THE INFLUENCE OF REMELTING PARAMETERS ON Mg ALLOY/GLASSY CARBON SUSPENSION STABILITY

Podobne dokumenty
FABRICATION OF MAGNESIUM MATRIX COMPOSITE WITH GLASSY CARBON PARTICLES BY PRESSURE DIE CASTING

INSPECTION METHODS FOR QUALITY CONTROL OF FIBRE METAL LAMINATES IN AEROSPACE COMPONENTS

WŁAŚCIWOŚCI MECHANICZNE KOMPOZYTÓW AlSi13Cu2- WŁÓKNA WĘGLOWE WYTWARZANYCH METODĄ ODLEWANIA CIŚNIENIOWEGO

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 4

ZUŻYCIE TRYBOLOGICZNE KOMPOZYTU NA OSNOWIE ZGARU STOPU AK132 UMACNIANEGO CZĄSTKAMI SiC

OCENA PRZYDATNOŚCI OSNOWY Z RÓŻNYCH STOPÓW MAGNEZU W KOMPOZYCIE UMACNIANYM CZĄSTKAMI SiC

KRZEPNIĘCIE KOMPOZYTÓW HYBRYDOWYCH AlMg10/SiC+C gr

P/M COMPOSITES OF Al-Si-Fe-Cu ALLOY WITH SiC PARTICLES HOT-EXTRUDED AFTER PRELIMINARY COMPACTION

ROZSZERZALNOŚĆ CIEPLNA KOMPOZYTÓW NA OSNOWIE STOPU AlSi13Cu2 WYTWARZANYCH METODĄ SQUEEZE CASTING

ALUMINIOWE KOMPOZYTY Z HYBRYDOWYM UMOCNIENIEM FAZ MIĘDZYMETALICZNYCH I CERAMICZNYCH

ZASTOSOWANIE ZŁOŻONYCH TLENKÓW DO WYTWARZANIA DYSPERSYJNYCH FAZ ZBROJĄCYCH W STOPACH ALUMINIUM

STRUKTURA STREFOWA KOMPOZYTÓW AK12-Al2O3 I AK12-SiC KSZTAŁTOWANA W PROCESIE ODLEWANIA ODŚRODKOWEGO

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

ANALIZA PROCESU KRZEPNIĘCIA KOMPOZYTU HETEROFAZOWEGO

KS-342 IKS-342 Pirometr monochromatyczny podczerwieni KS-342 KS-342 jest wyprodukowany by kontrolować i regulować temperaturę topnienia poprzez bezkon

IMPACT OF COOLING TIME ON THE STRUCTURE AND TRIBOLOGICAL PROPERTIES OF METAL MATRIX COMPOSITE CASTINGS

BADANIE I ANALIZA METODĄ LOGIKI ROZMYTEJ PARAMETRÓW PROCESU MIESZANIA POD KĄTEM POPRAWY WŁASNOŚCI KOMPOZYTÓW OTRZYMANYCH Z PROSZKÓW

LEJNOŚĆ KOMPOZYTÓW NA OSNOWIE STOPU AlMg10 Z CZĄSTKAMI SiC

DETECTION OF MATERIAL INTEGRATED CONDUCTORS FOR CONNECTIVE RIVETING OF FUNCTION-INTEGRATIVE TEXTILE-REINFORCED THERMOPLASTIC COMPOSITES

KRYSTALIZACJA KOMPOZYTÓW ALUMINIOWYCH ZBROJONYCH SiC

WYBRANE WŁAŚCIWOŚCI KOMPOZYTU ZAWIESINOWEGO AlSi11/CZĄSTKI 1H18N9T

THE STRUCTURE OF CENTRIFUGALLY CAST COMPOSITE CASTING

KORELACJE POMIĘDZY PIERWOTNĄ I WTÓRNĄ STRUKTURĄ A WŁASNOŚCIAMI KOMPOZYTÓW AlMg-SiCP

KRYSTALIZACJA, STRUKTURA ORAZ WŁAŚCIWOŚCI TECHNOLOGICZNE STOPÓW I KOMPOZYTÓW ALUMINIOWYCH

WPŁYW POWŁOKI NIKLOWEJ CZĄSTEK Al2O3 NA WŁAŚCIWOŚCI MATERIAŁU KOMPOZYTOWEGO O OSNOWIE ALUMINIOWEJ

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 3

Conception of reuse of the waste from onshore and offshore in the aspect of

STRUCTURE OF PHOSPHOR TIN BRONZE CuSn10P MODIFIED WITH MIXTURE OF MICROADDITIVES

Własności mechaniczne kompozytów odlewanych na osnowie stopu Al-Si zbrojonych fazami międzymetalicznymi

BADANIE KRYSTALIZACJI KOMPOZYTU AK9-Pb. Z. KONOPKA 1 Katedra Odlewnictwa Politechniki Częstochowskiej

TYRE PYROLYSIS. REDUXCO GENERAL DISTRIBUTOR :: ::

ZMIANY STRUKTURALNE WYSTĘPUJĄCE PODCZAS WYTWARZANIA KOMPOZYTÓW GRE3 - SiC P

SEGREGATION REINFORCED PHASE IN AlSi/CrxCy COMPOSITE PRODUCED UNDER ELECTROMAGNETIC FIELD

Formation of Graded Structures and Properties in Metal Matrix Composites by use of Electromagnetic Field

EFEKT KIRKENDALLA-FRENKLA W KOMPOZYTACH ALUMINIOWYCH Z CZĄSTKAMI ALUMINIDKÓW NIKLU

MIKROSTRUKTURA ODLEWNICZYCH STOPÓW MAGNEZU WZMACNIANYCH CZĄSTKAMI AL 2 O 3

ZUśYCIE ŚCIERNE KOMPOZYTÓW NA OSNOWIE STOPU CuPb30 ZBROJONYCH CZĄSTKAMI GRAFITU

WYTWARZANIE I KSZTAŁTOWANIE STRUKTURY KOMPOZYTOWYCH ODLEWÓW ALUMINIOWYCH O ZAŁOŻONYM ROZMIESZCZENIU ZBROJENIA


BADANIE WYPEŁNIANIA WNĘKI FORMY CIŚNIENIOWEJ SUSPENSJĄ KOMPOZYTOWĄ

Fabrication of AM50 magnesium matrix composite with titanium particles by stir casting method

KOMPOZYTY O OSNOWIE METALOWEJ ZAWIERAJĄCE CZĄSTKI WĘGLA SZKLISTEGO WYKORZYSTANE DO PRACY W WARUNKACH TARCIA

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

MOŻLIWOŚCI WYKORZYSTANIA TECHNIK PRÓŻNIOWYCH DO PODNOSZENIA JAKOŚCI ZAWIESIN KOMPOZYTOWYCH

KRZEPNIĘCIE I SKURCZ LINIOWY KOMPOZYTU NA OSNOWIE STOPU AK12 ZBROJONEGO CZĄSTKAMI Al 2 O 3 I SiC

MICROSTRUCTURAL CORROSION EFFECTS ON CARBON FOAM-AZ31 MAGNESIUM MATRIX COMPOSITE SURFACE

Tytuł pracy w języku angielskim: Physical properties of liquid crystal mixtures of chiral and achiral compounds for use in LCDs

A. PATEJUK 1 Instytut Materiałoznawstwa i Mechaniki Technicznej WAT Warszawa ul. S. Kaliskiego 2, Warszawa

WYKORZYSTANIE METODY ZAWIESINOWEJ W PROCESIE WYTWARZANIA KOMPOZYTÓW IN SITU W UKŁADZIE ALUMINIUM TLENEK ŻELAZO-TYTANU

INVESTIGATION OF SCREWS FOUND IN WILHELM ORE MINE

MODYFIKACJA BRĄZU SPIŻOWEGO CuSn4Zn7Pb6

PRÓBA OCENY KRZEPNIĘCIA KOMPOZYTÓW HYBRYDOWYCH AlMg/SiC+C gr

BADANIE MATERIAŁÓW KOMPOZYTOWYCH NA OSNOWIE ALUMINIUM ZBROJONYCH CZĄSTKAMI SiO 2


CHARAKTERYSTYKA KRZEPNIĘCIA KOMPOZYTÓW O OSNOWIE ALUMINIUM ZBROJONYCH CZĄSTKAMI CERAMICZNYMI

LISTA PUBLIKACJI PAKIETU BADAWCZEGO KCM 1

WPŁYW WIELKOŚCI I UDZIAŁU ZBROJENIA NA WŁAŚCIWOŚCI KOMPOZYTÓW AK12-WĘGIEL SZKLISTY

PROCEEDINGS OF THE INSTITUTE OF VEHICLES 2(106)/2016 (12 pt)

WPŁYW MIESZANKI EGZOTERMICZNEJ NA BAZIE Na 2 B 4 O 7 I NaNO 3 NA WYTRZYMAŁOŚĆ NA ROZCIĄGANIE STOPU AlSi7Mg

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

DOI: / /32/37

ZMIANA WYTRZYMAŁOŚCI NA ROZCIĄGANIE STOPU AlSi12 PO OBRÓBCE MIESZANKĄ EGZOTERMICZNĄ ZŁOŻONĄ Z Na 2 B 4 O 7, NaNO 3 I Mg

WPŁYW RODZAJU FAZY WZMACNIAJĄCEJ NA NAPRĘŻENIE PŁYNIĘCIA PLASTYCZNEGO WYBRANYCH KOMPOZYTÓW MMCs O OSNOWIE ALUMINIOWEJ

WYBRANE WŁASNOŚCI KOMPOZYTÓW ALUMINIUM-CZĄSTKI WĘGLIKA KRZEMU OTRZYMANYCH Z PROSZKÓW W PROCESIE KUCIA NA GORĄCO I PO ODKSZTAŁCANIU NA ZIMNO

ZMIANY STRUKTURY W STREFIE MIĘDZYFAZOWEJ CZĄSTKA GRAFITU-STOP AlSi6Cu4 W KOMPOZYCIE METALOWYM PO RECYKLINGU

WPŁYW PARAMETRÓW ODLEWANIA CIŚNIENIOWEGO NA STRUKTURĘ i WŁAŚCIWOŚCI STOPU MAGNEZU AM50

THERMODYNAMICS OF OXYGEN IN DILUTE LIQUID SILVER-TELLURIUM ALLOYS

FABRICATION OF Al2O3-Ni GRADED COMPOSITES BY CENTRIFUGAL CASTING IN AN ULTRACENTRIFUGE

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 1 DOI: /amm

Stargard Szczecinski i okolice (Polish Edition)

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

Mikrostruktura, struktura magnetyczna oraz właściwości magnetyczne amorficznych i częściowo skrystalizowanych stopów Fe, Co i Ni

OPIS METODY WPROWADZANIA I OSADZANIA ELEMENTÓW ZBROJĄCYCH DO OSNOWY TECHNICZNIE UŻYTECZNYCH ODLEWÓW KOMPOZYTOWYCH

ZASTOSOWANIE TECHNOLOGII REP-RAP DO WYTWARZANIA FUNKCJONALNYCH STRUKTUR Z PLA

Stopy metali nieżelaznych Non-Ferrous Alloys

WŁAŚCIWOŚCI TRIBOLOGICZNE MATERIAŁÓW KOMPOZYTOWYCH ZAWIERAJĄCYCH WĘGIEL SZKLISTY

WPROWADZENIE. Stefan Szczepanik 1, Marek Wojtaszek 2, Jerzy Krawiarz 3 KOMPOZYTY (COMPOSITES) 4(2004)12

Dr inż. Łukasz Rogal zatrudniony jest w Instytucie Metalurgii i Inżynierii Materiałowej Polskiej Akademii Nauk na stanowisku adiunkta

OTRZYMYWANIE KOMPOZYTÓW METALOWO-CERAMICZNYCH METODAMI PLAZMOWYMI

Badania stabilności zawiesiny metalowo-ceramicznej po wielokrotnym przetopie kompozytu na bazie stopu aluminium A359 zbrojonego cząsteczkami Al 2

KRZEPNIĘCIE SUSPENSJI KOMPOZYTOWEJ AlMg10+SiC PODCZAS WYPEŁNIANIA WNĘKI FORMY

WYTWARZANIE ODLEWÓW KOMPOZYTOWYCH METODĄ PNEUMATYCZNEGO OSADZANIAANIA ELEMENTÓW ZBROJĄCYCH W OSNOWIE KOMPOZYTU

The influence of the chosen welding technology on the microstructure and selected mechanical properties of welded magnesium alloy AZ91

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

KOMPOZYTY Ag CZĄSTKI CERAMICZNE OTRZYMYWANE TECHNOLOGIAMI CIEKŁOFAZOWYMI

RECYKLING DROBNYCH ODPADÓW METALOWYCH MATERIAŁÓW KOMPOZYTOWYCH

WPŁYW PREPARACJI CZĄSTEK Al2O3 NIKLEM NA WŁAŚCIWOŚCI KOMPOZYTU Al-(Al2O3)P

WPŁYW TEMPERATURY SPIEKANIA NA MECHANIZM DEKOHEZJI KOMPOZYTU Al-(Al2O3)p

Development of SOFC technology in IEn OC Cerel

UDARNOŚC KOMPOZYTU AK11 CZĄSTKI SiC ODLEWANEGO CIŚNIENIOWO

PARAMETRY TECHNICZNE DEKLAROWANE PRZEZ PRODUCENTA POTWIERDZONE BADANIAMI / RATINGS ASSIGNED BY THE MANUFACTURER AND PROVED BY TESTS

Metodyki projektowania i modelowania systemów Cyganek & Kasperek & Rajda 2013 Katedra Elektroniki AGH

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

EKOLOGICZNA MODYFIKACJA STOPU AlSi7Mg

ROZPRAWY NR 128. Stanis³aw Mroziñski

WPŁYW PROCESU TARCIA NA ZMIANĘ MIKROTWARDOŚCI WARSTWY WIERZCHNIEJ MATERIAŁÓW POLIMEROWYCH

QUANTITATIVE AND QUALITATIVE CHARACTERISTICS OF FINGERPRINT BIOMETRIC TEMPLATES

WPŁYW WARUNKÓW PRZESYCANIA I STARZENIA STOPU C355 NA ZMIANY JEGO TWARDOŚCI

Helena Boguta, klasa 8W, rok szkolny 2018/2019

Transkrypt:

14: 2 (2014) 96-100 Anita Olszówka-Myalska Silesian University of Technology, Department of Materials Science, ul. Krasińskiego 8, 40-019 Katowice, Poland * Corresponding author. E-mail: anita.olszowka-myalska@polsl.pl Received (Otrzymano) 19.03.2014 THE INFLUENCE OF REMELTING PARAMETERS ON Mg ALLOY/GLASSY CARBON SUSPENSION STABILITY The homogenous distribution of reinforcing phases in a liquid metal matrix determines the final properties of composite elements fabricated by the casting of a suspension. Ensuring not only a proper temperature and stirring conditions during suspension preparation, but also a relatively short time between the end of mixing and the start of suspension pouring into moulds is critical. In the article, investigations focused on the migration of glassy carbon particles (GCp) in two melted magnesium alloys, Mg3Al and Mg2ZnZrRE, were presented. The composites previously obtained by the stir casting method were remelted at the temperatures of 610, 640, 690 and 730 C (time 30, 60 and 90 min) and finally cooled at a temperature of 20 C. The particles segregation on the macro scale was analyzed on a longitudinal section of the obtained samples. It was revealed that both types of suspensions were stable at 610 and 640 C but at 690 and 730 C, a loss of stability was observed. In spite of the slightly less density of the glassy carbon than the applied magnesium alloys, the type of segregation was different and depended on the alloy chemical composition. In the suspension of Mg3Al-GCp, particle migration to the crucible top was observed only, while in the Mg2ZnZrRE-GCp suspension, two zones with a high particle concentration were formed, separated by a zone of pure metal. Keywords: magnesium matrix composite, glassy carbon, stir casting, die casting WPŁYW PARAMETRÓW PRZETOPU NA STABILNOŚĆ SUSPENSJI STOP Mg/WĘGIEL SZKLISTY W procesach odlewania kompozytów z zawiesin jednorodność rozmieszczenia fazy zbrojącej w metalowej osnowie decyduje o powtarzalności właściwości wytwarzanych wyrobów. Wymusza to zapewnienie w procesie technologicznym nie tylko odpowiedniej temperatury suspensji i warunków jej mieszania, ale równieŝ kontroli czasu pomiędzy zaprzestaniem mieszania a odlaniem wyrobu. W artykule przedstawiono wyniki badań segregacji cząstek węgla szklistego(gcp) w dwóch stopach magnezu Mg3Al i Mg2ZnZrRE. Eksperyment przeprowadzony w warunkach laboratoryjnych obejmował przetop kompozytów uzyskanych wcześniej w warunkach przemysłowych metodą mechanicznego mieszania komponentów i odlewania grawitacyjnego suspensji do form stalowych. Próbki wygrzewano w temperaturze 610, 640, 690 i 730 C w czasie 30, i schłodzono w temperaturze 20 C. Analizowano makrostrukturę przekrojów wzdłuŝnych pod względem segregacji cząstek. Wykazano stabilność obu suspensji w temperaturze 610 i 640 C oraz jej utratę w temperaturze 690 i 730 C. Charakter segregacji cząstek był róŝny i zaleŝał od składu chemicznego stopu, pomimo tego, Ŝe w obu typach suspensji gęstość cząstek była nieznacznie mniejsza od gęstości stopów. W suspensji Mg3Al-GCp cząstki migrowały do góry tygla, a w suspensji Mg2ZnZrRE-GCp utworzyły dwie strefy u góry i na dole tygla, które rozdzielone były strefą metalu bez cząstek. Słowa kluczowe: kompozyt magnezowy, węgiel szklisty, odlewanie suspensji, odlewanie ciśnieniowe INTRODUCTION Stir casting is a well-known method in the processing of aluminium and magnesium matrix composites reinforced with ceramic particles [1-5]. In the stir casting process, reinforcing phases in the form of particles, short fibers or whiskers, connect with a molten metal by means of mechanical stirring and a liquid metal-solid reinforcement suspension is obtained. A suspension with proper distribution of the reinforcing phases and viscosity can be cast by gravity or pressure die casting methods. The time between finishing suspension mixing in a protective atmosphere and the start of its pouring into moulds pays a very important role in the technological procedure because of the possibility of solid component segregation. The character of segregation is determined by the density of the components but its intensity depends on the temperature and time as well. That segregation may start in the crucible of a melting furnace and then in a ladle, before pouring the suspension into the moulds, which results in the manufacturing of products with different microstructure and properties. When we apply pressure die casting as the a process for composite products fabrication, an additional remelting procedure of the composite ingots is necessary and its parameters must be specified. How-

The influence of remelting parameters on Mg alloy/glassy carbon suspension stability 97 ever, direct and precise control of reinforcing phases migration in technological equipment both in industrial and laboratory conditions is difficult. In the presented experiments, the effects of glassy carbon particles (GCp) segregation in two types of magnesium alloys, Mg3Al and Mg2ZnZrRE, regarding different time and temperature of the suspension were examined. Composite samples obtained from ingots manufactured in industrial conditions by stir casting were remelted at different parameters, cooled in air, and then their structure was characterized. The applied procedure showed the influence of the magnesium matrix composition, time and temperature on the suspension homogeneity. MATERIAL Composite materials were obtained by stirring glassy carbon particles (GCp) of a granulation of 17 160 µm [6] with two types of noncommercial magnesium alloys: Mg3Al with 3 wt.% Al and Mg2ZnZrRE alloy with 2 wt.% Zn, 1 wt.% Zr and 1 wt.% rare earth elements (RE). Suspensions of a mass of approximately 35 kg containing an Mg alloy and approx. 10 wt.% GCp were manufactured in an electrical furnace with a proper stirring system, in the protective atmosphere of an Ar and SF 6 gas mixture. Then they were gravity poured into steel moulds. From the manufactured ingots, samples in the form of rollers with a diameter of 25 mm and height of 30 mm were prepared. The micrographs of the composites used in the experiments are presented in Figures 1 and 2. It is typical that in an Mg3Al-GCp composite, oxides and some phases from the Mg-Al system may accumulate around the glassy carbon particles (Fig. 1b), while in the Mg2ZnZrRE-GCp composite, besides oxides, micro-grains of zirconium are additionally detected (Fig. 2b). Fig. 1. Micrographs of stir cast Mg3Al-GCp composite, SEM Rys. 1. Mikrofotografie kompozytu Mg3Al-GCp odlanego z suspensji, SEM Fig. 2. Micrographs of stir cast Mg2ZnZrRE-GCp composite, SEM Rys. 2. Mikrofotografie kompozytu Mg2ZnZrREl-GCp odlanego z suspensji, SEM

98 A. Olszówka-Myalska EXPERIMENTAL PROCEDURE AND RESULTS The composite rollers prepared from both types of composites were put in ceramic crucibles and then covered from the top with a layer of a protective powder. Next they were placed in an electrical laboratory furnace without any protective atmosphere and held at the temperatures of 610, 640, 690 and 730 o C respectively, for 30, 60 and at each temperature. The remelted suspensions were then cooled with the crucibles in air (Fig. 3a) and after their solidification, the ceramic crucibles and sintered protective powder were mechanically removed from the samples (Fig. 3b). The obtained research materials were cut and maroscopic observations of the longitudinal sections the samples were performed (Figs. 4-11). origin of those pores is not clear. For the lower temperatures, one may explain their presence as a result of the coalescence of micropores formed in the composites during mechanical stirring and gravity casting. However, complete degradation of the suspension with an increase in temperature and time suggests that the reactions in the suspension are the main reason. In general, we can conclude that in the investigated Mg3Al-GCp suspension, only migration of GCp to the top of the crucible may occur, which is consistent with the effects previously observed during preparation of the initial suspension in industrial conditions. That effect can be explained clearly as a result of the slightly lower density of GCp than the magnesium alloy and is consistent with the expectations. Fig. 4. Macrostructure of longitudinal section of Mg3Al-GCp composite samples remelted at temperature of 610 C during 30, 60, and 90 minutes Rys. 4. Makrostruktura przekroju wzdłuŝnego próbek kompozytu Mg3Al-GCp przetopionych w temperaturze 610 C w czasie 30, Fig. 3. View of composite samples after remelting and cooling: a) in ceramic crucibles, b) after crucible removal Rys. 3. Widok próbek po przetopieniu i schłodzeniu: a) w tyglach ceramicznych, b) po wyjęciu z tygli Mg3Al-GCp composite The longitudinal sections of the Mg3Al-GCp composite after remelting are presented in Figures 4-7. For the remelting temperatures of 610 and 640 o C (Figs. 4 and 5), evident particle segregation was not observed but an increase in macroscopic pores was visible. An increase in remelting temperature up to 690 o C and thereby reducing the metal viscosity, facilitated migration of the GCp to the top of the suspension. Therefore, for the time of, an evident zone of metal without particles was formed on the sample bottom. A further increase in temperature up to 790 o C caused an increase in segregation intensity and zones without particles were observed for all the applied times of the remelting process. The generation of macropores was an additional effect occurring in the investigated Mg3Al-GCp suspension and its intensity increased with an increase in remelting time and temperature. The Fig. 5. Macrostructure of longitudinal section of Mg3Al-GCp composite samples remelted at temperature of 640 C during 30, 60, and Rys. 5. Makrostruktura przekroju wzdłuŝnego próbek kompozytu MgAl-GCp przetopionych w temperaturze 640 C w czasie 30, 60 i 90 minut Fig. 6. Macrostructure of longitudinal section of Mg3Al-GCp composite samples remelted at temperature of 690 C during 30, 60, and Rys. 6. Makrostruktura przekroju wzdłuŝnego próbek kompozytu Mg3Al-GCp przetopionych w temperaturze 690 C w czasie 30,

The influence of remelting parameters on Mg alloy/glassy carbon suspension stability 99 Fig. 7. Macrostructure of longitudinal section of Mg3Al-GCp composite samples remelted at temperature of 730 C during 30, 60, and Rys. 7. Makrostruktura przekroju wzdłuŝnego próbek kompozytu Mg3Al-GCp przetopionych w temperaturze 730 C w czasie 30, Mg2ZnZrRE-GC p composite The longitudinal sections of the Mg2ZnZrRE-GCp composite after remelting are presented in Figures 8-11. For the remelting temperatures of 610 and 640 o C (Figs. 8 and 9), the macrostructure observations did not reveal any changes in GCp distribution or the presence of macropores. The effect of remelting time on the segregation process was visible for the temperature of 690 C (Fig. 10), where the suspension after 30 minutes was still stable but after 60 and, evident segregation was observed. It was characteristic that three different zones were formed in the remelted samples. Two of them, enriched with glassy carbon particles were located on the top and on the bottom of the sample, and they were separated by a zone of a metal without particles. Fig. 10. Macrostructure of longitudinal section of Mg2ZnZrRE-GCp composite sample remelted at temperature of 690 C during 30, 60, and Rys. 10. Makrostruktura przekroju wzdłuŝnego próbki kompozytu Mg2ZnZrRE-GCp przetopionej w temperaturze 690 C w czasie 30, A similar effect was found in the samples remelted at 730 C (Fig. 11) independent of the remelting time. The effect of macropores formation was not registered. It means a different process of suspension homogeneity loss in the Mg2ZnZrRE-GCp system compared with the Mg3Al-GCp system. The reason is the different chemical composition of the applied magnesium alloys. The research by LM (Fig. 12) and SEM with EDS methods of the samples with segregated GCp showed a strong difference in the content of Zr depending on the sample region. Fig. 11. Macrostructure of longitudinal section of Mg2ZnZnZrRE-GCp composite sample remelted at temperature of 730 C during 30, 60, and Rys. 11. Makrostruktura przekroju wzdłuŝnego próbki kompozytu Mg2ZnZrRE-GCp przetopionej w temperaturze 730 C w czasie 30, Fig. 8. Macrostructure of longitudinal section of Mg2ZnZrRE-GCp composite sample remelted at temperature of 610 C during 30, 60 and Rys. 8. Makrostruktura przekroju wzdłuŝnego próbki kompozytu Mg2ZnZrRE-GCp przetopionej w temperaturze 610 C w czasie 30, Fig. 9. Macrostructure of longitudinal section of Mg2ZnZnZrRE-GCp composite sample remelted at temperature of 640 C during 30, 60 and Rys. 9. Makrostruktura przekroju wzdłuŝnego próbki kompozytu Mg2ZnZrRE-GCp przetopionej w temperaturze 640 C w czasie 30, Fig. 12. Micrograph of MgZnZrRE-GCp composite sample remelted at 690 C for 30 minutes, metal zone without particles (top) and zone with particles segregated at bottom of crucible ( bottom), LM Rys. 12. Mikrofotografia próbki kompozytowej MgZrRE-GCp przetopinej w temperaturze 690 C w czasie 30 minut, widoczna strefa metalu bez cząstek (góra) i strefa z cząstkami segregującymi na dnie tygla (dół), LM

100 A. Olszówka-Myalska An increase in Zr content in the zone located at the bottom and an almost total absence of Zr both at the top of the composite zone and the metallic zone were detected. That effect of Zr segregation on the bottom of the furnace crucible is well known in the metallurgical processes of magnesium alloys with Zr [7] and therefore the application of a special mixing procedure is necessary. It confirms the results obtained for a suspension of GCp and magnesium alloy with Zr. SUMMARY The presented results of investigations on a laboratory scale focused only on one of the technological aspects of Mg-GCp suspension casting, namely conservation of their proper homogeneity after ceasing the stirring procedure. The influence of the remelting parameters on the alloy-particles interface microstructure was not analyzed in this paper. The described effects of suspension disintegration with temperature and time for the Mg alloy-gcp system confirmed GCp movement in the direction of the crucible top which was previously observed directly during preparation of the initial suspension, independent of the magnesium alloy composition. Additionally, it was revealed that the character of homogeneity loss is more complicated when a magnesium alloy with zirconium is applied. The mains conclusions are as follows: - The homogeneity of a suspension of an Mg alloy- GCp composite can be lost after ceasing the mixing procedure and it depends on time and the temperature of the suspension. That phenomena must be controlled during composite processing. - In homogenous Mg3Al-GCp and Mg2ZnZrRE-GCp composite systems, a remelting temperature of 610 640 o C (time 30 90 min) did not induce a loss of homogeneity. - For the temperature of 690 o C, the suspensions of both the composite systems were stable after 30 minutes but an increase in remelting time involved particles segregation. A further increase in temperature implicated segregation in the suspensions for all the examined times, and very intensive destruction of the Mg3Al-GCp suspension, as well. - The segregation effects of glassy carbon particles in magnesium alloys depended on the alloy composition. In the Mg3Al alloy, the particles migrated to the top of the crucible while in the Mg2ZnZrRE alloy, two zones of the alloy with particles were separated by a pure metal zone. Acknowledgement This work was supported by the Ministry of Science and Higher Education of Poland (project N Nr 15-0077-10/2010). REFERENCES [1] Rajan T.P.D., Pillai R.M., Pai B.C., Characterization of centrifugal cast functionally gradient aluminum-silicon carbide metal matrix composites, Material Characterization 2010, 61, 923-928. [2] Deng K.K., Wu K., Wu Y.W., Nie K.B., Zheng M.Y., Effect of submicron size SiC particulates on microstructure and mechanical properties of AZ91 magnesium matrix composites, Journal of Alloys and Compounds 2010, 504, 542-547. [3] Ye H.Z., Liu X.Y., Review of recent studies in magnesium matrix composites, Journal of Materials Science 2004, 39, 6153-6171. [4] Braszczyńska K.N., Zyska A., Braszczyński J., Ocena przydatności osnowy z róŝnych stopów magnezu w kompozycie umacnianym cząstkami SiC, Kompozyty (Composites) 2003, 3, 8, 253-258. [5] Olszówka-Myalska A., Myalski J., Hetmańczyk M., Kiełbus A., Technnologiczne uwarunkowania stabilności zawiesiny stop magnezu-cząstki węgla szklistego, Rudy i Metale 2013, 835-839. [7] Qian M., Zheng L., Graham D., Settling of undissolved zirconium particles in pure magnesium melts, Journal of Light Metals 2001, 1, 157-165.