Sensory w systemach wbudowanych Kondycjonowanie sygnału z czujników dr inż. Wojciech Maziarz Wydział IET, Katedra Elektroniki C-1, p.301, tel. 12 617 30 39 Kontakt: Wojciech.Maziarz@agh.edu.pl 1
Kondycjonowanie sygnału z czujnika Sensory na ogół nie są podłączane bezpośrednio do układu rejestrującego, gdyż sygnał może być za słaby, zaszumiony lub niekompatybilny. Sygnał sensorowy musi być poddany kondycjonowaniu. Znaczna większość sensorów jest typu rezystancyjnego, gdzie wartość rezystancji może się zmieniać w przedziale od omów do megaomów. Przykład termistor: zakres rezystancji 100 Ω 10 MΩ W wielu przypadkach zmiany rezystancji są małe (platynowe czujniki TD mają TW ok. 0.385%/ o C, czujniki tensometryczne wykazują często zmianę rezystancji poniżej 1% w całym zakresie pomiarowym). Stąd konieczność pomiaru małych zmian rezystancji jest czasami krytyczna. 2
Kondycjonowanie sygnału z czujnika Sygnał wyjściowy z czujników: ezystancyjny Napięciowy, Pojemnościowy Prądowy Ładunkowy Ogromna różnorodność układów kondycjonujących. Należy dopasowywać je do konkretnego czujnika i zastosowania, biorąc pod uwagę własności czujników oraz układów pośredniczących. 3
Pomiary czułości sensorów rezystancyjnych Sygnał użyteczny dla układu z dzielnikiem napięcia jest równy 0 S L ozdzielczość związana ze zmianą sygnału użytecznego przy zmianie rezystancji sensora dv0 V Z L Maksymalną rozdzielczość uzyskuje się dla L = S. d ( ) S S L 2 V V Z L Dzielnik napięcia utworzony z sensora o rezystancji S połączonego szeregowo z rezystorem obciążenia L. Układ korzystny we wskaźnikach przekroczenia wartości progowej. Zależność sygnału użytecznego od S / L. Dobrą rozdzielczość uzyskuje się dla dużego zakresu S (maks. czułość dla S = L ). Dla dużego S / L mała czułość. 4
Pomiary czułości sensorów rezystancyjnych Dzielnik napięcia z wtórnikiem napięciowym Zalety: prostota, wyjście ilorazowe (dla konwersji A/C i użycia U DD jako Uref) możliwość wykrycia błędu sensora (przerwa) Wady: słabe tłumienie sygnału wspólnego napięcie wyjściowe V OUT jest nieliniową funkcją SEN! Przykłady czujników/zastosowania: Termistor, TD, czujnik magnetorezystancyjny 5 http://ww1.microchip.com/downloads/en/appnotes/00990a.pdf
Pomiary czułości sensorów rezystancyjnych V 0 V Z S 0 Z L dv d S V L Sensor o rezystancji S w obwodzie napięciowego sprzężenia zwrotnego wzmacniacza odwracającego fazę. W takim pomiarze zwanym potencjometrycznym (prąd płynący przez sensor nie zależy od S ), rozdzielczość nie zależy od rezystancji bazowej S, a jej wartość można regulować dobierając L. 6
Pomiary czułości sensorów rezystancyjnych W obwodzie sprzężenia zwrotnego wzmacniacza odwracającego fazę umieszczony rezystor obciążenia L. V 0 V Z S L dv d 0 S V Z L 2 S Na rezystancji S występuje stałe napięcie równe V Z (pomiar potencjostatyczny). Napięcie wyjściowe jest iloczynem L i zmieniającego się prądu V Z / L. ozdzielczość pomiaru zależy od S. 7
Pomiary czułości sensorów rezystancyjnych Źródło prądowe w postaci lustra prądowego (układ Wilsona) Prąd wyjściowy i out płynący przez sterowany tranzystor T 1 jest równy prądowi wejściowemu i in, który zależy od napięcia V 1 i rezystancji 1. Tranzystor T 2 może ten prąd wielokrotnie zwiększyć. 8
Pomiary czułości sensorów rezystancyjnych Sensor zasilany ze źródła prądowego. Wtórnik napięciowy spolaryzowany diodą Zenera wysterowuje tranzystor, który wytwarza prąd niezależny od S. V 0 V Z S 0 Z L dv d S V L ozdzielczość nie zależy od S. 9
Układy ilorazowe Tego typu układy stosuje się wtedy, gdy źródła błędów mają charakter multiplikatywny (niestabilność zasilania, zmiany temp., efekty starzeniowe), a nie addytywny (np. szum termiczny). Przykładowo można wykorzystać dwa sensory, z których jeden jest aktywny, a drugi pełni rolę sensora odniesienia. V01 VN VZ V 02 V D V Z S 0 Z kolei dzielnik analogowy wykonuje operację dzielenia dając sygnał wyjściowy niezależny zarówno od napięcia zasilania, jak i wzmocnienia wzmacniacza. V 0 V k V N D k 0 S Operacja dzielenia może być realizowana cyfrowo. 10
Układy ilorazowe - przykłady Typowy przykład - sensory w układzie mostka z konwersją sygnału w przetworniku ADC. Napięcie zasilania mostka oraz przetwornika pochodzą z tego samego źródła. Zmiana napięcia zasilania nie wpływa na sygnał wyjściowy. Do dokładnych pomiarów nie jest zatem konieczne źródło zasilania o wysokiej stabilności. W układzie ilorazowym kod wyjściowy D OUT na wyjściu przetwornika jest reprezentacją cyfrową stosunku sygnału wejściowego przetwornika AIN do sygnału odniesienia V EF a zatem wahania nap. zasilania nie wpływają na wynik pomiaru. W prezentowanym układzie wykorzystuje się dodatkowe źródło nap. odniesienia EF niezależne od V DD i układ przestaje być ilorazowy. Tego typu rozwiązania stosuje się w przypadku dużej dynamiki zmian napięcia AIN. 11
Mostkowe układy pomiarowe Typowy układ to mostek rezystancyjny, gdzie w jednym z ramion umieszczony jest sensor (piezorezystor, termistor). ezystancje mogą być również zastąpione pojemnościami lub indukcyjnościami. V Wy 1 1 2 3 3 Warunek równowagi: S V C 1 2 3 S Maksymalną czułość pomiaru uzyskuje się dla 1 = 2 i 3 = S. Ogólnie napięcie wyjściowe jest nieliniową funkcją niezrównoważenia Δ = S. V V Wy C 2 3 3 12
Mostkowe układy pomiarowe Mostek może pracować w układzie zrównoważonym (na wyjściu istnieje wzmacniacz błędu, który poprzez sprzężenie zwrotne przywraca stan równowagi) lub niezrównoważonym, który jest częściej stosowany. WO na wyjściu mostka niezrównoważonego (wpływ F i prądu polaryzacji na równowagę). Trudno uzyskać odp. wzm. i jednocześnie duże CM. Zalety: prostota, dobre tłumienie CM wyjście ilorazowe (konwersja A/C + U DD jako Uref) możliwość wykrycia błędu sensora (przerwa) Wady: wzmocnienie jest funkcją s Należy stosować uc+ program Napięcie U wy nieliniową funkcją s Przykład: cz. ciśnienia, tensometr, cz. magnetorez. 13
Mostkowe układy pomiarowe Wzmacniacz w układzie mostka aktywnego. Wzmacniacz wytwarza napięcie równe i przeciwnego znaku niż zmiana powodowana Δ. Napięcie to jest liniowe w funkcji Δ (linearyzacja wyjścia). 14
Mostkowe układy pomiarowe Wzmacniacz w układzie mostka z pływającym źródłem zasilania Zalety: liniowa zależność U() w pewnym zakresie zmienności wyjście ilorazowe (konwersja A/C + U DD jako Uref) Wady: cena wymaga precyzyjnych V wy V n 4 C x x Zastosowanie: termistor, TD, anemometr 15
Mostkowe układy pomiarowe Zastosowanie wzmacniacza pomiarowego Wyjście nieliniowe, korekcja po stronie cyfrowej Stosując na wyjściu wzmacniacz pomiarowy unika się rozrównoważenia mostka przy regulacji wzmocnienia ( G ), jednocześnie uzyskuje się duży CM (tłumienia sygnału sumacyjnego). 16
Kondycjonowanie sensorów z wyjściem ładunkowym Stosowany w przypadku sensorów wysokoimpedancyjnych, takich jak piezoelektryczne. Zalety: Wysoki CM Wyjście stosunkowe (z ADC wykorzystującym VDD jako Uref) Detekcja zwarcia/rozwarcia czujnika Wady: Straty mocy Q Vwy Konieczne użycie sygnału AC C 2 Są to wzmacniacze AC z częstotliwościami odcięcia: górną f 2 = 1/(2π 2 C 2 ) i dolną f 1 = 1/(2π 1 C 1 ). 17
Wzmacniacz nieodwracający Kondycjonowanie sensorów z wyjściem napięciowym Wzmacniacz nieodwracający dla czujników o dużej Zwe Zalety: duża imp. wejściowa niski prąd polaryzacji (wzm. CMOS) dodatnie wzmocnienie prostota Wady: Ograniczony zakres Uwy (Vsen do Vout) Zniekształcenia stopnia wejściowego Wzmacnianie sygnału wspólnego Przykłady czujników/zastosowania: Termopara, termostos, warstwa piezoelektryka Zalety: BADZO duża imp. wejściowa BADZO niski prąd polaryzacji (wzm. CMOS) dodatnie wzmocnienie prostota Wady: Ograniczony zakres Uwy (Vsen do Vout) Zniekształcenia stopnia wejściowego Wzmacnianie sygnału wspólnego Przykłady czujników/zastosowania: elektroda ph 18 http://ww1.microchip.com/downloads/en/appnotes/00990a.pdf
Kondycjonowanie sensorów z wyjściem napięciowym Wzmacniacz odwracający Wzmacniacz różnicowy Zalety: izolacja rezystancyjna od źródła możliwy duży zakres U SEN brak zniekształceń stopnia wejściowego prostota Wady: Obciążenie rezystancyjne źródła Wzmocnienie ujemne Wzmacnianie sygnału wspólnego Przykłady czujników/zastosowania: Termostos, czujnik napięcia http://ww1.microchip.com/downloads/en/appnotes/00990a.pdf Zalety: izolacja rezystancyjna od źródła możliwy duży zakres U SEN tłumi CM (dobre do czujników zdalnych) prostota Wady: Obciążenie rezystancyjne źródła Zniekształcenia sygnału wejściowego Przykłady czujników/zastosowania: Zdalna termopara, mostek Wheatstone a 19
Kondycjonowanie sensorów z wyjściem napięciowym Wzmacniacz pomiarowy (instrumentation amplifier) - szczególna postać wzmacniacza różnicowego o regulowanym wzmocnieniu. Wejścia odizolowane są od wew. sprzężenia zwrotnego. Impedancja wejściowa rzędu 10 9 Ω lub większa. Wzmacniane są sygnały mikrowoltowe z tłumieniem woltowego sygnału sumacyjnego (duży współcz. CM w przedziale 70-100 db), co jest szczególnie istotne dla częstotliwości 50 Hz. k 1 2 4 2 3 1 20
Zalety: znakomite tłumienie CM, dobry do czujników zdalnych izolacja rezystancyjna od źródła wykrywanie uszkodzeń czujnika Wady: Obciążenie rezystancyjne źródła Cena Kondycjonowanie sensorów z wyjściem napięciowym Wzmacniacz pomiarowy Przykłady czujników/zastosowania: Zdalna termopara, zdalny TD (źródło prądu lub dzielnik napięcia na wyjściu TD musi być napięcie), mostek Wheatstone a (czujniki ciśnienia, naprężeń tensometry) http://ww1.microchip.com/downloads/en/appnotes/00990a.pdf 21
Zalety: pomiar wielu czujników wejście CMOS (duże Zwe, mały Ibias) cyfrowa kontrola wejścia i wzmocnienia (interfejs SPI) Linearyzacja źródeł nieliniowych Kondycjonowanie sensorów z wyjściem napięciowym Wzmacniacz o regulowanym wzmocnieniu (PGA) Wady: Zniekształcenia stopnia wejściowego Wzmocnienie sygnału wspólnego Konieczność użycia uc i firmware Przykłady czujników/zastosowania: Termistor, termostos, warstwa piezoelektryka 22 http://ww1.microchip.com/downloads/en/appnotes/00990a.pdf
Zalety: dobre tłumienie CM rezystancyjna izolacja od źródła szeroki zakres Uwe Kondycjonowanie sensorów z wyjściem prądowym Wzmacniacz prądu Wady: ezystancyjne obciążenie wejścia Zniekształcenia w stopniu wejściowym Przykłady czujników/zastosowania: Czujnik prądu (AC), czujnik napięcia VDD (konieczny szeregowy) 23 http://ww1.microchip.com/downloads/en/appnotes/00990a.pdf
Kondycjonowanie sensorów z wyjściem prądowym Wzmacniacz transimpedancyjny Zamiana I SEN na U OUT Zalety: dobre dopasowanie do źródła sygnału prostota Wady: układ można/należy stabilizować C1 konieczny dla dużych pojemności źródła Przykłady czujników/zastosowania: Detektor dymu I, fotodioda, fototranzystor 24 http://ww1.microchip.com/downloads/en/appnotes/00990a.pdf
U OUT ~ log(i SEN ) Kondycjonowanie sensorów z wyjściem prądowym Wzmacniacz logarytmujący D1B kompensuje zmiany temperatury Jeśli źródło ma obie polaryzacje, należy dodać przeciwsobnie diodę do D1A Szeroki zakres dynamiczny prądów Przykłady czujników/zastosowania: Fotodioda 25 http://ww1.microchip.com/downloads/en/appnotes/00990a.pdf
Kondycjonowanie sensorów z wyjściem pojemnościowym Oscylator - f zależna od C Zalety: Koszt Wyjście ilorazowe Łatwe połączenie z Uc Wada: mała dokładność Zastosowanie: czujnik wilgotności, dotyku, poziomu cieczy 26
Kondycjonowanie sensorów z wyjściem pojemnościowym Układ z pojedynczym całkowaniem prądu Działanie: SW1 (sterowany z uc) zwiera napięcie na C SEN i rozpoczyna całkowanie napięcie Uwy liniowo narasta w czasie czas narastania zależy od V EF i 1 po osiągnięciu U=U EF sygnał z komparatora wysterowuje MCU Zalety: możliwość pracy z uc Dokładność zależy od V EF i 1 Wada: cena Zastosowanie: czujnik wilgotności, dotyku, poziomu cieczy 27
Kondycjonowanie - funkcje dodatkowe Zabezpieczenie wejść przeciwko: - ESD (Electrostatic Discharge), - przepięciom, przetężeniom Wykrywanie uszkodzenia czujnika Filtracja: -Filtry analogowe na wejściu (polepszają pracę ADC, dzięki nim można uniknąć aliasingu, zmniejszyć pasmo i częstotliwość próbkowania oszczędność mocy obliczeniowej) typu C lub aktywne Konwersja ADC Korekcja (błędów, charakterystyk nieliniowych (wielomiany)) Kalibracja (sprzętowa, np. rezystor nastawczy lub programowa firmware) Więcej info: http://ww1.microchip.com/downloads/en/appnotes/00990a.pdf 28