DEMAND FOR FOREST BIOMASS AND POSSIBILITIES FOR ITS HARVESTING IN POLAND

Podobne dokumenty
MOŻLIWOŚCI POZYSKIWANIA BIOMASY LEŚNEJ NA CELE ENERGETYCZNE W POLSCE

Cracow University of Economics Poland

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

ECONOMIC EFFECTIVENESS OF LOGGING RESIDUE BUNDLING AND CHIPPING

GLOBAL METHANE INITIATIVE PARTNERSHIP-WIDE MEETING Kraków, Poland

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

Evaluation of the main goal and specific objectives of the Human Capital Operational Programme

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

Tychy, plan miasta: Skala 1: (Polish Edition)


Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

Patients price acceptance SELECTED FINDINGS

PORTS AS LOGISTICS CENTERS FOR CONSTRUCTION AND OPERATION OF THE OFFSHORE WIND FARMS - CASE OF SASSNITZ



Helena Boguta, klasa 8W, rok szkolny 2018/2019

Stargard Szczecinski i okolice (Polish Edition)

Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI

Sargent Opens Sonairte Farmers' Market

ENERGY CONSUMPTION IN THE PRODUCTION OF CHIPS AND BUNDLES FROM LOGGING RESIDUES

Revenue Maximization. Sept. 25, 2018

Investment expenditures of self-governement units in percentage of their total expenditure

Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)

TYRE PYROLYSIS. REDUXCO GENERAL DISTRIBUTOR :: ::

Length of expressways and highways per 100 km 2

ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL

PHYSICAL AND CHEMICAL PROPERTIES OF PINE WOOD CHIPS PRODUCED FROM LOGGING RESIDUES

Ankiety Nowe funkcje! Pomoc Twoje konto Wyloguj. BIODIVERSITY OF RIVERS: Survey to students

EFFICIENCY AND TECHNICAL PARAMETERS OF THE CRUSHING OF LOGGING RESIDUES WITH A MERI CRUSHER MJS-2.0 DT MACHINE


MaPlan Sp. z O.O. Click here if your download doesn"t start automatically

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

TRANSPORT W RODZINNYCH GOSPODARSTWACH ROLNYCH

Pielgrzymka do Ojczyzny: Przemowienia i homilie Ojca Swietego Jana Pawla II (Jan Pawel II-- pierwszy Polak na Stolicy Piotrowej) (Polish Edition)

BIOMASS OF PINE SAW TIMBER STANDS GROWING ON THE FRESH MIXED CONIFEROUS SITE. Zenon Pilarek, Roman Gornowicz, Stanisław Gałązka

Znaczenie biomasy leśnej w realizacji wymogów pakietu energetycznoklimatycznego

Structure of councilors in the legislative organs of local government units


Unit of Social Gerontology, Institute of Labour and Social Studies ageing and its consequences for society

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Financial support for start-uppres. Where to get money? - Equity. - Credit. - Local Labor Office - Six times the national average wage (22000 zł)

Economical utilization of coal bed methane emitted during exploitation of coal seams energetic and environmental aspects

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.

ANALIZA STRUKTURY ŹRÓDEŁ FINANSOWANIA EDUKACJI PRZYRODNICZO-LEŚNEJ W LASACH PAŃSTWOWYCH. Monika Starosta-Grala, Anna Ankudo-Jankowska

Blow-Up: Photographs in the Time of Tumult; Black and White Photography Festival Zakopane Warszawa 2002 / Powiekszenie: Fotografie w czasach zgielku

System optymalizacji produkcji energii

Emilka szuka swojej gwiazdy / Emily Climbs (Emily, #2)

Country fact sheet. Noise in Europe overview of policy-related data. Poland

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

Forested areas in Cracow ( ) evaluation of changes based on satellite images 1 / 31 O

Zarządzanie sieciami telekomunikacyjnymi

Reporting on dissemination activities carried out within the frame of the DESIRE project (WP8)

A n g i e l s k i. Phrasal Verbs in Situations. Podręcznik z ćwiczeniami. Dorota Guzik Joanna Bruska FRAGMENT

Revenue to gminas budgets from service charges in division 756 per capita

Wsparcie dyplomacji ekonomicznej dla strategii surowcowej


SPIS TREŚCI / INDEX OGRÓD GARDEN WYPOSAŻENIE DOMU HOUSEHOLD PRZECHOWYWANIE WINA WINE STORAGE SKRZYNKI BOXES

Perspectives of photovoltaics in Poland

Dolny Slask 1: , mapa turystycznosamochodowa: Plan Wroclawia (Polish Edition)

Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition)

General Certificate of Education Ordinary Level ADDITIONAL MATHEMATICS 4037/12

EGARA Adam Małyszko FORS. POLAND - KRAKÓW r

PRODUCTION HALL OFFER

The average number of people in a household receiving social benefits in relation to the average number of persons per household

Raport bieżący: 44/2018 Data: g. 21:03 Skrócona nazwa emitenta: SERINUS ENERGY plc

Working Tax Credit Child Tax Credit Jobseeker s Allowance

EPS. Erasmus Policy Statement

Has the heat wave frequency or intensity changed in Poland since 1950?

TELEDETEKCJA ŚRODOWISKA dawniej FOTOINTERPRETACJA W GEOGRAFII. Tom 51 (2014/2)

Profil Czasopisma / The Scope of a Journal

DOI: / /32/37

18. Przydatne zwroty podczas egzaminu ustnego. 19. Mo liwe pytania egzaminatora i przyk³adowe odpowiedzi egzaminowanego

KOMBAJNY ZBOŻOWE W ROLNICTWIE POLSKIM W LATACH

SubVersion. Piotr Mikulski. SubVersion. P. Mikulski. Co to jest subversion? Zalety SubVersion. Wady SubVersion. Inne różnice SubVersion i CVS

Journal of Agribusiness and Rural Development

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Akcja COST FP0902 jako przykład międzynarodowej współpracy w zakresie metodyki badań pozyskiwania biomasy leśnej do celów energetycznych

Call 2013 national eligibility criteria and funding rates

Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards

Employment. Number of employees employed on a contract of employment by gender in Company

MAŁE ELEKTROWNIE WODNE W SYSTEMIE PLANOWANIA PRZESTRZENNEGO W POLSCE

Dominika Janik-Hornik (Uniwersytet Ekonomiczny w Katowicach) Kornelia Kamińska (ESN Akademia Górniczo-Hutnicza) Dorota Rytwińska (FRSE)

BILANS BIOMASY ROLNEJ (SŁOMY) NA POTRZEBY ENERGETYKI 1

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

DO MONTAŻU POTRZEBNE SĄ DWIE OSOBY! INSTALLATION REQUIRES TWO PEOPLE!

PEX PharmaSequence monthly report - January 2018 Total open market (sell-out report)

Appendix. Studia i Materiały Centrum Edukacji Przyrodniczo-Leśnej R. 10. Zeszyt 2 (17) /

HAPPY ANIMALS L01 HAPPY ANIMALS L03 HAPPY ANIMALS L05 HAPPY ANIMALS L07

KATOWICE SPECIAL ECONOMIC ZONE GLIWICE SUBZONE and its influence on local economy KATOWICE SPECIAL ECONOMIC ZONE - GLIWICE SUBZONE

Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition)

Extraclass. Football Men. Season 2009/10 - Autumn round

HAPPY ANIMALS L02 HAPPY ANIMALS L04 HAPPY ANIMALS L06 HAPPY ANIMALS L08

ANKIETA ŚWIAT BAJEK MOJEGO DZIECKA

OPTYMALIZACJA PUBLICZNEGO TRANSPORTU ZBIOROWEGO W GMINIE ŚRODA WIELKOPOLSKA

Wybrzeze Baltyku, mapa turystyczna 1: (Polish Edition)

Renewable Energy Sources

Please fill in the questionnaire below. Each person who was involved in (parts of) the project can respond.

Transkrypt:

ISSN 1644-0722 DOI: 10.17306/J.AFW.2015.1.3 www.forestry.actapol.net www.acta.media.pl SCIENTIARUM POLONORUMACTA Silv. Colendar. Rat. Ind. Lignar. 14(1) 2015, 31 38 DEMAND FOR FOREST BIOMASS AND POSSIBILITIES FOR ITS HARVESTING IN POLAND Krzysztof Jabłoński, Włodzimierz Stempski Poznań University of Life Sciences Abstract. The rising demand for energy and the need to acquire ever more energy quantities from renewable sources call for seeking energy sources in forestry. The analysis presents a simulation of wood quantities needed to meet the obligation to produce electricity from woody biomass. Three sources of energy were specified, which can be delivered to power plants: medium dimensional round firewood, small dimensional firewood and logging residues. The calculated quantity of wood required by the industrial energy sector will reach 15 million cu. meters. Forestry will be able to directly supply about 5.8 mill. cu. meters of wood for energy purposes, including 3.1 mill. cu. m of medium dimensional roundwood, 1.4 mill. cu. m of small dimensional wood and 1.35 mill. cu. m of woody material in the form of logging residues. The largest quantities of woody material will come from western and northern parts of the country. Taking into account the fact that considerable quantities of wood suitable for energy purposes are currently utilized for heating by rural communities, not much will be left for the industrial energy sector. Key words: energy wood, biomass, logging residues, small dimensional wood INTRODUCTION The problem of supplying communities with energy sources is becoming more and more important. The need to prevent adverse climate changes, running out of fossil energy sources and the necessity to maintain energy security call for a more intensive use of renewable sources of energy. Biomass, including the material coming from the forestry sector has a unique position among these sources. Forests fulfill various functions, they provide habitats for many animal and plant species, stabilize climate and water conditions, supply oxygen, provide economic gains and recreational values for Corresponding author Adres do korespondencji: Dr hab. Krzysztof Jabłoński, Department of Forest Technology, Poznań University of Life Sciences, Wojska Polskiego 71 C, 60-625 Poznań, Poland, e-mail: jabkrys@up.poznan.pl Copyright by Wydawnictwo Uniwersytetu Przyrodniczego w Poznaniu

32 K. Jabłoński, W. Stempski people and they are a vital source of esthetic and spiritual experience. Forests also play important productive functions by supplying wood to the marketplace. The last of the above mentioned functions is very significant, because it supplies materials for the manufacturing of furniture, paper and construction timber, thus creating workplaces in wood processing industry. The need to mitigate climate changes by limiting greenhouse gas emissions has aroused much interest in biomass as a vital renewable source of energy. Forests have acquired a new function a source of biomass for energy purposes. The problem, how to agree different functions of forests poses a serious challenge. How should the energy raw material be harvested in forests without causing any negative ecological effects resulting from removing biomass from the environment. In what proportion can the harvested wood be directed to energy plants instead of wood processing industry. In order to answer the question, how much wood can be utilized for energy purposes, tree biomass must be assessed and it should be specified which parts of the trees can be used for the production of energy. Studies on the quantities of pine tree biomass have shown that branches and tree tops of adult trees make about 13% of total tree biomass (Kubiak and Grodecki, 1992). A part of the roundwood, as well as branches and tree tops, can be used for energy purposes. The underground biomass, which makes about 18-20% of total pine tree the most common forest canopy building species is not even considered a raw material for the production of energy. The possibilities for acquiring energy from forest biomass depend, to a large degree, on the assessment of resources of the raw material that can be used for energy purposes. Although, theoretically speaking, any type of wood can be used for the production of energy, practically only certain wood assortments are considered reasonable for energy use. Especially, medium dimensional round firewood (S4), small dimensional roundwood (M) and logging residues in the form of branches and tree tops harvested in final fellings are used for the production of energy. Other wood assortments are regarded as wood of full value, which according to current regulations is not allowed to be used as a source of energy (Rozporządzenie..., 2012). There are publications presenting assessments of wood quantities that can be used for energy purposes (Zajączkowski, 2013). Such reports give approximate quantities of wood that can be used for energy purposes, specifying geographical regions and types (forms) of the raw material. The purpose of this publication was to calculate the demand for energy wood in the coming years, resulting from adopted obligations and quantities of round firewood, small dimensional wood and logging residues that can be harvested in different regions of the country. MATERIAL AND METHODS The quantities of wood that are currently being harvested or could be harvested for energy purposes were based on statistical data (Leśnictwo, 2010; 2011; 2012; 2013; 2014) from the latest 5 years as well as on earlier research results (Jabłoński and Różański, 2003). Based on the statistical information on the current harvest of wood assortments (incl. S4 and M) approximate quantities, that can be harvested in different

Demand for forest biomass and possibilities for its harvesting in Poland 33 voivodeships, were estimated. The quantities of logging residues were assessed based on data on the clearcut area in the last 5 years, and based on previous studies on forest biomass in the form of logging residues (Jabłoński and Różański, 2003). Obligations specifying the production of electricity from renewable sources of energy that have been adopted as well as stipulations limiting the use of forest biomass, included in a regulation from 2012 (Rozporządzenie..., 2012), made it possible to present a rough simulation of the forest biomass quantities, that can be planned for energy production. Percentages of electricity from renewable sources of energy, that were demanded by the regulations (Rozporządzenie..., 2012), would continually increase up to 20% in 2012. At the same time the minimum shares of biomass of agricultural origin (agro), which must be used in biomass burning installations will rise. In the case of hybrid installations and installations in which biomass only can be burned, the shares of the agro biomass will continually go up, which means that the allowable forest biomass shares will be diminishing. The simulation presented below assumes a constant 56% share of solid biomass in the production of electricity (Energia..., 2013), a rise in the production and use of electricity of 1.5% annually (Aktualizacja..., 2011) and the efficiency rate of power plants at a level of 33% (Guła et al., 2012). The production of electricity in 2013 was 164.4 TWh (Energia, 2014). Moreover, wood will probably be used in its fresh condition, with a humidity of 50% and calorific value of 7.5 GJ t -1. These assumptions enabled us to calculate the probable demand for forest biomass for energy purposes in the coming years. RESULTS The calculated demand for energy wood in the 2015 2021 is presented in Table 1. The obligatory share of energy produced from renewable sources will be rising by 1% yearly, reaching 20% in 2021. Despite the increasing expected production of electricity and the required amounts of renewable electricity, the use of energy wood will be on the same level. This is caused by the fact, that in the coming years the share of non-forest (agro) biomass to be used by big energy producing installations will be growing and will reach 50% in 2019 2021. So, although the total amount of energy from solid biomass will grow, the amount of energy from wood will remain on the same level, about 10 TWh (9.13 10.71) or 36 PJ, which would cover the demand for 5 mill. cu. m. Considering low conversion efficiency of wood into electricity, a demand of 15 mill cu. m should be expected. It is more than twice the available forest biomass quantities presented in Table 1. The results of the research, presented in Table 2 show that 16% of the total yearly harvest of 36.5 mill. cu. m, that is 5.9 mill. cu. m will be available for energy purposes. This amount is dominated by round firewood (over 3 mill. cu. m) and small dimensional wood (1.5 mill. cu. m). Logging residues, which can be harvested at a level of 45 tons per ha, would give 1.35 mill. cu. m (about 0.9 mill. tons) of energy material. Although the data presented in Table 2 can vary from year to year, no significant changes should be expected in the nearest future. Silvarum Colendarum Ratio et Industria Lignaria 14(1) 2015

34 K. Jabłoński, W. Stempski Table 1. Estimated required quantities of forest biomass for energy production until 2021 Tabela 1. Przewidywane niezbędne ilości biomasy leśnej do wykorzystania energetycznego do 2021 roku Specification Wyszczególnienie Estimated electrical energy production, TWh Przewidywana produkcja energii elektrycznej, TWh Mandatory share of electrical energy from RES, % Obowiązkowy udział energii elektrycznej z OZE, % Mandatory share of agro biomass for dedicated installations of 20 MW and above, % Obowiązkowy udział biomasy agro w instalacjach dedykowanych o mocy >20 MW, % Estimated electrical energy from wood, TWh Przewidywana ilość energii elektrycznej z drewna TWh Minimum wood quantity (at 33% conversion rate of power plants), mill. cu. m Niezbędna ilość drewna (sprawność elektrowni 33%), mln m 3 Years Lata 2015 2016 2017 2018 2019 2020 2021 169.4 171.9 174.5 177.1 179.8 182.5 185.2 14 15 16 17 18 19 20 20 30 40 40 50 50 50 10.71 10.19 9.46 10.20 9.13 9.79 10.46 15.6 14.8 13.8 14.8 13.3 14.2 15.2 Table 2. Estimated quantities of woody material for energy purposes form state-owned and private forests in different voivodeships, m 3 Tabela 2. Szacunkowe ilości surowca do celów energetycznych w lasach państwowych i prywatnych z podziałem na województwa, m 3 Voivodeship Województwo Round firewood Drewno okrągłe opałowe Small dimensional wood Drewno małowymiarowe Logging residues Pozostałości zrębowe Total woody material for energy Razem surowiec energetyczny 1 2 3 4 5 Dolnośląskie 257 702 127 144 123 173 508 019 Kujawsko-pomorskie 133 759 71 405 73 303 278 467 Lubelskie 165 831 69 104 50 527 285 462 Lubuskie 201 678 117 168 128 342 447 189 Łódzkie 95 283 48 105 45 145 188 533 Małopolskie 121 284 49 064 31 890 202 238 Mazowieckie 170 932 82 693 74 499 328 125 Opolskie 98 579 50 208 49 474 198 261 Podkarpackie 253 507 94 337 62 824 410 668 Podlaskie 154 268 76 174 71 183 301 625

Demand for forest biomass and possibilities for its harvesting in Poland 35 Table 2 cont. / Tabela 2 cd. 1 2 3 4 5 Pomorskie 237 728 120 408 118 323 476 459 Śląskie 153 286 79 874 77 841 311 001 Świętokrzyskie 95 786 47 340 44 833 187 959 Warmińsko-mazurskie 331 598 145 046 123 746 600 390 Wielkopolskie 237 970 125 708 128 412 492 090 Zachodniopomorskie 363 709 166 559 149 974 680 243 Total Razem 3 072 900 1 470 338 1 353 491 5 896 730 Share in total harvest, % Udział w całkowitym rozmiarze pozyskania, % 8.4 4.0 3.7 16.1 An analysis of energy wood that can be harvested in different parts of the country, shows that central regions are rather poor in biomass. Most energy wood can be harvested in northern parts of the country (Zachodniopomorskie, Warmińsko-mazurskie, Pomorskie) in the west (Wielkopolskie) and in the south-west (Dolnośląskie). DISCUSSION The results obtained in course of the analysis are close to the results presented in other similar studies. The analysis, aiming to estimate the supply of energy wood until 2030, made by Głaz (2005) showed that it would be possible to harvest 7.7 mill. cu. m of energy wood, including 2.3 mill. cu. m medium sized firewood, 4.1 mill. cu. m small dimensional wood and 0.3 mill. cu. m logging residues. The problem of harvesting forest fuel has many aspects. Covering a considerable demand for forest biomass requires availability of this biomass on the one hand, and proper machines and work organization on the other one. The problem of energy biomass in Poland is, according to the authors, still unsolved. Opinions have been expressed so far, saying that once the biomass resources have been found, the problem of using forest biomass for energy purposes will be solved. It looks though that such a view provides only a partial solution to the problem, as it must be remembered that forest biomass for energy purposes is intensively (at least in some regions) utilized by local rural communities, who cannot be denied purchase of that wood fuel, especially if they cut and collect the wood in the forest by themselves. The biomass quantities presented above, are already utilized by local communities, and not much is left to be used by industrial energy installations. A solution to the problem of satisfying the demand for energy from forest biomass calls for such a supply system that would be economically interesting to entrepreneurs investing in technical equipment, used in current technologies of forest biomass harvesting. Silvarum Colendarum Ratio et Industria Lignaria 14(1) 2015

36 K. Jabłoński, W. Stempski Undoubtedly, forest biomass in the form of logging residues is a vital source of nutrients, indispensable for the growth of tree stands. Hence, removing this type of biomass from the forest site is often opposed by forest managers. However, when the logging residue harvesting technology is properly designed and organized, keeping the biomass on the clear cut area for several months, in order to let it dry up and the twigs and needles to fall off, the removal of this biomass has very little effect on the growth of the next generation tree stands that are established on clear cut areas (Lundborg, 1998). Moreover, in order to compensate for any negative effects of removing biomass from the forest, ashes, left behind after burning the biomass, can be spread all over the clear cut area (Väätäinen et al., 2011). As it was mentioned earlier, in order to use forest biomass for energy purposes, and at the same time supplying the more valuable wood to the wood processing industry, the forest biomass resources should be utilized more intensively. Apart from that, in order to increase the amount of energy from forest biomass not only research into harvesting technologies must be continued, but also clear stipulations in sectoral strategic action plans should be developed. CONCLUSIONS 1. At present, it is possible to harvest about 6 mill. cu. m of wood for energy purposes in the country, which corresponds to 16% of total yearly wood harvest. This wood quantity is dominated by round medium dimensional firewood, with over 50%. 2. Rising needs for producing electricity from renewable sources and limitations in using wood for that purpose, determine the demand for energy wood at a level of 15 mill. cu. m (considering low efficiency of the electricity production process). 3. The calculated quantity of energy wood includes firewood, traditionally used by local communities for heating. The energy wood that is available to satisfy the needs of the energy industry is largely available in the form of logging residues, with less than 1.5 mill. cu. m per year. REFERENCES Aktualizacja Prognozy zapotrzebowania na paliwa i energię do roku 2030. Raport [Update of the demand forecast for fuels and energy until 2030] (2011). Warszawa: Agencja Rynku Energii [in Polish]. Energia 2014 [Energy 2014] (2014). Warszawa: GUS [in Polish]. Energia ze źródeł odnawialnych w 2012 roku [Energy from renewable sources in 2012] (2013). Warszawa: GUS [in Polish]. Głaz, J. (2005). Ocena strategii rozwoju energetyki odnawialnej oraz kierunki rozwoju energetycznego wykorzystania biomasy leśnej wraz z propozycją działań [Assessment of the renewable energy development strategy and development trends of forest biomass use for energy, with proposals for action]. Warszawa: NFOŚiGW [in Polish].

Demand for forest biomass and possibilities for its harvesting in Poland 37 Guła, A., Wajss, P., Goryl, W. (2012). Czy biomasa dla elektrowni to dobre rozwiązanie dla Polski [Is biomass for power stations a good solution for Poland]. Electr. Rev. 5a, 198 203. Retrrieved from http://pe.org.pl/articles/2012/5a/51.pdf [in Polish]. Jabłoński, K., Różański, H. (2003). Prospects for wood harvesting in Poland. Silv. Colendar. Rat. Ind. Lignar., 2(1), 19 26. Kubiak, M., Grodecki, J. (1992). Analiza udziału podstawowych sortymentów w rębnych drzewostanach sosnowych (część I) [Analysis of the share of basic assortments in adult pine tree stands (part 1)]. Sylwan, 8, 15 24 [in Polish]. Leśnictwo 2010 [Forestry 2010] (2010). Warszawa: GUS [in Polish]. Leśnictwo 2011 [Forestry 2011] (2011). Warszawa: GUS [in Polish]. Leśnictwo 2012 [Forestry 2012] (2012). Warszawa: GUS [in Polish]. Leśnictwo 2013 [Forestry 2013] (2013). Warszawa: GUS [in Polish]. Leśnictwo 2014 [Forestry 2014] (2014). Warszawa: GUS [in Polish]. Lundborg, A. (1998). A sustainable forest fuel system in Sweden. Biomass Bioener., 15, 4/5, 399 406. Rozporządzenie Ministra Gospodarki z dnia 18 października 2012 r. w sprawie szczegółowego zakresu obowiązków uzyskania i przedstawienia do umorzenia świadectw pochodzenia, uiszczenia opłaty zastępczej, zakupu energii elektrycznej i ciepła wytworzonych w odnawialnych źródłach energii oraz obowiązku potwierdzania danych dotyczących ilości energii elektrycznej wytworzonej w odnawialnym źródle energii [Regulation of the Minister of Economy of October 18 th 2012 concerning the detailed obligation scope for the obtaining and submitting for writing off of certificates of origin, making the substitution payment, purchase of electricity and heat produced in renewable sources and the obligation to confirm the data on electrical energy produced in a renewable energy source] (2012). Dz.U. poz. 1229. Retrieved from http://isip.sejm.gov.pl [in Polish]. Väätäinen, K., Sirparanta, E., Räisänen, M., Tahvanainen, T. (2011). The costs and profitability of using granulated wood ash as a forest fertilizer in drained peatland forests. Biomass Bioener., 35, 8, 3335 3341. Zajączkowski, S. (2013). Prognozy pozyskania drewna w Polsce w perspektywie 20 lat oraz możliwości ich wykorzystania do szacowania zasobów drewna na cele energetyczne [Forecasts of wood harvesting in Poland in a 20 year perspective and possibilities for their use for estimating energy wood potential]. In: A. Gołos, A. Kaliszewska (Eds.), Biomasa leśna na cele energetyczne [Forest biomass for energy purposes]. Warszawa: IBL [in Polish]. ZAPOTRZEBOWANIE NA BIOMASĘ LEŚNĄ I MOŻLIWOŚCI JEJ POZYSKIWANIA W POLSCE Streszczenie. Wzrastające zapotrzebowanie na energię oraz konieczność pozyskiwania coraz większych ilości energii ze źródeł odnawialnych zmuszają do ich poszukiwania w leśnictwie. Przeprowadzona analiza stanowi symulację ilości drewna koniecznego do sprostania obowiązkowi wyprodukowania energii elektrycznej z biomasy drzewnej. Wyróżniono trzy źródła biomasy drzewnej, mogącej trafiać bezpośrednio do energetyki: drewno opałowe, drewno małowymiarowe oraz pozostałości zrębowe. Ustalono, że niezbędna ilość drewna, przeznaczona dla energetyki przemysłowej będzie wynosić około 15 mln m 3. Leśnictwo będzie mogło bezpośrednio dostarczyć około 5,8 mln m 3 surowca do celów energetycznych, w tym 3,1 mln m 3 drewna okrągłego opałowego, 1,4 mln m 3 drewna małowymiarowego oraz 1,35 mln m 3 surowca w postaci pozostałości zrębowych. Silvarum Colendarum Ratio et Industria Lignaria 14(1) 2015

38 K. Jabłoński, W. Stempski Największe ilości surowca do celów energetycznych będą pochodzić z zachodnich i północnych części kraju. Biorąc pod uwagę, że znaczne ilości drewna nadającego się na cele energetyczne są obecnie wykorzystywane przez społeczności wiejskie do celów grzewczych, niewiele pozostanie dla energetyki przemysłowej. Słowa kluczowe: drewno energetyczne, biomasa, pozostałości zrębowe, drewno małowymiarowe Accepted for print Zaakceptowano do druku: 2.03.2015 For citation Do cytowania: Jabłoński, K., Stempski, W. (2015). Demand for forest biomass and possibilities for its harvesting in Poland. Silv. Colendar. Rat. Ind. Lignar., 14(1), 31 38. DOI: 10.17306/J.AFW.2015.1.3