RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 201684 (21) Numer zgłoszenia: 356249 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia: 02.02.2001 (86) Data i numer zgłoszenia międzynarodowego: 02.02.2001, PCT/AU01/00095 (87) Data i numer publikacji zgłoszenia międzynarodowego: 09.08.2001, WO01/56934 PCT Gazette nr 32/01 (51) Int.Cl. C02F 1/06 (2006.01) C02F 1/16 (2006.01) C02F 1/04 (2006.01) (54) Układ do destylacji wody (30) Pierwszeństwo: 02.02.2000,AU,PQ5402 (73) Uprawniony z patentu: AQUA DYNE INC.,Newport Beach,US (43) Zgłoszenie ogłoszono: 28.06.2004 BUP 13/04 (72) Twórca(y) wynalazku: Gregory Mark Paxton,Victoria Point,AU Patrick Joseph Glynn,Kuraby,AU (45) O udzieleniu patentu ogłoszono: 30.04.2009 WUP 04/09 (74) Pełnomocnik: Kamiński Zbigniew, Kancelaria Patentowa PL 201684 B1 (57) Układ do destylacji wody wyposażony w zbiornik zanieczyszczonej wody, zwłaszcza wody morskiej, połączony z zespołem wymienników ciepła do ogrzewania tej wody, w połączony z wyjściem zespołu wymienników parownik do odparowania wody oraz w skraplacz do jej skraplania, z wylotem wody destylowanej, oraz w źródło ciepła wytwarzające gazy spalinowe o wysokiej temperaturze, służące do ogrzewania wody w wymiennikach ciepła, przy czym parownik układu jest połączony z urządzeniem próżniowym obniżającym temperaturę wrzenia oraz ewentualnie z sekcją do odprowadzania cząstek stałych wytrąconych z wody, który charakteryzuje się tym, że jego źródło ciepła stanowi przelotowy silnik odrzutowy (12), przy czym wylot gazów spalinowych tego silnika jest połączony z kanałem (14), w którym znajdują się przynajmniej dwa wymienniki ciepła (16, 24), połączone z jednej strony ze zbiornikiem (22) wody zanieczyszczonej, a z drugiej z parownikiem (26).
2 PL 201 684 B1 Opis wynalazku Przedmiotem wynalazku jest układ do destylacji wody wyposażony w zbiornik zanieczyszczonej wody, zwłaszcza wody morskiej, połączony z zespołem wymienników ciepła do ogrzewania tej wody, w połączony z wyjściem zespołu wymienników parownik do odparowania wody oraz w skraplacz do jej skraplania, z wylotem wody destylowanej, oraz w źródło ciepła wytwarzające gazy spalinowe o wysokiej temperaturze, służące do ogrzewania wody w wymiennikach ciepła, przy czym parownik układu jest połączony z urządzeniem próżniowym obniżającym temperaturę wrzenia oraz ewentualnie z sekcją do odprowadzania cząstek stałych wytrąconych z wody. Znane są różne sposoby odsalania wody morskiej. Jedną z nich jest metoda destylacyjna polegająca na ogrzewaniu wody morskiej pod ciśnieniem atmosferycznym do temperatury wyższej od 100 C i odparowaniu jej, a następnie skropleniu uzyskanej pary wodnej przez chłodzenie powietrzem z otoczenia lub wodą. W wyniku kondensacji uzyskuje się czystą destylowaną wodę. Metoda ta ma następujące zalety: - większość bakterii zostaje zniszczona po przekroczeniu temperatury wody wynoszącej 65 C, - układ jest łatwy do monitorowaniu ze względu na widoczny punkt wrzenia wody, - zasada działania układu jest prosta, ułatwiając przeszkolenie personelu, - ilość rozpuszczonych cząstek stałych (TDS) w destylowanej wodzie pozostaje na poziomie mniejszym od 10 ppm. Powyższa metoda ma jednak również szereg niedogodności, a mianowicie: - bardzo małą wydajność i duże zużycie energii wtedy, gdy do ogrzewania wody morskiej stosowane są metody pośrednie, na przykład ogrzewanie elektryczne, - jakiekolwiek cząstki stałe zawarte w wodzie morskiej zostają w wysokich temperaturach osadzone na powierzchni wymiennika ciepła, zmniejszając tym sprawność procesu. Znana jest również metoda destylacji wody morskiej pod zmniejszonym ciśnieniem w komorze destylacyjnej w celu odpowiedniego zmniejszenia temperatury wrzenia wody. Z uwagi na zmniejszone zużycie energii metoda ta jest często stosowana na statkach, jednakże jej zasadnicza niedogodność polega na tym, że temperatura destylacji jest zbyt niska, aby zniszczyć bakterie. W celu zniszczenia bakterii w wodzie destylowanej stosuje się lampę ultrafioletową, która jednakże wytwarza ozon. Poza tym układ ten nie jest odpowiedni do zastosowania na dużą skalę ze względu na trudności w utrzymywaniu w komorze destylacyjnej ciśnienia mniejszego od ciśnienia atmosferycznego. Metoda odwróconej osmozy (RO) stanowi układ filtracyjny, w którym do usuwania z wody cząstek stałych jonowych i organicznych oraz zawiesin jest stosowana półprzepuszczalna membrana, dzieląca wodę zasilającą na dwa strumienie: strumień przenikalny i strumień stężony. Strumień przenikalny stanowi tę część wody zasilającej, która przenika przez półprzepuszczalną membranę, natomiast strumień stężony tę część wody zasilającej, która poddawana jest wypłukiwaniu cząsteczek stałych. Do przepływu wody wewnątrz obudowy układu zaopatrzonego w system membran jest stosowana pompa, przy czym woda jest dzielona przez membranę na strumień przenikalny i stężony. Strumień przenikalny jest zbierany w rurze rozgałęźnej i kierowany do układu membran, przy czym korzystnie każdemu odgałęzieniu odpowiada oddzielna membrana. W celu zabezpieczenia układu przed wzrostem ciśnienia strumienia przenikalnego stosuje się ciśnieniowy zawór nadmiarowy względnie przełącznik ciśnienia. Strumień przenikalny przepływa następnie przez miernik przepływu do wylotu układu oczyszczającego wodę. Ze strumienia stężonego opuszczającego ostatnią membranę oddzielany jest strumień recyrkulacyjny, przy czym zarówno strumień stężony, jak i strumień recyrkulacyjny przepływają przez własny zawór kontrolny o nastawnym przepływie. Zawór strumienia stężonego pełni trzy funkcje: kontroluje ciśnienie wewnątrz układu, wielkość strumienia stężonego oraz wspomaga kontrolę całego układu pozyskiwania wody. Zawór strumienia recyrkulacyjnego kieruje określoną część strumienia stężonego do wlotu pompy w celu uzyskania bardziej turbulentnego przepływu. Membrana działa różnie przy różnych ciśnieniach, powodując odrzucanie jonów jedno i wielowartościowych z różną szybkością i skutecznością. Sprawność metody osmozy odwróconej zależy w znacznym stopniu od sprawności pomp napędzających układ, które na ogół zużywają dużą ilość energii. Celem wynalazku jest opracowanie układu destylacyjnego wody, zwłaszcza wody morskiej o dużej wydajności, rzędu kilku metrów sześciennych na godzinę, umożliwiającego wykorzystanie jako
PL 201 684 B1 3 źródła ciepła silników turboodrzutowych, które przepracowały już wyznaczoną przez wytwórcę liczbę godzin w locie i nie mogą być dalej stosowane w lotnictwie, a dzięki temu uzyskanie znaczącego obniżenia kosztów destylacji. Cel ten został zrealizowany w układzie do destylacji wody według wynalazku, który charakteryzuje się tym, że jego źródło ciepła stanowi przelotowy silnik odrzutowy, przy czym wylot gazów spalinowych tego silnika jest połączony z kanałem, w którym znajdują się przynajmniej dwa wymienniki ciepła, połączone z jednej strony ze zbiornikiem wody zanieczyszczonej, a z drugiej z parownikiem. Silnik generujący ciepło stanowi korzystnie turbogazowy silnik odrzutowy typu turbinowego, dwuprzepływowego, z recyrkulacją powietrza obejściowego. Silnik przekroczył zalecaną przez producenta liczbę godzin pracy w locie. Silnik samolotowy stanowi korzystnie turboodrzutowy silnik RB211, napędzany ropą naftową. Kanał, łączący wylot silnika z zespołem wymienników ciepła, jest zaopatrzony w obudowę, izolowaną korzystnie izolacją mikroporową (TM). Zespół wymienników ciepła składa się korzystnie z umieszczonych kolejno w kierunku przepływu gazów spalinowych z silnika pierwotnego wymiennika ciepła oraz wtórnego wymiennika ciepła. Układ według wynalazku jest korzystnie wyposażony w dodatkowy, wstępny wymiennik ciepła do ogrzewania wody zasilającej, połączony z wylotem kanału. Pierwotny wymiennik ciepła jest korzystnie wyposażony w połączoną z jego wlotem i wylotem i zwiększającą ciśnienie w tym wymienniku ciepła pompę recyrkulacyjną. Wydajność pompy recyrkulacyjnej jest korzystnie taka, aby wzrost temperatury wody w wymienniku przy każdorazowym jej przejściu przez pompę był niewiększy od 2 C. Rury pierwotnego wymiennika ciepła są korzystnie wykonane ze stali nierdzewnej. Rury wtórnego wymiennika ciepła są korzystnie wykonane ze stali węglowej i użebrowane. Wylot pierwotnego wymiennika ciepła jest korzystnie połączony z parownikiem za pośrednictwem zaworu regulacyjnego i zakończony dyszą do rozpylania wody. Wlot wtórnego wymiennika ciepła jest korzystnie połączony przewodem z wyjściem wężownicy chłodzącej skraplacza. Dno parownika jest korzystnie połączone z kolektorem sekcji obróbki cząstek stałych, wyposażonej w młyn suszący w postaci obrotowego, poziomego bębna, którego powierzchnia wewnętrzna jest zaopatrzona w pręty unoszące. Wnętrze obrotowego bębna jest korzystnie połączone, za pomocą podajnika śrubowego, z wylotem kolektora. Pokrywa, zamykająca bęben po stronie przeciwnej niż króciec, jest korzystnie zaopatrzona we wtryskiwacz z gwintem wirowym skierowanym przeciwnie do kierunku obrotu bębna, połączony z wylotem gorącego powietrza z silnika. Układ według wynalazku jest korzystnie wyposażony w napędzany za pomocą zespołu napędowego układ równoległych wałków, obracających opierający się na nich bęben. Parownik ma komorę obniżonego ciśnienia połączoną przewodem, korzystnie zaopatrzonym w zawór regulacyjny ze zwężką, ze strumieniem powietrza zasysanego przez silnik. Kanał jest korzystnie połączony z komorą spalania paliwa gazowego silnika z regeneracyjną ścieżką grzania strumienia paliwa gazowego. Silnik jest korzystnie przystosowany do zasilania ropą naftową względnie ciekłymi węglowodorami albo też gazami węglowodorowymi, zwłaszcza gazem ziemnym względnie wodorem. W procesie destylacji wody, realizowanym w układzie według wynalazku, podczas generacji ciepła jest wykorzystywany w turboodrzutowym silniku cykl Carnota, zaś w procesie ogrzewania wody cykl Rankine a. Badania eksploatacyjne układu do destylacji wody według wynalazku wykazały, że może on być szczególnie korzystnie wykorzystany jako urządzenie o bardzo dużej wydajności, rzędu kilku metrów sześciennych wody morskiej na godzinę. Koszt destylacji za pomocą tego układu jest znacząco niższy od kosztów destylacji za pomocą urządzeń znanych ze stanu techniki i wynosi, w zależności od stosowanych paliw, od 0,001 do 0,03 zł/l. Układ do destylacji wody, zwłaszcza wody morskiej, według wynalazku jest uwidoczniony w przykładowym rozwiązaniu konstrukcyjnym na rysunku, na którym: fig. 1 - przedstawia schemat układu do destylacji wody; fig. 2 - sekcję obróbki cząstek stałych wytrąconych w parowniku, w schematycznym przekroju osiowym, a fig. 3 - tę samą sekcję w schematycznym przekroju poprzecznym.
4 PL 201 684 B1 Układ 10 do destylacji wody, zwłaszcza wody morskiej, przedstawiony na fig. 1 składa się z następujących podstawowych zespołów: z silnika 12, stanowiącego źródło ciepła do ogrzania wody i jej odparowania, z zespołu wymienników ciepła, a mianowicie: z pierwotnego wymiennika ciepła 16. wtórnego wymiennika ciepła 24 oraz z wstępnego wymiennika ciepła 44, z parownika ciepła 26, z komorą o obniżonym ciśnieniu, ze skraplacza 32 połączonego z wylotem 36 wody destylowanej oraz z opisanej oddzielnie sekcji 50 obróbki cząstek stałych. Silnik 12 generujący ciepło stanowi korzystnie turboodrzutowy silnik samolotowy (na przykład typu RB211), który przekroczył zalecaną przez producenta liczbę godzin pracy w locie i nie nadaje się do dalszego zastosowania w lotnictwie, natomiast jest nadal użyteczny jako źródło ciepła w procesie destylacji wody. Silnik ten zostaje dostosowany do pracy jako źródło ciepła, a nie jako silnik ciągu, przy czym może być zasilany zarówno węglowodorami ciekłymi, na przykład ropą naftową, jak i węglowodorami gazowymi, na przykład metanem kopalnianym, gazem ziemnym, wodorem itp. Przy zastosowaniu jako paliwa ropy naftowej możliwe jest uzyskanie temperatury spalin wynoszącej do 1150 C. Jako źródło ciepła szczególnie nadają się silniki samolotowe turboodrzutowe dwuprzepływowe, z recyrkulacją powietrza obejściowego. Ogrzane do wysokiej temperatury spaliny, stanowiące gazy wylotowe silnika 12, są wprowadzane do poziomego kanału 14, w którym umieszczone są kolejno: pierwotny wymiennik ciepła 16 oraz wtórny wymiennik ciepła 24, powodując ogrzanie powierzchni tych wymienników do temperatury około 650 C. Rury pierwotnego wymiennika ciepła 16 są wykonane korzystnie ze stali nierdzewnej, zaś rury wtórnego wymiennika ciepła 24 - ze stali węglowej i są użebrowane w celu lepszej wymiany ciepła. Wlot i wylot pierwotnego wymiennika ciepła 16 jest połączony z pompą recyrkulacyjną 20, podnoszącą ciśnienie wody w celu zwiększenia punktu jej wrzenia do wartości około 165 C. Obydwa wymienniki ciepła 16 i 24 są ze sobą wzajemnie połączone, przy czym wtórny wymiennik ciepła 24 jest zasilany wodą zanieczyszczoną względnie wodą morską ze zbiornika 22 za pośrednictwem pompy 18, poprzez wstępny wymiennik ciepła 44, połączony z wylotem kanału 14. Pompa recyrkulacyjna 20, zwiększająca ciśnienie wody w pierwotnym wymienniku ciepła 16, wytłacza ją poprzez zawór 28 do dyszy względnie układu dysz znajdujących się wewnątrz parownika próżniowego 26. Wydajność pompy recyrkulacyjnej 20 winna być tak dobrana, aby wzrost temperatury wody w wymienniku 16, przy każdorazowym jej przejściu przez pompę 20 był niewiększy od 2 C. Obniżone ciśnienie w komorze parownika 26 jest utrzymywane przez wykorzystanie strumienia powietrza zasysanego przez silnik 12 za pośrednictwem połączonej z tą komorą zwężki 30. Rozpylony przez dysze strumień gorącej wody zostaje po wprowadzeniu do parownika próżniowego 26 odparowany i ochłodzony w wyniku adiabatycznego rozprężania, powodując obniżenie punktu wrzenia zasilającej go wody do temperatury około 60 C. Woda morska, zawarta w zbiorniku 22, zawiera około 35 g/l cząstek stałych, pozostających w roztworze w trakcie procesu jej ogrzewania. W trakcie parowania cząstki stałe oddzielają się od pary wodnej i opadają na dno parownika 26, skąd przekazywane są do sekcji 50 obróbki cząstek stałych (fig. 2). Para wodna doprowadzana jest z komory parownika próżniowego 26 do skraplacza 32, chłodzonego wodą zasilającą, wpływającą do spirali skraplacza 32 przez przewód 34, przy czym natężenie przepływu tej wody chłodzącej jest regulowane za pomocą zaworu 36. Ogrzana woda ze spirali skraplacza jest odprowadzana do wejścia wymiennika ciepła 24. Czysta woda destylowana jest odprowadzana ze skraplacza 32 przez wylot 36. Silnik 12 i wymienniki ciepła 16 i 24, umieszczone w kanale 14, są zamknięte w izolowanej obudowie 38. Do izolacji tej obudowy stosuje się korzystnie tworzywo mikroporowe, natomiast obszary układu o niskich temperaturach są izolowane pianką polistyrenową lub folią aluminiową. Do regulacji strumienia wody zasilającej, dostarczanej do wstępnego wymiennika ciepła 44, oraz wypływającej z niego do wtórnego wymiennika ciepła 24 służą zawory 40 i 42. Cząstki stałe zawarte w wodzie morskiej wpływają w postaci rzadkiej pasty z parownika 26 do kolektora 55 sekcji 50 obróbki cząstek stałych (fig. 2), skąd są transportowane za pomocą przenośnika śrubowego do wnętrza poziomego bębna 56 (o średnicy około 300 mm), który opiera się i jest obracany przez parę wałków 58, napędzanych za pomocą zespołu napędowego 74 z silnikiem o zmiennej prędkości obrotowej, wynoszącej około 4 obr/min. Od strony zasilania bęben 56 jest zamknięty pokrywą 60, zaopatrzoną w otwierany okresowo króciec 62, łączący jego wnętrze z parownikiem próżniowym 26, zaś od strony wyładowania - pokrywą 64, przepuszczającą w przeciwnym kierunku strumień gorącego powietrza z silnika 12. Strumień powietrza z silnika 12 jest doprowadzany do
PL 201 684 B1 5 wnętrza bębna 56 poprzez wtryskiwacz 66 z gwintem skierowanym przeciwnie do kierunku obrotu bębna. Do wewnętrznej powierzchni bębna 56 są przyspawane podłużne pręty unoszące 68, służące do rozprowadzania pasty. Wysuszone cząstki stałe są odprowadzane z bębna 56 przez króciec 70. Do obróbki odprowadzanych okresowo z parownika próżniowego 26 cząstek stałych może również służyć odwadniający przenośnik śrubowy. Do napędzania podajnika śrubowego 54 służy zespół napędowy 72 z silnikiem o zmiennej szybkości obrotowej, wynoszącej średnio 3 obr/min. Opisane rozwiązanie konstrukcyjne układu do destylacji wody według wynalazku stanowi jedynie przykład, lecz oczywiście możliwe są wszelkie zmiany i modyfikacje wynalazku spełniające jego istotę i zawarte w zakresie ochrony określonej zastrzeżeniami patentowymi. Zastrzeżenia patentowe 1. Układ do destylacji wody wyposażony w zbiornik zanieczyszczonej wody, zwłaszcza wody morskiej, połączony z zespołem wymienników ciepła do ogrzewania tej wody, w połączony z wyjściem zespołu wymienników parownik do odparowania wody oraz w skraplacz do jej skraplania, z wylotem wody destylowanej, oraz w źródło ciepła wytwarzające gazy spalinowe o wysokiej temperaturze, służące do ogrzewania wody w wymiennikach ciepła, przy czym parownik układu jest połączony z urządzeniem próżniowym obniżającym temperaturę wrzenia oraz ewentualnie z sekcją do odprowadzania cząstek stałych wytrąconych z wody, znamienny tym, że jego źródło ciepła stanowi przelotowy silnik odrzutowy (12), przy czym wylot gazów spalinowych tego silnika jest połączony z kanałem (14), w którym znajdują się przynajmniej dwa wymienniki ciepła (16, 24), połączone z jednej strony ze zbiornikiem (22) wody zanieczyszczonej, a z drugiej z parownikiem (26). 2. Układ według zastrz. 1, znamienny tym, że silnik (12) generujący ciepło stanowi turbogazowy silnik odrzutowy typu turbinowego, dwuprzepływowego, z recyrkulacją powietrza obejściowego. 3. Układ według zastrz. 2, znamienny tym, że jego silnik (12) przekroczył zalecaną przez producenta liczbę godzin pracy w locie. 4. Układ według zastrz. 2, znamienny tym, że jego silnik samolotowy stanowi turboodrzutowy silnik RB211, napędzany ropą naftową. 5. Układ według zastrz. 1, znamienny tym, że jego kanał (14), łączący wylot silnika (12) z zespołem wymienników ciepła (16, 24), jest zaopatrzony w obudowę (38), izolowaną korzystnie izolacją mikroporową. 6. Układ według zastrz. 5, znamienny tym, że jego zespół wymienników ciepła składa się z umieszczonych kolejno w kierunku przepływu gazów spalinowych z silnika (12) pierwotnego wymiennika ciepła (16) oraz wtórnego wymiennika ciepła (24). 7. Układ według zastrz. 5, znamienny tym, że jest wyposażony w dodatkowy, wstępny wymiennik ciepła (44) do ogrzewania wody zasilającej, połączony z wylotem kanału (14). 8. Układ według zastrz. 5, znamienny tym, że jego pierwotny wymiennik ciepła (16) jest wyposażony w połączoną z jego wlotem i wylotem i zwiększającą ciśnienie w tym wymienniku ciepła (16), pompę recyrkulacyjną (20). 9. Układ według zastrz. 8, znamienny tym, że wydajność pompy recyrkulacyjnej (20) jest taka, aby wzrost temperatury wody w wymienniku (16), przy każdorazowym jej przejściu przez pompę (20) był niewiększy od 2 C. 10. Układ według zastrz. 7, znamienny tym, że rury pierwotnego wymiennika ciepła (16) są wykonane ze stali nierdzewnej. 11. Układ według zastrz. 7, znamienny tym, że rury wtórnego wymiennika ciepła (24) są wykonane ze stali węglowej i użebrowane. 12. Układ według zastrz. 7, znamienny tym, że wylot pierwotnego wymiennika ciepła (16) jest połączony z parownikiem (26) za pośrednictwem zaworu regulacyjnego (28) i zakończony dyszą do rozpylania wody. 13. Układ według zastrz. 7, znamienny tym, że wlot jego wtórnego wymiennika ciepła (24) jest połączony przewodem z wyjściem wężownicy chłodzącej skraplacza (32). 14. Układ według zastrz. 1, znamienny tym, że dno jego parownika (26) jest połączone z kolektorem (52) sekcji obróbki cząstek stałych (50), wyposażonej w młyn suszący w postaci obrotowego, poziomego bębna (56), którego powierzchnia wewnętrzna jest zaopatrzona w pręty unoszące (68).
6 PL 201 684 B1 15. Układ według zastrz. 14, znamienny tym, że wnętrze jego obrotowego bębna (56) jest połączone, za pomocą podajnika śrubowego (54), z wylotem kolektora (52). 16. Układ według zastrz. 14, znamienny tym, że pokrywa (64), zamykająca bęben (56) po stronie przeciwnej niż króciec (62), jest zaopatrzona we wtryskiwacz (66) z gwintem wirowym skierowanym przeciwnie do kierunku obrotu bębna (56), połączony z wylotem gorącego powietrza z silnika (12). 17. Układ według zastrz. 14, znamienny tym, że jest wyposażony w napędzany za pomocą zespołu napędowego (74) układ równoległych wałków (58), obracających opierający się na nich bęben (56). 18. Układ według zastrz. 1, znamienny tym, że jego parownik (26) ma komorę obniżonego ciśnienia połączoną przewodem, korzystnie zaopatrzonym w zawór regulacyjny ze zwężką (30), ze strumieniem powietrza zasysanego przez silnik (12). 19. Układ według zastrz. 1, znamienny tym, że jego kanał (14) jest połączony z komorą spalania paliwa gazowego silnika (12) z regeneracyjną ścieżką grzania strumienia paliwa gazowego. 20. Układ według zastrz. 1, znamienny tym, że jego silnik (12) jest przystosowany do zasilania ropą naftową względnie ciekłymi węglowodorami albo też gazami węglowodorowymi, zwłaszcza gazem ziemnym względnie wodorem.
PL 201 684 B1 7 Rysunki
8 PL 201 684 B1 Departament Wydawnictw UP RP Cena 2,00 zł.