Liniowe układy scalone w technice cyfrowej

Podobne dokumenty
Liniowe układy scalone. Komparatory napięcia i ich zastosowanie

Wzmacniacze operacyjne

Liniowe układy scalone

Liniowe układy scalone. Wykład 2 Wzmacniacze różnicowe i sumujące

Liniowe układy scalone w technice cyfrowej

Temat: Wzmacniacze operacyjne wprowadzenie

Ćw. 7 Wyznaczanie parametrów rzeczywistych wzmacniaczy operacyjnych (płytka wzm. I)

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7

Tranzystory bipolarne elementarne układy pracy i polaryzacji

PRACOWNIA ELEKTRONIKI

Realizacja regulatorów analogowych za pomocą wzmacniaczy operacyjnych. Instytut Automatyki PŁ

Gdy wzmacniacz dostarcz do obciążenia znaczącą moc, mówimy o wzmacniaczu mocy. Takim obciążeniem mogą być na przykład...

Opracowane przez D. Kasprzaka aka 'master' i D. K. aka 'pastakiller' z Technikum Elektronicznego w ZSP nr 1 w Inowrocławiu.

Tranzystory bipolarne elementarne układy pracy i polaryzacji

11. Wzmacniacze mocy. Klasy pracy tranzystora we wzmacniaczach mocy. - kąt przepływu

Wzmacniacz operacyjny

WSTĘP DO ELEKTRONIKI

Wzmacniacze, wzmacniacze operacyjne

Ćwiczenie nr 65. Badanie wzmacniacza mocy

Wyjścia analogowe w sterownikach, regulatorach

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych

Zespół Szkół Łączności w Krakowie. Badanie parametrów wzmacniacza mocy. Nr w dzienniku. Imię i nazwisko

Ogólny schemat blokowy układu ze sprzężeniem zwrotnym

Ćwiczenie 5. Zastosowanie tranzystorów bipolarnych cd. Wzmacniacze MOSFET

WZMACNIACZ OPERACYJNY. Podstawowe właściwości wzmacniaczy operacyjnych. Rodzaj wzmacniacza Rezystancja wejściowa Rezystancja wyjściowa

ĆWICZENIE 14 BADANIE SCALONYCH WZMACNIACZY OPERACYJNYCH

Liniowe układy scalone

PL B1. INSTYTUT MECHANIKI GÓROTWORU POLSKIEJ AKADEMII NAUK, Kraków, PL BUP 21/08. PAWEŁ LIGĘZA, Kraków, PL

WZMACNIACZ OPERACYJNY

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE, Kraków, PL BUP 12/12

PL B1. POLITECHNIKA GDAŃSKA, Gdańsk, PL BUP 19/09. MACIEJ KOKOT, Gdynia, PL WUP 03/14. rzecz. pat.

Liniowe układy scalone. Budowa scalonego wzmacniacza operacyjnego

PODSTAWY ELEKTRONIKI I TECHNIKI CYFROWEJ

POLITECHNIKA WROCŁAWSKA, WYDZIAŁ PPT I-21 LABORATORIUM Z PODSTAW ELEKTROTECHNIKI I ELEKTRONIKI 2

Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8

Instrukcja nr 6. Wzmacniacz operacyjny i jego aplikacje. AGH Zespół Mikroelektroniki Układy Elektroniczne J. Ostrowski, P. Dorosz Lab 6.

Laboratorium Elektroniki

Ćwiczenie - 4. Podstawowe układy pracy tranzystorów

Zastosowania liniowe wzmacniaczy operacyjnych

Wzmacniacz operacyjny

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI

Tranzystory bipolarne. Właściwości dynamiczne wzmacniaczy w układzie wspólnego emitera.

ĆWICZENIE 2 Wzmacniacz operacyjny z ujemnym sprzężeniem zwrotnym.

WZMACNIACZ NAPIĘCIOWY RC

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE, Kraków, PL BUP 12/15

BADANIE PRZERZUTNIKÓW ASTABILNEGO, MONOSTABILNEGO I BISTABILNEGO

Wzmacniacz jako generator. Warunki generacji

Wzmacniacze operacyjne

Podstawowe układy elektroniczne

Wejścia analogowe w sterownikach, regulatorach, układach automatyki

Wzmacniacze operacyjne

ZASADA DZIAŁANIA miernika V-640

Szumy układów elektronicznych, wzmacnianie małych sygnałów

ĆWICZENIE NR 1 TEMAT: Wyznaczanie parametrów i charakterystyk wzmacniacza z tranzystorem unipolarnym

Politechnika Białostocka

Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Katedra Elektroniki

WIECZOROWE STUDIA NIESTACJONARNE LABORATORIUM UKŁADÓW ELEKTRONICZNYCH

Liniowe układy scalone. Elementy miernictwa cyfrowego

Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU

LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH

Wykład 2 Projektowanie cyfrowych układów elektronicznych

Wzmacniacze operacyjne

Politechnika Białostocka

Pętla prądowa 4 20 ma

Zastosowania nieliniowe wzmacniaczy operacyjnych

Demonstracja: konwerter prąd napięcie

P-1a. Dyskryminator progowy z histerezą

PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 07/10. ZDZISŁAW NAWROCKI, Wrocław, PL DANIEL DUSZA, Inowrocław, PL

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE, Kraków, PL BUP 14/12

Liniowe układy scalone. Wykład 4 Parametry wzmacniaczy operacyjnych

Państwowa Wyższa Szkoła Zawodowa

Przetworniki C/A. Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego

Prostowniki. Prostownik jednopołówkowy

Laboratorium z Układów Elektronicznych Analogowych

Politechnika Białostocka

1. Zarys właściwości półprzewodników 2. Zjawiska kontaktowe 3. Diody 4. Tranzystory bipolarne

Tranzystory bipolarne. Właściwości wzmacniaczy w układzie wspólnego kolektora.

A-3. Wzmacniacze operacyjne w układach liniowych

Laboratorium Przyrządów Półprzewodnikowych test kompetencji zagadnienia

2. Który oscylogram przedstawia przebieg o następujących parametrach amplitudowo-czasowych: Upp=4V, f=5khz.

2 Dana jest funkcja logiczna w następującej postaci: f(a,b,c,d) = Σ(0,2,5,8,10,13): a) zminimalizuj tę funkcję korzystając z tablic Karnaugh,

Tranzystory. 1. Tranzystory bipolarne 2. Tranzystory unipolarne. unipolarne. bipolarny

Lekcja 19. Temat: Wzmacniacze pośrednich częstotliwości.

Instrukcja nr 5. Wzmacniacz różnicowy Stabilizator napięcia Tranzystor MOSFET

Ujemne sprzężenie zwrotne, WO przypomnienie

PODSTAWY ELEKTRONIKI TEMATY ZALICZENIOWE

Podstawy Elektroniki dla Informatyki. Tranzystory unipolarne MOS

Projekt z Układów Elektronicznych 1

Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający

1 Dana jest funkcja logiczna f(x 3, x 2, x 1, x 0 )= (1, 3, 5, 7, 12, 13, 15 (4, 6, 9))*.

Tranzystory bipolarne. Małosygnałowe parametry tranzystorów.

Ćwiczenie 3 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH

Generatory. Podział generatorów

Generatory przebiegów niesinusoidalnych

Laboratorium Analogowych Układów Elektronicznych Laboratorium 6

Układy akwizycji danych. Komparatory napięcia Przykłady układów

Ćwiczenie 1: Pomiar parametrów tranzystorowego wzmacniacza napięcia w układzie wspólnego emitera REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU

I-21 WYDZIAŁ PPT LABORATORIUM Z ELEKTROTECHNIKI I ELEKTRONIKI

Wzmacniacz operacyjny zastosowania liniowe. Wrocław 2009

STABILIZATORY NAPIĘCIA I PRĄDU STAŁEGO O DZIAŁANIU CIĄGŁYM Instrukcja do ćwiczeń laboratoryjnych

Transkrypt:

Liniowe układy scalone w technice cyfrowej Wykład 6 Zastosowania wzmacniaczy operacyjnych: konwertery prąd-napięcie i napięcie-prąd, źródła prądowe i napięciowe, przesuwnik fazowy

Konwerter prąd-napięcie Jeśli wejściowe prądy polaryzujące wzmacniacza są równe zero to w rezystorze R jest wymuszony prąd równy prądowi wejściowemu W rezultacie napięcie wyjściowe U O = - I I R Bardzo mała rezystancja wejściowa Układ dobrze nadaje się do współpracy z prądowymi źródłami sygnału o dużej rezystancji wewnętrznej

Konwerter prąd-napięcie (uwagi) Projektując układ trzeba liczyć się z błędem spowodowanym przez wejściowy prąd polaryzujący wzmacniacza, który sumuje się algebraicznie z prądem wejściowym W przypadku przetwarzania małych prądów należy stosować wzmacniacze o bardzo małych wejściowych prądach polaryzujących

Wzmacniacz prądu fotodiody Liniowy niskoszumowy układ o niskich napięciach zasilania C 1 ustala szerokość pasma R 1,, R 5, R 6 wysokokostabilne (1%) Fotodioda ma największą czułość dla zakresu widma 400 1050 nm Wzmocnienie stałoprądowe = 1000 Szerokość pasma (3 db) = 0 2,6 khz Szumy: 4,2 μv

Konwerter napięcie-prąd z wejściem odwracającym Prąd I 1 = U I / R 1 Ten sam prąd płynie przez rezystor obciążenia w pętli sprzężenia zwrotnego Prąd I 1 jest niezależny od wartości rezystancji obciążenia Napięcie źródła sygnału i wzmacniacz należy dobrać tak, aby mogły dostarczyć odpowiedni prąd obciążenia

Konwerter napięcie-prąd z wejściem nieodwracającym Prąd I 1 = U I / R 1 Ten sam prąd płynie przez rezystor obciążenia w pętli sprzężenia zwrotnego Prąd I 1 jest niezależny od wartości rezystancji obciążenia Duża rezystancja wejściowa ze względu na wykorzystanie wejścia nieodwracającego

Konwerter napięcie-prąd mało obciążający źródło napięcia Wzmacniacz operacyjny dobiera się uwzględniając pełny przewidywany prąd obciążenia. Wzmacniacz powinien dostarczać napięcie wyjściowe: U Omax I Mmax R L R 3 Większa część prądu obciążenia dostarczana przez wzmacniacz niewielka przez źródło Prąd obciążenia: I L = U I R 1 1 R 3 Rezystor R 3 służy do dobrania odpowiedniej wartości prądu obciążenia Aby zminimalizować obciążenie źródła sygnału można dobrać R 1 o dużej wartości

Konwerter napięcie-prąd z uziemionym obciążeniem Wzmacniacz pracuje jako źródło prądowe sterowane napięciem U I Prąd obciążenia: Wartości R 1 i dobiera się na małe prądy, R F i R 3 powinny mieć małe wartości ze względu na zminimalizowanie występujących na nich spadków napięcia I L = U I przy R 3 = R F R 1 Właściwy dobór stosunków rezystancji gwarantuje dużą rezystancję wewn. źródła prądowego Wzmacniacz powinien dysponować zakresem napięcia wyjściowego równym co najmniej sumie max. napięcia na obciążeniu i spadku napięcia na R 3

Źródła napięciowe - ogólnie Jako źródła napięciowe zasilające stosuje się najczęściej monolityczne regulatory napięcia (specjalizowane) Źródła napięcia buduje się również z pomocą wzmacniaczy operacyjnych Rzadko jako źródła napięcia zasilającego Często jako źródła napięcia odniesienia o wysokiej stabilności Napięcie uzyskiwane jest z diod Zenera o wysokiej stabilności cieplnej (0,0005% / C), o skompensowanych fabrycznie zmianach termicznych Rola wzmacniacza: wzmocnienie lub zredukowanie napięcia odniesienia na wyjściu źródła oraz zapewnienie odpowiednio dużego prądu wyjściowego

Źródło napięciowe układ podstawowy U O =U Z R 3 R 1 powinien być dobrany w taki sposób, aby prąd w diodzie Zenera był równy katalogowej wartości optymalnej, przy której współczynnik termiczny napięcia jest najmniejszy Dobór stosunku R 3 i decyduje o napięciu Układ jest źródłem dodatniego napięcia odniesienia Napięcie ujemne można uzyskać zmieniając polaryzację diody i dołaczając R 1 do ujemnego napięcia zasilania

Źródło napięcia odniesienia z układem startującym Dioda zasilana przez rezystor stabilizowanym napięciem wyjściow. Dwa stany stabilne po włączeniu zasilania : U Z i 0V Aby temu zapobiec dioda D 2 połaczona z dzielnikiem rezystorowym R 4, R 5 tak dobranym, aby napięcie podawane na diodę D 2 było mniejsze niż U Z U O =U Z R 3 Przy prawidłowej pracy układu D 2 nie przewodzi, a przy włączaniu układu wymusza wzrost napięcia na D 1 i ustawienie się układu we właściwym stanie stabilnym

Źródło napięcia przykład praktyczny Ujemne i dodatnie sprzężenie W chwili włączenia silne sprzężenie dodatnie dzięki połączeniu wyjścia przez niewielki rezystor R 1 z wejściem (+) i początkowo dużej rezystancji dyn. diody Następuje wzrost napięcia na diodzie do 6,6V jest ona utrzymywana na wejściu (-) w wyniku działania ujemnego sprzężenia Mała rezystancja dynamiczna diody ogranicza wielkość sprzężenia dodatniego

Źródło napięcia przykład praktyczny Dzięki zasilaniu diody wyjściowym napięciem stabilizowanym osiąga się dobrą stałość prądu diody równego 2 ma Należy stosować rezystory o dużej stabilności Stosunek zmian napięcia wyjściowego do zmian napięcia zasilania = 100dB przy f=100hz Po odwróceniu polaryzacji diody i napięć zasilających - źródło napięcia ujemnego

Źródło napięcia o prądzie do 100mA Prąd wyjściowy jest ograniczony wartością dopuszczalnego prądu wyjściowego wzmacniacza W celu zwiększenia zakresu prądu wyjściowego stosuje się dodatkowe układy tranzystorowe T 1 wzmacnia prąd wyjściowy do 100 ma T 2 -zabezp. przeciwzwarciowe R O = 8,5 10-5 Ω, zmiana napięcia wyjściowego 8,5 μv przy pełnym zakresie zmian prądu obciążenia

Źródła prądowe Dostarczają prąd o stałej wartości niezależnej od wielkości obciążenia Stosując wzmacniacze operacyjne można uzyskać duży współczynnik sprzężenia zwrotnego czyli dużą dokładność i dobrą stabilność termiczną źródła Zastosowanie: Generatory przebiegów liniowych Przyrządy do testowania tranzystorów i układów scalonych oraz pomiarów rezystancji Przetworniki analogowo-cyfrowe

Źródło prądowe w układzie nieodwracającym Konwerter napięcie-prąd do którego jako napięcie wejściowe doprowadzono napięcie odniesienia U R Obciążenie włączone jest jako element sprzężenia zwrotnego nie może być uziemione Wzmacniacz operacyjny wymusza w obciążeniu R L prąd taki sam jak w R Wartość prądu I L musi być znacznie większa od wejściowych prądów polaryzujących wzmacniacza

Źródło prądowe w układzie odwracającym Tego układu dotyczą wszystkie uwagi dotyczące układu nieodwracającego WADA obu układów: obciążenie nie podłączone do masy!!!

Źródło prądowe z tranzystorem unipolarnym Na rezystorze R występuje napięcie U R Dzięki pomijalnie małej wartości prądu bramki tranzystora prądy płynące prze R L i R są takie same Jedna końcówka obciążenia może być dołączona do punktu o stałym potencjale (+U ZZ ) Przy innej polaryzacji można jedną końcówkę obciążenia dołączyć do masy

Źródło prądowe w układzie Howlanda Umożliwia dołączenie obciążenia do dowolnego potencjału Z faktu, że między wejściami wzmacniacza utrzymywane jest napięcie bliskie zero, a wejściowe prądy polaryzujące są pomijalnie małe w stosunku do prądów I 1 i I 2 wynika zależność: I 1 ar 1 =U 1 U O =U 2 U O =I 3 a czyli I 1 R 1 =I 3

Układ Howlanda - dalej I 1 R 1 =I 3 Ponieważ I 1 = U R1 U 1 R 1 oraz I 2 = U R2 U 2 więc I 3 = U R1 U 1 Prąd obciążenia : I L =I 2 I 3 = U R2 U 2 U R1 U 1 = U R2 U R1 Prąd uzyskiwany ze źródła nie zależy więc od rezystancji obciążenia lecz od różnicy napięć odniesienia U R1 i U R2 W zależności od doboru tych napięć można uzyskać prąd o różnym kierunku przepływu Druga końcówka obciążenia może być podłączona do masy lub innego potencjału

Układ Howlanda - raz jeszcze Źródło Howlanda jest najczęściej stosowane w układzie z jednym wejściem U R1 lub U R2 uziemionym np. przy uziemionym wejściu U R2 : I L = U R1 U O = a U R1[ 1 R L I O = U R1 R 1 1 R L 1 1 ] a 1 R 1 Dwa ostatnie wzory dotyczą prądu i napięcia nawyjściu wzmacniacza i służą do określenia parametrów wyjściowych wzmacniacza niezbędnych do uzyskania prądu I L o określonej wartości

Przesuwnik fazowy Zakładając, że wejściowe prądy polaryzujące są równe zero: I 1 = I 3 oraz I 2 = I 4 Przy K, czyli przy zerowej różnicy napięć między wejściami wzmacniacza, z równości prądów wynika: U I U R = U U O R U I U 1/ sc =U r U - napięcie na wejściach wzmacniacza w stosunku do masy

Przesuwnik fazowy - wnioski Rozwiązując układ równań otrzymujemy: U O = 1 s C r 1 s C r U I Przy zmianacz częstotliwości napęcia U I z zachowaniem stałej amplitudy amplituda napięcia U O pozostaje stała a zmianie ulega przesunięcie fazowe Funkcja przenoszenia nie zależy od właściwości w.o. i od R (!) Gdy r = 0 układ przesuwnika staje się wzmacniaczem odwracającym o wzmocnmieniu 1 czyli przesunięcie fazy jest 180 Gdy r = i sygnał wejściowy w pełnym zakresie częstotliwości doprowadzany (oprócz f = 0) jest doprowadzany do wejścia (+) przy założeniu R we = wzmacniacza. Rezystor R między wejściem a wejściem (-) jest zwarty, gdyż potencjały obu wejść są równe. Ponieważ na tym R nie ma spadku napięcia w rezystorze R w pętli nie płynie prąd i całe napięcie wyjściowe podawane jest na wejście nieodwracające wzmocnienie = 1, przesunięcie fazy = 0