Metody eksperymentalne w fizyce wysokich energii



Podobne dokumenty
Fizyka czastek: detektory

Fizyka czastek: detektory

Wszechświat czastek elementarnych

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

Poszukiwany: bozon Higgsa

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

MaPlan Sp. z O.O. Click here if your download doesn"t start automatically

Stargard Szczecinski i okolice (Polish Edition)

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.

Jak działają detektory. Julia Hoffman# Southern Methodist University# Instytut Problemów Jądrowych

Eksperyment ALICE i plazma kwarkowo-gluonowa

Tychy, plan miasta: Skala 1: (Polish Edition)

1. Wcześniejsze eksperymenty 2. Podstawowe pojęcia 3. Przypomnienie budowy detektora ATLAS 4. Rozpady bozonów W i Z 5. Tło 6. Detekcja sygnału 7.

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

Sargent Opens Sonairte Farmers' Market

Wszechświat czastek elementarnych

Marek Kowalski

Revenue Maximization. Sept. 25, 2018

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Wstęp do fizyki cząstek elementarnych: część eksperymentalna

CEE 111/211 Agenda Feb 17

Eksperyment ATLAS na Wielkim Koliderze Hadronowym. Czyli Wielka Przygoda z Fizyką i nie tylko

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

Astrofizyka cząstek w planach CERNu

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition)

Nazwa projektu: Kreatywni i innowacyjni uczniowie konkurencyjni na rynku pracy

Jak działają detektory. Julia Hoffman

Lecture 18 Review for Exam 1

POLITECHNIKA ŚLĄSKA INSTYTUT AUTOMATYKI ZAKŁAD SYSTEMÓW POMIAROWYCH

Machine Learning for Data Science (CS4786) Lecture 24. Differential Privacy and Re-useable Holdout

Extraclass. Football Men. Season 2009/10 - Autumn round

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

Blow-Up: Photographs in the Time of Tumult; Black and White Photography Festival Zakopane Warszawa 2002 / Powiekszenie: Fotografie w czasach zgielku

Polacy i Polska w technologiach detektorów w CERN-ie. L. Zwalinski CERN EP/DT December 16 th 2016

Wyznaczanie efektywności mionowego układu wyzwalania w CMS metodą Tag & Probe

Wszechświat czastek elementarnych


Helena Boguta, klasa 8W, rok szkolny 2018/2019

Metodyki projektowania i modelowania systemów Cyganek & Kasperek & Rajda 2013 Katedra Elektroniki AGH

Installation of EuroCert software for qualified electronic signature

ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL

Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition)

Wszechświat czastek elementarnych

Hard-Margin Support Vector Machines

Czego już dowiedzieliśmy się dzięki Wielkiemu Zderzaczowi Hadronów LHC

DODATKOWE ĆWICZENIA EGZAMINACYJNE

Few-fermion thermometry

INSPECTION METHODS FOR QUALITY CONTROL OF FIBRE METAL LAMINATES IN AEROSPACE COMPONENTS

Ankiety Nowe funkcje! Pomoc Twoje konto Wyloguj. BIODIVERSITY OF RIVERS: Survey to teachers

Symmetry and Geometry of Generalized Higgs Sectors

Medical electronics part 10 Physiological transducers

Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI

SG-MICRO... SPRĘŻYNY GAZOWE P.103

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

deep learning for NLP (5 lectures)

Test sprawdzający znajomość języka angielskiego


Jak działają detektory. Julia Hoffman

The Overview of Civilian Applications of Airborne SAR Systems

European Crime Prevention Award (ECPA) Annex I - new version 2014

Pielgrzymka do Ojczyzny: Przemowienia i homilie Ojca Swietego Jana Pawla II (Jan Pawel II-- pierwszy Polak na Stolicy Piotrowej) (Polish Edition)

Inquiry Form for Magnets

Instrukcja konfiguracji usługi Wirtualnej Sieci Prywatnej w systemie Mac OSX

Effective Governance of Education at the Local Level

Pikselowy detektor wierzchołka dla ILC

Eksperymenty reaktorowe drugiej generacji wyznaczenie ϑ 13

Korekcja energii dżetów w eksperymencie CMS

Emilka szuka swojej gwiazdy / Emily Climbs (Emily, #2)

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

WENTYLATORY PROMIENIOWE SINGLE-INLET DRUM BĘBNOWE JEDNOSTRUMIENIOWE CENTRIFUGAL FAN

OpenPoland.net API Documentation

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Ankiety Nowe funkcje! Pomoc Twoje konto Wyloguj. BIODIVERSITY OF RIVERS: Survey to students

Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytet Mikołaja Kopernika w Toruniu

Linear Classification and Logistic Regression. Pascal Fua IC-CVLab

SubVersion. Piotr Mikulski. SubVersion. P. Mikulski. Co to jest subversion? Zalety SubVersion. Wady SubVersion. Inne różnice SubVersion i CVS

Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)

Egzamin maturalny z języka angielskiego na poziomie dwujęzycznym Rozmowa wstępna (wyłącznie dla egzaminującego)

Patients price acceptance SELECTED FINDINGS

Zasady bezpieczeństwa

Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application

POLITYKA PRYWATNOŚCI / PRIVACY POLICY

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards

Vacuum decay rate in the standard model and beyond

Rev Źródło:

Formularz recenzji magazynu. Journal of Corporate Responsibility and Leadership Review Form

Immigration Studying. Studying - University. Stating that you want to enroll. Stating that you want to apply for a course.

you see decision. oznacza to, Whenever kiedy widzisz biznes, someone once made Za każdym razem, który odnosi sukces,

Typ MFPCR FOR THE MOST DEMANDING REQUIREMENTS ON THE PURITY OF INDOOR AIR, WORKSTATIONS, AND DEVICES

Fargo, North Dakota Commercial Roofing Contractor Tecta America Dakotas. [stm_sidebar sidebar= 7836 ]

Jak zasada Pareto może pomóc Ci w nauce języków obcych?

Arrays -II. Arrays. Outline ECE Cal Poly Pomona Electrical & Computer Engineering. Introduction

Życie za granicą Studia

Na tropach czastki Higgsa

Compact Muon Solenoid

Transkrypt:

Metody eksperymentalne w fizyce wysokich energii prof. dr hab. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych IFD Wykład IX Eksperymenty akceleratorowe

BEBC, equipped with the largest superconducting magnet in service at the time. D* (excited D-meson, carrying the "charm" quantum number): production and decay during a wide band exposure in experiment WA21, in the BEBC liquid hydrogen bubble chamber.

Pojedyncze detektory pozwalają bardzo precyzyjnie zmierzyć: - pozycję cząstki (detektory krzemowe, detektory śladowe) - tor cząstki (detektory śladowe) => w polu magnetycznym: pęd cząstki - prędkość cząstki (TOF, detektory Czerenkowa) - energię cząstki (kalorymetry) - typ cząstki (TRD, na podstawie oddziaływania w materii) Na tej podstawie jesteśmy często w stanie zidentyfikować cząstkę ale naogół tylko w ograniczonym zakresie kinematycznym

!L & ;

Jak zaprojektować detektor? Co decyduje o wyborze konstrukcji? Jakie są ograniczenia?

It starts with the Physics What is the physics measurement that is driving the experiment? What are the final states how will you measure them? Examples include Pizero ID (separation of two photons?) J/Psi good tracking Light quarks good calorimeter b and c quarks (tagging) What level of precision are you after? Precision has a cost; dollars, complexity, and readout speed

It continues with the Physics Can you trigger on the physics process of interest? Separate the unique signature of the physics of interest from the literally billions of collisions that go on each day What is the rate? Drives both the trigger and data acquisition system Do you need to worry about dead-time? How will you calibrate your detector? How will you measure the various detector efficiencies

Global Detector Systems Overall Design Depends on: Number of particles Event topology Momentum/energy Particle identity } No single detector does it all Create detector systems Fixed Target Geometry Collider Geometry Limited solid angle (dω) coverage (forward) Easy access (cables, maintenance) full solid angle dω coverage Very restricted access

Ideal Detectors End products An ideal particle detector would provide Coverage of full solid angle, no cracks, fine segmentation Measurement of momentum and energy Detection, tracking, and identification of all particles (mass, charge) Fast response: no dead time However, practical limitations: Technology, Space, Budget, and engineering prevent perfection

We can t build a perfect detector A perfect detector has no holes Reality is that in order to read the detector, we need to get the signals out. This is done with cables. Cable paths force us to have seams in the detector where we don t know what is happening A perfect detector is identical in every direction with respect to the collision point We need to support these detectors which means that the material is not isotropic. A perfect detector is 100% efficient

Detector Design Constraints What is the current technology and where do we expect technology to be when the experiment is ready to take data Most experiments these days take a long time. The time between the expression of interest to ready for collisions is measured in years All of the technology required for the experiment to work does not have to be ready (commercial) at the proposal stage Typically time for R&D Moore s law for computing is often relied upon

Detector Design Constraints Total construction cost How much $$$ do you have to work with How many physicists are available to participate in construction (how big is your collaboration?) When do you want to be ready for collisions? How hard will you be pushing current technology how much financial and schedule contingency is required? (more below) An honest assessment of how well the collaborations skills and interests align to the work that lies ahead Amount of time it takes to read the detector out after a collision or reversed, how quickly do you need to read out the detector Sets the drift time tracking chambers, Integration time in calorimeters Digitization time Logging Time

Detector Design Constraints Size of the collision hall and specific characteristics of the building Floor space Weight? How far underground? Crane coverage? Accessability of detector components Gasses, cryogens, flammability, explodability, and ODH issues Available AC power Cooling

Is the level tolerable RISK! Can t push the envelope of technology for every detector Will guarantee a blown schedule and cost over runs Need to use new technologies judiciously New Technology should not be used as a carrot to draw in collaborators that might otherwise pass.

The Bottom Line! There is no single correct answer to the above constraints Every experiment finds its own way Detector designers perform a difficult and almost impossible optimization task Detectors are an amazing blend of science, engineering, management and human sociology

Jakie są ogólne zasady? Z jakich elementów powinien składać się detektor? Jak powinny być rozmieszczone?

Individual Detector Types Modern detectors consist of many different pieces of equipment to measure different aspects of an event. Measuring a particle s properties: 1. Position 2. Momentum 3. Energy 4. Charge 5. Type

Detektory uniwersalne, d. sladowe kalorymetry VTX TPC e. m. hadronowy det. mionowe e + γ + π, p... ο n, K... µ + ν

Detektory uniwersalne Schemat budowy Ten schemat opisuje większość współczesnych eksperymentów przy kolajderach (LEP, HERA, Tevatron, LHC, ILC): Kolejno od środka detektora: detektor wierzchołka jak najbliżej osi wiazki, określa gdzie zaszło zderzenie, identyfikuje rozpady czastek krótkożyciowych (tzw. wierzchołki wtórne) najczęściej detektor półprzewodnikowy detektory śladowe pomiar torów czastek naładowanych, wyznaczenie pędów czastek z zakrzywienia w polu magnetycznym najczęściej detektory gazowe (minimalizuje oddziaływania czastek w detektorze)

Detektory uniwersalne Schemat budowy kalorymetr elektromagnetyczny pomiar energii elektronów i fotonów gęsty materiał absorbujacy lawinę czastek (międź, ołów, wolfram) kalorymetr hadronowy pomiar energii hadronów (protony, neutrony, piony, kaony) gęsty materiał absorbujacy lawinę czastek; lawina hadronowa jest wielokrotnie dłuższa od elektromagnetycznej. detektory mionowe identyfikacja mionów - jedyne czastki naładowane, które moga przejść przez kalorymetry bez dużych strat energii

/!A? =" * K γ µ : &# -$0? - $0! 22 "?!"?

SiD Projekt detektora dla eksperymentu przy ILC Koncepcja detektora opartego w całości o detektory półprzewodnikowe (krzemowe)

"

Generic features required of ATLAS and CMS Detectors must survive for 10 years or so of operation Radiation damage to materials and electronics components Problem pervades whole experimental area (neutrons): NEW! Detectors must provide precise timing and be as fast as feasible 25 ns is the time interval to consider: NEW! Detectors must have excellent spatial granularity Need to minimise pile-up effects: NEW! Detectors must identify extremely rare events, mostly in real time Lepton identification above huge QCD backgrounds (e.g. /jet ratio at the LHC is ~ 10-5, i.e. ~ 100 worse than at Tevatron) Signal X-sections as low as 10-14 of total X-section: NEW!

Detektor wierzchołka

9. Vertex Reconstruction B + D 0 D + K 0 l = γ c τ B γ 500 µm τ B 1.6 ps The life time of B-mesons can be measured from the decay length l, if the momentum of the B-meson (γ-factor) is measured as well. Gregor Herten / 9. Vertex Reconstruction 4

CDF s 1 st Top Event (run 1)

Impact parameter resolution (simplified) beam pipe!!"#$%&'(%'(%%)! Gregor Herten / 9. Vertex Reconstruction 5

Impact parameter resolution (simplified) beam pipe small! small! small x/x 0!!"#$%&'(%'(%%)! Gregor Herten / 9. Vertex Reconstruction 6

Detektor wierzchołka Odległość od osi wiązki: kluczowa dla wyniku pomiaru precyzja pomiaru vs profil/tło wiązki

Co jeszcze wpływa na precyzje pomiaru? W oddziaływaniu pomie dzy wia zkami powstaja pary e + e o małych pe dach poprzecznych, z których cze ść zostawia ślady (ang. hit ) w detektorze wierzchołka utrudniaja c rekonstrukcje innych torów. W pie ciowarstwowym detektorze oczekuje sie około 60 000 dodatkowych hitów. e+ e γ Beamstrahlung γ γ* Bethe Heitler e+ e γ γ Breit Wheeler e e e γ* γ* e+ e e+ e e+ e e e+ γ* e+ Landau Lifshitz Paweł Łużniak Detektory dla akceleratora liniowego ILC (International Linear Collider) 30

Ge stość śladów w pierwszej warstwie [1/mm 2 /BX] Pary e + e symulowane za pomoca Guinea Pig. Ge stości liczone dla różnych wartości promienia pierwszej warstwy. 1.5 1 0.5 0 8 mm 10 mm 12 mm 15 mm -4-2 0 2 4 z[cm] φ[deg] 2 0-2 8 mm -4-2 0 2 4 z[cm] 3.5 3 2.5 2 1.5 1 0.5 0 Paweł Łużniak Detektory dla akceleratora liniowego ILC (International Linear Collider) 31

Jet flavour tagging performance b selection c selection purity 0.9 0.85 0bx purity 0.6 0.55 0bx Efficiency 0.8 Efficiency 0.6 efficiency 0.8 0.5 66bx 0.75 66bx 0.45 131bx 131bx 0.7 0.4 5 10 15 20 25 5 10 15 20 25 radius of the first layer[mm] radius of the first layer[mm] 0.84 0.6 0bx 0.55 0.82 0bx 0.5 0.8 0.45 66bx 131bx 0.78 66bx 0.4 0.76 131bx 0.35 5 0.3 10 15 20 25 5 10 15 20 25 radius of the first layer[mm] radius of the first layer[mm] Purity 0.8 Purity 0.6 Spatial resolution 4 µm, layer thickness 0.1% X 0. R 1 = 26 mm - only 4 layers. Paweł Łużniak Background studies for the VTX geometry optimisation 6 efficiency

Detektor wierzchołka Odległość od osi wiązki: precyzja pomiaru (ekstrapolacja) vs tło wiązki Segmentacja (rozmiar piksela): precyzja pomiaru vs objętość danych, straty mocy Technologia: odporność radiacyjna vs koszt, szybkość odczytu Grubość detektora: rozpraszanie vs stabilność mechaniczna

ILD-VD - Vertex Detectors Geometries Considered for the LoI Maintain 2 alternative long-barrel approaches : LDC VXD03 5 layers GLD VXD04 3 double-layers Two read-out modes considered : continuous read-out read-out delayed after bunch-train 3 double layers expected to help mini-vectors ILD Meeting, 6

Inner layer at r=1.6 cm for B=3.5 T Vertex Detector 16

Centralny detektor śladowy

6. ALICE TPC Simulated heavy ion collision in the ALICE TPC. View inside the ALICE TPC 34

14. CMS Silicon Tracker Micro Strip: 214 m 2 of silicon strip sensors 11.4 million strips Diameter: 2.4 m Pixel: Inner 3 layers: silicon pixels ( 1 m 2 ) 66 million pixels (100x150 µm 2 ) Precisio: σ(rφ) σ(z) 15 µm Gregor Herten / 14. Tracking Systems 30

14. ATLAS - Sensors traversed by charged track Charged track of 2008 JINST 3 S pt =10 GeV at η=0.3. traverses: beryllium beam pipe 3 pixel layers 4 double SCT layers about 36 TRT straws Gregor Herten / 14. Tracking Systems 38

Centralny detektor śladowy Różne możliwe technologie: - komora projekcji czasowej - detektory półprzewodnikowe - detektory gazowe Każda ma swoje zalety i wady. Wszystko należy uwzględnić: + precyzja pomiaru położenia (Si, gas) => precyzja pomiaru pędu (geometria, rozmiar, pole magnetyczne) + precyzja pomiaru de/dx (TPC, Si) + liczba punktów pomiarowych (TPC, Si) + czas odczytu (Si, TPC) + wpływ tła, nakładających się przypadków + tło kombinatoryczne + ew. inne funcje (np. TRD) + gwielokrotne rozpraszanie/bilans materiału przed kalorymetrem

ATLAS/CMS: from design to reality Amount of material in ATLAS and CMS inner tracker t Weight: 4.5 tons Weight: 3.7 tons LEP detectors Active sensors and mechanics account each only for ~ 10% of material budget Need to bring 70 kw power into tracker and to remove similar amount of heat Very distributed set of heat sources and power-hungry electronics inside volume: this has led to complex layout of services, most of which were not at all understood at the time of the TDRs

Can lessons be learned from Tevatron? D. Froidevaux, CERN 27 Hadron Collider Physics Summer School, CERN, 11/08/2007 to 14/08/2007

Can lessons be learned from Tevatron? D. Froidevaux, CERN 26 Hadron Collider Physics Summer School, CERN, 11/08/2007 to 14/08/2007

Photon Conversion Image of Material FNAL-CERN Summer School 2009 Calorimetry Lecture 2 52

Electrons are affected too non-negligible bremsstrahlung FNAL-CERN Summer School 2009 Calorimetry Lecture 2 53

Kalorymetry Projektując kalorymetr chcielibyśmy zoptymalizować: - dokładność pomiaru energii (w rozważanym zakresie) - dokładność rekonstrukcji pozycji (pęd poprzeczny, matching toru) - możliwość pomiaru kierunku i/lub czasu - możliwość rekonstrukcji profilu kaskady (identyfikacja) Niestety nie można wszystkich tych parametrów polepszyć jednocześnie Pomiar energii: kalorymetr jednorodny, minimalna segmentacji Pomiar pozycji: duża segmentacja poprzeczna Pomiar kierunku i profilu kaskady: duża segmentacja podłużna Trzeba optymalizować pod kątem fizyki: procesy "wzorcowe" Koszt ogranicza wybór materiałów, rozmiary i liczbę kanałów...

Electrons and photons in ATLAS/CMS φ=85mm CMS PbWO 4 crystal calorimeter Barrel: 62k crystals 2.2 x 2.2 x23 cm End-caps: 15k crystals 3 x 3 x 22 cm D. Froidevaux, CERN 33 Hadron Collider Physics Summer School, CERN, 11/08/2007 to 14/08/2007

Electrons and photons in ATLAS/CMS ATLAS LAr EM Calorimeter description Back Cell Middle Cell Strip Cell φ η Barrel module EM Calo (Presampler + 3 layers): LAr-Pb sampling calorimeter (barrel) Accordion shaped electrodes Fine longitudinal and transverse optimal separation of showers in segmentation EM showers (for e ± and photons) are Cluster seeds reconstructed using calorimeter cell-clusteringclustering Presampler 0.025x0.1 (ηxφ) Energy lost in upstream material Strips 0.003x0.1 (ηxφ) non-bending plane, pointing Middle 0.025x0.025 (ηxφ) Back 0.05x0.025 (ηxφ) Longitudinal leakage D. Froidevaux, CERN 34 Hadron Collider Physics Summer School, CERN, 11/08/2007 to 14/08/2007

LHC benchmark: SM H γγ 1) Irreducible background from qq γγ and gg γγ (box) 2) Reducible background from π 0,η ( γγ) in jet fragmentation: final states with many photons look for single photons non-isolated photons inside jets look for isolated photons Very difficult problem: at p T 50 GeV, jet-jet / γγ 10 7 need to reject each jet by a factor 10,000 to bring the reducible background well below the irreducible one However, at p T 50 GeV, π 0 /jet 10-3 separate isolated photons from π 0 decays at 50 GeV photons from π 0 decays will be distant by 1 cm D. Froidevaux, CERN 41 Hadron Collider Physics Summer School, CERN, 11/08/2007 to 14/08/2007 need granular position detector after ~ 4-5 X 0 in

Energy resolution CMS EM calorimeter (crystals): SM H γγ σ (E) E 3-5% ATLAS EM calorimeter (liquid-argon/lead sampling calorimeter): E CMS, full simulation high L Photons from H γγ σ (E) E 10% E σ / E (%) e ± η= 0.94 Sampling term = 10.7% Module zero test beam data Constant term = 0.3% Mass resolution (m H =100 GeV, low L): ATLAS : 1.1 GeV CMS : 0.6 GeV S B ~ 1 σ m E (GeV D. Froidevaux, CERN 39 Hadron Collider Physics Summer School, CERN, 11/08/2007 to 14/08/2007

Electrons and photons in ATLAS/CMS ATLAS EM Calorimeter energy reconstruction PS FRONT=S1 MIDDLE=S2 BACK=S3 CLUSTER EM shower 1 2 3 4 Corrections due to cluster position: Δη (S-shape modulation) ±0.005 Δφ (offset in accordion) ±0.001 0.9X 0 24 to 30 X 0 Two main clusterization ti methods: Fixed size sliding window: 3 3, 3 7 cells, 2 nd sampling η φ; Some energy left out, especially for small sizes. Topological clusters: Variable size cluster, minimize noise impact; Additional splitting algorithm is also provided. D. Froidevaux, CERN 35 Corrections for energy losses: 1. Before PS 2. Between PS & Calo 3. Outside cluster: depends on clustering method 4. After calorimeter: ~ Energy in BACK 2-7% overall energy correction >7% at low energy, high η Hadron Collider Physics Summer School, CERN, 11/08/2007 to 14/08/2007

Angular resolution and acceptance SM H γγ ATLAS calorimeter has longitudinal segmentation can measure γ direction ATLAS, full simulation Vertex resolution using EM calo longitudinal segmentation Photons from H γγ σ ( θ ) θ vertex spread ~ 5.6 cm 50 mrad E z CMS has no longitudinal segmentation (and no preshower in barrel) vertex measured using secondary tracks from underlying event often pick up the wrong vertex smaller acceptance in the Higgs mass window D. Froidevaux, CERN 40 Hadron Collider Physics Summer School, CERN, 11/08/2007 to 14/08/2007

SM H γγ Rejection of QCD jet background ATLAS EM calo : full simulation ε γ =80% Most rejection from longitudinal calo segmentation and 4 mm η-strips in first compartment (γ / π 0 separation) D. Froidevaux, CERN 46 Hadron Collider Physics Summer School, CERN, 11/08/2007 to 14/08/2007

Spektrometr mionowy

Error in momentum measurement σ ( p p ) measured σ ( s) = s σ ( x) = s 3 2 = 1 σ ( x) p 2 0.3 BL 387 2 if the sagitta, s, is determined by 3 measurements with error σ(x) In the general case, for N equidistant measurements: σ ( p ) 1 σ ( x) p 720 = for N ~10 2 p 0.3 BL N + 4 measured In short σ ( p ) = const. 2 p

Magnets for 4π Detectors Solenoid + Large homogeneous field inside - Weak opposite field in return yoke - Size limited by cost - Relatively large material budget Toroid + Field always perpendicular to p + Rel. large fields over large volume + Rel. low material budget -Non-uniform field - Complex structural design Examples: Delphi: SC, 1.2 T, 5.2 m, L 7.4 m CDF: SC, 1.4T, 2 m, L 6m CMS: SC, 4 T, 5.9 m, L 12.5 m Example: ATLAS: Barrel air toroid, SC, ~1 T, 9.4 m, L 24.3 m

Charge and Momentum Two ATLAS toroid coils Superconducting CMS Solenoid Design

ATLAS/CMS: muon measurements CMS CMS muon spectrometer Superior combined momentum resolution in central region Limited stand-alone resolution and trigger (at very high luminosities) due to multiple scattering in iron Degraded overall resolution in the forward regions ( η > 2.0) 0)where solenoid bending power becomes insufficient D. Froidevaux, CERN 7 Hadron Collider Physics Summer School, CERN, 11/08/2007 to 14/08/2007

ATLAS/CMS: muon measurements ATLAS ATLAS muon spectrometer Excellent stand-alone capabilities and coverage in open geometry Complicated geometry and field configuration (large fluctuations in acceptance and performance over full potential η x φ coverage ( η < 2.7) D. Froidevaux, CERN 8 Hadron Collider Physics Summer School, CERN, 11/08/2007 to 14/08/2007

ATLAS/CMS: muon measurements D. Froidevaux, CERN 9 Hadron Collider Physics Summer School, CERN, 11/08/2007 to 14/08/2007

ATLAS/CMS: muon measurements D. Froidevaux, CERN 11 Hadron Collider Physics Summer School, CERN, 11/08/2007 to 14/08/2007

ATLAS/CMS: muon measurements D. Froidevaux, CERN 12 Hadron Collider Physics Summer School, CERN, 11/08/2007 to 14/08/2007

Optymalizacja detektora Decydujące znaczenie mają, niestety, pieniądze... Na przykładzie projektu SiD dla ILC.

SiD (the Silicon Detector) CALORIMETRY IS THE STARTING POINT IN THE SiD DESIGN assumptions Particle Flow Calorimetry will result in the best possible performance Silicon/tungsten is the best approach for the EM calorimeter Silicon tracking delivers excellent resolution in smaller volume Large B field desirable to contain electron-positron pairs in beamline Cost is constrained Jim Brau, Bangalore - LCWS 2006, March 11, 2006 13

SiD Configuration 5 Tesla Scale of EMCal & Vertex Detector Jim Brau, Bangalore - LCWS 2006, March 11, 2006 14

LCWS07, DESY 2/6/2007 Mark Thomson 24 Detector Optimisation Studies Lots of progress no time 4.3 λ I 5.3 λ I

Cost Parametric Cost Model Cost = f (B-field, R TRK,.) VXD Tracker Magnet EMCal Electronics Muon System Hcal Cost by subsystem Cost vs. tracker radius Jim Brau, Bangalore - LCWS 2006, March 11, 2006 15

SiD Baseline Vary R, B, de/e=0.0378 642 Rtrkr = 1.25 m B = 5 T HCalλ = 4.5 E/E(180 Gev) = 0.0378 Vary R, Lambda, de/e = 0.0378 M$ 640 638 636 634 $2M 632 630 628 1.18 1.2 1.22 1.24 1.26 1.28 1.3 1.32 Radius (m) 800 780 Vary HCal, B, de/e = 0.0378 760 644 740 642 M$ 720 700 680 $20M M$ 640 638 636 $2M 660 634 640 632 620 630 600 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 Radius (m) 628 3 3.5 4 4.5 5 5.5 HCal Lamda SiD Baseline is optimal for this value of ΔE/E(180 Gev) (Pandora parameterization, Checked with Pandora version of SiD, SiD PFA) 16 November 2008 M. Breidenbach LCWS08 41

A sequence of Optimized SiD s PFA Performnce vs Cost -SiD 950 850 SiD Baseline 750 M$ 650 550 450 350 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 de/e @180 GeV 15 April 08 SiD Optimization M. Breidenbach 10

Selected Physics Process Errors vs Cost Physics Performance vs Cost dg/g) triple Higgs dm(gev) Chargino Mass 0.36 0.34 dg/g; dm(gev) 0.32 0.3 0.28 0.26 0.24 SiD 0.22 0.2 200 300 400 500 600 700 800 Cost (M$) 16 November 2008 M. Breidenbach LCWS08 45