(c) KSIS Politechnika Poznanska

Podobne dokumenty
PRZEWODNIK PO PRZEDMIOCIE. Negotiation techniques. Management. Stationary. II degree

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction

Krytyczne czynniki sukcesu w zarządzaniu projektami

Presented by. Dr. Morten Middelfart, CTO

Auditorium classes. Lectures

Zagadnienia porz dkowe Wprowadzenie do robotyki mobilnej Modelowanie robotów koªowych. Robotyka mobilna. Wykªad 1.

Hard-Margin Support Vector Machines

PROJECT. Syllabus for course Global Marketing. on the study program: Management

Mechanics and Machine Design 1 st degree (1st degree / 2nd degree) General (general / practical)

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

DM-ML, DM-FL. Auxiliary Equipment and Accessories. Damper Drives. Dimensions. Descritpion

The Overview of Civilian Applications of Airborne SAR Systems


PORTS AS LOGISTICS CENTERS FOR CONSTRUCTION AND OPERATION OF THE OFFSHORE WIND FARMS - CASE OF SASSNITZ

Zarządzanie sieciami telekomunikacyjnymi

PROJECT. Syllabus for course Principles of Marketing. on the study program: Management


THE ADMISSION APPLICATION TO PRIVATE PRIMARY SCHOOL. PART I. Personal information about a child and his/her parents (guardians) Child s name...

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015

deep learning for NLP (5 lectures)

KARTA MODUŁU / KARTA PRZEDMIOTU A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW B. OGÓLNA CHARAKTERYSTYKA PRZEDMIOTU. Kod modułu

ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL

Probabilistic Methods and Statistics. Computer Science 1 st degree (1st degree / 2nd degree) General (general / practical)

Metal constructions. Nazwa przedmiotu (course title) II.B.1. Kod przedmiotu (course code) II.B.2

Lab. Poznanie procesu modelowania świata wirtualnego. Zaznajomienie z algorytmami symulacji zjawisk fizycznych w świecie wirtualnym.

Stargard Szczecinski i okolice (Polish Edition)

WYDZIAŁ NAUK EKONOMICZNYCH. Studia II stopnia niestacjonarne Kierunek Międzynarodowe Stosunki Gospodarcze Specjalność INERNATIONAL LOGISTICS

archivist: Managing Data Analysis Results

European Crime Prevention Award (ECPA) Annex I - new version 2014

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

PRACA DYPLOMOWA Magisterska

Linear Classification and Logistic Regression. Pascal Fua IC-CVLab

Exposure assessment of mercury emissions

Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards

UMOWY WYPOŻYCZENIA KOMENTARZ

y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.

Cel szkolenia. Konspekt

Łukasz Reszka Wiceprezes Zarządu

WYDZIAŁ: PSYCHOLOGIA KIERUNEK:

SUPPLEMENTARY INFORMATION FOR THE LEASE LIMIT APPLICATION

II-go stopnia. Stacjonarne. Zagadnienia egzaminacyjne AUTOMATYKA I ROBOTYKA TYP STUDIÓW STOPIEŃ STUDIÓW SPECJALNOŚĆ

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

Cracow University of Economics Poland

Metodyki projektowania i modelowania systemów Cyganek & Kasperek & Rajda 2013 Katedra Elektroniki AGH

Wymiar godzin Pkt Kod Nazwa przedmiotu Egz. ECTS W C L P S P Physics I E P Mathematical analysis I P Linear algebra and analytic E 2 2 7

PLAN STUDIÓW Wydział Elektroniki, Telekomunikacji i Informatyki, Wydział Zarządzania i Ekonomii Inżynieria danych

MaPlan Sp. z O.O. Click here if your download doesn"t start automatically

Automatic Control and Robotics 1 st degree (1st degree / 2nd degree) General (general / practical) Full-time (full-time / part-time)

Lecture 18 Review for Exam 1

METHOD 2 -DIAGNOSTIC OUTSIDE

Faculty: Management and Finance. Management

Podstawy automatyki. Energetics 1 st degree (1st degree / 2nd degree) General (general / practical) Full-time (full-time / part-time)

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)

Tablice zmiennej treści Variable message boards UOPG6. Power of supply: Enclosure: Colour (Chrominance): Beam width: Luminance: Luminance ratio:

Lecture 9: Teleoperation (implementation)

LED PAR 56 7*10W RGBW 4in1 SLIM

Course syllabus. Mathematical Basis of Logistics. Information Technology in Logistics. Obligatory course. 1 1 English

PROJECT. Syllabus for course Negotiations. on the study program: Management

Revenue Maximization. Sept. 25, 2018

Projekt: Mikro zaprogramowane na sukces!

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

An Empowered Staff. Patty Sobelman

DOI: / /32/37

1 / 5. Inżynierii Mechanicznej i Robotyki. Mechatronic Engineering with English as instruction language. stopnia

INSPECTION METHODS FOR QUALITY CONTROL OF FIBRE METAL LAMINATES IN AEROSPACE COMPONENTS

Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI

OBWIESZCZENIE MINISTRA INFRASTRUKTURY. z dnia 18 kwietnia 2005 r.

Few-fermion thermometry

PLANY I PROGRAMY STUDIÓW

NOTES ABOUT AUTHORS Walter Rothholz Remigiusz Król Michał Wendland Wojciech Torzewski Krzysztof Przybyszewski Piotr Urbański Wojciech Majka

BULLETIN 2 II TRAINING CAMP POLISH OPEN MTBO CHAMPIONSHIPS MICHAŁOWO TRAINING CAMP WORLD MTB ORIENTEERING CHAMPIONSHIPS

SubVersion. Piotr Mikulski. SubVersion. P. Mikulski. Co to jest subversion? Zalety SubVersion. Wady SubVersion. Inne różnice SubVersion i CVS

PROJECT. Syllabus for course Principles of Marketing. on the study program: Administration

EGARA Adam Małyszko FORS. POLAND - KRAKÓW r

Latent Dirichlet Allocation Models and their Evaluation IT for Practice 2016

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

Electromagnetism Q =) E I =) B E B. ! Q! I B t =) E E t =) B. 05/06/2018 Physics 0


Z-LOG-1070 Towaroznawstwo Commodity Studies. Logistics 1st degree (1st degree / 2nd degree) General (general / practical)

Convolution semigroups with linear Jacobi parameters

Instrukcja obsługi User s manual

ZAGADNIENIA SPECJALNOŚCIOWE

Tworzenie zintegrowanych strategii miejskich. Creation of integrated urban strategies? the example of the Krakow Functional Area

OpenPoland.net API Documentation

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Sargent Opens Sonairte Farmers' Market

DIAGNOSIS OF WORKING MECHANISMS IN MACHINERY AND EQUIPMENT


Realizacja systemów wbudowanych (embeded systems) w strukturach PSoC (Programmable System on Chip)

PROGRAM STAŻU. Nazwa podmiotu oferującego staż / Company name IBM Global Services Delivery Centre Sp z o.o.

Kierunek: Informatyka rev rev jrn Stacjonarny EN 1 / 6

BIOPHYSICS. Politechnika Łódzka, ul. Żeromskiego 116, Łódź, tel. (042)

Immigration Studying. Studying - University. Stating that you want to enroll. Stating that you want to apply for a course.

Transkrypt:

Fundamentals of Autonomous Systems Lecture 1 Dariusz Pazderski 1 1 Katedra Sterowania i In»ynierii Systemów, Politechnika Pozna«ska 7th March 2017

Rules and regulations Lecturer: Dariusz Pazderski room 419 EL oce hours Thursday, 11.45-13.10 Lecture Assessment: Final exam: multi-choice test/open questions. The nal grade is a combination of the exam grade (2/3) and the laboratory exercise grade (1/3). Main topics: Fundamental denitions and concepts Review of control architectures Modelling of wheeled vehicles Motion control of nonholonomic vehicles Fundamental localization and navigation methods Numerical models of the environment Path and motion planning References: R. Siegwart, I. Nourbakhsh, to Autonomous Mobile Robots, MIT, 2004. R. C. Arkin (edytor), Principles of Robot Motion Theory, Algorithms and Implementation, Massachussets Institute of Technology (MIT), 2005. B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo, Robotics: Modelling, Planning and Control, Springer 2009. B. Siciliano, O. Khatib (Ed.), Handbook of Robotics, Springer 2009. J. Borenstein (edytor), Where am I - Systems and Methods for Mobile Robot Positioning, 1996. Tcho«, Mazur, Hossa, Dul ba, Manipulatory i roboty mobilne, Akademia Ocyna Wydawnicza PLJ, 2002. P. Skrzypczy«ski, Metody analizy i redukcji niepewnosci percepcji w systemie nawigacji robota mobilnego, Rozprawy, nr 407, Wydawnictwo Politechniki Pozna«skiej, Poznan 2007.

Basic concepts Table of contents 1 Rules and regulations 2 Basic concepts Mobile robots Locomotion systems Selected applications of mobile robots Examples of (semi) autonomous mobile robots Ground vehicles Marine vehicles Flying vehicles Space vehicles

Basic concepts What is autonomy? (1) Figure: Dynamic system in the environment Denition (Basic denition of autonomy) Autonomy refers to systems capable of operating in the real-world environment without any form of external control for extended periods of time.

Basic concepts What is autonomy? (2) Mathematical general description Dene: Isolated dynamic environment (without external disturbances): Σ e : ẋ e = f e (x e,u e ), where x e denotes the state and u e is an input (initially u e = 0) Control system: Σ c : ẋ c = f c (x c,u c ) where x c state and u c input Next, consider interaction between the control system and the environment the environments acts on the control system: u c = f (x c,x e ) the control systems acts on the environment: u e = f (x c,x e ) nally we have mathematical autonomous system given by: ) Σ e : ẋ e = f e (x e, f (x c,x e ) ( Σ c : ẋ c = f c xc, f (x c,x e ) )

Basic concepts What is autonomy? (3) Living systems The unique examples of fully autonomous systems are living (biological) systems they can survive in a dynamic environment for extended periods maintain their internal structures and processes use the environment to locate and obtain materials for sustenance exhibit a variety of behaviours (such as feeding, foraging, and mating) they are capable of (partially) adapting to environment change Remark: Constant elements of the environment should not be considered as the autonomous systems. It is assumed that the autonomous systems are capable of operating in the word (they perform some function or task)!

Basic concepts What is autonomy? (4) Fundamental denition in mobile robotics Denition Mobile robot is a programmed machine which has ability to move in an environment, and one of its execution systems is the locomotion system. Mobile robots have a mobile platform and a manipulation part, which does not occur in the simplest versions (in such a case a mobile robot is considered equivalent to a mobile platform). Denition Autonomous mobile robot performs its tasks without the external help on part of a human. The basic property of such a system is its ability to develop and implement plans of action autonomously on the basis of the observation of its environment.

Basic concepts What is autonomy? (5) Basic tasks for a fully autonomous robot A fully autonomous robot has the ability to gain information about the environment (Rule #1) work for an extended period without human intervention (Rule #2) move either all or part of itself throughout its operating environment without human assistance (Rule #3) avoid situations that are harmful to people, property, or itself unless those are part of its design specications (Rule #4)

Basic concepts What is autonomy? (6) Limitations in practice Within the scope of the given autonomy denition the articial systems (robots) created by human are not fully autonomous! Building a fully autonomous robot essentially means devising a system equipped with advanced machine intelligence and capable of learning. An autonomous robot should be similar to a biological organism. However considering the current state of the art the possibility of imitating the living organisms is very limited. As a result the desired degree of autonomy is now unreachable! In practice the term autonomy can be considered as a theoretical concept, general idea or even a measure in order to estimate what level of autonomy is achieved by the particular system.

Mobile robots Table of contents 1 Rules and regulations 2 Basic concepts Mobile robots Locomotion systems Selected applications of mobile robots Examples of (semi) autonomous mobile robots Ground vehicles Marine vehicles Flying vehicles Space vehicles

Mobile robots Key denitions Perception the organization, identication and interpretation of sensory information in order to represent and understand the environment Localization the determination of a mobile robot's position (or/and orientation) in a selected coordinate frame Cognition a group of mental processes that includes attention, memory, producing and understanding language, learning, reasoning, problem solving, and decision making Navigation answers the question how a mobile robot is supposed to move in order to realise the desired task. Navigation problem = perception + localization + cognition

Mobile robots Abstract control scheme of (semi) autonomous robot Figure: Interaction robot-environment

Mobile robots Selected aspects of autonomy in robotics Figure: Fundamental elements of autonomy

Mobile robots Motion autonomy levels in robotics teleoperated system it is remotely controlled by an operator semi-autonomous system it is controlled by an operator, however it has ability to realize the prescribed task automatically (collision avoidance, reaching the selected point in an environment, passage through the door, etc.) autonomous system still unreachable!

Mobile robots Mobile robots classication Considering the type of environment the following classes of mobile robots can be distinguished: ground machines wheeled vehicles tracked vehicles walking machines (one legged hopping machine, two legged biped, four legged quadruped, six legged, etc.) water vehicles moving on the surface (ships, vessels) underwater aerial vehicles space vehicles

Locomotion systems Table of contents 1 Rules and regulations 2 Basic concepts Mobile robots Locomotion systems Selected applications of mobile robots Examples of (semi) autonomous mobile robots Ground vehicles Marine vehicles Flying vehicles Space vehicles

Locomotion systems Locomotion systems A mobile robot needs locomotion mechanisms which enable it to move unbounded throughout its environment. Locomotion is the complement of manipulation and it is related to interaction between the robot and the environment. Main issues: stability number and geometry of contact points center of gravity static/dynamic stability inclination of terrain charakteristic of contact contact point/path size and shape angle of contact friction type of environment structure medium (e.g. water, air, type of ground, etc.)

Locomotion systems Selected locomotion systems (1) Figure: Locomotion mechanisms used in biological systems (source R. Siegwart, I.R. Nourbakhsh, D. Scaramuzza, to Autonomous Mobile Robots, The MIT Press, 2011).

Locomotion systems Selected locomotion systems (2) Figure: A biped walking as an approximation of rolling locomotion (source R. Siegwart, I.R. Nourbakhsh, D. Scaramuzza, to Autonomous Mobile Robots, The MIT Press, 2011).

Locomotion systems Selected locomotion systems (3) Figure: Specic power verus attainable speed of various locomotion mechanisms (source R. Siegwart, I.R. Nourbakhsh, D. Scaramuzza, to Autonomous Mobile Robots, The MIT Press, 2011).

Selected applications of mobile robots Table of contents 1 Rules and regulations 2 Basic concepts Mobile robots Locomotion systems Selected applications of mobile robots Examples of (semi) autonomous mobile robots Ground vehicles Marine vehicles Flying vehicles Space vehicles

Selected applications of mobile robots Source: R. Siegwart, I.R. Nourbakhsh, D. Scaramuzza, to Autonomous Mobile Robots, The MIT Press, 2011

Examples of (semi) autonomous mobile robots Table of contents 1 Rules and regulations 2 Basic concepts Mobile robots Locomotion systems Selected applications of mobile robots Examples of (semi) autonomous mobile robots Ground vehicles Marine vehicles Flying vehicles Space vehicles

Examples of (semi) autonomous mobile robots Mobile systems in the industry: Automated Guided Vehicle (AGV) Figure: AGV transport system (http://www.ds-automotion.com) localised with optical or inductive line

Examples of (semi) autonomous mobile robots Transport systems in public environments Figure: TUG robot for transportation tasks in hospitals (http://www.aethon.com)

Examples of (semi) autonomous mobile robots Cleaning robots c e t li (c) IS S K Figure: P a ik n h a k s n na z o Po Robotics hoovers produced by irobot (http://www.irobot.pl)

Examples of (semi) autonomous mobile robots Inspection robots Figure: Teleoperated robots: Robovolc automatic robotic system to explore and perform measurements in a volcanic environment (http://www.robovolc.dees.unict.it) and Inspector machine used by Polish police (http://www.piap.pl)

Examples of (semi) autonomous mobile robots Laboratory robots Figure: MTracker two-wheeled laboratory robot with DSP controller and mini PC board

Examples of (semi) autonomous mobile robots Unmmaned Surface Vessel (USV), Figure: USV CatOne multi purpose catamaran robots especially eective in shallow water, in situations that require recurring, very repetitive, long endurance activities or in those to be carried out in dangerous and hazardous environment and in sensitive ecosystems.

Examples of (semi) autonomous mobile robots Underwater robot Remotely Operated Underwater Vehicle (ROV) Figure: ROV Tiburon (http://www.mbari.org/dmo/vessels_vehicles/tiburon/tiburon.html) it was used for used for deep-sea research and provides autonomous hovering capabilities for the human operator..

Flying vehicles Table of contents 1 Rules and regulations 2 Basic concepts Mobile robots Locomotion systems Selected applications of mobile robots Examples of (semi) autonomous mobile robots Ground vehicles Marine vehicles Flying vehicles Space vehicles

Flying vehicles Classication of aerial systems Nonmotorized Balloon Lighter Than Air aerostat Motorized Blimp Aircraft Nonmotorized Glider Heavier Than Air aerodyne Plane Rotorcraft Birdlike Autogiro Motorized VTOL Figure: Specic power verus attainable speed of various locomotion mechanisms (source R. Siegwart, I.R. Nourbakhsh, D. Scaramuzza, to Autonomous Mobile Robots, The MIT Press, 2011).

Flying vehicles Selected ying machines A) B) C) D) Figure: Blimp (A), Glider (B), autogiro (C), VTOL aircraft (D)

Flying vehicles Flying principle comparison Airplane Helicopter Bird Autogiro Blimp Power cost 2 1 2 2 3 Control cost 2 1 1 2 3 Payload/volume 3 2 2 2 1 Maneuverability 2 3 3 2 1 Stationary ight 1 3 2 1 3 Low speed y 1 3 2 2 2 Vulnerability 2 2 3 2 2 VTOL 1 3 2 1 3 Endurance 2 1 2 1 3 Miniaturization 2 3 3 2 1 Indoor usage 1 3 2 1 2 Total 19 25 24 18 25 Source R. Siegwart, I.R. Nourbakhsh, D. Scaramuzza, to Autonomous Mobile Robots, The MIT Press, 2011

Flying vehicles Micro Aerial Vehicles (1) Figure: Examples of MAVs (source R. Siegwart, I.R. Nourbakhsh, D. Scaramuzza, to Autonomous Mobile Robots, The MIT Press, 2011)

Flying vehicles Micro Aerial Vehicles (2) Figure: Examples of MAVs (source R. Siegwart, I.R. Nourbakhsh, D. Scaramuzza, to Autonomous Mobile Robots, The MIT Press, 2011)

Flying vehicles Micro Aerial Vehicles (3) Figure: Examples of MAVs (source R. Siegwart, I.R. Nourbakhsh, D. Scaramuzza, to Autonomous Mobile Robots, The MIT Press, 2011)

Flying vehicles Selected MAV VTOL systems Figure: Examples of MAV VTOLs (MIT-MAV - MIT, mufly, sfly - Zurich, Starmac - Stanford)

Flying vehicles Unmanned Aerial Vehicle (UAV) - drone Figure: Unmanned plane Predator (http://www.airforce-technology.com/projects/predator/) - tactical reconnaissance UAV. `

Flying vehicles Planetary rovers Figure: Rover Sojourner (http://mars.jpl.nasa.gov/mpf/rover/sojourner.html) and Couriosity (http://www.nasa.gov/mission_pages/msl/index.html)

Flying vehicles Robotic space crafts Figure: New Horizon (http://pluto.jhuapl.edu/) for exploration Pluto and Kuiper belt (2015)