Volume Issue 2 THE EFFECT OF STRAIN INTENSIFICATION ON THE SINGLE-OPERATION PROCESS OF EXTRUSION OF DEEP-BOTTOMED SLEEVES

Podobne dokumenty
Volume Issue 3 THE THEORETICAL AND EXPERIMENTAL COMPARATIVE ANALYSIS OF NEW METHOD OF EXTRUSION OF DEEP SLEEVES AND INDIRECT EXTRUSION

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

TYRE PYROLYSIS. REDUXCO GENERAL DISTRIBUTOR :: ::

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

WENTYLATORY PROMIENIOWE SINGLE-INLET DRUM BĘBNOWE JEDNOSTRUMIENIOWE CENTRIFUGAL FAN

ROZPRAWY NR 128. Stanis³aw Mroziñski

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

TECHNICAL CATALOGUE WHITEHEART MALLEABLE CAST IRON FITTINGS EE

BIOPHYSICS. Politechnika Łódzka, ul. Żeromskiego 116, Łódź, tel. (042)

DM-ML, DM-FL. Auxiliary Equipment and Accessories. Damper Drives. Dimensions. Descritpion

Cracow University of Economics Poland

NIESTACJONARNY PRZEPŁYW CIEPŁA W TŁOKU DOŁADOWANEGO SILNIKA Z ZAPŁONEM SAMOCZYNNYM

Helena Boguta, klasa 8W, rok szkolny 2018/2019

THE INFLUENCE OF THE ENGINE LOAD ON VALUE AND TEMPERATURE DISTRIBUTION IN THE VALVE SEATS OF TURBO DIESEL ENGINE

INSPECTION METHODS FOR QUALITY CONTROL OF FIBRE METAL LAMINATES IN AEROSPACE COMPONENTS

Nazwa projektu: Kreatywni i innowacyjni uczniowie konkurencyjni na rynku pracy

FREZY PM; END MILLS PM

TR18 INSTALATION MANUAL / INSTRUKCJA MONTAŻU. cart for flat displays

PROCEEDINGS OF THE INSTITUTE OF VEHICLES 2(106)/2016 (12 pt)

G14L LPG toroidal tank

Zarządzanie sieciami telekomunikacyjnymi

BARIERA ANTYKONDENSACYJNA


Patients price acceptance SELECTED FINDINGS

SG-MICRO... SPRĘŻYNY GAZOWE P.103

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

Krytyczne czynniki sukcesu w zarządzaniu projektami

Post low voltage insulators

Lecture 18 Review for Exam 1

Tychy, plan miasta: Skala 1: (Polish Edition)

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

DELTIM Sp. z o.o. S.K.A ul. Rząsawska 30/38; Częstochowa. Bumper bar X-Lander X-Move

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 4 DOI: /v

Typ VFR. Circular flow adjustment dampers for the adjustment of volume flow rates and pressures in supply air and extract air systems

EGARA Adam Małyszko FORS. POLAND - KRAKÓW r

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 4 DOI: /v

ROZPRAWA DOKTORSKA. Model obliczeniowy ogrzewań mikroprzewodowych

Rodzaj obliczeń. Data Nazwa klienta Ref. Napędy z pasami klinowymi normalnoprofilowymi i wąskoprofilowymi 4/16/ :53:55 PM

Typ VFR. Circular flow adjustment dampers for the adjustment of volume flow rates and pressures in supply air and extract air systems

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

Akademia Morska w Szczecinie. Wydział Mechaniczny


Outline of a method for fatigue life determination for selected aircraft s elements

Odpowietrznik / Vent Charakterystyka pracy / Performance characteristic: Wykres ciœnienia wyjœciowego p2 w funkcji ciœnienia steruj¹cego p4 Diagram -


Equipment for ultrasound disintegration of sewage sludge disseminated within the Record Biomap project (Horizon 2020)

Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI

Symulacje numeryczne i modelowanie fizyczne procesów kucia wałów korbowych metodą TR

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

Sargent Opens Sonairte Farmers' Market

European Crime Prevention Award (ECPA) Annex I - new version 2014

Streszczenie rozprawy doktorskiej

Optymalizacja konstrukcji wymiennika ciepła

Revenue Maximization. Sept. 25, 2018

System optymalizacji produkcji energii

Wpływ powłoki Al Si na proces wytwarzania i jakość zgrzewanych aluminiowanych rur stalowych

Medical electronics part 10 Physiological transducers

SYMULACJA TŁOCZENIA ZAKRYWEK KORONKOWYCH SIMULATION OF CROWN CLOSURES FORMING

TRANSPORT W RODZINNYCH GOSPODARSTWACH ROLNYCH

OPTYMALIZACJA PUBLICZNEGO TRANSPORTU ZBIOROWEGO W GMINIE ŚRODA WIELKOPOLSKA

KOMPUTEROWE WSPOMAGANIE PROJEKTOWANIA TECHNOLOGII PROCESU TŁOCZENIA Z WYKORZYSTANIEM SYSTEMU ETA/DYNAFORM 5.8

4. EKSPLOATACJA UKŁADU NAPĘD ZWROTNICOWY ROZJAZD. DEFINICJA SIŁ W UKŁADZIE Siła nastawcza Siła trzymania

PRACE INSTYTUTU ODLEWNICTWA TRANSACTIONS OF FOUNDRY RESEARCH INSTITUTE

COMPUTER SIMULATIONS OF THE HOLES STRAIN BEHAVIOR IN BODIES DURING MACHINING

MaPlan Sp. z O.O. Click here if your download doesn"t start automatically

ANALYSIS OF VOLUME CHANGES OF SELECTED CEREAL GROUND GRAIN IN RESULT OF LOADING*

Raport bieżący: 44/2018 Data: g. 21:03 Skrócona nazwa emitenta: SERINUS ENERGY plc

OpenPoland.net API Documentation

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

APPLICATION. Journal of Machine Construction and Maintenance Problemy eksploatacji QUARTERLY ISSN /2017 (107) p

SZKŁO PIANKOWE JAKO TERMOIZOLACJA PODŁOGI NA GRUNCIE USE OF FOAM GLASS AS A SLAB ON GRADE THERMAL INSULATION

Uniwersytet Medyczny w Łodzi. Wydział Lekarski. Jarosław Woźniak. Rozprawa doktorska

W trzech niezależnych testach frezy z powłoką X tremeblue typu V803 był w każdym przypadku prawie 2 razy bardziej wydajne niż wersja niepowlekana.

POLITECHNIKA WARSZAWSKA. Wydział Zarządzania ROZPRAWA DOKTORSKA. mgr Marcin Chrząścik

Microsystems in Medical Applications Liquid Flow Sensors

SPIS TREŚCI SPIS WAŻNIEJSZYCH OZNACZEŃ WSTĘP KRÓTKA CHARAKTERYSTYKA SEKTORA ENERGETYCZNEGO W POLSCE... 14

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

AKADEMIA MORSKA W SZCZECINIE WYDZIAŁ MECHANICZNY ROZPRAWA DOKTORSKA. mgr inż. Piotr Smurawski

BADANIA WYTRZYMA OŒCI NA ŒCISKANIE PRÓBEK Z TWORZYWA ABS DRUKOWANYCH W TECHNOLOGII FDM

Uszczelnianie profili firmy KLUŚ na przykładzie profilu PDS 4 - ALU / Sealing KLUŚ profiles on example of PDS 4 - ALU profile. Pasek LED / LED strip

SHP / SHP-T Standard and Basic PLUS

poltegor - projekt sp. z o.o.

DOI: / /32/37

DO MONTAŻU POTRZEBNE SĄ DWIE OSOBY! INSTALLATION REQUIRES TWO PEOPLE!

KS-342 IKS-342 Pirometr monochromatyczny podczerwieni KS-342 KS-342 jest wyprodukowany by kontrolować i regulować temperaturę topnienia poprzez bezkon

Wpływ prędkości obrotowej na stan napręŝeń i odkształceń prętów bimetalowych w procesie walcowania na trójwalcowej walcarce skośnej

HAPPY ANIMALS L01 HAPPY ANIMALS L03 HAPPY ANIMALS L05 HAPPY ANIMALS L07

HAPPY ANIMALS L02 HAPPY ANIMALS L04 HAPPY ANIMALS L06 HAPPY ANIMALS L08

S U WA K I K R Z Y W K O W E

Hard-Margin Support Vector Machines

MS Visual Studio 2005 Team Suite - Performance Tool

PUSZKI HERMETYCZNE HERMETIC BOXES

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

QUANTITATIVE AND QUALITATIVE CHARACTERISTICS OF FINGERPRINT BIOMETRIC TEMPLATES

WPLFE. WPLFE Economy Line. The shortest right angle planetary gearbox with flange output shaft and maximum torsional stiffness

Aerodynamics I Compressible flow past an airfoil

Zastosowanie prasowania obwiedniowego do wytwarzania tarczy sprzęgła kłowego wykonanego ze stopu AlMgSi

IDENTYFIKACJA PARAMETRÓW CHARAKTERYZUJĄCYCH OBCIĄŻENIE SEKCJI OBUDOWY ZMECHANIZOWANEJ SPOWODOWANE DYNAMICZNYM ODDZIAŁYWANIEM GÓROTWORU

TURNTABLES Turntables have been created to further increase the efficiency of exchanging containers. These devices are installed next

Transkrypt:

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume 52 27 Issue 2 J. MICHALCZYK, V. DEVYATOV THE EFFECT OF STRAIN INTENSIFICATION ON THE SINGLE-OPERATION PROCESS OF EXTRUSION OF DEEP-BOTTOMED SLEEVES WPŁYW INTENSYFIKACJI ODKSZTAŁCEŃ NA PRZEBIEG JEDNOOPERACYJNEGO PROCESU WYCISKANIA TULEI GŁĘBOKICH Z DNEM In the article the authors present the results of a study on solving the problem occurring in the production of deep steel sleeves (H/d>2.5) from full preforms. The basic problem during the production of deep bottomed sleeves, e.g. during making sleeves by indirect extrusion, is that the punch operates under very difficult conditions (such as high temperature and high unit pressures), which causes a reduction in its lifetime and frequent failures. For this reason, deep sleeves are produced through at least two technological treatments. This involves the necessity of building two technological stands (often using two presses), which considerably increases the cost of production, its labour-consumption and, above all, reduces the productivity. The new method of producing sleeves, proposed by the authors, combines the known and specific pattern of metal flow in the extrusion process, and aims at achieving the following: increasing the lifetime of working tools, increasing the productivity, lowering the production costs, reducing the material losses and decreasing the magnitude of extrusion forces. The method under analysis consists in the simultaneous indirect extrusion and co-extrusion, which results in a semi-finished product in the form of a sleeve with a stem. These are known methods of the plastic working of full preforms. It is these schemes that are applied in the new method as the first stage of producing deep bottomed sleeves. The second stage in the process is a quite specific deformation pattern consisting in the formation of a finished sleeve wall from the stem formed in the first stage. By combining different extrusion schemes, both in the first and in the second stage of the process the strain intensities were increased, and the partitioning of the flowing stream and the change of the metal flow direction caused local temperature increases as a result of strain intensification, which resulted in a drop in the magnitude of forces needed for the single-operation extrusion of deep sleeves. Then, different variants of process rate and degree of deformation resulting from the geometry of the movable ring and its taper angle for four values of temperature were subjected to analysis and their effect on the extrusion force was determined. A preliminary analysis of the process included computer simulations in the FORGE R 2D program. As the model material, steel 45 was used. The process was conducted at different tool speeds: (25, 5, 1, 2, mm/s), at different temperatures: (85, 95, 15, 115 C), for four degrees of deformation: (ε =.3,.4,.5,.75) and for three taper angles of the movable ring: (2 β =, 14, 16 ). Maximum extrusion forces were determined, graphs of the relationship of the extrusion force versus the above-mentioned parameters were plotted, and the maximum values of metal pressures on the punch, as dependent on the parameters analyzed, were determined. Also determined during analysis were the sizes of the zones of local increase in temperatures and their values, which are the result of strain intensification and strain rate intensification, the consequence of which is a reduction in the forces of metal pressure on the tools and a reduction in the extrusion force. With the aim of performing the physical modelling of the process, a testing stand was build, which included a tool, whose operation allows the deformation pattern concerned to be carried out, and a modern testing press, type ZWICK Z1. The model material for the extrusion of sleeves on the testing stand was lead. Extrusion operations were performed in the tool, obtaining sleeves of an overall height of H=15 2 mm, an outer diameter of D z = 5 mm, an inner diameter of D w = 4 mm, a wall thickness of 5 mm and a bottom thickness of 5 mm. Graphs of the relationship of the force P [kn] versus the punch path S [mm] were also plotted and compared with the graphs from computer simulations. Keywords: extrusion, strain intensification, single operation of extrusion W artykule autorzy przedstawili wyniki pracy nad rozwiązywaniem problemu występującego przy produkcji stalowych tulei głębokich (H/d>2,5) z pełnych wstępniaków. Podstawowym problemem podczas produkcji głębokich tulei z dnem np. INSTITUTE OF MODELLING AND AUTOMATION OF PLASTIC WORKING PROCESSES, 42-2 CZĘSTOCHOWA, 19 ARMII KRAJOWEJ STR., POLAND

352 przy wykonywaniu tulei poprzez przeciwbieżne wyciskanie jest to że, stempel pracuje w bardzo trudnych warunkach (wysoka temperatura i wysokie naciski jednostkowe), co powoduje obniżenie jego trwałości i częste uszkodzenia. Z tego powodu głębokie tuleje produkuje się poprzez conajmniej dwa zabiegi technologiczne. Wiąże się to z koniecznością zbudowania dwóch stanowisk technologicznych (często używania dwóch pras), co znacznie podwyższa koszt produkcji, jej pracochłonność a przede wszystkim obniża wydajność. Zaproponowany przez autorów nowy sposób otrzymywania tulei łączy w sobie znany oraz specyficzny schemat płynięcia metalu w procesie wyciskania, a jego celem jest spowodowanie: podwyższenia trwałości pracy narzędzi roboczych, podwyższenia wydajności produkcji, obniżenia jej kosztów, zmniejszenia strat materiału oraz obniżenia wielkości sił wyciskania. Analizowany sposób polega na jednoczesnym przeciwbieżnym i współbieżnym wyciskaniu dającym w efekcie półwyrób w postaci tulei z trzonem. Są to znane sposoby obróbki plastycznej pełnych wstepniaków. Właśnie te schematy są zastosowane w nowym sposobie jako pierwsze stadium otrzymywania głębokich tulei z dnem. Drugie stadium w procesie jest dość specyficznym schematem odkształcenia, polegającym na formowaniu gotowej ścianki tulei z powstałego w pierwszym stadium trzonu. Łączenie ze sobą różnych schematów wyciskania zarówno w pierwszym jak i w drugim stadium procesu pozwoliło na podniesienie intensywności odkształceń a podzielenie strumienia płynięcia i zmiana kierunku płynięcia metalu spowodowały lokalne wzrosty temperatury w wyniku intensyfikacji odkształceń, co wywołało spadek wartości sił potrzebnych do jednooperacyjnego wyciskania głebokich tulei. Następnie poddano analizie rózne warianty prędkości procesu, stopnia odkształcenia wynikającego z geometrii ruchomego pierścienia oraz jego jego kąta stożkowatości dla czterech wartości temperatur i okreslono ich wpływ na siłę wyciskania. Wstępna analiza procesu polegała na komputerowych symulacjach w programie FORGE R 2D. Jako materiał modelowy zastosowano stal 45. Proces przeprowadzano z róznymi prędkościami narzędzi: (25, 5, 1, 2, mm/s), w temperaturach: (85, 95, 15, 115 C), dla czterech stopni odkształcenia: (ε =.3,.4,.5,.75) oraz dla kątów stożkowatości ruchomego pierścienia: (2β =, 14, 16 ). Wyznaczono maksymalne siły wyciskania, wykresy zależności siły wyciskania od wymienionych parametrów oraz maksymalne wartości nacisków metalu na stempel w zależności od analizowanych parametrów. W trakcie analizy określono również wielkości stref wzrostu lokalnych temperatur i ich wartości, które są efektem intensyfikacji odkształceń i intensywności prędkości odkształceń, czego skutkiem jest obniżenie sił nacisku metalu na narzędzia i zmniejszenie siły wyciskania. W celu fizycznego modelowania procesu zbudowano stanowisko badawcze składające się z narzędzia, którego działanie zapewnia przeprowadzenie analizowanego schematu odkształceń oraz nowoczesnej prasy wytrzymałościowej typu ZWICK Z1. Materiałem modelowym do wyciskania tulei w przyrządzie był ołów. W narzędziu przeprowadzono operacje wyciskania otrzymując tuleje o całkowitej wysokości H=15 2 mm, średnicy zewnętrznej D z = 5 mm, średnicy wewnętrznej D w = 4 mm, grubości ścianek 5 mm i grubości dna 5 mm. Otrzymano również wykresy zależności siły P[kN] od drogi stempla S [mm] i porównano je z wykresami z symulacji komputerowych. 1. Introduction Deep sleeves, and particularly bottomed sleeves, are very often elements for the construction of agricultural and aviation machines, and they are also used in the armaments industry for making shells and hydraulic and pneumatic cylinders. A sleeve can be called deep, when the following condition is satisfied: H 2,5D w. The simplest method of producing a deep sleeve is to join the bottom to the cut-off tube length by welding. This technology is, however, burdened with two major drawbacks: the joining of the bottom with the tube length does not assure the uniformity of construction of the element, its tightness and strength in case of being subjected to large loads resulting from high pressures at low temperatures; the cost of making rolled tube in a rolling mill is by approx. 5% higher compared to making the hollow product by the extrusion method.[3] The production of deep sleeves by the indirect extrusion method has a substantial engineering limitation: the longer punch path, the longer is the contact of the stock with the container bottom, which results in large zones of metal over-cooling in the location of forming the sleeve bottom, and hence a great increase in the extrusion force and the unit pressures of metal on the punch. Therefore, the production of deep sleeves is recommended to be effected through at least two technological operations, which requires the use of two production stands, e.g. in the case of drawing of the pre-extruded cup through the tapered drawing die. In that case, inter-operation stock heating-up treatments are also recommended, which substantially increases the production cost and decreases productivity. The proposed method allows the operation of extruding deep-bottomed sleeves in a single technological treatment without having to apply any treatments enhancing the plastic properties of the metal. 2. The essence of the process and assumptions for the theoretical analysis The method under consideration includes two stages that are characterized by the following features:

353 Stage I consists in the utilization of the known scheme of simultaneous indirect extrusion and co-extrusion (also referred to as the mixed or combined extrusion), as a result of which a semi-finished product is obtained, which is a sleeve with a stem. The metal stream flows in two directions, with part of the volume of the deformed preform flowing in the ring space and the remaining part flowing backward to the upper punch to form part of the sleeve already in the first stage. Stage II is the final phase of forming the deep sleeve, which consists essentially in the deformation of the stem formed in the first stage of the process. The ring, sliding down to form a free space in the container, gradually releases the stem metal which, under the action of the punch, is carried towards the recipient s walls and, at the same time, the sleeve wall of the preset thickness of formed. The sleeve bottom thickness depends on the setting of the distance of the punch from the movable ring. A process scheme is illustrated in Fig. 1. Fig. 1. Schematic diagram of the production of sleeves by the mixed extrusion method using a movable ring in the container. 1) preform, 2) container, 3) ring, 4) punch, 5) fixed punch The preform in the form of a cylinder (1) is placed in the container (2) on the sleeve (3) which, in the initial stage, is immovable (Fig. 1a). Under the action of the punch (4), the metal of the preform (1) flows in two directions: into the gap between the walls of the container (2) and the punch (4) and into the opening of the tool sleeve (3). At the moment of contact of the preform metal with the face of the pusher (5) (Fig. 1b) the ring (3) starts moving down in accordance with the movement of the punch (4) and at the same speed. The pusher (5) at this stage is immovable and the punch (4) keeps moving down (Fig. 1b). The process is finished upon reaching the specified distance t between the face of the punch (4) and the pusher (5) equal to the sleeve bottom thickness. Then the blank (6) is removed from the container by the pusher (5) (Fig. 1c) [2]. Figure 2 and 3 shows a sample variant of the shape of tools used for computer simulations. Fig. 2. Dimensions and shape of the punch of an angle of α =9

354 Fig. 3. Dimensions of the movable ring for the degree of deformation in the first process stadium equal to ε =.5;2β=, 14, 16. The assumed process parameters for computer simulations: the inner diameter of the movable ring, D w =41 mm(ε =.3), 38 mm(ε =.4), 35 mm(ε =.5), 3 mm(ε =.75); tool advance speed, V = 25, 5, 1, 2, [mm/s]; initial process temperature, T = 85, 95, 15, 115 [ C], movable ring cone angle, 2β = 12, 14, 16[ C]. The model material was steel 45 in the form of rolled preforms of dimensions of φ48 75 mm. 3. Results of the theoretical process analysis The analyzed sleeve extrusion scheme in the first stage is characterized by the two-directional flow of the stream. Part of the deformed metal flows countercurrently and the other part concurrently along the movable ring channel. Two zones of local temperature increases are formed in the punch head zone and in the zone of metal contact with the ring wall. The temperature of the metal flowing within the ring channel increases, depending on the process speed and the degree of deformation (ring diameter), which has a substantial influence on the course of the second stage of the process, in which the formation of the sleeve from the preformed stem takes place. The characteristic zones of the most intensive strains and the highest local temperature increases, and the effect of the variable parameters of deformation degree and process speed on their formation, for sample variants, are shown, respectively, in Figs. 4, 5 and 6 and Figs. 7 and 8. Fig. 4a. Distribution of temperatures in Stage I for the following Fig. 4b. Distribution of temperatures in Stage II for the following parameters: 2α =9,T = 85 C, V = 25 mm/s,ε =.4,2β= parameters: 2α =9,T = 85 C, V = 25 mm/s,ε =.4,2β=

355 Fig. 5a. Distribution of deformation temperatures in Stage I for the following parameters: 2α =9,T = 85 C, V = 1 mm/s,ε =.4, 2β= Fig. 5b. Distribution of deformation temperatures in Stage II for the following parameters: 2α =9,T = 85 C, V = 1 mm/s,ε =.4, 2β= Fig. 6a. Distribution of deformation temperatures in Stage I for the following parameters: 2α =9,T = 85 C, V = 1 mm/s,ε =.75, 2 β = Fig. 6b. Distribution of temperatures in Stadium II for the following parameters: 2α =9,T = 85 C, V = 1 mm/s,ε =.75, 2 β = Fig. 7a. Distribution of strain intensities in Stage I for the following parameters: 2α =9,T = 85 C, V = 1 mm/s,ε =.4,2β= Fig. 7b. Distribution of strain intensities in Stage II for the following parameters: 2α =9,T = 85 C, V = 1 mm/s,ε =.4,2β=

356 Fig. 8a. Distribution of strain intensities in Stage I for the following parameters: 2α =9,T = 85 C, V = 25 mm/s,ε =.75, 2 β = The most important in this process is to maintain the temperature of the metal flowing into the ring channel at the level T or to increase it. The stem temperature is decisive to the final process conditions. At the minimum speed of 25 mm/s, the stem temperature is uniform and stays at the level of T throughout the process, with small zones of over-cooling of around 2 C in the zone of metal contact with the ring. By increasing the speed fourfold, a temperature increase by about 7 C was obtained, and with mm/s even Fig. 8b. Distribution of strain intensities in Stage II for the following parameters: 2α =9,T = 85 C, V = 25 mm/s,ε =.75, 2 β = by 25 C in the zones, where the greatest deformations occur in the second stage. With the change of the deformation degree, there are no such distinct temperature changes, as in the case of indirect extrusion. This causes a two-directional behaviour of metal stream flow. Figure 9 shows values for the dependence of the maximum unit pressure on the deformation degree and process speed, averaged from Stages I and II, for initial temperatures of T = 85, 95, 15, 115 [ C]. 9 75 Unit pressure of metal on the punch [MPa] 85 75 65 55 45 845 853 815 776 76 698 685 672 66 647 635 615 65 552 55 513 522 476 485,3,4,5,75 deformation degree ε 25 mm/s 5 mm/s 1 mm/s 2 mm/s mm/s Unit pressure of metal on the punch [MPa] 65 55 45 35 66 645 637 629 595 578 566 549 53 515 495 484 465 449 43 414 42 388 39,3,4,5,75 deformation degree ε 25 mm/s 5 mm/s 1 mm/s 2 mm/s mm/s Fig. 9a. Unit pressure of metal on the punch from process Stages I and II for the variable parameters of V, ε and for T = 85 C Fig. 9b. Unit pressure of metal on the punch from process Stages I and II for the variable parameters of V, ε and for T = 95 C Unit pressure of metal on the punch [MPa] 55 45 35 25 57 545 52 47 44 585 555 536 48 455 444 363 32 28 42 385 355 36 29,3,4,5,75 deformation degree ε 25 mm/s 5 mm/s 1 mm/s 2 mm/s mm/s Fig. 9c. Unit pressure of metal on the punch from process Stages I and II for the variable parameters of V, ε and for T = 15 C Unit pressure of metal on the punch [MPa] 44 42 38 36 34 32 28 26 24 22 41 385 36 34 325 42 392 37 344 332 315 33 285 25 233 288 263 245 23,3,4,5,75 deformation dagree ε 25 mm/s 5 mm/s 1 mm/s 2 mm/s mm/s Fig. 9d. Unit pressure of metal on the punch from process Stages I and II for the variable parameters of V, ε and for T = 115 C

357 The average unit pressure from the both stages is the greatest for ε =.3andε=.4. In the first stage, the pressures are comparable for every value of ε. Thelarge stem diameter creates a large surface of friction between the metal and the ring walls and causes the formation of a higher deformation resistance; for ε =.5andε=.75, on the other hand, the degree of cross-section reduction is the principal cause of the increase in pressures on the punch. In the second process stage, the pressures for ε =.3andε=.4 are still high, but in the case of ε =.5 and.75 the small stem diameter causes a drop in the forces and pressures. The small diameter of the formed stem does not require so high force to be used in order to deform the stem and produce the sleeve. Hence, after averaging the maximum pressures from the both stages, it can be seen that the greater ε, the smaller are the pressures on the punch. Figure 1 shows approximated graphs of the relationship of the extrusion force P [kn] as a function of the punch path S [mm] from the computational program Forge R 2D. 9 9 2 1 2 3 4 2 1 2 3 4 1 1 2 3 4 5 6 7 8 9 1 11 12 13 punchpaths,[mm] 85 C[1] 95 C[2] 15 C[3] 115 C[4] 1 1 2 3 4 55 65 75 85 95 15 115 125 135 145 punch path S, [mm] 85 C[1] 95 C[2] 15 C[3] 115 C[4] Fig. 1a. Graphs of the relationship of the extrusion force P [kn] as a function of the punch path S [mm] for: T = 85, 95, 15, 115 [ C], V = 25 [mm/s], 2 β =, ε =.3 Fig. 1b. Graphs of the relationship of the extrusion force P [kn] as a function of the punch path S [mm] for: T = 85, 95, 15, 115 [ C], V = 25 [mm/s], 2 β =, ε =.4 2 1 2 3 4 2 1 2 3 4 1 1 2 35 45 55 65 75 85 95 15 115 125 punch path S, [mm] 85 C[1] 95 C[2] 15 C[3] 115 C[4] 1 1 2 3 45 55 65 75 85 95 15 115 125 punch path S, [mm] 85 C[1] 95 C[2] 15 C[3] 115 C[4] Fig. 1c. Graphs of the relationship of the extrusion force P [kn] as a function of the punch path S [mm] for: T = 85, 95, 15, 115 [ C], V = 25 [mm/s], 2 β =, ε =.5 It can be inferred from the graphs of the force-path relationship shown above that the mildest energy and force conditions occur in the process for the deformation degree of ε =.75. In principle, over the entire punch path under the stationary state of metal flow, a gradual decrease in the extrusion force was noted. This decrease is the most pronounced in the second stage of the process. At ε =.3 and.4, a rapid increase in the force occurs in the second stadium, which is the cause of momentary metal upsetting in the ring chamber. The forces in the second stage are greater also due to the relatively large stem diameter. The maximum extrusion Fig. 1d. Graphs of the relationship of the extrusion force P [kn] as a function of the punch path S [mm] for: T = 85, 95, 15, 115 [ C], V = 25 [mm/s], 2 β =, ε =.75 force which was noted during extruding the sleeve in the movable ring amounted to [kn] in the second process stage for ε =.3. Obtaining such a sleeve by the indirect extrusion method requires the application of a force of approx. 17 kn. 4. The tool for the physical modelling of the process The testing stand for physical modelling is composed of a specially designed extrusion tool and an electromechanical press of a pressure of 1 kn. The model

358 material for extrusion was lead in the form of rolled preforms. Fig. 11 shows a schematic diagram of the tool for the extrusion of the sleeve in the contained with a movable ring. 5. The construction of the tool Fig. 11. The tool for the physical modelling of the process 1. plate, 2. mandrel, 2. connector, 4,5 ring drive, 6. ring, 7. preform, 8. container, 9. punch guide, 1. punch, 11. plate connecting the punch with the columns, 12. columns, 12. tool bracing columns The tool is mounted on the plate (1) and stiffened with the columns. The function of the container bottom is performed by the punch (2). The stock (7) is deformed by the punch (1) which travels up to the specified distance of its head from the ring (6). Then the disk (11), through the columns (12) and the assembly of the elements (3), (4) and (5), causes the ring (6) to move at the same speed as the punch. After the appropriate speed between the punch and the mandrel has been attained, the process will be ended. The graphs of the relationship of the force P [kn] as a function of the path S [mm], as read out during the extrusion tests on the instrument, are shown in Fig. 12. 55 5 45 4 35 3 25 2 15 1 5 15 3 45 6 75 9 15 12 135 punchpaths,[mm] ε=.3 ε=.4 ε=.5 ε=.75 Fig. 12. Graphs of the relationship of the extrusion force P [kn] as a function of the punch path S [mm] for: ε =.3,.4,.5,.75 The graphs for the extrusion of the lead sleeve are shown in Fig. 12. They are very similar in shape to the graphs obtained by computer simulations. For the deformation degree of ε =.75, the same decrease in the forces is visible as in the second stage of the process. Similarly visible are rapid increases in the forces for smaller deformation degrees of ε =.3 and.4, resulting from the upsetting of the lead in the ring channel. 6. Conclusions Comparison of the maximum values of metal pressures on the punch in the order of 11 MPa and the maximum extrusion force on the level of 17 kn for indirect extrusion by the presented extrusion method, where the maximum pressure was 85 MPa and the extrusion force was kn, demonstrates how big a difference does exist in the energy and force parameters. The reduction of the unit pressures on the punch by 1% results in an increase in punch life, as expressed in the number of extrusion cycles, by approx. 25% [1]. In the case analyzed, the difference between the indirect and the presented method of extrusion amounted to 2 25%, which means an increase in punch life by 5 6%. The root cause of this phenomenon is the intensification of strains by the division of the metal flow stream, thus causing local temperature increases and metal flow velocity increases, which, as a consequence, resulted in a reduction in the pressures on the punch and in the force

359 necessary for the single-operation extrusion of deep bottomed sleeves. The constructed tool made it possible to produce a sleeve stamping from the model material and to obtain graphs of the P[kN]-S[mm] relationship, similar in shape to the graphs from computer simulations. This also proves that the model material, that is lead, reflects in this case the flow behaviour of steel 45. REFERENCES [1] Ju. P. A d l e r, E.V. M a r k o v a, Ju.V. G r a - n o v s k i j, Planirovanie ehksperimenta pri poiske optimal nyh uslovij. M. Nauka, (1971) 283 s. [2] V.V D e v j a t o v, Matematicheskoe modelirovanie processov vydavlivanja s uchjotom temperaturnyh effektov. M. Sovershenstovovanie processov OMD. Meżvuzovskii sb. Nauchn. trudov. (1987) r., No 2. [3] V. V. Dewiatow, H. S. Dyja, V. Y. Stolb o w i in., Matematyczne modelowanie i optymalizacja procesów wyciskania Seria Metalurgia nr. 38 ISBN 83-87745-27-8. [4] V. V. D e v j a t o v, J. M i c h a l c z y k, Zgłoszenie o udzielenie patentu na wynalazek w Urzędzie Patentowym RP pt. Sposób wytwarzania głębokich tulei z dnem nr P 366255, Biuletyn UPRP nr 19/5. [5] FORGE2 R SETUP, Instrukcja obsługi, Transwalor S.A. of Sophia-Antipolis, (1996). [6] StatSoft.: Statistica A system description, edited by StatSoft, Cracow (22). Received: 5 February 27.