Mechanika i Budowa Maszyn I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Podobne dokumenty
kierunkowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy) polski VI letni (semestr zimowy / letni)

Semestr zimowy Metrologia, Grafika inżynierska Tak

Semestr letni Metrologia, Grafika inżynierska Nie

Obrabiarki Sterowane Numerycznie Numerical Control Machine Tools

Komputerowe wspomaganie procesów technologicznych I Computer Aided Technological Processes

technologicznych Wzornictwo przemysłowe I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

MiBM II stopień (I stopień / II stopień) akademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)

Obróbka Ubytkowa Metal removal process. MiBM I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

kierunkowy (podstawowy / kierunkowy / inny HES) Do wyboru (obowiązkowy / nieobowiązkowy) polski semestr V semestr letni (semestr zimowy / letni)

Obróbka Ubytkowa Metal removal process. MiBM I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

MiBM I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)

Obróbka ubytkowa Material Removal Processes. Automatyka i robotyka I stopień Ogólno akademicki Studia stacjonarne

Obróbka ubytkowa Material Removal Processes. Automatyka i robotyka I stopień Ogólno akademicki Studia stacjonarne

Z-ZIP-1010 Techniki Wytwarzania II Manufacturing Techniques II

Techniki Wytwarzania II Manufacturing Techniques II

kierunkowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy) Polski semestr pierwszy

Obróbka skrawaniem Machining Processes

Modelowanie i budowa maszyn. Wzornictwo I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Obrabiarki Specjalizowane II Specialized Machine Tools. MiBM II stopień (I stopień / II stopień) akademicki (ogólno akademicki / praktyczny)

CAD/CAM. MiBM II stopień (I stopień / II stopień) akademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)

Technologia budowy maszyn. Mechanika i Budowa Maszyn I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Zarządzanie i Inżynieria Produkcji II stopień Ogólnoakademicki. Podstawowy Obowiązkowy Polski Semestr pierwszy. Semestr zimowy Brak Nie

Wzornictwo I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Metrologia II Metrology II. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Praktyka zawodowa. Automatyka i Robotyka I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Obróbka laserowa i plazmowa Laser and plasma processing

Inżynieria Jakości Quality Engineering. Transport I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Budowa amunicji i zapalników Construction of ammunition and detonators

Technologia i organizacja robót. Inżynieria Środowiska I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Inżynieria Jakości Quality Engineering. Inżynieria Bezpieczeństwa I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny)

Metrologia II. Mechanika i Budowa Maszyn I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Wzornictwo przemysłowe I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny) Stacjonarne (stacjonarne / niestacjonarne)

Obróbki powierzchniowe Surface Treatment

wytwarzania (CAD/CAM)

Elektrotechnika II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)

Metrologia II Metrology II. TRANSPORT I stopień (I stopień / II stopień) akademicki (ogólno akademicki / praktyczny)

Podstawy normalizacji INŻYNIERIA ŚRODOWISKA. I stopień. Ogólno akademicki. Humanistyczny Obowiązkowy Polski Semestr 2.

Inżynieria Jakości. Wzornictwo przemysłowe I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Przyrządy i uchwyty obróbkowe Work holders. Mechanika i budowa maszyn II stopień Ogólnoakademicki. Studia stacjonarne. inny

System Labview The Labview System. Elektrotechnika II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Obróbka erozyjna Erosion Machining. Mechanika i Budowa Maszyn II stopień ogólnoakademicki Stacjonarne. Kierunkowy obowiązkowy polski pierwszy

Technologia spawalnictwa Welding technology

Inżynieria Środowiska II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

KARTA MODUŁU / KARTA PRZEDMIOTU

Praktyka zawodowa. Mechanika i Budowa Maszyn I stopień ogólnoakademicki studia stacjonarne wszystkie. Dr inż. Tomasz Miłek

Mechanika i Budowa Maszyn I stopień ogólnoakademicki

Konstrukcje spawane. Mechanika i Budowa Maszyn I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Mechanika i Budowa Maszyn II stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Mechanika i Budowa Maszyn II stopień (I stopień / II stopień) Ogólno akademicki (ogólno akademicki / praktyczny)

Informatyka I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny) podstawowy (podstawowy / kierunkowy / inny HES)

Z-ETI-1025 Systemy operacyjne Operating systems

Miernictwo dynamiczne Dynamic Measurement. Elektrotechnika I stopnia (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Mechanika i Budowa Maszyn II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Mechanika i Budowa Maszyn II stopień ogólnoakademicki Stacjonarne. Kierunkowy obowiązkowy polski drugi

Mechanika i Budowa Maszyn II stopień (I stopień / II stopień) Ogólno akademicki (ogólno akademicki / praktyczny)

Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)

E-E2A-2019-s2 Budowa i oprogramowanie komputerowych Nazwa modułu

kierunkowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy) polski pierwszy letni (semestr zimowy / letni)

Zarządzanie środowiskiem Environmental management

Informatyka I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny) niestacjonarne (stacjonarne / niestacjonarne)

E-2EZA-01-S1. Elektrotechnika II stopień ogólnoakademicki. niestacjonarne. przedmiot kierunkowy. obowiązkowy polski semestr I semestr zimowy.

Metrologia. Inżynieria Bezpieczeństwa I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny)

Zarządzanie Projektami Project Management

specjalnościowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy) polski drugi zimowy (semestr zimowy / letni)

E-2IZ s3. Podstawy przedsiębiorczości. Informatyka II stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

specjalnościowy obowiązkowy polski semestr pierwszy

Obróbka bezubytkowa Chipless forming. Automatyka i Robotyka I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

elektrotechnika I stopień (I stopień / II stopień) Ogólno akademicki (ogólno akademicki / praktyczny) Kierunkowy (podstawowy / kierunkowy / inny HES)

Badania hałasu w transporcie Studies on noise in transport

Serwis pojazdów. Transport I stopnia (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Mechanika i Budowa Maszyn II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Obróbka bezubytkowa Chipless forming. Automatyka i Robotyka I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Sieci gazowe Gas networks. Inżynieria Środowiska II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

E-2IZ1-03-s3. Informatyka I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny)

Ekonomika Transportu. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Informatyka I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny) podstawowy (podstawowy / kierunkowy / inny HES)

Analiza ryzyka Risk Analysis. Inżynieria bezpieczeństwa I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny)

Transport II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) stacjonarne (stacjonarne / niestacjonarne)

Inżynieria Bezpieczeństwa I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny)

Transport szynowy Rail Transport. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Metrologia II Metrology II. Automatyka i Robotyka I stopień (I stopień / II stopień) akademicki (ogólno akademicki / praktyczny)

Sprzęt komputerowy Hardware. ETI I stopień (I stopień / II stopień) akademicki (ogólno akademicki / praktyczny)

KARTA MODUŁU / KARTA PRZEDMIOTU

Etyka inżynierska Engineering Ethics

Mechanika i Budowa Maszyn I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

kierunkowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy) język polski VII semestr zimowy (semestr zimowy / letni)

Metrologia II Metrology II

przedmiot specjalnościowy (podstawowy / kierunkowy / inny HES) przedmiot obowiązkowy (obowiązkowy / nieobowiązkowy) polski semestr siódmy

TRA_PKM_4/2 Podstawy Konstrukcji Maszyn Machine Desing. TRANSPORT I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) niestacjonarne (stacjonarne / niestacjonarne)

Z-ETI-0611 Język Programowania C++ Programming Language C++

specjalnościowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy) polski szósty semestr letni (semestr zimowy / letni)

Defektoskopia Non-destructive testing. Inżynieria Bezpieczeństwa I stopień (I stopień / II stopień) Ogólno akademicki (ogólno akademicki / praktyczny)

Transport I stopień Ogólnoakademicki. Studia stacjonarne. Kierunkowy. Obowiązkowy Polski Semestr V. Semestr Zimowy

Podstawy automatyki Bases of automatics. Elektrotechnika I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny)

Mechanika i Budowa Maszyn. I stopień

Maszynoznawstwo. Wzornictwo przemysłowe I stopnia (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Transkrypt:

KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Obrabiarki Sterowane Numerycznie Nazwa modułu Nazwa modułu w języku angielskim Numerical Control Machine Tools Obowiązuje od roku akademickiego 2013/2014 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Kierunek studiów Poziom kształcenia Profil studiów Forma i tryb prowadzenia studiów Specjalność Jednostka prowadząca moduł Koordynator modułu Mechanika i Budowa Maszyn I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) niestacjonarne (stacjonarne / niestacjonarne) Komputerowe Wspomaganie Wytwarzania Katedra Technologii Mechanicznej i Metrologii Dr hab. inż. Edward Miko prof. PŚk Zatwierdził: B. OGÓLNA CHARAKTERYSTYKA PRZEDMIOTU Przynależność do grupy/bloku przedmiotów Status modułu Język prowadzenia zajęć Usytuowanie modułu w planie studiów - semestr Usytuowanie realizacji przedmiotu w roku akademickim Wymagania wstępne Egzamin Liczba punktów ECTS 6 kierunkowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy) polski Semestr siódmy Semestr zimowy (semestr zimowy / letni) Obróbka skrawaniem, Narzędzia skrawające, KWPT, KWP, TBM, materiałoznawstwo, metrologia, grafika komputerowa, (kody modułów / nazwy modułów) tak (tak / nie) Forma prowadzenia zajęć wykład ćwiczenia laboratorium projekt inne w semestrze 18 18

C. EFEKTY KSZTAŁCENIA I METODY SPRAWDZANIA EFEKTÓW KSZTAŁCENIA Cel modułu Nabycie wiedzy i umiejętności w zakresie programowania obrabiarek sterowanych numerycznie. Zapoznanie studenta z technikami programowania, doboru procesu obróbki, parametrów skrawania, narzędzi dla danego zadania produkcyjnego. Nabycie praktycznych umiejętności obsługi sterowników wybranych maszyn sterowanych numerycznie. (3-4 linijki) Symbol efektu Efekty kształcenia Student ma wiedzę w zakresie budowy, możliwości technologicznych i zastosowania obrabiarek CNC. Student ma wiedzę jak dobrać obrabiarkę do określonego zadania produkcyjnego. Student ma wiedzę w zakresie układów osi obrabiarek, obsługi pulpitu sterowniczego, ekranu, zarządzania plikami, tabelami narzędzi, trybami pracy, tworzenia programów obróbkowych. Student ma wiedzę w zakresie budowy programu CNC, struktury wiersza programowego, doboru parametrów skrawania i narzędzi. Student ma wiedzę w zakresie stosowania funkcji toru kształtowego i cykli obróbkowych. Student ma wiedzę w zakresie programowania pętli programowych. Forma prowadzenia zajęć (w/ć/l/p/inne) odniesienie do efektów kierunkowych KS_W01_K KS_W01_K odniesienie do efektów obszarowych T1A_W06 T1A_W07 InzA_W01 InzA_W02 InzA_W05 T1A_W06 T1A_W07 InzA_W01 InzA_W02 InzA_W05.. Student potrafi dobrać parametry obróbki i narzędzia do określonego zdania technologicznego. Student potrafi dobrać materiał wyjściowy i obrabiarkę do wykonania określonego zadania produkcyjnego. Student potrafi stworzyć program obróbkowy w oparciu o funkcje toru kształtowego oraz cykle obróbkowe. KS_U01_K KS_U01_K T1A_W08 T1A_W09 T1A_W013 T1A_W16 InzA_U07 InzA_U08 T1A_W08 T1A_W09 T1A_W013 T1A_W16 InzA_U07 InzA_U08 K_02 Student rozumie potrzebę osobistego rozwoju w zakresie programowania obrabiarek sterowanych numerycznie. Ma świadomość ważności podejmowanych decyzji w zakresie programowania obrabiarek sterowanych numerycznie w aspekcie skutków oddziaływania na środowisko naturalne i odpowiedzialności za podejmowane decyzję. Wykład K_K01 K_K02 T1A_K01 T1A_K02 InzA_K01 Treści kształcenia: 1. Treści kształcenia w zakresie wykładu Nr wykładu Treści kształcenia Odniesienie do efektów kształcenia dla modułu

1 Pojęcia i określenia podstawowe. Zasada pracy obrabiarki sterowanej numerycznie. Cechy charakterystyczne obrabiarek sterowanych numerycznie. 2 Osie współrzędnych i zwroty ruchów. Struktura układów sterowania numerycznego. 3 Klasyfikacja układów sterowania. Cechy charakteryzujące układ sterowania. Sterowanie punktowe, odcinkowe, kształtowe i mieszane. Interpolatory. Interpolacja liniowa, kołowa, śrubowa, paraboliczna i kubiczna. 4 Skomputeryzowane sterowanie numeryczne CNC. Program technologiczny i sposoby programowania obrabiarek sterowanych numerycznie. Zapis i struktura programu sterującego. Format bloku informacji. Klasyfikacja funkcji występujących w blokach informacji. 5 Funkcje przygotowawcze. Funkcje pomocnicze. Omówienie działania i formatu. 6 Ogólne zasady ręcznego przygotowania programów. Procedura planowania i programowania. Dokumentacja programu. Metody sprawdzania programu. 7 Programowanie tokarek. Korekcja położenia narzędzia. Typowe funkcje przygotowawcze i pomocnicze w obróbce w tokarskiej wykorzystywane w programowaniu tokarek na przykładzie programowania CNC CYCLONE z układem sterowania FANUC OT. Cykle obróbkowe stosowane podczas toczenia 8 Programowanie frezarek. Korekcja położenia narzędzia. Charakterystyczne funkcje przygotowawcze i pomocnicze wykorzystywane w programowaniu frezarek na przykładzie układu sterowania HEIDENHAIN. Cykle obróbkowe stosowane w obróbce frezarskiej. 9 Programowanie automatyczne (maszynowe). Kryteria wyboru systemu programowania maszynowego. Wprowadzenie do CAD/CAM. 2. Treści kształcenia w zakresie zadań laboratoryjnych (projektowych) Nr zajęć lab. Treści kształcenia 1 Wprowadzenie. Zasady zaliczenia przedmiotu. BHP. Tokarka CNC układ osi obrabiarki, budowa, podstawowe elementy wyposażenia. Pulpit sterowniczy klawisze funkcyjne, podstawowe tryby pracy. 2 Opracowanie procesu technologicznego przedmiotu toczonego według przedstawionego rysunku: wybór materiału wyjściowego; podział procesu na operacje, zabiegi, przejścia, ustawienia; ustalenie baz obróbkowych i sposobu mocowania; wybór narzędzi skrawających i dobór parametrów skrawania. 3 Opracowanie programu sterującego z wykorzystaniem cykli obróbkowych stosowanych przy toczeniu. Opracowanie dokumentacji programu sterującego obróbką detalu na tokarce. 4 Frezarka CNC układ osi obrabiarki, budowa, podstawowe elementy wyposażenia. Pulpit sterowniczy klawisze funkcyjne, podstawowe tryby pracy. 5 Cykle sondy pomiarowej w trybach pracy obsługa ręczna i kółko obrotowe stosowane na frezarkach CNC i centrach frezarskich. Przegląd dostępnych cykli. Dane narzędziowe. Pomiar narzędzia. Edycja tabeli narzędzi. Edycja tabeli miejsca. Działanie tabeli preset w różnych konfiguracjach maszynowych. Edycja punktów odniesienia w tabeli preset. 6 Podstawy programowania na frezarkach CNC i centrach frezarskich. Struktura wiersza, pozycje obrabianego przedmiotu. Funkcje toru Odniesienie do efektów kształcenia dla modułu K_02

kształtowego. Najazd na kontur i odsunięcie od konturu appr/dep. Programowanie prostego konturu wg. rysunku. 7 Pozycje obrabianego przedmiotu: absolutne pozycje obrabianego przedmiotu G90. Inkrementalne pozycje obrabianego przedmiotu G91. Korekcja promienia. 8 Przegląd cykli na frezarkach CNC i centrach frezarskich. Cykle dla wiercenia frezowania kieszeni, czopów i rowków wpustowych. Definiowanie cykli. Wywołanie cykli 9 Transmisja przykładowego programu do obrabiarki. Przygotowanie obrabiarki do wykonania programu, symulacja (pomiar narzędzi, ustawienie zera programu) Symulacja programu w sterowniku. Wykonanie przedmiotu na podstawie opracowanego programu na frezarce. Pomiar obrobionego przedmiotu., Metody sprawdzania efektów kształcenia Symbol efektu.. K_02 Metody sprawdzania efektów kształcenia (sposób sprawdzenia, w tym dla umiejętności odwołanie do konkretnych zadań projektowych, laboratoryjnych, itp.) Egzamin, wykonanie projektu na podstawie zadanego rysunku i sprawdzian końcowy. Student, aby uzyskać ocenę dobrą powinien mieć wiedzę w zakresie budowy, możliwości technologicznych i zastosowania obrabiarek CNC, powinien wiedzieć jak dobrać obrabiarkę do określonego zadania produkcyjnego. Aby uzyskać ocenę bardzo dobrą, powinien dodatkowo znać układ osi obrabiarek, zasady obsługi pulpitu sterowniczego i ekranu, zarządzania plikami, tabelami narzędzi, trybami pracy, tworzenia programów obróbkowych. Egzamin, wykonanie projektu na podstawie zadanego rysunku i sprawdzian końcowy. Student, aby uzyskać ocenę dobrą powinien mieć wiedzę w zakresie budowy programu CNC, struktury wiersza programowego, doboru parametrów skrawania i narzędzi. Powinien mieć wiedzę w zakresie układu osi obrabiarek, obsługi pulpitu sterowniczego, ekranu, zarządzania plikami, tabelami narzędzi, trybami pracy, tworzenia programów obróbkowych, programowania funkcji toru kształtowego, oraz jak definiować punkty zerowe. Aby uzyskać ocenę bardzo dobrą, powinien dodatkowo znać i rozumieć zasadę programowania z wykorzystaniem cykli obróbkowych i pętli. Egzamin, aktywność na zajęciach z projektowania, samodzielne wykonanie projektu i sprawdzian końcowy. Student, aby uzyskać ocenę dobrą, powinien umieć wykorzystać podstawową wiedze teoretyczną zdobytą na wykładach i laboratoriach w celu doboru parametrów obróbki i narzędzi do określonego zdania technologicznego. Aby uzyskać ocenę bardzo dobrą, powinien dodatkowo umieć korzystać z katalogów producentów narzędzi skrawających. Egzamin, aktywność na zajęciach z projektowania, samodzielne wykonanie projektu i sprawdzian końcowy. Student, aby uzyskać ocenę dobrą, powinien umieć dobrać materiał wyjściowy i obrabiarkę do prostego zadania produkcyjnego. Aby uzyskać ocenę bardzo dobrą, powinien dodatkowo umieć wykonać rysunek materiału wyjściowego i korzystać z katalogów branżowych. Obserwacja postawy studenta podczas zajęć dydaktycznych, dyskusja podczas zajęć projektowych. Student aby uzyskać ocenę dobrą powinien rozumieć potrzebę ciągłego rozwoju w zakresie technik wytwarzania sposobami obróbki ubytkowej i na bieżąco ją uzupełniać. Aby uzyskać oceną bardzo dobrą, powinien uzupełniać tę wiedzę w zakresie szerszym od członków grupy np. korzystać materiałów publikacyjnych. Obserwacja postawy studenta podczas zajęć dydaktycznych, dyskusja podczas zaliczenia projektu. Student, aby uzyskać ocenę dobrą powinien rozumieć znaczenie oddziaływania technik

wytwarzania na środowisko naturalne. Aby uzyskać ocenę bardzo dobrą, powinien umieć dokonać analizy wpływu konkretnego procesu wytwarzania na środowisko naturalne.

D. NAKŁAD PRACY STUDENTA Bilans punktów ECTS Rodzaj aktywności obciążenie studenta 1 Udział w wykładach 18h 2 Udział w ćwiczeniach 3 Udział w laboratoriach 4 Udział w konsultacjach (2-3 razy w semestrze) 15h 5 Udział w zajęciach projektowych 18h 6 Konsultacje projektowe 15h 7 Udział w egzaminie 2h 8 9 Liczba godzin realizowanych przy bezpośrednim udziale nauczyciela 68 h akademickiego (suma) 10 Liczba punktów ECTS, którą student uzyskuje na zajęciach wymagających bezpośredniego udziału nauczyciela akademickiego (1 punkt ECTS=25-30 godzin obciążenia studenta) 2,7 ECTS 11 Samodzielne studiowanie tematyki wykładów 30h 12 Samodzielne przygotowanie się do ćwiczeń 13 Samodzielne przygotowanie się do kolokwiów 14 Samodzielne przygotowanie się do laboratoriów 5h 15 Wykonanie sprawozdań 15 Przygotowanie do kolokwium końcowego z laboratorium 17 Wykonanie projektu lub dokumentacji 30h 18 Przygotowanie do egzaminu 20h 19 20 Liczba godzin samodzielnej pracy studenta 21 Liczba punktów ECTS, którą student uzyskuje w ramach samodzielnej pracy (1 punkt ECTS=25-30 godzin obciążenia studenta) 85h (suma) 3,3 ECTS 22 Sumaryczne obciążenie pracą studenta 153h 23 Punkty ECTS za moduł 1 punkt ECTS=25-30 godzin obciążenia studenta 6 ECTS 24 Nakład pracy związany z zajęciami o charakterze praktycznym Suma godzin związanych z zajęciami praktycznymi 25 Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym 1 punkt ECTS=25-30 godzin obciążenia studenta E. LITERATURA 38h 1 ECTS Wykaz literatury 1. Boguś Z.: Numeryczne sterowanie obrabiarek. Skrypt P.G. Gdańsk 1987. 2. Kosmol J.: Automatyzacja obrabiarek i obróbki skrawaniem. WNT Warszawa 2000. 3. Słomski J., Cieślik J., Bałaziński M: Zasady budowy, działania i programowania OSN. Skrypt AGH Kraków 1985. 4. Programowanie obrabiarek CNC - toczenie. Wyd. REA s,j. 5. Programowanie obrabiarek CNC - frezowanie. Wyd. REA s.j.

6. Polskie Normy: PN-93/M-55251 - Maszyny sterowane numerycznie. Osie współrzędnych i zwroty ruchów, PN-73/M-55256 - Obrabiarki do metali. Kodowanie funkcji przygotowawczych G i funkcji pomocniczych M dla obrabiarek sterowanych numerycznie. 1. Kosmol J.: Automatyzacja obrabiarek i obróbki skrawaniem. WNT Warszawa 2000. 2. Programowanie obrabiarek CNC - toczenie. Wyd. REA s.j. 3. Programowanie obrabiarek CNC - frezowanie. Wyd. REA s.j. 4. Polskie Normy: PN-93/M-55251 - Maszyny sterowane numerycznie. Osie współrzędnych i zwroty ruchów. PN-73/M-55256 - Obrabiarki do metali. Kodowanie funkcji przygotowawczych G i funkcji pomocniczych M dla obrabiarek sterowanych numerycznie, 5. Instrukcje do poszczególnych ćwiczeń. Witryna W modułu/przedmiotu 1.