DIAGNOSTICS HENRYK MADEJ *, PIOTR CZECH ** Application of the histogram of the vibration spectrum of an engine block 83. Key words

Podobne dokumenty
WYKRYWANIE LUZU W UKŁADZIE TŁOK CYLINDER PRZY WYKORZYSTANIU ANALIZY EMD

Wykorzystanie histogramów widma i cepstrum drgań korpusu silnika do budowy wzorców luzu w układzie tłok-cylinder dla klasyfikatora neuronowego RBF

WYKORZYSTANIE ANALIZY WPT I SIECI NEURONOWYCH PNN W DIAGNOZOWANIU ZAKŁÓCEŃ W DOPŁYWIE PALIWA DO CYLINDRÓW

Henryk MADEJ Piotr CZECH. 1. Wprowadzenie. 1. Introduction

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Auditorium classes. Lectures

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

OKREŚLENIE WPŁYWU WYŁĄCZANIA CYLINDRÓW SILNIKA ZI NA ZMIANY SYGNAŁU WIBROAKUSTYCZNEGO SILNIKA

INSPECTION METHODS FOR QUALITY CONTROL OF FIBRE METAL LAMINATES IN AEROSPACE COMPONENTS

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

PROCEEDINGS OF THE INSTITUTE OF VEHICLES 2(106)/2016 (12 pt)

ENTROPY OF DISCRETE WAVELET TRANSFORM AND RADIAL NEURAL NETWORKS AS A DIAGNOSIS TOOL OF DIESEL ENGINE EXHAUST VALVE FAULT


WIBROAKUSTYCZNA DIAGNOSTYKA NIESPRAWNOŚCI UKŁADU ZAPŁONOWEGO SAMOCHODU Z WYKORZYSTANIEM ESTYMAT AMPLITUDOWYCH


Zarządzanie sieciami telekomunikacyjnymi

Akademia Morska w Szczecinie. Wydział Mechaniczny

5.3 Frequency contents

STANOWISKO MOCY KRĄŻĄCEJ JAKO SYSTEM POZYSKIWANIA DANYCH TESTUJĄCYCH DLA KLASYFIKATORÓW NEURONOWYCH

SCIENTIFIC PROBLEMS OF MACHINES OPERATION AND MAINTENANCE

Hard-Margin Support Vector Machines

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

PRACA DYPLOMOWA Magisterska

Urbanek J., Jabłoński A., Barszcz T ssswedfsdfurbanek J., Jabłoński A., Barszcz T., Wykonanie pomiarów

DIAGNOSTYKA INTENSYWNOŚCI ZUŻYCIA OLEJU SILNIKOWEGO W CZASIE EKSPLOATACJI

DM-ML, DM-FL. Auxiliary Equipment and Accessories. Damper Drives. Dimensions. Descritpion

REHABILITATION OF MEDIUM-HEAD HYDROPOWER PLANTS WITH EXPLOITED TWIN-FRANCIS TURBINES.

4. EKSPLOATACJA UKŁADU NAPĘD ZWROTNICOWY ROZJAZD. DEFINICJA SIŁ W UKŁADZIE Siła nastawcza Siła trzymania

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

AKADEMIA MORSKA W SZCZECINIE WYDZIAŁ MECHANICZNY ROZPRAWA DOKTORSKA. mgr inż. Piotr Smurawski

CLASSIFICATION OF THE DEGREE OF CHIPPING TIP OF THE TOOTH IN A GEAR WHEEL BY USING THE FUZZY LOGIC AND THE CONTINUOUS WAVELET TRANSFORM

PROCEEDINGS OF THE INSTITUTE OF VEHICLES 5(109)/2016

Krytyczne czynniki sukcesu w zarządzaniu projektami


DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

ANALIZA PRZYSPIESZEŃ DRGAŃ PODPÓR W RÓŻ NYCH STANACH PRACY SILNIKA LM 2500

WYKORZYSTANIE PROBABILISTYCZNYCH SIECI NEURONOWYCH I SYGNAŁÓW DRGANIOWYCH DO DIAGNOZOWANIA USZKODZEŃ WTRYSKIWACZY SILNIKA ZS

Raport bieżący: 44/2018 Data: g. 21:03 Skrócona nazwa emitenta: SERINUS ENERGY plc

Discretization of continuous signals (M 19) Dyskretyzacja sygnałów ciągłych

OSI Network Layer. Network Fundamentals Chapter 5. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1

DIAGNOZOWANIE LUZU ZAWOROWEGO SILNIKA NA PODSTAWIE ZMIAN ENERGETYCZNYCH SYGNAŁU DRGANIOWEGO

Selection of controller parameters Strojenie regulatorów

OPRACOWANIE METODY FILTRACJI SYGNAŁU DRGAŃ SILNIKA SPALINOWEGO COMPILATION OF SI ENGINE VIBRATION SIGNAL FILTRATION METHOD

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction

OSI Network Layer. Network Fundamentals Chapter 5. ITE PC v4.0 Chapter Cisco Systems, Inc. All rights reserved.

Compatible cameras for NVR-5000 series Main Stream Sub stream Support Firmware ver. 0,2-1Mbit yes yes yes n/d

Podstawy automatyki. Energetics 1 st degree (1st degree / 2nd degree) General (general / practical) Full-time (full-time / part-time)

NIESTACJONARNY PRZEPŁYW CIEPŁA W TŁOKU DOŁADOWANEGO SILNIKA Z ZAPŁONEM SAMOCZYNNYM

PRZEWODNIK PO PRZEDMIOCIE. Negotiation techniques. Management. Stationary. II degree

European Crime Prevention Award (ECPA) Annex I - new version 2014

WAVELET TRANSFORM OF SELECTED SIMULATION SIGNALS USING DETAILS AS INFORMATION SOURCE

DIAGNOSIS OF WORKING MECHANISMS IN MACHINERY AND EQUIPMENT

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

ZASTOSOWANIE SPLOTU FUNKCJI DO OPISU WŁASNOŚCI NIEZAWODNOŚCIOWYCH UKŁADÓW Z REZERWOWANIEM

SWPS Uniwersytet Humanistycznospołeczny. Wydział Zamiejscowy we Wrocławiu. Karolina Horodyska

XXIII Konferencja Naukowa POJAZDY SZYNOWE 2018

QUANTITATIVE AND QUALITATIVE CHARACTERISTICS OF FINGERPRINT BIOMETRIC TEMPLATES


Few-fermion thermometry


Medical electronics part 10 Physiological transducers

KONCEPCJA WYKORZYSTANIA SZTUCZNYCH SIECI NEURONOWYCH W DIAGNOSTYCE PRZEKŁADNI ZĘBATYCH

DETECTION OF MATERIAL INTEGRATED CONDUCTORS FOR CONNECTIVE RIVETING OF FUNCTION-INTEGRATIVE TEXTILE-REINFORCED THERMOPLASTIC COMPOSITES

STEROWANIA RUCHEM KOLEJOWYM Z WYKORZYSTANIEM METOD SYMULACYJNYCH

POLITECHNIKA ŚLĄSKA INSTYTUT AUTOMATYKI ZAKŁAD SYSTEMÓW POMIAROWYCH

Podstawa prawna: Art. 70 pkt 1 Ustawy o ofercie - nabycie lub zbycie znacznego pakietu akcji

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

OCENA WPŁYWU ZUŻYCIA NA POZIOM HAŁASU URZĄDZEŃ Z JEDNOCYLINDROWYMI SILNIKAMI SPALINOWYMI

MATLAB Neural Network Toolbox przegląd

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2

Patients price acceptance SELECTED FINDINGS

Formularz recenzji magazynu. Journal of Corporate Responsibility and Leadership Review Form

ROZPRAWY NR 128. Stanis³aw Mroziñski

DIAGNOSING OF VALVE CLEARANCE OF THE DIESEL ENGINE

ANALIZA DRGAŃ ELEMENTÓW STRUKTURY POJAZDU SAMOCHODOWEGO, GENEROWANYCH PODCZAS PRACY SILNIKA I UKŁADU PRZENIESIENIA NAPĘDU

Probabilistic Methods and Statistics. Computer Science 1 st degree (1st degree / 2nd degree) General (general / practical)

MODEL DYNAMICZNY UKŁADU NAPĘDOWEGO JAKO ŹRÓDŁO DANYCH WEJŚCIOWYCH DLA KLASYFIKATORÓW NEURONOWYCH

ZASTOSOWANIE AUTORSKIEJ METODY WYZNACZANIA WARTOŚCI PARAMETRÓW NOWOCZESNYCH SYSTEMÓW TECHNICZNYCH DO PŁUGÓW I OPRYSKIWACZY POLOWYCH

PROCEEDINGS OF THE INSTITUTE OF VEHICLES 2(106)/2016 (12 pt)

Inżynieria Rolnicza 3(121)/2010

OPBOX ver USB 2.0 Mini Ultrasonic Box with Integrated Pulser and Receiver

Metodyki projektowania i modelowania systemów Cyganek & Kasperek & Rajda 2013 Katedra Elektroniki AGH

KONCEPCJA WYKORZYSTANIA SYGNAŁÓW WIBROAKUSTYCZNYCH I SIECI NEURONOWYCH DO DIAGNOZOWANIA USZKODZEŃ ELEMENTÓW SILNIKÓW SPALINOWYCH SAMOCHODÓW

WPŁYW WZROSTU DAWKI PALIWA NA ZMIANY AMPLITUD SKŁADOWYCH HARMONICZNYCH DRGAŃ SKRĘTNYCH WAŁU ZESPOŁU SPALINOWO-ELEKTRYCZNEGO

USAGE OF SHORT TIME FOURIER TRANSFORM IN IDENTIFICATION OF VEHICLE SHOCK ABSORBER TECHNICAL CONDITIONS RESEARCHED BY FORCE VIBRATION METHOD

EGARA Adam Małyszko FORS. POLAND - KRAKÓW r

Zarządzenie Rektora Politechniki Gdańskiej Nr 39/2018 z 20 grudnia 2018 r.

Planning and Cabling Networks

Profil Czasopisma / The Scope of a Journal

DIAGNOZOWANIE Ł O Ż YSKA ROLKI NAPINACZA PASKA ROZRZĄ DU SILNIKA SPALINOWEGO PRZY WYKORZYSTANIU DRGAŃ

INFLUENCE OF WEAR OF BEARINGS CARRIAGEABLE WHEELS ON ACOUSTICS PRESSURE

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

BADANIA WPŁYWU STANU TECHNICZNEGO SILNIKA NA POZIOM EMISJI ZANIECZYSZCZEŃ

Gospodarka Elektroenergetyczna. Power Systems Economy. Energetics 1 st degree (1st degree / 2nd degree) General (general / practical)

SELECTION OF LUBRICATING OIL AIMED AT REDUCTION OF IC ENGINE FRICTION LOSSES

TRANSPORT W RODZINNYCH GOSPODARSTWACH ROLNYCH

Linear Classification and Logistic Regression. Pascal Fua IC-CVLab

Cracow University of Economics Poland

Badanie amortyzatorów na uniwersalnym stanowisku do diagnostyki układu nonego pojazdu samochodowego

Transkrypt:

Application of the histogram of the vibration spectrum of an engine block 83 DIAGNOSTICS SCIENTIFIC PROBLEMS OF MACHINES OPERATION AND MAINTENANCE 2 (54) 2008 HENRYK MADEJ *, PIOTR CZECH ** Application of the histogram of the vibration spectrum of an engine block for setting up the clearance model of the piston-cylinder assembly for PNN neural classifier Key words Diagnostics, combustion engines, artificial neural networks, vibration. Słowa kluczowe Diagnostyka, silniki spalinowe, sztuczne sieci neuronowe, drgania Summary The paper presents an attempt to evaluate the wear of piston-cylinder assembly with the aid of a vibration signal recorded on spark ignition (SI) engine body. The subject of the study was a four-cylinder combustion engine.2 dm 3. Diagnosing combustion engines with vibration methods is especially difficult, due to the presence of multiple sources of vibration interfering with the symptoms of damages. Diagnosing engines with vibro-accoustic methods is difficult, also due to the necessity to analyse non-stationary and transient signals [5]. Various methods for selection of a usable signal are utilised in the diagnosing process. Changes of the engine technical condition resulting from early stages of wear are difficult to detect for the effect of mechanical defect masked by adaptive engine control systems [3]. According to the studies carried out, it is possible to utilise artificial neural networks for the evaluation of the clearance in piston-cylinder assembly. * Silesian University of Technology, Faculty of Transport, 8 Krasińskiego St., 40-09 Katowice, e-mail: henryk.madej@polsl.pl ** Silesian University of Technology, Faculty of Transport, 8 Krasińskiego St., e-mail: piotr.czech@polsl.pl

84 H. Madej, P. Czech. Introduction Diagnostic systems used in modern combustion engines are intended to localise the component or system that, due to natural wear or damage, can no longer perform as specified by its manufacturer. For engines, the highest efficiency of onboard diagnostics has been achieved in the field of toxic emission control. Some defects, however, such as the wear of cylinder bearing surface above the admissible limits, for a given engine, in many cases cause no reaction of the diagnostic system. In most cases, this is attributable to the algorithms for adaptation controls of combustion engines [6]. One of the methods for diagnostic data acquisition is to monitor the level of vibration generated by engine components. The present paper describes an attempt to detect clearance in the pistoncrank assembly by measuring accelerations of body vibrations and, based on that, setting up models for probabilistic artificial neural networks. 2. Setting up the model for piston-cylinder assembly clearance The major issue referred to in the literature related to methods of artificial intelligence is the method for creating data used in the process of neural network operations. The ability to set up models is the guarantee for a successful classifying process using neural networks [2, 4, 6-5]. Data in the experiments carried out is derived from time runs of the vibration accelerations in the engine body. The subject of tests was a Fiat Panda with SI engine.2 dm 3. The tests were carried out in the roller bench. The vibration acceleration signal of the engine body was measured perpendicularly to the cylinder axis with a sensor placed at the 4 th cylinder. The vibration acceleration transducer type ICP and data acquisition card controlled by a program developed in LabView environment were used for the measurements. The signals were recorded at the velocity of 2500 rpm, at the sampling frequency of 40 khz. During the tests, 23 runs of accelerations of the engine body vibration were recorded before the repair, and 27 runs of accelerations of the engine body vibration were recorded after the repair, including full operating cycles within the rotation angle of 0-720º. The engine repair involved the replacement of worn pistons that reduced the clearance in the piston-cylinder assembly. Refer to Figure for examples of vibration signals recorded before and after the repair. The analysis of time runs excluded the possibility to use them directly as the data for neural classifiers. The repair of the engine did not explicitly affect the character of changes in local measurements derived from the vibration signals (Table ). Both, the measurements of average position, differentiation, the group of slope measure and the distribution kurtosis of measurable variants of vibration accelerations in time domain did not allow the clearance in the piston-cylinder assembly to be explicitly identified.

Application of the histogram of the vibration spectrum of an engine block 85 Fig.. Vibration acceleration runs recorded on the body before (a) and after (b) the engine repair Rys.. Przebiegi przyśpieszeń drgań zarejestrowane na korpusie przed (a) i po (b) naprawie silnika Table. Selected measures obtained from vibration accelerations Tabela. Przykładowe miary wyznaczone z sygnałów czasowych Value of measure for engine Name of measure [%] before repair after repair Root mean square N = 2 RMS ( xi ( t) ) 0.2600 95.3200 5.86 N i= 2 Mean value N = x i ( t) 50.2920 48.3720 3.875 N i= 3 Mean absolute deviation N = MAD xi ( t) 49.950 48.990 3.5063 N i= 4 Kurtosis N 4 ( xi ( t) ) 3.870 4.390-2.3309 N i= K = ( ) 4 RMS 5 Crest factor peak CF = 9.8759 0.490-6.2260 RMS 6 Clearance factor CLF = 2.3834.3769 0.4678 N x i ( t) N i= 7 Shape factor RMS 2.033.9706 2.247 SF = 8 Impulse factor peak 9.8840 20.6730-3.9690 IF =

86 H. Madej, P. Czech Refer to Figure 2 for examples of spectrum derived from the vibration signal for two different states of the engine. Fig. 2. Spectrum of vibration accelerations recorded o the body before (a) and after (b) the engine repair Rys. 2. Widmo przyśpieszeń drgań zarejestrowanych na korpusie przed (a) i po (b) naprawie silnika According to the studies, signal analysis in two selected representative frequency ranges is required to evaluate the piston-assembly wear. Therefore, in the next stage of model construction, the spectrum range achieved was divided into 40 sub-ranges, 500 [Hz] width each. A histogram was prepared to enable the description of the character of spectrum changes for each sub-range (Figure 3). The limits of the histogram ranges were assumed by dividing the amplitude of spectrum (determined for the maximum value of a given sub-range) into 5 equal parts. The histogram ranges assumed for further experiments were as follows: Range : 0 to 20 % maximum spectrum amplitude in a given sub-range, Range 2: 20 to 40 % maximum spectrum amplitude in a given sub-range, Range 3: 40 to 60 % maximum spectrum amplitude in a given sub-range, Range 4: 60 to 80 % maximum spectrum amplitude in a given sub-range, Range 5: 80 to 00 % maximum spectrum amplitude in a given sub-range. Refer to Figure 4 for an example of spectrum histogram for accelerations of engine body vibrations with various clearance values in the piston-cylinder assembly. For all the recorded time runs of accelerations of vibration measured prior to and after the engine repair, spectrum histograms were determined according to the procedure described. Another stage of the modelling process was to select only those ranges of spectrum amplitude (range 5) and only such spectrum sub-ranges (sub-range 40) for which the separation for classes referring to the worn and new pistons was visible. Refer to Figure 5 for a sample comparison of spectrum subrange and histogram range for correct and incorrect classes separation.

Application of the histogram of the vibration spectrum of an engine block 87 Fig. 3. Procedure of spectrum histograms determination Rys. 3. Schemat działania przy budowie histogramów As a result of selections that best separate the states prior to and after the engine repair, 7 comparisons between the spectrum sub-range and histogram range were selected. The percentage share of selected comparisons served as the input data for artificial neural networks.

88 H. Madej, P. Czech Fig. 4. Sample spectrum histogram of vibration accelerations recorded on the body before (a) and after (b) the engine repair Rys. 4. Przykładowy histogram widma przyśpieszeń drgań zarejestrowanych na korpusie przed (a) i po (b) naprawie silnika Fig. 5. Sample comparison between the spectrum sub-range and histogram range for the correct (a) and incorrect (b) separation of wear classes of the piston-cylinder assembly ( triangle engine prior to repair, circle engine after repair) Rys. 5. Przykładowe zestawienie podzakresu widma i zakresu histogramu dla poprawnego (a) i błędnego (b) odseparowania klas zużycia złożenia tłok cylinder ( trójkąt silnik przed naprawą, koło silnik po naprawie) 3. Neural classifier for the piston-cylinder assembly clearance For the studies carried out, artificial neural networks of PNN type were utilised (Probabilistic Neural Networks). The probabilistic neural networks are used as the neural classifiers dividing the set of data into a determined number of output categories [4]. They are of three-layer structure: input, hidden and output layer [4,4]. The number of hidden neurons equals the number of teaching samples, and the number of output neurons equals the number of classification categories. Each radial neuron models the Gauss function focusing on one teaching model. Output neurons sum up the output values of hidden neurons belonging to the class which corresponds to a given output neuron. The

Application of the histogram of the vibration spectrum of an engine block 89 network output values are proportional to the nucleus estimators of the probability density function for various classes. Following the application of normalisation ensuring summing up to one, they produce estimation of the probability of belonging to individual classes [4]. While using this network type, proper smoothening coefficient γ should be selected [4,4]. It represents the radial deviation of Gauss functions and is a measure of the range of neurons in the hidden layer [4]. This value, when too low, causes the loss of knowledge generalising property by the network, and, if too high, prevents correct description of details [2]. Similarly to the radial networks, the value of γ coefficient is determined experimentally [2,4]. One the greatest advantages of PNN type network is its high learning speed, whereas their complexity [4] is the main drawback. In the experiments carried out, the probabilistic neural networks had the following structure (Figure 6): Number of input neurons: 7, Number of output neurons: 2, and Number of neurons in the hidden layer: 50. The input data represented the percentage shares in selected subsequent spectrum sub-range comparisons with the histogram ranges. The neural network was expected to assign the recorded vibration signal to one of two classes corresponding to the engine prior to and after its repair. The 50 time runs of the engine body vibration accelerations were divided into two equal parts and utilised for training and testing the performance of neural networks. Input layer 2 3 4 5 4 5 6 7 Hidden layer 2 3 4 5 47 48 49 50 Output layer 2 Fig. 6. Structure of neural networks Rys. 6. Struktura sieci neuronowej

90 H. Madej, P. Czech In the experiments aimed at the construction of a proper neural classifier of a PNN type, the performance of the network for 86 various values of γ coefficient were checked. The results of the effect of the γ coefficient on the classification error value are presented in Figure 7. With the experiments carried out, it was possible to set up a properly operating neural classifier. This result was obtained for γ coefficient value within the range 0.04-2. For γ coefficient in the value range 0.000-0.02 and 5-50000 significant increase of the classification error was noticeable. 60 50 40 30 20 Testing error [%] 0 0,000 0,000 0,000 0,000,0000 0,0000 00,0000 000,0000 0000,000 0 γ 0 00000,00 00 Fig. 7. The effect of the γ coefficient on the correctness of the PNN neural network classification Rys. 7. Wpływ wartości współczynnika γ na poprawność klasyfikacji sieci neuronowej PNN 4. Summary With the studies carried out, it was proven that it is possible to set up a properly operating neural classifier able to identify the degree of wear in the piston-cylinder assembly, based on the signal of vibration acceleration in the engine body. Faultless classification was successfully obtained with the use of probabilistic neural network with properly selected value of γ coefficient. At the same time, based on the experiments carried out, the crucial role was confirmed for the selection of the proper method for pre-treatment of data intended for neural network training. The results obtained confirmed the usefulness of the spectrum histogram of the acceleration of the engine body vibration for that purpose.

Application of the histogram of the vibration spectrum of an engine block 9 The efficiency of OBD systems, allowing the detection of engine mechanical defects masked by electronic controls, in modern vehicles can be increased by the development of systems utilising probabilistic artificial neural networks. References [] Cempel C., Vibro-accoustic diagnostics of machines, Państwowe Wydawnictwo Naukowe, Warsaw 989. [2] Czech P., Łazarz B., Wojnar G., Detection of local defects of gear teeth using artificial neural networks and genetic algorithms, Wydawnictwo ITE, Radom 2007. [3] Dąbrowski Z., Madej H., Masking mechanical damages in the modern control systems of combustion engines, Journal of KONES, Vol. 3, No 3/2006. [4] Gately E., Neural networks. Financial forecasting and designing transaction systems, WIG- Press, Warsaw 999. [5] Heywood J. B., Internal combustion engines fundamentals, McGraw Hill Inc 988. [6] Isermann R., Diagnosis methods for electronic controlled vehicles, Vehicle System Dynamics, Vol. 36, No. 2-3, 200. [7] Isermann R.: Model-based fault-detection and diagnosis status and applications. Annual Reviews in Control, vol. 29 (2005). [8] Kalogirou S.: Artificial inteligence for the modeling and control of combustion processes: a review. Progress in Energy and Combustion Science, vol. 29 (2003). [9] Kalogirou S.: Artificial Intelligence in Energy and Renewable Energy Systems. Nova Publishers, Hauppauge NY, 2006. [0] Korbicz J., Kościelny J., Kowalczuk Z., Cholewa W. (collective work), Process diagnostics. Models. Methods for artificial intelligence. Applications, Wydawnictwa Naukowo- Techniczne, Warsaw 2002. [] Moczulski W., Przystałka P., Application of Neural Networks for Diagnostics of Dynamic Processes, AI-METH'2004, Gliwice, 2004. [2] Osowski St., Neural networks for information processing, Oficyna Wydawnicza Politechniki Warszawskiej, Warsaw 2000. [3] Tadeusiewicz R., Neural networks, Akademicka Oficyna Wydawnicza, Warsaw 993. [4] Tadeusiewicz R., Lula P., Introductin to neural networks, StatSoft, Krakow 200. [5] Wu J., Liu C.: Investigation of engine fault diagnosis using discrete wavelet transform and neural network. Expert Systems with Applications, vol. 35 (2008). [6] Żółtowski B., Cempel C. (collective work), Machine diagnostics engineering, Biblioteka Problemów Eksploatacyjnych, Polskie Towarzystwo Diagnostyki Technicznej, Instytut Technologii Eksploatacji PIB Radom, Warszawa-Bydgoszcz-Radom 2004. Manuscript received by Editorial Board, July 30, 2008 Wykorzystanie histogramu widma drgań korpusu silnika do budowy wzorców luzu w układzie tłok cylinder dla klasyfikatora neuronowego Streszczenie W artykule przedstawiono próbę oceny zużycia złożenia tłok cylinder za pomocą sygnału drgań rejestrowanego na kadłubie silnika ZI. Obiektem badań był czterocylindrowy silnik spalinowy o pojemności,2 dm 3. Diagnozowanie silnika spalinowego metodami drganiowymi jest

92 H. Madej, P. Czech szczególnie utrudnione ze względu na występowanie wielu źródeł drgań, co jest przyczyną wzajemnego zakłócania symptomów uszkodzeń. Diagnozowanie uszkodzeń silników metodami wibroakustycznymi jest trudne także ze względu na konieczność analizy sygnałów niestacjonarnych i impulsowych [5]. W procesie diagnozowania stosuje się różne sposoby selekcji sygnału użytecznego. Zmiany stanu technicznego silnika wywołane wczesnymi fazami jego zużycia są trudne do wykrycia ze względu na maskowanie usterek mechanicznych przez adaptacyjne układy sterowania silnika [3]. Z przeprowadzonych badań wynika, że istnieje możliwość wykorzystania sztucznych sieci neuronowych do oceny luzu w układzie tłok cylinder.