KRZEPNIĘCIE SUSPENSJI KOMPOZYTOWEJ AlMg10+SiC PODCZAS WYPEŁNIANIA WNĘKI FORMY

Podobne dokumenty
KRZEPNIĘCIE KOMPOZYTÓW HYBRYDOWYCH AlMg10/SiC+C gr

LEJNOŚĆ KOMPOZYTÓW NA OSNOWIE STOPU AlMg10 Z CZĄSTKAMI SiC

OCENA PŁYNIĘCIA CIEKŁEGO STOPU AlMg10 W SPIRALNEJ PRÓBIE LEJNOŚCI

WPŁYW PRZECHŁODZENIA STOPU AlMg10 NA KRZEPNIĘCIE PODCZAS PŁYNIĘCIA

WŁAŚCIWOŚCI MECHANICZNE KOMPOZYTÓW AlSi13Cu2- WŁÓKNA WĘGLOWE WYTWARZANYCH METODĄ ODLEWANIA CIŚNIENIOWEGO

ROZSZERZALNOŚĆ CIEPLNA KOMPOZYTÓW NA OSNOWIE STOPU AlSi13Cu2 WYTWARZANYCH METODĄ SQUEEZE CASTING

KRZEPNIĘCIE I SKURCZ LINIOWY KOMPOZYTU NA OSNOWIE STOPU AK12 ZBROJONEGO CZĄSTKAMI Al 2 O 3 I SiC

BADANIE WYPEŁNIANIA WNĘKI FORMY CIŚNIENIOWEJ SUSPENSJĄ KOMPOZYTOWĄ

ZUŻYCIE TRYBOLOGICZNE KOMPOZYTU NA OSNOWIE ZGARU STOPU AK132 UMACNIANEGO CZĄSTKAMI SiC

PRZEWODNIK PO PRZEDMIOCIE

BADANIA SKURCZU LINIOWEGO W OKRESIE KRZEPNIĘCIA I STYGNIĘCIA STOPU AlSi 5.4

KRZEPNIĘCIE STRUGI SILUMINU AK7 W PIASKOWYCH I METALOWYCH KANAŁACH FORM ODLEWNICZYCH

PRÓBA OCENY KRZEPNIĘCIA KOMPOZYTÓW HYBRYDOWYCH AlMg/SiC+C gr

WPŁYW TEMPERATURY ODLEWANIA NA INTENSYWNOŚĆ PRZEPŁYWU STOPÓW Al-Si W KANALE PRÓBY SPIRALNEJ BINCZYK F., PIĄTKOWSKI J., SMOLIŃSKI A.

ANALIZA RUCHU CIEPŁA W MIKROOBSZARZE KOMPOZYTU ZBROJONEGO CZĄSTKAMI SiC

BADANIA SKURCZU LINIOWEGO W OKRESIE KRZEPNIĘCIA I STYGNIĘCIA STOPU AlSi 6.9

UDARNOŚC KOMPOZYTU AK11 CZĄSTKI SiC ODLEWANEGO CIŚNIENIOWO

BADANIE KRYSTALIZACJI KOMPOZYTU AK9-Pb. Z. KONOPKA 1 Katedra Odlewnictwa Politechniki Częstochowskiej

CHARAKTERYSTYKA KRZEPNIĘCIA KOMPOZYTÓW O OSNOWIE ALUMINIUM ZBROJONYCH CZĄSTKAMI CERAMICZNYMI

ANALIZA KRZEPNIĘCIA I BADANIA MIKROSTRUKTURY PODEUTEKTYCZNYCH STOPÓW UKŁADU Al-Si

REJESTRACJA PROCESÓW KRYSTALIZACJI METODĄ ATD-AED I ICH ANALIZA METALOGRAFICZNA

OBRÓBKA CIEPLNA SILUMINU AK132

WPŁYW WIRUJĄCEGO REWERSYJNEGO POLA MAGNETYCZNEGO NA SEGREGACJĘ W ODLEWACH WYKONANYCH ZE STOPU BAg-3

ANALIZA PROCESU KRZEPNIĘCIA KOMPOZYTU HETEROFAZOWEGO

TEMPERATURY KRYSTALIZACJI ŻELIWA CHROMOWEGO W FUNKCJI SZYBKOŚCI STYGNIĘCIA ODLEWU

WPŁYW DODATKÓW STOPOWYCH NA WŁASNOŚCI STOPU ALUMINIUM KRZEM O NADEUTEKTYCZNYM SKŁADZIE

FOTOELEKTRYCZNA REJESTRACJA ENERGII PROMIENIOWANIA KRZEPNĄCEGO STOPU

WŁAŚCIWOŚCI ODLEWNICZE ZAWIESIN KOMPOZYTOWYCH AlSi-SiC

BADANIA ŻELIWA CHROMOWEGO NA DYLATOMETRZE ODLEWNICZYM DO-01/P.Śl.

BADANIA NAPRĘŻEŃ SKURCZOWYCH W OKRESIE KRZEPNIĘCIA I STYGNIĘCIA STOPU AlSi 6.9

ZASTOSOWANIE OCHŁADZALNIKA W CELU ROZDROBNIENIA STRUKTURY W ODLEWIE BIMETALICZNYM

ANALIZA KRYSTALIZACJI STOPU AlMg (AG 51) METODĄ ATND

LABORATORIUM NAUKI O MATERIAŁACH

CECHY PRZEPŁYWU SILUMINÓW JEDNOFAZOWYCH W KANAŁACH METALOWYCH FORM ODLEWNICZYCH

WPŁYW SZYBKOŚCI KRZEPNIĘCIA NA UDZIAŁ GRAFITU I CEMENTYTU ORAZ TWARDOŚĆ NA PRZEKROJU WALCA ŻELIWNEGO.

MODYFIKACJA BRĄZU SPIŻOWEGO CuSn4Zn7Pb6

KRYSTALIZACJA, STRUKTURA ORAZ WŁAŚCIWOŚCI TECHNOLOGICZNE STOPÓW I KOMPOZYTÓW ALUMINIOWYCH

KRYSTALIZACJA KOMPOZYTÓW ALUMINIOWYCH

MOŻLIWOŚCI WYSTĄPIENIA WAD ODLEWÓW Z METALOWYCH KOMPOZYTÓW W OBSZARZE POŁĄCZENIA METAL OSNOWY-ZBROJENIE. K. GAWDZIŃSKA 1 Akademia Morska w Szczecinie

ANALIZA ZAKRESU KRYSTALIZACJI STOPU AlSi7Mg PO OBRÓBCE MIESZANKAMI CHEMICZNYMI WEWNĄTRZ FORMY ODLEWNICZEJ

MODYFIKACJA STOPU AK64

MODYFIKACJA SILUMINU AK20. F. ROMANKIEWICZ 1 Politechnika Zielonogórska,

OKREŚLANIE WŁASNOŚCI MECHANICZNYCH SILUMINU AK20 NA PODSTAWIE METODY ATND

KRYSTALIZACJA KOMPOZYTÓW ALUMINIOWYCH ZBROJONYCH SiC

Metalurgia - Tematy Prac magisterskich - Katedra Tworzyw Formierskich, Technologii Formy, Odlewnictwa Metali Nieżelaznych

TEMPERATURA LEJNOŚCI ZEROWEJ SILUMINÓW. J. MUTWIL 1, D. NIEDŹWIECKI 2 Wydział Mechaniczny Uniwersytetu Zielonogórskiego

OPIS METODY WPROWADZANIA I OSADZANIA ELEMENTÓW ZBROJĄCYCH DO OSNOWY TECHNICZNIE UŻYTECZNYCH ODLEWÓW KOMPOZYTOWYCH

REJESTRACJA WARTOŚCI CHWILOWYCH NAPIĘĆ I PRĄDÓW W UKŁADACH ZASILANIA WYBRANYCH MIESZAREK ODLEWNICZYCH

ROZKŁAD TWARDOŚCI I MIKROTWARDOŚCI OSNOWY ŻELIWA CHROMOWEGO ODPORNEGO NA ŚCIERANIE NA PRZEKROJU MODELOWEGO ODLEWU

WYTWARZANIE ODLEWÓW KOMPOZYTOWYCH METODĄ PNEUMATYCZNEGO OSADZANIAANIA ELEMENTÓW ZBROJĄCYCH W OSNOWIE KOMPOZYTU

ANALIZA KRZEPNIĘCIA I BADANIA MIKROSTRUKTURY STOPÓW Al-Si

Własności mechaniczne kompozytów odlewanych na osnowie stopu Al-Si zbrojonych fazami międzymetalicznymi

EKSPERYMENTALNE MODELOWANIE STYGNIĘCIA ODLEWU W FORMIE

WYBRANE WŁAŚCIWOŚCI KOMPOZYTU ZAWIESINOWEGO AlSi11/CZĄSTKI 1H18N9T

KRYSTALIZACJA I SKURCZ STOPU AK9 (AlSi9Mg) M. DUDYK 1, K. KOSIBOR 2 Akademia Techniczno Humanistyczna ul. Willowa 2, Bielsko Biała

ANALIZA ODLEWANIA ŻELIWA CHROMOWEGO W FORMIE PIASKOWEJ - FIZYCZNE MODELOWANIE STYGNIĘCIA

IKiFP im. J. Habera PAN

KOMPUTEROWA SYMULACJA POLA TWARDOŚCI W ODLEWACH HARTOWANYCH

KORELACJE MIĘDZY CIEPLNO-GEOMETRYCZNYMI WŁAŚCIWOŚCIAMI ZBROJENIA W KOMPOZYTACH DYSPERSYJNYCH. M. CHOLEWA 1 Katedra Odlewnictwa, Politechnika Śląska,

OKREŚLENIE WŁAŚCIWOŚCI MECHANICZNYCH SILUMINU AK132 NA PODSTAWIE METODY ATND.

TECHNOLOGICZNE ASPEKTY STREFY PRZEWILŻONEJ W IŁOWYCH MASACH FORMIERS KICH

WPŁYW SZYBKOŚCI STYGNIĘCIA NA WŁASNOŚCI TERMOFIZYCZNE STALIWA W STANIE STAŁYM

A. PATEJUK 1 Instytut Materiałoznawstwa i Mechaniki Technicznej WAT Warszawa ul. S. Kaliskiego 2, Warszawa

KINETYKA KRZEPNIĘCIA KOMPOZYTOW AI-Pb MARIAN MITKO, JANUSZ BRASZCZYŃSKI. Politechnika Częstochowska, Otrzymywanie kompozyłów Al-Pb

WPŁYW CIĘTYCH WŁÓKIEN WĘGLOWYCH NA WŁAŚCIWOŚCI MECHANICZNE KOMPOZYTU NA OSNOWIE STOPU AlSi10Mg

WPŁYW PRĘDKOŚCI KRYSTALIZACJI KIERUNKOWEJ NA ODLEGŁOŚĆ MIĘDZYPŁYTKOWĄ EUTEKTYKI W STOPIE Al-Ag-Cu

PL B1. Sposób i urządzenie do wykonywania odlewów o strukturze tiksotropowej ze stopów wysokotopliwych, zwłaszcza żeliwa

SZACOWANIE WŁASNOŚCI MECHANICZNYCH SILUMINU AK9 NA PODSTAWIE METODY ATND

STRUKTURA ODLEWÓW KOMPOZYTOWYCH STOP AlMg10 - CZĄSTKI SiC

ZASTOSOWANIE ZŁOŻONYCH TLENKÓW DO WYTWARZANIA DYSPERSYJNYCH FAZ ZBROJĄCYCH W STOPACH ALUMINIUM

ANALIZA PROCESU ZAPEŁNIENIA WNĘKI CIEKŁYM STOPEM W METODZIE PEŁNEJ FORMY.

OKREŚLENIE CIEPŁA WŁAŚCIWEGO MASY FORMIERSKIEJ METODĄ KALORYMETRII SKANINGOWEJ

WPŁYW MODYFIKACJI NA STRUKTURĘ I MORFOLOGIĘ PRZEŁOMÓW SILUMINU AlSi7

MODELOWANIE ODLEWANIA CIĄGŁEGO WLEWKÓW ZE STOPU AL

WPŁYW SZYBKOŚCI STYGNIĘCIA NA PARAMETRY KRYSTALIZACJI ŻELIWA CHROMOWEGO

STRUKTURA GEOMETRYCZNA POWIERZCHNI KOMPOZYTÓW ODLEWNICZYCH TYPU FeAl-Al 2 O 3 PO PRÓBACH TARCIA

SYMULACJA NUMERYCZNA KRZEPNIĘCIA KIEROWANEGO OCHŁADZALNIKAMI ZEWNĘTRZNYMI I WEWNĘTRZNYMI

POWIERZCHNIOWE KOMPOZYTOWE WARSTWY ŻELIWO CZĄSTKI CERAMICZNE

Tematy Prac Magisterskich Katedra Inżynierii Stopów i Kompozytów Odlewanych

ZMIANY W ROZKŁADZIE MIEDZI JAKO PRZYCZYNA PRZEMIANY STRUKTURY W ODLEWACH WYKONYWANYCH W POLU MAGNETYCZNYM

WPŁYW MODYFIKACJI NA PRZEBIEG KRYSTALIZACJI, STRUKTURĘ I WŁAŚCIWOŚCI MECHANICZNE BRĄZU CYNOWO-FOSFOROWEGO CuSn10P

PARAMETRYCZNY OPIS CECH PRZEPŁYWU METALI I STOPÓW W KANAŁACH FORM ODLEWNICZYCH

WYZNACZANIE MINIMALNEJ GRUBOŚCI WLEWU DOPROWADZAJĄCEGO

WPŁYW DODATKÓW STOPOWYCH NA TEMPERATURĘ KRZEPNIĘCIA STALIWA AUSTENITYCZNEGO

STRUKTURA STREFOWA KOMPOZYTÓW AK12-Al2O3 I AK12-SiC KSZTAŁTOWANA W PROCESIE ODLEWANIA ODŚRODKOWEGO

FILTRACJA STALIWA SYMULACJA PROCESU NA PRZYKŁADZIE ODLEWU O MASIE 700 KG. S. PYSZ 1, J. STACHAŃCZYK 2 Instytut Odlewnictwa w Krakowie

Technologie wytwarzania. Opracował Dr inż. Stanisław Rymkiewicz KIM WM PG

EMPIRYCZNE WYZNACZENIE PRAWDOPODOBIEŃSTW POWSTAWANIA WARSTWY KOMPOZYTOWEJ

PL B1. Sposób wytwarzania kompozytów gradientowych na osnowie metalowej poprzez odlewanie w polu elektromagnetycznym

CHARAKTERYSTYKA KOMPOZYTÓW Z UWZGLĘDNIENIEM M.IN. POZIOMU WSKAŹNIKÓW WYTRZYMAŁOŚCIOWYCH, CENY.

MODYFIKACJA SILUMINU AK12. Ferdynand ROMANKIEWICZ Folitechnika Zielonogórska, ul. Podgórna 50, Zielona Góra

OKREŚLENIE TEMPERATURY I ENTALPII PRZEMIAN FAZOWYCH W STOPACH Al-Si

OPTYMALIZACJA PROCESU ZALEWANIA DUŻEGO WLEWKA Fe-Si-Mg W CELU UJEDNORODNIENIA JEGO SKŁADU CHEMICZNEGO

MODYFIKACJA SILUMINÓW AK7 i AK9. F. ROMANKIEWICZ 1 Uniwersytet Zielonogórski, ul. Podgórna 50, Zielona Góra

ZMIANY STRUKTURALNE WYSTĘPUJĄCE PODCZAS WYTWARZANIA KOMPOZYTÓW GRE3 - SiC P

SKURCZ TERMICZNY ŻELIWA CHROMOWEGO

PRZEWODNIK PO PRZEDMIOCIE

MOŻLIWOŚCI WYKORZYSTANIA TECHNIK PRÓŻNIOWYCH DO PODNOSZENIA JAKOŚCI ZAWIESIN KOMPOZYTOWYCH

FILTRACJA STOPU AlSi9Mg (AK9) M. DUDYK 1 Wydział Budowy Maszyn i Informatyki Akademia Techniczno - Humanistyczna ul. Willowa 2, Bielsko-Biała.

WIELOMIANOWE MODELE WŁAŚCIWOŚCI MECHANICZNYCH STOPÓW ALUMINIUM

Transkrypt:

KOMISJA BUDOWY MASZYN PAN ODDZIAŁ W POZNANIU Vol. 26 nr 1 Archiwum Technologii Maszyn i Automatyzacji 2006 MAŁGORZATA ŁĄGIEWKA *, ZBIGNIEW KONOPKA *, ANDRZEJ ZYSKA * KRZEPNIĘCIE SUSPENSJI KOMPOZYTOWEJ AlMg10+SiC PODCZAS WYPEŁNIANIA WNĘKI FORMY W artykule przedstawiono wyniki badań płynięcia i krzepnięcia suspensji kompozytowych na osnowie stopu AlMg10 z 10, 20 i 30% udziału objętościowego cząstek SiC. Przedstawiono pole prędkości i temperatury czoła strugi płynących suspensji. Uwzględniając wyniki symulacji krzepnięcia badanych kompozytów, przedstawiono kinetykę krzepnięcia tych materiałów. Stwierdzono odmienną kinetykę płynięcia i krzepnięcia badanych kompozytów w zależności od udziału objętościowego cząstek. Stwierdzono, że cząstki węglika krzemu uczestniczą w procesie krzepnięcia kompozytów metalowych. Słowa kluczowe: kompozyty, lejność, krzepnięcie 1. WSTĘP Cząstki ceramiczne wykorzystywane jako zbrojenie w kompozytach metalowych zmieniają właściwości cieplno-fizyczne i reologiczne suspensji w porównaniu z właściwościami cieczy metalicznych. Suspensje kompozytowe wykazują odmienny od cieczy charakter przepływu, a cząstki wpływają na proces krzepnięcia, co decyduje o jakości odlewu [4]. Zagadnienie przepływu zawiesiny kompozytowej w kanałach wnęki formy odlewniczej nie zostało do tej pory rozwiązane ze względu na oddziaływanie cząstek na złożone zjawiska przepływu połączone z wymianą ciepła [1]. Dodatkowo cząstki ceramiczne w ciekłym metalu zmieniają kinetykę krzepnięcia takiego układu z uwagi na inne w porównaniu ze stopem osnowy właściwości cieplne cząstek [5, 6]. Znane jest zjawisko pochłaniania lub odpychania cząstek przez przemieszczający się front krystalizacji, co powoduje nierównomierne ich rozmieszczenie w osnowie, wpływające na właściwości kompozytu [2]. Znając mechanizmy krzepnięcia kompozytów podczas płynięcia, można sterować tym procesem, kształtować strukturę kompozytów, czyli programować właściwości kompozytu w zależności od wymagań stawianych przez projektantów maszyn czy urządzeń. * Dr inż. ** Dr hab. inż. Katedra Odlewnictwa Politechniki Częstochowskiej.

58 M. Łągiewka, Z. Konopka, A. Zyska 2. METODYKA BADAŃ Celem badań była analiza procesu krzepnięcia suspensji kompozytowej, stanowiącej mieszaninę ciekłego stopu AlMg10 z cząstkami SiC, podczas wypełniania formy odlewniczej. Wytworzono kompozyty na osnowie stopu AlMg10 (AG10) zbrojone cząstkami węglika krzemu o udziale objętościowym 10, 20 i 30%. Stop AG10 wybrano ze względu na jego bardzo dobre właściwości fizyczne, chemiczne i mechaniczne. Stop ten charakteryzuje się dużą odpornością na obciążenia zmienne, małą skłonnością do pękania na gorąco oraz dużą odpornością korozyjną. Duża zawartość magnezu w stopie gwarantuje dobre zwilżanie, umożliwiając wprowadzenie cząstek węglika krzemu do osnowy bez stosowania dodatkowych zabiegów preparacji cząstek zbrojących lub modyfikacji stopu. Zawiesiny kompozytowe wytworzono metodą mieszania mechanicznego. W tym celu ciekły metal topiono w tyglowym piecu indukcyjnym i przegrzewano do temperatury 973 K pod osłoną argonu ze względu na intensywne utlenianie stopu osnowy. Następnie do mieszanego ciekłego stopu wprowadzano cząstki zbrojące za pomocą rynny dozującej. Mieszanie wykonano mieszadłem turbinowym o średnicy 0,05 m z czterema łopatkami pochylonymi pod kątem 45 o. Było ono umieszczone w 1/3 wysokości poziomu cieczy od dna w osi tygla. Suspensje kompozytowe odlewano grawitacyjnie z temperatury 973 K do przygotowanych form próby spiralnej. Formy wykonano z masy formierskiej o nazwie handlowej O.B.B. SAND E, która jest mieszaniną drobnoziarnistego piasku kwarcowego (średnia wielkość ziarna 90 μm), spoiwa olejowego i dodatków. Masa cechuje się dużą trwałością i nadaje się bezpośrednio do formowania, ponieważ jej spoiwo nie wysycha. Duża wytrzymałość na ściskanie (0,12 MPa) i na ścinanie (0,04 MPa) oraz niezła przepuszczalność i płynność na wilgotno sprawiają, że odlewy charakteryzują się bardzo dobrą dokładnością wymiarową. W formie próby spiralnej zainstalowano termoelementy Ni-CrNi o średnicy drutu 0,3 mm w różnych odległościach od wlewu głównego w zależności od ilości cząstek w kompozytach. Liczbę termoelementów i odległość, w jakiej zostały zainstalowane, określono na podstawie wcześniejszych prób. Dla kompozytów zawierających 10% cząstek termopary umieszczono w odległościach co 100 mm, dla kompozytów zawierających 20% cząstek termoelementy rozmieszczono co 50 mm, a dla kompozytów o udziale objętościowym 30% cząstek co 25 mm, przy czym w każdym wypadku pierwszy termoelement był umieszczony tuż za wlewem głównym. Pomiar i rejestrację temperatury w czasie płynięcia metalu w kanale formy wykonano za pomocą komputerowej karty pomiarowej PCL 818 o maksymalnej częstości próbkowania 100 khz. Do pomiarów wykorzystano program akwizycji danych Visual LAB. Zastosowana w badaniach programowa częstotliwość próbkowania każdego kanału temperaturowego wynosiła 100 Hz.

Krzepnięcie suspensji kompozytowej 59 3. WYNIKI BADAŃ Podczas przepływu metalu w spiralnym kanale formy zarejestrowano krzywe ilustrujące zmiany temperatury w poszczególnych miejscach wnęki formy w czasie płynięcia. Krzywe te przedstawiały przebieg stygnięcia kompozytów T = f(t) stopu w czasie płynięcia, co umożliwiło ocenę parametrów przepływu. Na rysunku 1 przedstawiono przykładowo, zarejestrowane krzywe T = f(t) dla kompozytu zawierającego 10% obj. cząstek SiC, a dla pozostałych kompozytów wyniki można znaleźć w pracy [6]. 700 600 500 Temperatura [ o C] 400 300 200 100 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Czas [s] Rys. 1. Krzywe stygnięcia kompozytu AlMg10+10% SiC Fig. 1. Cooling curves for AlMg10+10% SiC composite Z bezpośrednich pomiarów temperatury metalu podczas płynięcia w kanale próby spiralnej wyznaczono prędkość płynięcia. Krzywe zmian prędkości chwilowych (v) płynących i krzepnących suspensji kompozytowych przedstawiono na rys. 2. Na rysunku tym są widoczne zaburzania w postaci zmiennej prędkości przepływu suspensji, wywołane zmiennym ciśnieniem metalostatycznym we wlewie podczas jego wypełniania. Krzywe pokazują również wpływ ilości cząstek na prędkość przepływu. Wraz ze wzrostem zawartości SiC prędkość przepływu zdecydowanie maleje. Dla kompozytu zawierającego 10% SiC maksymalna prędkość płynięcia wynosi 690 mm/s, dla kompozytów zawierających 20% obj. cząstek osiąga wartość 330 mm/s, a dla kompozytów zawierających 30% cząstek tylko 32 mm/s.

60 M. Łągiewka, Z. Konopka, A. Zyska 700 650 600 550 500 Prędkość [mm/s] 450 400 350 300 250 AG10+10%SiC AG10+20%SiC AG10+30%SiC 200 150 100 50 0 0 50 100 150 200 250 300 350 400 450 500 Droga [mm] Rys. 2. Prędkość płynięcia czoła strugi suspensji kompozytowych Fig. 2. Stream front flow velocity for composites suspension Zarejestrowane krzywe zmian temperatury podczas płynięcia i krzepnięcia badanych materiałów umożliwiły wyznaczenie temperatury czoła strugi płynących suspensji na długości spirali, co przestawiono na rys. 3. 680 660 AG10+10%SiC AG10+20%SiC AG10+30%SiC 640 Temperatura [ o C] 620 600 T E 580 560 540 0 100 200 300 400 500 Droga [mm] Rys. 3. Temperatura czoła strugi suspensji kompozytowych zawierających cząstki SiC (T L równowagowa temperatura likwidus) Fig. 3. Stream front temperature of composites suspension containing SiC particles (T L equilibrium liquidus temperature)

Krzepnięcie suspensji kompozytowej 61 Przebieg krzywych uwidacznia silny wpływ ilości cząstek na kinetykę stygnięcia kompozytu. Niestacjonarny przepływ w początkowej fazie płynięcia wywołuje zmienne natężenie przepływu metalu w danym przekroju formy, a więc różne ilości ciepła dostarczanego w danej porcji metalu, co odzwierciedla się zaburzeniem pola temperatury. Słabsze pulsacje temperatury w kompozytach zawierających więcej cząstek, zgodne również z tłumieniem pulsacji prędkości, tłumaczyć można wpływem cząstek na ujednorodnienie przepływu (pola prędkości i temperatury) suspensji. Wpływ cząstek na stabilizację przepływu suspensji wynika prawdopodobnie ze wzrostu jej lepkości. Podczas płynięcia można ocenić kinetykę krzepnięcia, znając zależność ilości fazy stałej od temperatury. Zmianę ilości fazy stałej jako funkcję temperatury podczas płynięcia kompozytów wyznaczono na podstawie symulacji procesu krzepnięcia. W obliczeniach symulacyjnych przyjęto model krystalizacji z całkowitym konwekcyjnym mieszaniem cieczy jako najbardziej adekwatny do badanych kompozytów [2]. Konwekcyjnemu mieszaniu cieczy sprzyja duża prędkość krystalizacji. W efekcie w cieczy nie występuje gradient stężenia domieszki, a w fazie stałej kształtuje się określone pole stężenia, ponieważ nie występuje w niej dyfuzja. Taki przypadek krystalizacji prowadzi do dużej segregacji domieszki [2]. Symulację komputerową krzepnięcia wykonano z wykorzystaniem bazy danych programu Termo-Calc wersja M w module SCHEIL-GULLIVER. Wynik symulacji przedstawiono na rys. 4. Rys. 4. Wydruk komputerowy pokazujący udział fazy stałej podczas krzepnięcia stopu AlMg10 Fig. 4. Computer printout showing rate of solid phase during solidification of AlMg 10 alloy Temperaturową funkcję ilości fazy stałej podczas krzepnięcia wyznaczoną na podstawie symulacji komputerowej można przedstawić w postaci równania:

62 M. Łągiewka, Z. Konopka, A. Zyska 20,87 S ( T ) 20 (1) = ( T 750) 44,8 1+ e Na podstawie równania (1) wyznaczono zmiany udziału objętościowego fazy stałej na długości spirali dla badanych kompozytów, uwzględniając wyznaczone z pomiaru pole temperatury płynącego w formie kompozytu. Wyniki takich obliczeń przedstawiono na rys. 5. Można przyjąć, że zmiana udziału fazy stałej wykrystalizowanego metalu w funkcji drogi płynięcia jest w przybliżeniu funkcją liniową. Całkowity udział fazy stałej w kompozycie stanowi sumę ilości wykrystalizowanego metalu i ilości wprowadzonych stałych cząstek zbrojenia. 0.8 0.7 AG10+10%SiC AG10+20%SiC AG10+30%SiC 0.6 Udział objętościowy fazy stałej [%] 0.5 0.4 0.3 0.2 0.1 0 0 100 200 300 400 500 600 Droga [mm] Rys. 5. Zmiana udziału objętościowego fazy stałej podczas płynięcia Fig. 5. Change of the volume solid phase fraction during flow 4. PODSUMOWANIE Krzywe prędkości czoła strugi kompozytów pokazują jednoznacznie silny wpływ ilości stałych cząstek SiC w zawiesinie na spowolnienie przepływu. Charakter krzywych prędkości wskazuje na silne zaburzenie przepływu wywołane prawdopodobnie zmiennym ciśnieniem metalostatycznym we wlewie głównym podczas jego wypełniania. W rezultacie suspensje kompozytowe wypełniają kanał formy ze wzrastającą prędkością w pierwszej fazie płynięcia, by następnie ustabilizować przepływ w drugiej fazie, aż do gwałtownego spadku prędkości w końcowej fazie płynięcia, spowodowanego intensywną krystalizacją metalu.

Krzepnięcie suspensji kompozytowej 63 Ze wzrostem udziału cząstek w zawiesinie obserwuje się bardziej jednorodny przepływ, co widoczne jest jako wydłużanie się drugiej fazy przepływu. Na rysunku 3, przedstawiającym temperaturę czoła płynących suspensji, widać wpływ ilości cząstek na kinetykę stygnięcia kompozytu. Kompozyt zawierający najmniejszą ilość cząstek SiC ma najmniejszą szybkość stygnięcia, co wiąże się z największą prędkością przepływu. Na rysunku 5, przedstawiającym zmiany udziału objętościowego fazy stałej na długości spirali, pokazano, jak zmienia się kinetyka krzepnięcia w zależności od udziału objętościowego cząstek SiC. Różne charaktery przepływu i kinetyki krzepnięcia świadczą o tym, że cząstki SiC wpływają nie tylko na parametry przepływu, ale także na procesy krzepnięcia, co przejawia się w warunkach wymiany ciepła odlew forma oraz w oddziaływaniu cząstek na proces krystalizacji stopu. Cząstki SiC prawdopodobnie biorą czynny udział w krystalizacji kompozytu, czym można tłumaczyć wzrost intensywności krystalizacji wraz ze zwiększaniem się ilości cząstek w kompozycie. LITERATURA [1] Braszczyński J., Cisowska M., Próba oceny krzepnięcia kompozytów hybrydowych Al- Mg/SiC+C gr, Krzepnięcie Metali i Stopów, 1999, nr 40. [2] Fraś E., Krystalizacja metali, Warszawa, WNT 2003. [3] Konopka Z., Cisowska M., Lejność kompozytów na osnowie stopu AlMg10 z cząstkami SiC, Archiwum Odlewnictwa, 2003, r. 3, nr 9. [4] Konopka Z., Cisowska M., Zyska A., Krzepnięcie suspensji kompozytowej podczas płynięcia w formie, Kompozyty, 2005, r. 5, nr 4. [5] Sobczak J., Kompozyty metalowe, Kraków-Warszawa, Wyd. Instytutu Odlewnictwa 2001. [6] Śleziona J., Kształtowanie właściwości kompozytów stop Al-cząstki ceramiczne wytwarzanych metodami odlewniczymi, Zeszyty Naukowe Politechniki Śląskiej, 1994, z. 47. Praca wpłynęła do Redakcji 13.04.2006 Recenzent: prof. dr hab. inż. Michał Szweycer SOLIDIFICATION OF COMPOSITE SUSPENSION AlMg10+SiC DURING FLOWING IN MOULD S u m m a r y The results of flowing and solidification investigation of AlMg10 alloy matrix with 10, 20 and 30% SiC particles composites suspension were presented in this work. Velocity and temperature fields of stream front flowing suspension were presented. The solidification kinetics of examined composites was presented using results of solidification simulation of these materials. Different characteristics of flowing and solidification depend on particle volume fraction in examined composites were found. The SiC particles can act in solidification process of metalmatrix composites. Key words: composites, fluidity, solidification