontem eksploatacyjnym, nie stwierdza się występowania gazów. W otworach przewiercających skały warstw stropowych stwierdza się jedynie pulsacyjne laminarne wypływy gazów, przechodzące w krótkim czasie w emanacje gazowe, których ilość jest trudno mierzalna, ponieważ szybko zanikają. 1.1. Ochrona załogi przed szkodliwymi działaniem siarkowodoru Zgodnie z zarządzeniem kierownika ruchu Zakładu Górniczego O/ZG Polkowice- -Sieroszowice w sprawie: rozpoznawania i postępowania w przypadku wystąpienia zagrożenia gazowego i potencjalnych zjawisk gazogeodynamicznych, każdy pracownik, wykonujący roboty górnicze oraz osoba przebywająca w oddziale górniczym G-63, ma bezwzględny obowiązek używania przeciwgazowych środków ochrony indywidualnej [7]. Podstawową ochronę w tym zakresie stanowi półmaska przeciwgazowa z filtropochłaniaczem wraz z goglami ochronnymi. Obecnie stosowane są trzy typy półmasek przeciwgazowych (rys. 1), a mianowicie: półmaska z dwoma elementami oczyszczającymi serii 6000 firmy 3M, półmaski dwufiltrowe typu X-plore 3300 i X-plore 3500 firmy Dräger, półmaska jednofiltrowa serii SR z pochłaniaczem SR 315, firmy Sundstrőm. Wszystkie stosowane typy półmasek przeciwgazowych spełniają podstawowe wymogi bezpieczeństwa, określone w Dyrektywie Europejskiej 89/686/EWG, oraz zalecenia normy EN 14387:2004. Na podstawie przytoczonej normy filtropochłaniacze zastosowane w wymienionych półmaskach chronią przed występowaniem zarówno zagrożenia gazami pojedynczymi, jak i przy występowaniu mieszanin oraz spełniają jednoczesną ochronę typu A, B i E, co przedstawiono w tabeli 1.

48 a) firmy 3M b) firmy Dräger c) firmy Sundstrőm Rys.1. Półmaski z filtropochłaniaczami Tabela 1. Oznaczenia typu filtropochłaniacza Typ filtra Kolor Rodzaj zanieczyszczeń A Brązowy gazy i opary pochodzenia organicznego o temperaturze wrzenia > 65 C B E Szary Żółty nieorganiczne gazy i opary (np. chlor, siarkowodór, cyjanowodór) z wyjątkiem tlenku węgla kwaśne gazy i opary (np. dwutlenek siarki, fluorowodór, chlorowodór) Zapewnienie bezpieczeństwa pracownikom używającym półmasek polega również na określeniu czasu ochronnego działania filtropochłaniaczy. Jednakże ze względu na fakt, że praktycznie jest to trudne do określenia, gdyż czas ten zależy głównie od pojemności sorpcyjnej, wentylacji minutowej płuc, stężenia czynnika szkodliwego, temperatury powietrza i wilgotności powietrza, przyjmuje się, że bezpieczne używanie tych środków ochrony jest możliwe do powstania tzw. czasu przebicia filtropochłaniacza, za który uważa się moment pojawienia smaku, zapachu lub podrażnienia. Według specyfikacji technicznych jedynie w przypadku pochłaniacza SR 315 ABE1 firmy Sundstrőm określono czas efektywnego działania, który dla stężenia 1000 ppm siarkowodoru, wynosi odpowiednio: > 60 min, przy ciśnieniu 50 Pa i przepływie 30 l/min, 40 min, przy ciśnieniu 100 Pa i tym samym przepływie 30 l/min. Przyjmuje się również, że stosowane półmaski przeciwgazowe z filtropochłaniaczami nie spełniają swojej funkcji w przypadku: 1. uszkodzenia któregokolwiek z elementów, 2. spadku lub zatrzymania przepływu powietrza do części twarzowej, 3. utrudnionego oddychania lub wzrostu oporów oddychania, 4. występowania zawrotów głowy lub innych dolegliwości. Z wymienionymi półmaskami przeciwgazowymi stosowane są gogle: serii 2890, firmy 3M, serii X-pect 8500, firmy Dräger. Mając na względzie poprawę warunków pracy załogi przy stosowaniu środków ochrony osobistej, wprowadzono również przeciwgazowe maski pełnotwarzowe, typu SR200 firmy Sundstrőm (rys. 2a) i typu X-plore 6000 firmy Dräger (rys. 2b), które są maskami z jednym filtrem przednim, oraz typu X-plore 5500 (rys. 2c), która jest maską dwufiltrową, również firmy Dräger.

49 a) firmy Sundstrőm b) firmy Dräger c) firmy Dräger Rys. 2. Przeciwgazowe maski pełnotwarzowe Wraz ze stosowaniem wymienionych środków ochrony indywidualnej, każdy pracownik przebywający w zagrożonym rejonie powinien bezwzględnie mieć indywidualny przyrząd do pomiaru stężeń siarkowodoru. W związku z powyższym, wszyscy pracownicy oddziału G-63 zostali wyposażeni w elektroniczne analizatory typu PAC 5500 firmy Dräger, natomiast osoby dozoru górniczego i służby oddziałów pomocniczych wyposażono w przyrządy wielogazowe typu X-am 5000. Wymienione powyżej działania mają przede wszystkim na celu zapewnienie bezpieczeństwa załogi pracującej w zagrożonym rejonie, a dodatkowo prowadzenie ciągłego monitoringu występujących stężeń siarkowodoru. Niezależnie od ustawionych na przyrządach progów alarmowych każdy pracownik, po stwierdzeniu stężenia 7 ppm, ma obowiązek bezwarunkowego wycofania się z miejsca wystąpienia zagrożenia w miejsce bezpieczne. W celu wyeliminowania wpływu zagrożenia gazowego na pracowników oddziału zlokalizowane źródła emanacji siarkowodoru pokrywa się chemicznym środkiem doszczelniającym typu TEKFLEX (fot. 1) oraz wypełnia pianą typu GEOFIX (fot. 2). a) doszczelnienie powierzchni stropu b) doszczelnienie tamy wentylacyjnej Fot. 1. Zastosowanie środka doszczelniającego tupu TEKFLEX

50 a) doszczelnienie otworów kotwowych b) doszczelnienie spękań górotworu Fot. 2. Zastosowanie środka doszczelniającego tupu GEOFIX Ze względu na dotychczasowe obserwacje emanacji gazów w podziemnych wyrobiskach górniczych stosowana profilaktyka zapewnia bezpieczeństwo dołowej załogi górniczej. Jednakże na bieżąco poszukuje się również sposobów, metod i środków ochrony załogi, eliminując szkodliwe związki chemiczne, występujące w atmosferze kopalnianej. W zakresie podjętych działań ochrony pracowników zatrudnionych w oddziale G-63, w którym występuje zagrożenie gazowe, systematycznie przeprowadza się cykl dodatkowych badań medycznych, w aspekcie oddziaływania siarkowodoru na organizm ludzki. Badania medyczne pracowników odbywają się zarówno w punkcie pielęgniarskim na szybie rejonu SG, bezpośrednio po ich wyjeździe na powierzchnię, jak i we wskazanych jednostkach medycznych, wyposażonych w specjalistyczne laboratoria. Wyniki opracowanych raportów z przeprowadzonych badań nie wskazują na negatywny wpływ warunków składu atmosfery na zdrowie pracowników. 2. Wentylacyjne aspekty ograniczenia zagrożenia siarkowodorem Obecnie oddział górniczy G-63 prowadzi roboty wydobywcze w dwóch piętrach, a mianowicie w piętrze F1W i F2W (rys. 5). Do przewietrzenia robót górniczych, prowadzonych na froncie eksploatacyjnym piętra F1W, powietrze doprowadzane jest od szybu wdechowego SG-1 z podszybia poziomu 1027 m. W dalszej kolejności transportowane jest chodnikami wentylacyjnymi 1 i 2, następnie chodnikami dojazdowymi 1 i 2 do chodników wentylacyjnych F-2 i F-3, skąd ostatecznie na przycaliznowy pas frontu eksploatacyjnego. Wydatek dostarczanego powietrza wynosi 3600 m3/min. Dodatkowa ilość powietrza, o wydatku 1200 m3/min, transportowana jest od chodników dojazdowych 1 i 2 do upadowej F-99, skąd komorami K-30 K-32 również transportowana jest do pasów przycaliznowych. Po przewietrzeniu frontu powietrze odprowadzane jest wzdłuż zrobów komorami K-51 i K-52 do upadowych F-3a i F-3b, którymi transportowane jest bezpośrednio do szybu wydechowego SG-2.

51 Rys. 3. Wycinek mapy w naniesionym rozpływem powietrza Powietrze dolotowe do piętra F2W oddziału G-63 (rys. 5) dostarczane jest od szybu SG-1 z poziomu 1050 m, następnie upadowymi F-5 F-7 i chodnikiem T-357W/1 oraz pochylnią F-357/3 bezpośrednio na front eksploatacyjny. Wydatek powietrza, dopływający ww. wymienionymi wyrobiskami, wynosi około 5400 m3/min. Dodatkowo, do frontu eksploatacyjnego powietrze o wydatku około 600 m3/min dostarczane jest upadową F-5, następnie komorą K-27 i chodnikiem T-336. Powietrze wylotowe odprowadzane jest komorą K-8, komorami K-51 i K-52, należącymi do piętra F1W oddziału G-63, dalej upadowymi F-3a i F-3b do lunety wentylacyjnej, którą płynie bezpośrednio do szybu wentylacyjnego SG-2.

52 Obecny sposób przewietrzania pięter F1W i F2W zapewnia stabilność niezależnego prądu powietrza. Jednym z kryteriów, świadczących o stabilności prądu powietrza dostarczanego do rejonu wentylacyjnego, jest określenie jego mocy [2]: N = R V (1) gdzie: N dyssypacja mocy użytecznej w bocznicy sieci wentylacyjnej, W, R opór aerodynamiczny tejże bocznicy, (kg)/(m 7 ), V strumień objętości powietrza, m 3 /s. Przy czym przyjmuje się, że gdy: a) N fu 6000 W prąd powietrza bardzo mocny, b) 1200 W N fu < 6000 W prąd powietrza mocny, c) 240 W N fu < 1200 W prąd powietrza średni, d) 50 W N fu < 240 W prąd powietrza słaby, e) 0W N fu < 50 W prąd powietrza bardzo słaby. Dla oceny stabilności prądu powietrza doprowadzonego do jednego z pięter oddziału G-63, tj. piętra F2W, przeprowadzono pomiary kwartalne wydatku powietrza wlotowego. Na podstawie uzyskanych wyników określono moce prądu powietrza wlotowego, które zestawiono w tabeli 2. Tabela 2. Zestawienie wydatków powietrza oraz mocy prądu powietrza dla piętra F2W Strumień powietrza N Lp. Data pomiaru V Moc prądu m 3 /s W 1. I kwartał 2012 r. 63,4 2548 Mocny 2. II kwartał 2012 r. 64,8 2720 Mocny 3. III kwartał 2012 r. 66,4 2927 Mocny 4. IV kwartał 2012 r. 65,6 2823 Mocny 5. I kwartał 2013 r. 90,4 7387 Bardzo mocny 6. II kwartał 2013 r. 89,8 7241 Bardzo mocny 7. III kwartał 2013 r. 88,0 6812 Bardzo mocny 8. IV kwartał 2013 r. 87,0 6582 Bardzo mocny 9. I kwartał 2014 r. 90,1 7312 Bardzo mocny W celu zapewnienia bezpieczeństwa załodze górniczej, w aspekcie stabilności kierunku przepływu powietrza, w wyrobiskach zagrożonych możliwością wystąpienia gazów szkodliwych doprowadzane wydatki powietrza powinny być zakwalifikowane jako prądy bardzo mocne, mocne i średnie. Wydatki powietrza doprowadzanego do oddziału G-63 zapewniają zakwalifikowanie prądów powietrza jako bardzo mocne i mocne. Dodatkowo można zapewnić stabilność kierunku przepływu powietrza przez odpowiednie działania wentylacyjne (np. zamknięcie tam odpowiednio zlokalizowanych w wyrobiskach), w wyniku czego wydatek doprowadzanego powietrza można zwiększyć o około 1500 m 3 /min na każde z pięter oddziału G-63. Kopalnia na przełomie I/II kwartału 2013 r. zmieniła sposób dostarczania powietrza na front eksploatacyjny piętra F2W. Zamiast dotychczasowego przewietrzania

53 od upadowej F-5, poprzez K-8 (wzdłuż otamowanych zrobów, gdzie następowały straty powietrza), wykonano bezpośrednie zbicia do frontu eksploatacyjnego z chodnika T-357W/1. Taki system przewietrzania spowodował zwiększenie wydatku powietrza o 50% w stosunku do roku 2012 r. i zapewnienie mocy prądu jako bardzo mocny, zapewniającego stabilność przepływu w przypadku zaburzeń, spowodowanych np. pożarem lub wstrząsem górotworu z emanacjami gazowymi. 3. Wyznaczanie i izolowanie stref zagrożenia w rejonie oddziału G-63 Emanacje gazowe, stwierdzane w oddziale G-63, występują przede wszystkim z odsłoniętych płaszczyzn stropu, z otworów zabudowanej obudowy kotwowej czy niewielkich spękań warstw stropowych i ociosowych w strefach zrobowych. Nie stwierdza się obecności stężeń siarkowodoru w strefach przycaliznowych, tj. bezpośrednio w przodkach eksploatacyjnych, przy prowadzeniu robót górniczych. Jednakże stężenia siarkowodoru na pasie przycaliznowym mogą zaistnieć po wystąpieniu wstrząsów wysokoenergetycznych. Analizę i wyznaczanie stref niebezpiecznych przeprowadza się na podstawie dotychczasowych doświadczeń, związanych z występowaniem objawów gazowych, przy uwzględnieniu stosowanego systemu eksploatacji, a głównie postępu frontu i sposobu likwidacji przestrzeni wybranej oraz sposobu przewietrzania. Dozór górniczy oddziału oznakowuje wyznaczone strefy żółtymi tablicami z napisem: Uwaga! Możliwość wystąpienia zwiększonych zawartości gazów szkodliwych. Pracownicy przebywający w takich strefach muszą mieć świadomość możliwości nagłego wystąpienia emanacji gazowych, które mogą spowodować wystąpienie stężenia siarkowodoru o wartościach przekraczających dopuszczalne. Ze względu na dotychczasowe obserwacje emanacji gazów w podziemnych wyrobiskach górniczych, tj. ich miejsca, przebiegu i częstotliwości występowania, stosowana jest profilaktyka, zapewniająca bezpieczeństwo dołowej załogi górniczej głównie poprzez szczelne tamowanie przestrzeni, z której stwierdzono emanacje, przy jednoczesnym zastosowaniu środków chemicznych do uszczelniania tam i izolowania górotworu. Z wyizolowanych w ten sposób przestrzeni, w sposób całkowicie kontrolowany, np. z wykorzystaniem rurociągów czy specjalnie przygotowanych tuneli wentylacyjnych, można odprowadzić gaz bezpośrednio do szybu wydechowego. Izolowanie stref stwierdzonych emanacji gazowych wykonuje się przy założeniach: niedopuszczenia do przekroczeń dopuszczalnych zawartości siarkowodoru w powietrzu kopalnianym powyżej 7 ppm w miejscu pracy zatrudnionej załogi; prowadzenia takiego sposobu przewietrzania, aby odsunąć przepływ gazów zrobowych z siarkowodorem od frontu eksploatacyjnego w kierunku wyrobisk wentylacyjnych, w których nie prowadzi się ruchu załogi; prowadzenia regulacji rozpływów powietrza w rejonie eksploatacyjnym, tak by wymusić wymagany kierunek przepływu powietrza wraz z wydzielającym się siarkowodorem przez zroby poeksploatacyjne; projektowania takiego sposobu przewietrzania rejonów zagrożonych siarkowodorem, aby zminimalizować długość drogi odprowadzenia zużytego powietrza z rejonów zagrożonych siarkowodorem do szybu wydechowego. Uwzględniając powyższe założenia, wszelkie emanacje gazowe stwierdzone w omawianym oddziale eksploatacyjnym zostały szczelnie wyizolowane dzięki za-

54 budowie tam wentylacyjnych pełnych i murowanych na urobku. Gazy szkodliwe ze zlokalizowanych emanacji są odprowadzane do specjalnie wydzielonych i szczelnie otamowanych wyrobisk górniczych, stanowiących tzw. tunele wentylacyjne, którymi odprowadzane są bezpośrednio do szybu wentylacyjnego SG-2. Przepływ powietrza wraz z gazami, wymienionymi tunelami wentylacyjnymi, odbywa się poprzez wytwarzaną depresję powierzchniowej stacji wentylatorów głównego przewietrzania, zabudowanej przy szybie SG-2. Kontroli stateczności i drożności tuneli wentylacyjnych dokonują zastępy ratownicze, z rygorami jak dla akcji ratowniczej w trudnych warunkach cieplnych, na podstawie zarządzenia kierownika ruchu Zakładu Górniczego O/ZG Polkowice-Sieroszowice w sprawie kontroli drożności i stateczności wyrobisk górniczych. Podsumowanie Przy obecnym stanie wiedzy, zdobytym doświadczeniu w zakresie rozpoznania zagrożenia gazami pochodzenia naturalnego jego umiejscowienia w określonej warstwie litologicznej, jak również dynamiki emanacji gazu do powietrza kopalnianego, stosowane w kopalni Polkowice-Sieroszowice, w oddziale G-63, rozwiązania w zwalczaniu zagrożenia siarkowodorem można uznać za właściwe w zakresie pasywnej i aktywnej profilaktyki, odnoszącej się do sfery technicznej, organizacyjnej i pracowniczej, a szczególnie zdrowotnej zatrudnionych pracowników, zarówno w odniesieniu do normalnego stanu pracy sieci wentylacyjnej, jak i w przypadku zaistnienia wysokoenergetycznego wstrząsu sejsmicznego. Kopalnia w swojej działalności profilaktycznej wykorzystała wszystkie możliwe i dostępne dla górnictwa podziemnego, istniejące w przemyśle światowym, środki ochrony indywidualnej pracowników, jak również kontroli środowiska pracy dla zapewnienia bezpieczeństwa pracy, a szczególnie bezpieczeństwa zdrowotnego zatrudnionych pracowników w oddziale G-63. Za istotne i znaczące działania kopalni w zapewnieniu bezpieczeństwa pracy w przypadku wystąpienia zagrożenia gazowego należy uznać między innymi: obligatoryjny nakaz stosowania środków ochrony dróg oddechowych i oczu, wprowadzenie monitoringu indywidualnymi przyrządami pomiarowymi stężeń siarkowodoru, stosowanie podwójnego monitoringu stacjonarnego w określonych miejscach rejonu oddziału G-63 wraz z monitoringiem indywidualnym w miejscu pracy pracownika lub grupy pracowników, w uzupełnieniu do ciągłego indywidualnego monitoringu zagrożenia przez pracowników dozór oddziału dodatkowo zobowiązany jest do kontroli stężeń gazów w wolnych przekrojach wyrobisk w miejscach ustalonych przez dozór wyższy Działu ds. Zagrożeń Gazowych i Gazogeodynamicznych oraz dozór wyższy Działu Wentylacji, natychmiastowe wycofanie załogi przy stwierdzeniu w wolnym przekroju wyrobisk stężenia siarkowodoru powyżej 7 ppm, przewietrzanie oddziału bardzo mocnymi i mocnymi prądami powietrza, które zapewniają bezpieczeństwo załogi górniczej w aspekcie stabilności przewietrzania, izolowanie stref stwierdzonych emanacji gazowych szczelnymi tamami wentylacyjnymi.

55 Prowadzone działania profilaktyczne przez O/ZG Polkowice-Sieroszowice przy obecnym stanie wiedzy i rozpoznaniu zagrożenia należy uznać za prawidłowe. Niemniej jednak wystąpienie wysokoenergetycznego wstrząsu sejsmicznego może spowodować zaburzenia w procesie przewietrzania. Dla zabezpieczenia załogi przed wystąpieniem niebezpiecznego stężenia gazu w powietrzu kopalnianym, możliwe jest również przeprowadzenie manewru wentylacyjnego, umożliwiającego zwiększenie strumienia powietrza poprzez zamknięcie w dwóch wiązkach wyrobisk górniczych tam wentylacyjnych. Bibliografia: [1] Danis M., Gola S., Matusz C., 2014, Problemy eksploatacji złoża zagrożonego tąpaniami w warunkach współwystępowania zagrożenia gazowego w ZG Polkowice-Sieroszowice, XXXVII Zimowa Szkoła Mechaniki Górotworu i Geoinżynierii, Wisła Jawornik. [2] Madeja-Strumińska B., Rosiek G., Sikora M., Strumiński A., Urbański J., Turkiewicz W., Wach J., 2000, Problemy bezpieczeństwa, efektywności ekonomicznej oraz optymalizacji przewietrzania oddziałów wydobywczych kopalń rud miedzi, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław. [3] Praca zbiorowa, 2013, Sprawdzenie prawidłowości rozwiązań stosowanych i przewidzianych do stosowania w celu zapewnienia bezpieczeństwa pracowników zatrudnionych w wyrobiskach eksploatacyjnych piętra F2W oddziału G-63 w O/ZG Polkowice- Sieroszowice, KGHM CUPRUM sp. z o.o. CBR, praca niepublikowana, Wrocław. [4] Praca zbiorowa, 2013, Aktualizacja prognozy regionalnej zagrożenia gazowego i gazogeodynamicznego wyrzutami gazów i skał, ze szczególnym uwzględnieniem występowania siarkowodoru i węglowodorów w części złóż Sieroszowice, Rudna oraz Głogów Głęboki Przemysłowy, Stowarzyszenie Naukowe im. Stanisława Staszica, praca niepublikowana, Kraków. [5] Stetkiewicz J., Siarkowodór, 2011, Podstawy i metody oceny środowiska pracy, nr 4(70), Instytut Medycyny Pracy w Łodzi. s. 97-117. [6] Wytyczne Prowadzenia rozpoznania zagrożenia gazowego (pochodzenia naturalnego) oraz prowadzenia robót górniczych (udostępniających, przygotowawczych i eksploatacyjnych) w warunkach tego zagrożenia w zakładach górniczych KGHM Polska Miedź S.A. wraz z załącznikami. [7] Zarządzenia kierownika ruchu Zakładu Górniczego Polkowice-Sieroszowice, niepublikowane, 2013, Kaźmierzów.

56