Wyższy Urząd Górniczy. Zagrożenie radiacyjne w podziemnych wyrobiskach górniczych



Podobne dokumenty
Zagrożenia naturalnymi źródłami promieniowania jonizującego w przemyśle wydobywczym. Praca zbiorowa pod redakcją Jana Skowronka

Promieniowanie w naszych domach. I. Skwira-Chalot

OCHRONA RADIOLOGICZNA PACJENTA. Promieniotwórczość

Spis treści. Trwałość jądra atomowego. Okres połowicznego rozpadu

Zadanie 3. (2 pkt) Uzupełnij zapis, podając liczbę masową i atomową produktu przemiany oraz jego symbol chemiczny. Th... + α

SPRAWOZDANIE MERYTORYCZNE z realizacji strategicznego projektu badawczego Poprawa bezpieczeństwa pracy w kopalniach

Promieniowanie w środowisku człowieka

pobrano z serwisu Fizyka Dla Każdego - - zadania z fizyki, wzory fizyczne, fizyka matura

Człowiek nie może za pomocą zmysłów wykryć obecności radonu. Wiadomo jednak że gromadzi się on w pomieszczeniach zamkniętych, w których przebywamy.

PODSTAWY DOZYMETRII. Fot. M.Budzanowski. Fot. M.Budzanowski

I ,11-1, 1, C, , 1, C

KONTROLA DAWEK INDYWIDUALNYCH I ŚRODOWISKA PRACY. Magdalena Łukowiak

SYMULACJA GAMMA KAMERY MATERIAŁ DLA STUDENTÓW. Szacowanie pochłoniętej energii promieniowania jonizującego

doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e)

Promieniowanie jonizujące

Energetyka konwencjonalna odnawialna i jądrowa

Foton, kwant światła. w klasycznym opisie świata, światło jest falą sinusoidalną o częstości n równej: c gdzie: c prędkość światła, długość fali św.

Pierwiastki promieniotwórcze w materiałach budowlanych

Poziom nieco zaawansowany Wykład 2

OCENA ZAGROŻENIA RADIACYJNEGO OD NATURALNYCH IZOTOPÓW PROMIENIOTWÓRCZYCH W WYROBISKACH PODZIEMNYCH KWK CHWAŁOWICE

R a p o r t BSE Nr 16

Promieniotwórczość NATURALNA

Autorzy: Zbigniew Kąkol, Piotr Morawski

Prawo rozpadu promieniotwórczego. Metoda datowania izotopowego.

II. Promieniowanie jonizujące

ODKRYCIE PROMIENIOTWÓRCZOŚCI PROMIENIOWANIE JĄDROWE I JEGO WŁAŚCIWOŚCI

Laboratorium Fizyki i Techniki Jądrowej

Dawki promieniowania jądrowego

PROMIENIOWANIE JONIZUJĄCE OCHRONA RADIOLOGICZNA

CHEMIA LEKCJA 1. Budowa atomu, Izotopy Promieniotwórczość naturalna i sztuczna. Model atomu Bohra

Reakcje jądrowe dr inż. Romuald Kędzierski

Promieniotwórczość naturalna. Jądro atomu i jego budowa.

1. Co to jest promieniowanie jonizujące 2. Źródła promieniowania jonizującego 3. Najczęściej spotykane rodzaje promieniowania jonizującego 4.

Pomiar stężenia radonu i jego pochodnych w powietrzu atmosferycznym

Promieniowanie jonizujące

Promieniowanie jonizujące

Promieniowanie jonizujące.

Fizyka promieniowania jonizującego. Zygmunt Szefliński

Reakcje rozpadu jądra atomowego

WYZNACZANIE PROMIENIOWANIA RADONU Instrukcja dla uczniów szkół ponadpodstawowych

Promieniowanie jonizujące

IV. PROMIENIOTWÓRCZOŚĆ ŚRODOWISKA

W2. Struktura jądra atomowego

Promieniowanie jonizujące

INFORMACJA O SUBSTANCJACH, PREPARATACH, CZYNNIKACH LUB PROCESACH TECHNOLOGICZNYCH O DZIAŁANIU RAKOTWÓRCZYM LUB MUTAGENNYM

przyziemnych warstwach atmosfery.

Energetyka Jądrowa. Wykład 3 14 marca Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

INFORMACJA O SUBSTANCJACH, PREPARATACH, CZYNNIKACH LUB PROCESACH TECHNOLOGICZNYCH O DZIAŁANIU RAKOTWÓRCZYM LUB MUTAGENNYM

WARSZTATY 2003 z cyklu Zagrożenia naturalne w górnictwie

Zadania powtórkowe do egzaminu maturalnego z chemii Budowa atomu, układ okresowy i promieniotwórczość

INFORMACJA O SUBSTANCJACH, PREPARATACH, CZYNNIKACH LUB PROCESACH TECHNOLOGICZNYCH O DZIAŁANIU RAKOTWÓRCZYM LUB MUTAGENNYM

INFORMACJA O SUBSTANCJACH CHEMICZNYCH, ICH MIESZANIANACH, CZYNNIKACH LUB PROCESACH TECHNOLOGICZNYCH O DZIAŁANIU RAKOTWÓRCZYM LUB MUTAGENNYM

Informacja. Nr 69. Zagrożenia substancjami promieniotwórczymi w kopalniach węgla kamiennego. Dorota Stankiewicz, Jacek Baurski

WZÓR INFORMACJA O SUBSTANCJACH CHEMICZNYCH, ICH MIESZANINACH, CZYNNIKACH LUB PROCESACH TECHNOLOGICZNYCH O DZIAŁANIU RAKOTWÓRCZYM LUB MUTAGENNYM

WZÓR INFORMACJA O SUBSTANCJACH CHEMICZNYCH, ICH MIESZANINACH, CZYNNIKACH LUB PROCESACH TECHNOLOGICZNYCH O DZIAŁANIU RAKOTWÓRCZYM LUB MUTAGENNYM

Promieniowanie jonizujące

1. JĄDROWA BUDOWA ATOMU. A1 - POZIOM PODSTAWOWY.

Wyższy Urząd Górniczy

I N F O R M A C J A O S T A N I E O C H R O N Y R A D I O L O G I C Z N E J K R A J O W E G O W R O K U

INFORMACJA O SUBSTANCJACH CHEMICZNYCH, ICH MIESZANINACH, CZYNNIKACH LUB PROCESACH TECHNOLOGICZNYCH O DZIAŁANIU RAKOTWÓRCZYM LUB MUTAGENNYM

INFORMACJA O SUBSTANCJACH CHEMICZNYCH, ICH MIESZANINACH, CZYNNIKACH LUB PROCESACH TECHNOLOGICZNYCH O DZIAŁANIU RAKOTWÓRCZYM LUB MUTAGENNYM

Detekcja promieniowania jonizującego. Waldemar Kot Zachodniopomorskie Centrum Onkologii w Szczecinie

Zastosowanie technik nuklearnych jako działalność związana z narażeniem

WZÓR 01. Patrz rozporządzenie 1272/2008 CLP tab

Ochrona radiologiczna

FIZYKA IV etap edukacyjny zakres podstawowy

tel./ kom./fax: / / ; radon@ifj.edu.pl; radon.ifj.edu.pl RAPORT KOŃCOWY

A - liczba nukleonów w jądrze (protonów i neutronów razem) Z liczba protonów A-Z liczba neutronów

O egzotycznych nuklidach i ich promieniotwórczości

Dozymetria promieniowania jonizującego

Co nowego w dozymetrii? Dozymetria radonu

WZORU UŻYTKOWEGO \2\J Numer zgłoszenia:

Promieniowanie jonizujące

Pracownicy elektrowni są narażeni na promieniowanie zewnętrzne i skażenia wewnętrzne.

Odkrycie jądra atomowego - doświadczenie Rutherforda 1909 r.

Spotkanie z promieniotwórczością - - Podstawowe pojęcia fizyki jądrowej

Promieniowanie jonizujące i metody radioizotopowe. dr Marcin Lipowczan

Budowa atomu Wiązania chemiczne

Fizyka współczesna. Jądro atomowe podstawy Odkrycie jądra atomowego: 1911, Rutherford Rozpraszanie cząstek alfa na cienkich warstwach metalu

Ćwiczenie 3. POMIAR ZASIĘGU CZĄSTEK α W POWIETRZU Rozpad α

Budowa atomu. Wiązania chemiczne

MATERIAŁ SZKOLENIOWY SZKOLENIE WSTĘPNE PRACOWNIKA ZATRUDNIONEGO W NARAŻENIU NA PROMIENIOWANIE JONIZUJĄCE. Ochrona Radiologiczna - szkolenie wstępne 1

Podstawowe własności jąder atomowych

Podstawowe zasady ochrony radiologicznej

Wyższy Urząd Górniczy. Wypadkowość związana z ryzykownym zachowaniem pracowników (tzw. czynnik ludzki)

Szczegółowy zakres szkolenia wymagany dla osób ubiegających się o nadanie uprawnień inspektora ochrony radiologicznej

DYREKTYWA RADY 2013/51/EURATOM

Fizyka 2. Janusz Andrzejewski

ZASADY OCHRONY RADIOLOGICZNEJ PRACOWNIKÓW. Magdalena Łukowiak

Anna Grych Test z budowy atomu i wiązań chemicznych

Ochrona przed promieniowaniem jonizującym. Źródła promieniowania jonizującego. Naturalne promieniowanie tła. dr n. med.

*)

W Z Ó R. lub. wpisać tylko tego adresata, do którego kierowane jest pismo, 2. pracodawca sam decyduje, czy pismu nadaje znak, 3

ROZPORZĄDZENIE RADY MINISTRÓW. z dnia 23 marca 2007 r. w sprawie wymagań dotyczących rejestracji dawek indywidualnych 1 '

Dawki w podróżach lotniczych

Program szkolenia dla osób ubiegających się o nadanie uprawnień Inspektora Ochrony Radiologicznej

Wyznaczanie promieniowania radonu

Promieniowanie jonizujące

NEUTRONOWA ANALIZA AKTYWACYJNA ANALITYKA W KONTROLI JAKOŚCI PODSTAWOWE INFORMACJE O REAKCJACH JĄDROWYCH - NEUTRONOWA ANALIZA AKTYWACYJNA

CEL 4. Natalia Golnik

Transkrypt:

Wyższy Urząd Górniczy Zagrożenie radiacyjne w podziemnych wyrobiskach górniczych

Zagrożenie radiacyjne w podziemnych wyrobiskach górniczych Katowice 2011

Copyright by Wyższy Urząd Górniczy, Katowice 2011 Opracowanie Departament Warunków Pracy WUG Opracowanie graficzne, skład i łamanie Anna Nowrot Redakcja Anna Swiniarska-Tadla Druk broszury sfinansowano ze środków Zakładu Ubezpieczeń Społecznych Wyższy Urząd Górniczy 40-055 Katowice, ul. Poniatowskiego 31 www.wug.gov.pl e-mail: wug@wug.gov.pl

1. Promieniotwórczość co to takiego? Promieniotwórczość to zjawisko polegające na samorzutnym rozpadzie jąder atomów pierwiastka połączone z emisją cząstek alfa, cząstek beta i promieniowania gamma. Przy czym cząstki alfa są jądrami atomów helu, a cząstki beta elektronami dodatnimi lub ujemnymi. Promieniowanie gamma jest w swojej naturze podobne do promieniowania podczerwonego, świetlnego lub nadfioletowego, lecz ma znacznie większą energię. Rozpad alfa Promieniowanie alfa (a), beta (b), gamma (c) Rozróżniamy promieniotwórczość naturalną, kiedy przemiany jądrowe zachodzą w pierwiastkach występujących naturalnie w przyrodzie i promieniotwórczość sztuczną, kiedy przemiany jądrowe następują w pierwiastkach otrzymanych sztucznie (w wyniku bombardowania jader atomów pierwiastków naturalnych cząstkami alfa, beta czy też protonami w reaktorach jądrowych. Protony są trwałymi cząstkami, które wraz z nukleonami tworzą jądra atomów). 3

Zagrożenie radiacyjne w środowisku związane jest z promieniotwórczością pochodzącą od izotopów naturalnych. Są to głównie izotopy szeregu promieniotwórczego uranu U-238, szeregu torowego Th-232 oraz promieniotwórczy izotop potasu K-40. Izotopy te występują w postaci rozproszonej w każdym środowisku. W wyniku przemian jądrowych pierwiastki promieniotwórcze przekształcają się z czasem w pierwiastki trwałe. Czas, w którym połowa pierwiastka promieniotwórczego przekształci Ruda uranu się w inny izotop lub pierwiastek trwały, nazywa się okresem połowicznego rozpadu lub okresem półtrwania. Pierwiastkami, w które przekształca się uran w trakcie przemian jądrowych jest rad, z którego z kolei powstaje gaz szlachetny radon. Krążek uranu 4

2. Promieniotwórczość w górnictwie W górnictwie podziemnym podstawowymi czynnikami zagrożenia radiacyjnego są: krótkożyciowe produkty rozpadu radonu,! wody dołowe zawierające izotopy radu, wytrącające się z radonośnych wód osady zawierające izotopy radu. Radon Radon jest promieniotwórczym gazem szlachetnym, stanowiącym jeden z produktów rozpadu uranu 238 i toru 232. Sam radon jest stosunkowo słabo radiotoksyczny, gdyż jako gaz jest trudniej przyswajany przez organizm i łatwo wydychany. Natomiast dużo silniej radiotoksyczne są promieniotwórcze izotopy powstające w wyniku jego rozpadu: polon, bizmut i ołów. Po spontanicznej emisji cząstki alfa, radon przekształca się w izotop polonu, który rozpada się dalej tworząc krótkotrwałe izotopy bizmutu, ołowiu i polonu. Produkty rozpadu radonu, znajdującego się w powietrzu, mogą być wdychane i osadzać się w drogach oddechowych. Stwierdzono, że są one często przyczyną chorób nowotworowych u górników w kopalniach głębinowych, zwłaszcza w kopalniach uranu. Szczególnie niebezpieczne są cząstki alfa emitowane przez produkty rozpadu radonu, które zostały zdeponowane w układzie oddechowym. W podziemnych wyrobiskach górniczych stężenia radonu i krótkożyciowych produktów jego rozpadu są większe niż na powierzchni, co zwykle jest spowodowane słabszą wentylacją. Radon wypływa ze spękanego górotworu lub ze zrobów i dlatego ich izolacja lub w miarę możliwości prowadzenie eksploatacji od pola zmniejsza zagrożenie radonowe. Dla oceny zagrożenia powodowanego przez krótkożyciowe produkty rozpadu radonu przeprowadza się pomiary stężenia ener- 5

gii potencjalnej cząstek alfa, które są uwalniane przez pochodne radonu zawarte w jednostce objętości powietrza. Jednostką miary jest mikrodżul na metr sześcienny (μj/m 3 ). Promieniotwórcze wody Słone wody podziemne często zawierają naturalne izotopy promieniotwórcze w tym zwłaszcza izotopy radu, który jest wyługowywany ze skał. Rad jest transportowany z wodą w ściekach kopalnianych do chodników wodnych, gdzie mieszają się wody pochodzące z różnych wyrobisk kopalnianych. Jeżeli wody radonośne będą zawierały również jony baru i zetkną się z wodami zawierającymi jony siarczanowe to nastąpi wytrącanie się radu i powstawanie osadów promieniotwórczych. Dla oceny zagrożenia radiacyjnego wykonuje się pomiary stężenia radu w wodach. Jednostką miary jest kilobekerel na metr sześcienny (kbq/m 3 ). Promieniotwórcze osady Osady promieniotwórcze powstają wszędzie tam gdzie dochodzi do kontaktu wód radonośnych zawierających jony baru z wodami zawierającymi jony siarczanowe. W miejscach tych występuje podwyższone natężenie promieniowania gamma. Osady promieniotwórcze mogą również wniknąć do organizmu i powodować skażenia wewnętrzne. Dla oceny zagrożenia radiacyjnego wykonuje się pomiary stężenia radu w osadach. Jednostką miary jest bekerel na kilogram (Bq/kg). W wyrobiskach, w których powstają osady wykonuje się pomiary wielkości promieniowania gamma określając tzw. moc kermy, która jest miarą narażenia na promieniowanie jonizujące. Jednostką mocy kermy jest mikrogrej na godzinę (μgy/h). Miarą narażenia na działanie promieniowania, która uwzględnia natężenie promieniowania lub stężenie izotopów promieniotwórczych, czas oddziaływania, rodzaj promieniowania i wrażliwość poszczególnych organów ciała ludzkiego na działanie promieniowania 6

jest dawka skuteczna ponad tło naturalne lub, w odniesieniu do wybranych organów, dawka równoważna. Dawkę skuteczną wyraża się w siwertach (Sv). Narażenie na zwiększone dawki promieniowania jonizującego może powodować zmiany genetyczne lub nowotworowe, a w skrajnych przypadkach nawet śmierć. Dla ochrony zdrowia określone zostały bezpieczne limity zwane dawkami granicznymi. Nieprzekraczalnie tych wartości zapewnia bezpieczną pracę w obecności wzmożonego promieniowania jonizującego. 3. Regulacje prawne w zakresie radiacji Górnicy zostali zaliczeni do grupy, której działalność zawodowa jest związana z występowaniem wzmożonego promieniowania naturalnego. Rozporządzeniem Rady Ministrów z dnia 18 stycznia 2005 r. w sprawie dawek granicznych promieniowania jonizującego (Dz. U. Nr 20, poz. 168) ustanowiono, że dawka graniczna, wyrażona jako dawka skuteczna (efektywna), wynosi 20 msv w ciągu roku kalendarzowego. Dawka ta może być w danym roku kalendarzowym przekroczona do wartości 50 msv, pod warunkiem, że w ciągu kolejnych pięciu lat kalendarzowych jej sumaryczna wartość nie przekroczy 100 msv. Prawo Atomowe wprowadza dwie kategorie zagrożenia A i B, które zostały ustanowione dla oceny zagrożenia radiacyjnego. Kategoria A obejmuje pracowników, którzy mogą być narażeni na dawkę skuteczną przekraczającą 6 msv (milisiwertów) w ciągu roku lub na dawkę równoważną przekraczającą jedną trzecią wartości dawek granicznych dla soczewek oczu, skóry i kończyn. Kategoria B obejmuje pracowników, którzy mogą być narażeni na dawkę skuteczną przekraczającą 1 msv w ciągu roku lub na dawkę równoważną równą jednej dwudziestej wartości dawek granicznych dla soczewek oczu, skóry i kończyn. W celu dostosowania działań i środków 7

ochrony radiologicznej pracowników do wielkości i rodzajów zagrożeń wprowadza się podział lokalizacji miejsc pracy. Rozporządzenie Ministra Spraw Wewnętrznych z dnia 14 czerwca 2002 r. (Dz. U. Nr 94, poz. 841, z późn. zm.) ustala w wyrobiskach dołowych podziemnych zakładów górniczych, dwie klasy wyrobisk zagrożonych radiacyjnie naturalnymi substancjami promieniotwórczymi: Wyrobiska klasy A oraz wyrobiska klasy B. Wyrobiska klasy A są to wyrobiska zlokalizowane na terenach kontrolowanych, a wyrobiska klasy B to wyrobiska zlokalizowane na terenach nadzorowanych, w rozumieniu przepisów Prawa Atomowego. Rozporządzenie Ministra Gospodarki z dnia 28 czerwca 2002 r. (Dz. U. Nr 139, poz. 1169, z późn. zm.), reguluje zarządzanie ochroną radiologiczną w podziemnych zakładach górniczych. Zgodnie z tym rozporządzeniem, nadzór nad ochroną przed zagrożeniem naturalnym substancjami promieniotwórczymi, sprawuje osoba posiadająca uprawnienia inspektora ochrony radiologicznej IOR-1, nadane w trybie określonym przepisami Prawa Atomowego. Dla dokonania oceny narażenia wykonywane są pomiary: stężenia energii potencjalnej alfa w powietrzu, ekspozycji na zewnętrzne promieniowanie gamma, wartości stężeń izotopów radu Ra-226 i Ra-228 w wodach oraz stężenia radu Ra-226 i Ra-228 w osadach. Na podstawie uzyskanych wyników oblicza się dawkę skuteczną. W przypadkach, gdy wykonywana praca stwarza zagrożenie wniknięcia substancji promieniotwórczych do wnętrza organizmu, np. przy kontakcie z wodami kopalnianymi i osadami kopalnianymi, wielkość tej dodatkowej dawki obciążającej ocenia akredytowane laboratorium na podstawie szczegółowych informacji dostarczonych przez inspektora ochrony radiologicznej, a w szczególności informacji o czasie kontaktu z wodami kopalnianymi i osadami kopalnianymi, charakterze wykonywanej pracy i zastosowanej technologii, zapyleniu i wilgotności powietrza oraz stosowanych ochronach osobistych. 8

Wyższy Urząd Górniczy Poniatowskiego 31 40-055 Katowice 32 736 17 00 www.wug.gov.pl