METROLOGIA Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EINS Zjazd 8, wykład nr 15
Prawo autorskie Niniejsze materiały podlegają ochronie zgodnie z stawą o prawie autorskim i prawach pokrewnych (Dz.. 1994 nr 4 poz. 83 z późniejszymi zmianami). Materiał te udostępniam do celów dydaktycznych jako materiały pomocnicze do wykładu z przedmiotu Metrologia prowadzonego dla studentów Wydziału Elektrotechniki i Informatyki Politechniki Lubelskiej. Mogą z nich również korzystać inne osoby zainteresowane metrologią. Do tego celu materiały te można bez ograniczeń przeglądać, drukować i kopiować wyłącznie w całości. Wykorzystywanie tych materiałów bez zgody autora w inny sposób i do innych celów niż te, do których zostały udostępnione, jest zabronione. W szczególności niedopuszczalne jest: usuwanie nazwiska autora, edytowanie treści, kopiowanie fragmentów i wykorzystywanie w całości lub w części do własnych publikacji. Eligiusz Pawłowski Zjazd 8, wykład 15
wagi dydaktyczne Niniejsza prezentacja stanowi tylko i wyłącznie materiały pomocnicze do wykładu z przedmiotu Metrologia prowadzonego dla studentów Wydziału Elektrotechniki i Informatyki Politechniki Lubelskiej. dostępnienie studentom tej prezentacji nie zwalnia ich z konieczności sporządzania własnych notatek z wykładów ani też nie zastępuje samodzielnego studiowania obowiązujących podręczników. Tym samym zawartość niniejszej prezentacji w szczególności nie może być traktowana jako zakres materiału obowiązujący na egzaminie. Na egzaminie obowiązujący jest zakres materiału faktycznie wyłożony podczas wykładu oraz zawarty w odpowiadających mu fragmentach podręczników podanych w wykazie literatury do wykładu. Eligiusz Pawłowski Zjazd 8, wykład 15 3
Informacje organizacyjne - przypomnienie Przedmiot: METROLOGIA, WYKŁAD (sala E-01), Zaliczenie: egzaminy w sesji zimowej i w sesji letniej. dokumentowana obecność na wykładzie jest premiowana dodatkowymi punktami doliczanymi do wyników egzaminu: 1 punkt za 1 godzinę obecności na wykładzie (egzamin obejmuje 14 pytań ocenianych w skali od 0 do 5 punktów). Zajęcia powiązane z wykładem : Laboratorium Metrologii (sala E-316) Prowadzący: dr inż. Eligiusz Pawłowski Konsultacje: pok. E-314 ( piętro WEiI), środa godz. 1 13 Wymiar wykładu: 7 zjazdów x x godz. 8 godz. semestr zimowy (E) 7 zjazdów x 1 x 3 godz. 1 godz. semestr letni (E) Wymiar laboratorium: 7 zjazdów x godz. 14 godz. semestr zimowy 7 zjazdów x 3 godz. 1 godz. semestr letni Program, literatura itp.: gablota ogłoszeniowa przy pok. E-314 Zjazd 8, wykład 15 4
Literatura do przedmiotu Obowiązuje wykaz literatury podany na początku wykładów w semestrze zimowym Zjazd 8, wykład 15 5
Tematyka wykładu Pomiary parametrów sygnałów zmiennych Mierniki analogowe prostownikowe Mierniki analogowe termoelektryczne Mierniki analogowe uniwersalne Mierniki elektromagnetyczne Zjazd 8, wykład 15 6
Prądy i napięcia zmienne u(t)const. Prądy, napięcia Stałe Zmienne u(t)var. u(t) u(t+t) Okresowe Nieokresowe śr 0 Przemienne Tętniące u śr 0 Napięcie w sieci energetycznej Zjazd 8, wykład 15 7
Parametry napięć zmiennych - Wartość średnia - Wartość średnia wyprostowana - Wartość skuteczna - Współczynnik szczytu (amplitudy) - Współczynnik kształtu - Współczynnik zawartości harmonicznych Zjazd 8, wykład 15 8
Wartość średnia Wartość średnia u u 1 T T 0 u( t) dt Interpretacja geometryczna Interpretacja fizyczna: wartość średnia prądu przemiennego jest równa takiej wartości prądu stałego, która powoduje przepływ takiego samego ładunku w takim samym czasie. Zjazd 8, wykład 15 9
Wartość średnia napięcia sinusoidalnego Napięcie sinusoidalne o amplitudzie max Wartość średnia u ( t) sin t ω max Taką wartość pokaże miernik ME u T 1 1 1 sinωt dt max 0 T T T 0 π ( cosωt) ( 1 ( 1) ) 0 max max Zjazd 8, wykład 15 10
Wartość średnia wyprostowana Wartość średnia wyprostowana śr śr 1 T T ( t) dt u( t) u 0 T T 0 dt Dla przebiegów sinusoidalnych Interpretacja geometryczna Zjazd 8, wykład 15 11
Wartość średnia wyprostowana napięcia sinusoidalnego Napięcie sinusoidalne o amplitudzie max u ( t) sin t max ω Wartość średnia wyprostowana śr śr T T 0 max sin t dt π π ( cosωt) ω max 0 Na taką wartość reaguje miernik ME z prostownikiem 1 π π max ( 1 ( 1) ) 0, max max 637 Zjazd 8, wykład 15 1
Wartość skuteczna Wartość skuteczna sk sk 1 T T 0 u ( t) dt RMS Root Mean Square Prawdziwa wartość skuteczna Pierwiastek Średniego Kwadratu Interpretacja fizyczna: wartość skuteczna prądu przemiennego jest równa takiej wartości prądu stałego, która powoduje wydzielenie się na odbiorniku takiej samej energii w takim samym czasie. Zjazd 8, wykład 15 13
Wartość skuteczna napięcia sinusoidalnego Napięcie sinusoidalne o amplitudzie max Wartość skuteczna sk u ( t ) sin t max ω sin α 1 (1 cosα ) sk T 1 T π max ( max sinωt) dt ( sinωt) dt 0 π 0 π max 1 max (1 cosωt ) dt 0, 707 π 0 max Od tej wartości zależy moc i energia czynna Zjazd 8, wykład 15 14
Współczynnik szczytu Współczynnik szczytu k s k s max sk Współczynnik szczytu k s dla napięcia sinusoidalnego k s max sk max max 1,41 Zapamiętać!!! Do zapamiętania: max k s sk 30 V 35 V Zjazd 8, wykład 15 15
Współczynnik kształtu Współczynnik kształtu k k k k sk śr Współczynnik kształtu k k dla napięcia sinusoidalnego k sk max π max π 1,111 k Zapamiętać!!! śr Zjazd 8, wykład 15 16
Współczynnik szczytu i kształtu dla sinusoidy Zapamiętać! max jest zawsze największą wartością max k 1,41 s śr jest zawsze najmniejszą wartością sk śr k k π 1,111 Zjazd 8, wykład 15 17
Wartość skuteczna przebiegów odkształconych Napięcie przemienne okresowe odkształcone jest sumą kolejnych składowych harmonicznych (tworzących szereg Fouriera) u ( t) ( nωt + ϕ ) n 1 n max sin n Wartość skuteczna napięcia odkształconego sk 1 sk + sk + 3sk + 4sk +... n 1 nsk Wartość skuteczną napięcia odkształconego obliczamy jako pierwiastek z sumy kwadratów, jest to tzw. suma geometryczna Zjazd 8, wykład 15 18
Współczynnik zniekształceń nieliniowych Współczynnik zniekształceń nieliniowych h h 1sk sk + + sk 3sk + + 3sk 4sk + +... 4sk +... Współczynnik zniekształceń nieliniowych h 1 h 1 sk + 3sk + 1sk 4sk +... Zjazd 8, wykład 15 19
Woltomierze ME prostownikowe Diody wprowadzają nieliniowość podziałki! Zjazd 8, wykład 15 0
Podziałka woltomierza ME prostownikowego Nieliniowa podziałka dla napięć przemiennych Zjazd 8, wykład 15 1
Amperomierze ME prostownikowe Zacisk wspólny Zaciski kolejnych zakresów Zjazd 8, wykład 15
Analogowe multimetry uniwersalne ME Zmiana czułości Zmiana funkcji Zjazd 8, wykład 15 3
Właściwości mierników ME prostownikowych -Wskazania mierników ME prostownikowych są proporcjonalne do wartości średniej wyprostowanej. -Mierniki ME prostownikowe są wyskalowane tak, aby prawidłowo pokazywały wartość skuteczną napięć i prądów sinusoidalnych, tzn. uwzględniają one współczynnik kształtu sinusoidy k k 1,111. -Przy pomiarach napięć i prądów o kształtach innych niż sinusoidalny (przebiegów odkształconych) mierniki ME prostownikowe popełniają dodatkowe błędy. Zjazd 8, wykład 15 4
Błąd od kształtu krzywej mierników ME Przy pomiarach napięć i prądów o kształtach innych niż sinusoidalny (przebiegów odkształconych) mierniki ME prostownikowe popełniają dodatkowy błąd. Jest to błąd od kształtu krzywej : δ 1.111 k k 1 Mierniki mierzące wartość skuteczną zgodnie z definicją oznaczane są napisem True RMS co oznacza, że mierzą one prawdziwą wartość skuteczną. Zjazd 8, wykład 15 5
Błąd od kształtu krzywej mierników ME k k 1,111 δ 0 k k 1,111 δ 0 k k 1,0 δ 11% k k 1,15 δ 3,5 % Zjazd 8, wykład 15 6
Przebiegi odkształcone w sieci energetycznej Prąd magnesujący transformatora Napięcie z zasilacza PS Prąd świetlówki kompaktowej Prąd zasilacza PS Zjazd 8, wykład 15 7
Mierniki ME termoelektryczne Amperomierz Woltomierz Termopara Grzejnik Mierniki termoelektryczne mierzą prawdziwą wartość skuteczną, oznaczane są napisem True RMS Zjazd 8, wykład 15 8
Mierniki ME termoelektryczne - przetwornik Konstrukcje przetworników termoelektrycznych Zjazd 8, wykład 15 9
Pomiary poziomu W telekomunikacji poziom n odnosi się do mocy 1 mw na obciążeniu 600 Ω P P n log log [B] P 1mW odn P R P R 1mW 600Ω 0, 775V W praktyce stosuje się jednostkę mniejszą decybel [dbm] n 0log [dbm] 0,775V Zjazd 8, wykład 15 30
Pomiary poziomu - praktyczne wartości n /0,775V P P/1mW dbm V - mw - +6 1,550 4 4 +3 1,090 1,41 0 0,775 1 1 1-6 0,388 0,5 0,5 0,5-0 0,078 0,1 0,01 0,01 W praktyce wykorzystuje się zakres 1,5V z dodatkową skalą Zjazd 8, wykład 15 31
Pomiary poziomu - skala Zjazd 8, wykład 15 3
Pomiar wysokich napięć dzielnik napięciowy k u ( R + R ) 1 1 1 1 + I I R R + R R R R 1 Najczęściej przekładnia dzielnika napięciowego k u 1000 V/V Zjazd 8, wykład 15 33
Sonda WN 1000:1 budowa 1 3 1.Rezystancja woltomierza R V jest elementem dzielnika.zacisk niskiego potencjału bezwzględnie należy uziemić!!! 3.Można mierzyć tylko napięcia względem ziemi!!! Zjazd 8, wykład 15 34
Sonda WN niebezpieczeństwo porażenia!!! życie sondy WN w nieuziemionym układzie stwarza ryzyko porażenia, ze względu na występowanie nieuniknionych prądów upływu przez rezystancje izolacji. Zjazd 8, wykład 15 35
Sonda WN 1000:1 oferta Rezystancja woltomierza Zacisk uziemienia Zjazd 8, wykład 15 36
High Voltage Probe Zjazd 8, wykład 15 37
Sonda w.cz. 10V, 00MHz Wejściowy filtr górnoprzepustowy Filtr dolnoprzepustowy LC typu π Prostownik w układzie podwajacza napięcia. Zjazd 8, wykład 15 38
Multimetr ME elektroniczny Schemat blokowy multimetru V640 Zjazd 8, wykład 15 39
strój elektromagnetyczny, jednordzeniowy Sprężyna Wskazówka Ruchomy rdzeń Podziałka Cewka Zjazd 8, wykład 15 40
strój elektromagnetyczny, dwurdzeniowy Podziałka Wskazówka Sprężyna Nieruchomy rdzeń Cewka Ruchomy rdzeń Zjazd 8, wykład 15 41
strój elektromagnetyczny, moment napędowy Energia pola magnetycznego cewki W m L I Moment napędowy M n dwm dα 1 dl I dα Moment zwrotny Równowaga momentów M z kα 1 dl M n I kα dα M z Wychylenie wskazówki 1 dl α I k dα Zjazd 8, wykład 15 4
strój elektromagnetyczny, właściwości Miernik mierzy prawdziwą wartość skuteczną α 1 k dl dα I Możliwość kształtowania charakteru podziałki poprzez kształt obwodu magnetycznego True RMS Zjazd 8, wykład 15 43
strój elektromagnetyczny, kształtowanie skali Miernik laboratoryjny z liniową skalą Woltomierz do kontroli napięcia w sieci Amperomierz do rozruchu silników Woltomierz do synchronizacji generatorów Zjazd 8, wykład 15 44
Amperomierz elektromagnetyczny, zmiana zakresów zwojenie z odczepami Przełączanie uzwojeń szeregowo - równolegle Wielozakresowy przekładnik prądowy Zjazd 8, wykład 15 45
Amperomierz elektromagnetyczny + bocznik Rezystancja R Cu miedzianego uzwojenia silnie zależy od temperatury Wniosek: Reaktancja X L cewki o dużej indukcyjności L zależy od częstotliwości Do zwiększania zakresów amperomierzy elektromagnetycznych nie stosuje się boczników! Zjazd 8, wykład 15 46
Amperomierz elektromagnetyczny, histereza Prąd malejący Mierniki elektromagnetyczne przy pomiarach prądu i napięcia stałego popełniają dodatkowy błąd histerezowy! Prąd rosnący Dla dwóch różnych prądów mamy takie samo wskazanie!!! Zjazd 8, wykład 15 47
Kondensator korekcyjny Woltomierz EM, korekcja częstotliwościowa Cewka w ustroju EM posiada dość dużą indukcyjność, co powoduję powstawanie ujemnych błędów częstotliwościowych. Zjazd 8, wykład 15 48
Woltomierz EM, korekcja częstotliwościowa Sposób oznakowania: wartość odniesienia 50Hz (podkreślona), zakres nominalny użytkowania od 30 do 50Hz i od 50 do 100Hz (wartości graniczne oddzielone kropkami). Graniczne wartości błędów Rzeczywisty przebieg błędów częstotliwościowych (w praktyce jest on użytkownikowi nieznany) Zjazd 8, wykład 15 49
Podsumowanie 1.Mierniki ME mogą być zastosowane do pomiarów napięć przemiennych po zastosowaniu układów prostownikowych..wskazania mierników ME prostownikowych zależą od wartości średniej wyprostowanej, ale mierniki są wyskalowane do pokazywania wartości skutecznej przebiegu sinusoidalnego. 3.Dodatkowe sondy umożliwiają pomiary przy wysokich napięciach oraz przy wysokich częstotliwościach. 4.Podczas pomiaru sygnału o innym kształcie niż sinusoidalny powstają w tym miernikach błędy od kształtu krzywej. 5.Prawdziwą wartość skuteczną (True RMS) mierzą przyrządy elektromagnetyczne. 6.Zmianę zakresów amperomierzy EM realizuje się sekcjonowaniem uzwojeń i przekładnikami prądowymi 7.Z amperomierzami EM nie stosuje się boczników. Zjazd 8, wykład 15 50
DZIĘKJĘ ZA WAGĘ Zjazd 8, wykład 15 51