FRICTION PROCESSES OF SELECTED POLYMERS SLIDING ON STEEL AND DURALUMIN IN A LUBRICANT ENVIRONMENT

Podobne dokumenty
WPŁYW WYBRANYCH SMAROWYCH PREPARATÓW EKSPLOATACYJNYCH NA WŁAŚCIWOŚCI TRIBOLOGICZNE MATERIAŁÓW POLIMEROWYCH PODCZAS TARCIA ZE STALĄ

WPŁYW PROCESU TARCIA NA ZMIANĘ MIKROTWARDOŚCI WARSTWY WIERZCHNIEJ MATERIAŁÓW POLIMEROWYCH

PROCEEDINGS OF THE INSTITUTE OF VEHICLES 2(106)/2016 (12 pt)

WPŁYW WILGOTNOŚCI I TEMPERATURY POWIETRZA NA WSPÓŁCZYNNIK TARCIA STATYCZNEGO WYBRANYCH PAR ŚLIZGOWYCH METAL POLIMER

WPŁYW UKSZTAŁTOWANIA STRUKTURY GEOMETRYCZNEJ POWIERZCHNI STALI NA WSPÓŁCZYNNIK TARCIA STATYCZNEGO WSPÓŁPRACUJĄCYCH MATERIAŁÓW POLIMEROWYCH

p ISSN TRIBOLOGIA 1/2018 Key words: Abstract

BADANIA TRIBOLOGICZNE KOMPOZYTÓW POM Z WŁÓKNEM ARAMIDOWYM I Z PROSZKIEM PTFE WSPÓŁPRACUJĄCYCH ZE STALĄ

WŁAŚCIWOŚCI TRIBOLOGICZNE WARSTWY POWIERZCHNIOWEJ CRN W WARUNKACH TARCIA MIESZANEGO

NUMERYCZNA ANALIZA ROZKŁADÓW NACISKU WYSTĘPUJĄCYCH W STANDARDOWYCH WĘZŁACH TRIBOLOGICZNYCH

ON INFLUENCE OF DIESEL OIL SORT ON FRICTION AND WEAR PROCESSES Tarkowski Piotr, Paluch Roman Katedra Pojazdów Samochodowych Politechnika Lubelska

BADANIA WŁAŚCIWOŚCI TRIBOLOGICZNYCH POLIAMIDU PA6 I MODARU

WPŁYW WYBRANYCH NAPEŁNIACZY STOSOWANYCH W KOMPOZYTACH PTFE NA WSPÓŁCZYNNIK TARCIA STATYCZNEGO PO STALI

INSPECTION METHODS FOR QUALITY CONTROL OF FIBRE METAL LAMINATES IN AEROSPACE COMPONENTS

BADANIA WŁAŚCIWOŚCI TRIBOLOGICZNYCH BRĄZU CuSn12Ni2 W OBECNOŚCI PREPARATU EKSPLOATACYJNEGO O DZIAŁANIU CHEMICZNYM

WPŁYW PARAMETRÓW RUCHOWYCH TARCIA NA MIKROTWARDOŚĆ WYBRANYCH POLIMERÓW ŚLIZGOWYCH

FORMATION OF PHYSICAL INTERACTIONS IN POLYMER-STEEL FRICTION PAIRS

WPŁYW NACISKU JEDNOSTKOWEGO NA WSPÓŁCZYNNIK TARCIA STATYCZNEGO WYBRANYCH PAR ŚLIZGOWYCH METAL POLIMER

WPŁYW DODATKU NA WŁASNOŚCI SMAROWE OLEJU BAZOWEGO SN-150

RESEARCH ON THE TRIBOLOGICAL PARAMETERS FOR MATERIALS COUPLES USED FOR VALVES, VALVE GUIDES AND SEAT INSERTS

STUDY OF RESISTANCE TO ABRASIVE WEAR OF MULTICOMPONENT POLYOXYMETHYLENE COMPOSITES

KORELACJA WYNIKÓW UZYSKANYCH Z APARATÓW: AMSLERA I TESTERA T-05

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

ZUŻYCIE TRYBOLOGICZNE KOMPOZYTU NA OSNOWIE ZGARU STOPU AK132 UMACNIANEGO CZĄSTKAMI SiC

TECHNICAL CATALOGUE WHITEHEART MALLEABLE CAST IRON FITTINGS EE

BADANIA ODPORNOŚCI NA ZUŻYCIE ŚCIERNE WYBRANYCH POLIMERÓW INŻYNIERYJNYCH

CHARAKTERYSTYKI TRIBOLOGICZNE WARSTWY AL 2 O 3 MODYFIKOWANEJ GRAFITEM W SKOJARZENIU ŚLIZGOWYM Z KOMPOZYTAMI POLIMEROWYMI

Badania tribologiczne ślizgowych węzłów obrotowych z czopami z powłoką TiB 2

WYKAZ PRÓB / SUMMARY OF TESTS. mgr ing. Janusz Bandel

WŁAŚCIWOŚCI TRIBOLOGICZNE WARSTWY WIERZCHNIEJ STALI MODYFIKOWANEJ BOREM W WARUNKACH TARCIA MIESZANEGO

PROCEEDINGS OF THE INSTITUTE OF VEHICLES 2(106)/2016 (12 pt)

ROZPRAWA DOKTORSKA. Model obliczeniowy ogrzewań mikroprzewodowych

CHARAKTERYSTYKI TRIBOLOGICZNE APT-T5W W ASPEKCIE RÓŻNYCH WĘZŁÓW TARCIA I RODZAJÓW RUCHU

Badania tribologiczne powłok CrN i TiN modyfikujących warstwę wierzchnią czopa w aspekcie zastosowania w łożyskach ślizgowych

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

TOPOGRAFIA WSPÓŁPRACUJĄCYCH POWIERZCHNI ŁOŻYSK TOCZNYCH POMIERZONA NA MIKROSKOPIE SIŁ ATOMOWYCH

BADANIA WŁAŚCIWOŚCI TRIBOLOGICZNYCH BRĄZU CuSn12Ni2

ROZPRAWY NR 128. Stanis³aw Mroziñski

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science


TYRE PYROLYSIS. REDUXCO GENERAL DISTRIBUTOR :: ::

WŁASNOŚCI TRIBOLOGICZNE DWUSKŁADNIKOWYCH WARSTW POWIERZCHNIOWYCH PRACUJĄCY W WĘZŁACH CIERNYCH

MASZYNA MT-1 DO BADANIA WŁASNOŚCI TRIBOLOGICZNYCH ZE ZMIANĄ NACISKU JEDNOSTKOWEGO

WPŁYW WODY NA WŁAŚCIWOŚCI TARCIOWE PODESZEW OBUWIA

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

THE INFLUENCE OF HARDNESS OF POLYURETHANE ON ITS ABRASIVE WEAR RESISTANCE

Streszczenie rozprawy doktorskiej

BARIERA ANTYKONDENSACYJNA

PARAMETRY TECHNICZNE DEKLAROWANE PRZEZ PRODUCENTA POTWIERDZONE BADANIAMI / RATINGS ASSIGNED BY THE MANUFACTURER AND PROVED BY TESTS

Badania tarciowo-zuŝyciowe tytanu i stopów aluminium

WŁAŚCIWOŚCI TRIBOLOGICZNE POWŁOK ELEKTROLITYCZNYCH ZE STOPÓW NIKLU PO OBRÓBCE CIEPLNEJ

Badania tribologiczne materiałów przeznaczonych na elementy łożysk tocznych. Tribological tests of materials intended for roller bearing parts



Badanie wpływu ujemnych temperatur na właściwości tribologiczne materiałów polimerowych

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

WŁAŚCIWOŚCI TRIBOLOGICZNE ALUMINIUM OTRZYMANEGO NA DRODZE KONSOLIDACJI PLASTYCZNEJ PROSZKÓW

BUILDING BUILDING. Patrol Group offers a broad spectrum of building products: building buckets and containers of various shapes and sizes.

WEAR TEST STAND FOR OILS APPLIED IN REFRIGERATING COMPRESSORS

Ocena potrzeb pacjentów z zaburzeniami psychicznymi

Badania tribologiczne poprzecznych łożysk ślizgowych z wykorzystaniem mikro-rowków smarnych

Krytyczne czynniki sukcesu w zarządzaniu projektami

Akademia Morska w Szczecinie. Wydział Mechaniczny

Tytuł pracy w języku angielskim: Microstructural characterization of Ag/X/Ag (X = Sn, In) joints obtained as the effect of diffusion soledering.

WYSOKOTEMPERATUROWE WŁASNOŚCI TRIBOLOGICZNE STOPÓW Fe-Al

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 4

WPŁYW OBCIĄŻENIA I PRĘDKOŚCI OBROTOWEJ N A ZUŻYCIE STALI BAINITYCZNEJ W SKOJARZENIU ŚLIZGOWYM NA STANOWISKU AMSLERA

BADANIA WŁAŚCIWOŚCI CIERNYCH WYBRANYCH TWORZYW POLIURETANOWYCH STOSOWANYCH W NAPĘDACH KOLEJEK SZYNOWYCH

PROCEEDINGS OF THE INSTITUTE OF VEHICLES 5(109)/2016

QUANTITATIVE AND QUALITATIVE CHARACTERISTICS OF FINGERPRINT BIOMETRIC TEMPLATES

Zarządzanie sieciami telekomunikacyjnymi

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

STRUCTURE AND PROPERTIES OF Ni-P/PTFE COMPOSITE COATINGS PRODUCED BY CHEMICAL REDUCTION METHOD

CHROPOWATOŚĆ POWIERZCHNI WĘZŁÓW TARCIA SPRĘŻAREK CHŁODNICZYCH PRACUJĄCYCH W NIEKORZYSTNYCH WARUNKACH EKSPLOATACJI

PORÓWNANIE ZUŻYCIA WĘZŁÓW TARCIA SPRĘŻAREK CHŁODNICZYCH PRACUJĄCYCH W NIEKORZYSTNYCH WARUNKACH EKSPLOATACYJNYCH

DM-ML, DM-FL. Auxiliary Equipment and Accessories. Damper Drives. Dimensions. Descritpion

DIAGNOSTYKA INTENSYWNOŚCI ZUŻYCIA OLEJU SILNIKOWEGO W CZASIE EKSPLOATACJI

PRECURSOR INFLUENCE ON TRIBOLOGICAL PROPERTIES OF METAL-CERAMIC COMPOSITES DESIGNED FOR AVIATION MACHINE PARTS

DETECTION OF MATERIAL INTEGRATED CONDUCTORS FOR CONNECTIVE RIVETING OF FUNCTION-INTEGRATIVE TEXTILE-REINFORCED THERMOPLASTIC COMPOSITES

OPORY TARCIA W RUCHU TOCZNO- -ŚLIZGOWYM WYBRANYCH POLIMERÓW W KONTAKCIE ZE STALĄ

Zastosowanie MES do wyjaśnienia mechanizmu zużywania w węzłach tarcia

ANALIZA EKONOMICZNA BUDOWY I EKSPLOATACJI SYSTEMÓW TELEFONII INTERNETOWEJ W PRZEDSIĘBIORSTWIE ROLNICZYM

Tribological tests, linear wear, durability, reliability, roughness. Badania tribologiczne, zużycie liniowe, trwałość, niezawodność, chropowatość.

Wpływ powłoki Al Si na proces wytwarzania i jakość zgrzewanych aluminiowanych rur stalowych

Professor Dr.-Ing. habil.

INVESTIGATIONS OF BOUNDARY FRICTION OF USED MOTOR OIL IN CONDITION OF VARIABLE LOAD

THE INFLUENCE OF RADIATION MODIFICATION ON TRIBOLOGICAL PROPERTIES OF T5W, T7W PLASTICS USED IN KINEMATICS SYSTEMS

WŁAŚCIWOŚCI TRIBOLOGICZNE MATERIAŁÓW KOMPOZYTOWYCH ZAWIERAJĄCYCH WĘGIEL SZKLISTY

88 MECHANIK NR 3/2015

WPŁYW PALIWA RME W OLEJU NAPĘDOWYM NA WŁAŚCIWOŚCI SMARNE W SKOJARZENIU STAL ALUMINIUM

LABORATORY WEAR ASSESSMENT OF SELECTED ELEMENTS OF RAILWAY TRANSPORT MEANS

WPŁYW PREPARATÓW KRWI NA WŁAŚCIWOŚCI TRIBOLOGICZNE SKOJARZENIA UHMWPE/STOP CoCrMo

Cracow University of Economics Poland

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

T R I B O L O G I A 93

OCENA WŁAŚCIWOŚCI TRIBOLOGICZNYCH POWŁOK UZYSKANYCH DROGĄ METALIZACJI NATRYSKOWEJ

WPŁYW SZYBKOŚCI STYGNIĘCIA NA WŁASNOŚCI TERMOFIZYCZNE STALIWA W STANIE STAŁYM

WŁAŚCIWOŚCI TRIBOLOGICZNE POWŁOK CERAMICZNYCH AL 2 O 3 NATRYSKIWANYCH PLAZMOWO

SELECTED TECHNICAL PROBLEMS WITH POLYMER APPLICATION ON SLIDE WAYS

METODYKA BADAŃ WYZNACZANIA ODPORNOŚCI NA KOROZJĘ NAPRĘŻENIOWĄ ELEMENTÓW Z TWORZYW POLIMEROWYCH

WPŁYW UKSZTAŁTOWANIA STRUKTURY GEOMETRYCZNEJ POWIERZCHNI STOPU TYTANU NA CHARAKTERYSTYKI TRIBOLOGICZNE POLIMERU

Transkrypt:

4-2016 T R I B O L O G I A 201 Wojciech WIELEBA *, Tadeusz LEŚNIEWSKI *, Darhan ELEMES **, Ainur ELEMES ** FRICTION PROCESSES OF SELECTED POLYMERS SLIDING ON STEEL AND DURALUMIN IN A LUBRICANT ENVIRONMENT PROCESY TARCIA WYBRANYCH POLIMERÓW KONSTRUKCYJNYCH PO STALI I DURALUMINIUM W OBECNOŚCI ŚRODKÓW SMARUJĄCYCH Key words: friction, wear, polymers, lubricants Słowa kluczowe: tarcie, zużywanie, polimery konstrukcyjne, smarowanie Abstract The article presents the results of tribological research into engineering polymers (POM, PEEK, PPS) cooperating in sliding motion with 316L steel and EN AW-2017A aluminium alloy in the presence of a liquid (water, hydraulic oil HLP68). This type of friction pair may occur in hydraulic systems (gear pumps, valves, etc.). For comparison, additionally, the results of tribological research * ** Wrocław University of Science and Technology, Faculty of Mechanical Engineering, Department of Machine Design and Tribology, ul. Wybrzeże St. Wyspiańskiego 27, 50-370 Wrocław, Poland. D. Serikbayev East-Kazakhstan State Technical University in Ust-Kamenogorsk, Kazakhstan.

202 T R I B O L O G I A 4-2016 carried out in dry friction conditions have been shown. In addition, the results of microscopic study of the sliding surfaces of polymeric materials have been presented. Analysis of the test results allows one to describe the processes of friction and wear of the studied sliding pairs. INTRODUCTION The problem of friction and wear of polymeric materials is widely described in the literature. Most studies concern research in the conditions of dry friction, because most of the polymer friction nodes [L. 1, 2] work in such conditions. A much smaller number of studies are connected with the metal-polymer friction pair in the presence of a liquid [L. 3, 4, 5]. Such cooperation occurs most often in technical seals. The tribological research presented in the literature concerns mostly PTFE [L. 6], PE-HD, and elastomers (rubber) [L. 7]. In recent times, the question of applying polymeric materials in fluid power units [L. 8, 9, 10], such as pumps, valves, or manifolds, has been brought up. This is mainly due to the low density of the polymer materials that can substantially reduce the weight of a product. Moreover, the materials show high chemical resistance, particularly for the fluids used in hydraulic systems. In the case of their application in the hydraulic elements, the polymeric materials should feature good sliding and mechanical properties [L. 10]. METHODOLOGY OF MEASUREMENT The tribological research into engineering polymers cooperating in sliding motion with metallic materials was carried out on a pin-on-disc test stand (tribometer T-01 M). A view of the examined sliding pair is shown in Figure 1. The polymer samples (pin, 8 mm in diameter) used in the test slides on a rotating disc made of 316L stainless steel or EN AW-2017A aluminium alloy (duralumin). For the test, three polymeric materials were selected: polyacetal (POM), polyetheretherketone (PEEK), and polyphenylene sulphide (PPS). Those polymers are some of the most frequently used materials for the making of the sliding elements of machines and practically do not absorb moisture. Moreover, attempts to use polymeric materials in such units as hydraulic gear pumps, valves, or manifolds are made [L. 9]. The aim of the tribological research was to compare the values of the friction coefficient for the examined sliding pairs and to determine the wear process of the polymers. The experiment was performed at a constant value of contact pressure p = 1 MPa, and sliding speed v = 1 m/s, both in dry friction and in mixed friction conditions, i.e. in the presence of water and in the presence of hydraulic oil HLP68. The tested sliding pair was put into a container that was filled with a liquid constituting the environment of the experiment. The liquid level was so selected that, during the test, the sample and the mating element

4-2016 T R I B O L O G I A 203 were constantly immersed in it. All measurements took place on the sliding distance s = 2500 m. During the test, the friction forces were recorded and on that basis, and the value of the friction coefficient was determined. All measurements were repeated five times, the final results were averaged, and the standard deviation and the confidence intervals were determined. Fig. 1. A view of the investigated couple on the pin-on-disc test stand (1 polymeric sample, 2 metallic counterface) Rys. 1. Widok badanej pary ślizgowej na stanowisku pin-on-disc (1 polimerowa próbka, 2 metalowy element współpracujący) The wear value of the polymer samples in the mixed friction conditions, both the linear and the mass, was within the error of the measuring instruments (Z L <1 µm, Z m < 0.1 mg). Therefore, the authors omitted the analysis of the wear intensity of the examined polymeric materials, and, in order to determine the wear processes of the investigated polymer materials, a microscopic examination of the sliding surface of the polymers was carried out. The study was performed using a Phenom ProX type electron microscope equipped with an EDS analyser allowing an analysis of the composition of the tested material. RESULTS OF TRIBOLOGICAL RESEARCH The results of the tribological investigation showing the value of the friction coefficient for a sliding metal-polymer pair depending on the friction environment are presented in Table 1. For easier comparison of the test results, they are also shown in the graphs (Figures 2 and 3). The analysis of the results shows that the water environment contributes to an increase in the value of the friction coefficient for the examined sliding pairs. This is observed for PPS and POM cooperating with the steel (Figure 2), as well as for POM and PEEK

204 T R I B O L O G I A 4-2016 cooperating with aluminium alloy (Figure 3). This phenomenon was also observed in the previously conducted studies of other polymers [L. 3, 4, 5, 6]. One explanation may be the formation of the polymer film transferred onto the surface of the cooperating metal element, which is more difficult in this environment. On the other hand, oil as a lubricant, despite the absence of a polymer layer on the metal element, reduces the friction coefficient compared to the technically dry friction. 0,4 Dry friction water HLP68 oil Coefficient of friction µ 0,3 0,2 0,1 0,0 POM PEEK PPS Fig. 2. Friction coefficient for the tested polymer-steel 316L in dry friction conditions, in water and in hydraulic oil HLP68 (p = 1 MPa, v = 1 m/s, T 0 = 24 C) Rys. 2. Współczynnik tarcia badanych par ślizgowych polimer-stal 316L w warunkach tarcia suchego, w obecności wody oraz oleju hydraulicznego HLP68 (p = 1 MPa, v = 1 m/s, T 0 = 24 C) 0,4 Dry friction water HLP68 oil Coefficient of friction µ 0,3 0,2 0,1 0,0 POM PEEK PPS Fig. 3. Friction coefficient for the tested polymer-duralumin pairs in dry friction conditions, in water and in hydraulic oil HLP68 (p = 1 MPa, v = 1 m/s, T 0 = 24 C) Rys. 3. Współczynnik tarcia badanych par ślizgowych polimer-duraluminium w warunkach tarcia suchego, w obecności wody oraz oleju hydraulicznego HLP68 (p = 1 MPa, v = 1 m/s, T 0 = 24 C)

4-2016 T R I B O L O G I A 205 Table 1. Test results of the friction coefficient for different environment Tabela 1. Wyniki badań współczynnika tarcia par ślizgowych polimer-metal prowadzonych w różnym środowisku Lp. Polymeric material Mating element Environment Coefficient of friction 1 POM dry friction 0.24 ±0.024 2 POM water 0.3 ±0.011 3 POM HLP68 0.12 ±0.002 4 PEEK dry friction 0.25 ±0.025 5 PEEK water 0.25 ±0.001 6 PEEK HLP68 0.11 ±0.003 7 PPS dry friction 0.27 ±0.018 8 PPS water 0.3 ±0.008 9 PPS 316L steel HLP68 0.06 ±0.008 10 POM dry friction 0.21 ±0.006 11 POM water 0.32 ±0.010 12 POM HLP68 0.02 ±0.006 13 PEEK dry friction 0.21 ±0.016 14 PEEK water 0.28 ±0.006 15 PEEK HLP68 0.03 ±0.001 16 PPS dry friction 0.27 ±0.025 17 PPS water 0.27 ±0.012 18 PPS Duralumin HLP68 0.01 ±0.000 MICROSCOPIC STUDIES After conducting the tribological research, the sliding surfaces of the polymeric materials were subjected to microscopic examination. Their goal was to describe the wear processes of the studied polymers. Examples of the surface views are shown in Figures 4 9. Based on the observations, it may be noted that, despite the presence of a liquid lubricant, such as water or hydraulic oil, traces of abrasive wear are visible on the surface of the polymers. This demonstrates the occurrence of the direct contact of the polymer with micro inaccuracies of the mating metal surface. The thickness of the lubricant film produced by the liquid is not sufficient to protect the polymer against abrasive wear. This also shows that the carried out tribological tests were held in the mixed friction conditions. The presented microscopic photos also show the differences in the wear of the investigated polymer materials.

206 T R I B O L O G I A 4-2016 Fig. 4. Surface of some polymers after sliding on steel 316L in dry friction conditions Rys. 4. Powierzchnia ślizgowa polimerów po tarciu suchym po stali 316L Fig. 5. Surface of some polymers after sliding on duralumin in dry friction conditions Rys. 5. Powierzchnia ślizgowa polimerów po tarciu suchym po duraluminium PA6 Fig. 6. Surface of some polymers after sliding on steel 316L in water (mixed friction) Rys. 6. Powierzchnia ślizgowa polimerów po tarciu po stali 316L w środowisku wody

4-2016 T R I B O L O G I A 207 Fig. 7. Surface of some polymers after sliding on duralumin in water (mixed friction) Rys. 7. Powierzchnia ślizgowa polimerów po tarciu po duraluminium PA6 w środowisku wody Fig. 8. Surface of some polymers after sliding on steel 316L in oil HLP68 (mixed friction) Rys. 8. Powierzchnia ślizgowa polimerów po tarciu po stali 316L w środowisku oleju HLP68 Fig. 9. Surface of some polymers after sliding on duralumin in oil HLP68 (mixed friction) Rys. 9. Powierzchnia ślizgowa polimerów po tarciu po duraluminium PA6 w środowisku oleju HLP68 In dry friction, smoothing of the polymer elements surface occurs (Figs. 4, 5). It is demonstrated by a lower number of fissures edges and microcracks as well as their smoothing, which are formed by the wear. In the case of PEEK, deep

208 T R I B O L O G I A 4-2016 furrows, scratches, and wear products of the polymeric material are visible on the sliding surface (Figs. 8, 9). They can be seen on the surface of the polymer even after the process of friction in the conditions of mixed friction, indicating contact of surface asperities of the metal element with the polymeric material. After the study in the water environment, scratches are visible on the sliding surface of all the investigated polymer materials; however, in the case of POM and PPS, they are not as clear and deep as for the PEEK. This is because it is difficult to create a polymeric coating on the surface of the metal in the presence of water [L. 3, 4, 5]. Additionally, on the surface of the PPS, wear products of the metal element (steel and aluminium) (Figures 4 9) can be observed, which exist independent of the environment in which the test was carried out. It proves that, during the friction of PPS against metals, wear of a harder metal element is also present. The presence of oil during friction facilitates sliding of the polymer on the metal surface, thus contributing to a less intensive wear process of the polymer (Figures 8, 9). In this case, the depth of the grooves and their number is lower compared to the case of friction in the presence of water. This shows that the use of elements of friction pairs made of polymer materials in the equipment working in water, despite the corrosion resistance, can lead to an increase in their wear in comparison to the dry friction or in the presence of oil. This requires, however, further tribological research on the effect of the surface roughness of the mating elements and of temperature and sliding velocity on wear intensity of polymeric materials used for the moving parts of hydraulic equipment. SUMMARY The article presents the results of studies of selected polymeric materials (PEEK, POM, and PPS). These materials may be used in hydraulic systems, where water or hydraulic oil is the working medium. Therefore, such liquids were chosen for the tribological research. Additionally, for comparative purposes, tribological tests in dry friction conditions were carried out. The materials that were cooperating in sliding motion with the polymers were 316L stainless steel and aluminium alloy (Duralumin EN AW-2017A), which can work in the aquatic environment. The obtained results show the following: The value of the friction coefficient of the examined sliding pairs in water is greater than in dry friction. The explanation of it may be the difficulty in creating of the polymeric coating on the surface cooperating in sliding motion with metallic material. Such a phenomenon occurs during friction of the polymer-metal sliding pairs [L. 3, 4, 5]. The lowest values of the friction coefficient were observed during the cooperation of the tested materials in the environment of hydraulic oil.

4-2016 T R I B O L O G I A 209 The sliding cooperation of polymeric materials with metallic materials was held in the mixed friction conditions where direct contact of hard micro-roughness of the metal surface with the polymer surface was recorded. Evidence of this was observed on the sliding surface where scratches of the polymers were created as a result of abrasive wear. The research presented in the paper was of a preliminary character. A more precise explanation of the obtained results needs further study of the polymermetal tribological pairs at different values of the operating parameters, such as pressure unit, sliding velocity, etc. In addition, it would be required to conduct additional studies concerning the wettability of the surface of the examined polymers with liquids used in hydraulics as a working media. REFERENCES 1. Rymuza Z.: Trybologia polimerów. Warszawa, WNT, 1986. 2. Wieleba W.: Bezobsługowe łożyska ślizgowe z polimerów termoplastycznych. Oficyna Wydaw. PWr., Wrocław 2013. 3. Benabdallah H.S.: Static friction coefficient of some plastics against steel and aluminium under different contact conditions. Tribology International 40 (2007), s. 64 73. 4. Capanidis D., Wieleba W., Kowalewski P.: Wpływ wybranych smarowych preparatów eksploatacyjnych na właściwości tribologiczne materiałów polimerowych podczas tarcia ze stalą. Tribologia. 2010, R. 41, nr 6, s. 11 23. 5. Capanidis D., Wieleba W., Kowalewski P.: Effect of certain lubricative exploational preparations on the tribological properties of selected PTFE composites during friction with steel. 20th International Symposium on Surfactants in Solution: SIS 2014, s. 533. 6. Wieleba W.: Analiza procesów tribologicznych zachodzących podczas współpracy kompozytów PTFE ze stalą. Wydawnictwo PWr, Wrocław 2002. 7. Bieliński D.M.: Tribologia elastomerów i gumy z perspektywy inżynierii materiałowej, Wyd. ITeE, Radom 2009. 8. Stryczek J., Bednarczyk S., Biernacki K.: Gerotor pump with POM gears: design, production technology, research. Archives of Civil and Mechanical Engineering. 2014, vol. 14, nr 3, s. 391 397. 9. Stryczek J., Biernacki K., Krawczyk J., Wołodźko J.: Application of plastics in the building of fluid power elements. Journal of Mechanical Engineering of the National Technical University of Ukraine. 2014, nr 2, s. 5 11. 10. Stryczek J.: Modelowe elementy hydrauliczne z tworzyw sztucznych. Hydraulika i Pneumatyka. 2015, R. 35, nr 2, s. 5 8. Streszczenie W artykule przedstawiono wyniki badań tribologicznych polimerów konstrukcyjnych (POM, PEEK, PPS) współpracujących ślizgowo ze stalą 316L, a także stopem aluminium EN AW-2017A w obecności cieczy (woda,

210 T R I B O L O G I A 4-2016 olej hydrauliczny HLP68). Tego typu pary trące mogą występować w urządzeniach hydraulicznych (pompy zębate, zawory itp.). W celu porównania przedstawiono dodatkowo wyniki badań tribologicznych przeprowadzonych w warunkach tarcia technicznie suchego. Ponadto zaprezentowano wyniki badań mikroskopowych powierzchni ślizgowych materiałów polimerowych. Przeprowadzona analiza wyników badań umożliwiła opisanie procesów tarcia i zużywania badanych par ślizgowych.