EGZAMIN MATURALNY Z INFORMATYKI WYBRANE: ... (system operacyjny) ... (program użytkowy) ... (środowisko programistyczne)

Podobne dokumenty
EGZAMIN MATURALNY Z INFORMATYKI 13 MAJA 2019 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 14:00 CZĘŚĆ I WYBRANE: Czas pracy: 90 minut

EGZAMIN MATURALNY Z INFORMATYKI WYBRANE: ... (system operacyjny) ... (program użytkowy) ... (środowisko programistyczne)

EGZAMIN MATURALNY Z INFORMATYKI 11 MAJA 2018 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 14:00 CZĘŚĆ I WYBRANE: Czas pracy: 90 minut

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI WYBRANE: ... (system operacyjny) ... (program użytkowy) ... (środowisko programistyczne)

EGZAMIN MATURALNY Z INFORMATYKI 17 MAJA 2016 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 14:00 CZĘŚĆ I WYBRANE: Czas pracy: 90 minut

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2013 POZIOM ROZSZERZONY WYBRANE: CZĘŚĆ I. Czas pracy: 90 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2013 POZIOM PODSTAWOWY CZĘŚĆ I WYBRANE: Czas pracy: 75 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI 19 MAJA 2015 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 9:00 CZĘŚĆ I WYBRANE: Czas pracy: 75 minut

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2011 POZIOM PODSTAWOWY CZĘŚĆ I WYBRANE: Czas pracy: 75 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z INFORMATYKI 11 MAJA 2018 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 14:00 CZĘŚĆ I WYBRANE: Czas pracy: 75 minut

EGZAMIN MATURALNY Z INFORMATYKI 17 MAJA 2016 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 14:00 CZĘŚĆ I WYBRANE: Czas pracy: 75 minut

EGZAMIN MATURALNY Z INFORMATYKI 19 MAJA 2015 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 9:00 CZĘŚĆ I WYBRANE: Czas pracy: 75 minut

EGZAMIN MATURALNY Z INFORMATYKI 13 MAJA 2019 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 14:00 CZĘŚĆ I WYBRANE: Czas pracy: 75 minut

EGZAMIN MATURALNY Z INFORMATYKI. 10 maja 2017 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 14:00 CZĘŚĆ I

EGZAMIN MATURALNY Z INFORMATYKI POZIOM PODSTAWOWY MAJ 2014 CZĘŚĆ I WYBRANE: Czas pracy: 75 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2014 POZIOM ROZSZERZONY CZĘŚĆ I WYBRANE: Czas pracy: 90 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z INFORMATYKI CZERWIEC 2011 POZIOM PODSTAWOWY CZĘŚĆ I WYBRANE: Czas pracy: 75 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2010 POZIOM ROZSZERZONY CZĘŚĆ I WYBRANE: Czas pracy: 90 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY

PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI 10 MAJA 2017 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 14:00 CZĘŚĆ I

EGZAMIN MATURALNY Z INFORMATYKI 19 MAJA 2015 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 9:00 CZĘŚĆ I WYBRANE: Czas pracy: 90 minut

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI 19 MAJA 2015 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 9:00 CZĘŚĆ I WYBRANE: Czas pracy: 90 minut

PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI STYCZEŃ Arkusz I. Czas pracy: 60 minut Liczba punktów do uzyskania: 15

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2010 POZIOM PODSTAWOWY CZĘŚĆ I WYBRANE: Czas pracy: 75 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2012 POZIOM ROZSZERZONY WYBRANE: CZĘŚĆ I. Czas pracy: 90 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY

PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI STYCZEŃ POZIOM ROZSZERZONY Część I

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI

PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI

PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI

RÓBNY EGZAMIN MATURALNY Z INFORMATYKI

PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI

PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2014 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI

PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI STYCZEŃ POZIOM ROZSZERZONY Część I

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2012 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2012 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY 9 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z INFORMATYKI

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę

MAJ Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby. cyrkla.

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę

EGZAMIN MATURALNY Z INFORMATYKI POZIOM PODSTAWOWY CZĘŚĆ II 11 MAJA 2018 WYBRANE: Czas pracy: 120 minut. Liczba punktów do uzyskania: 30

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę

MAJ Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby.

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2014 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY 9 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z INFORMATYKI POZIOM ROZSZERZONY CZĘŚĆ II MAJ 2011 WYBRANE: Czas pracy: 150 minut. Liczba punktów do uzyskania: 30 WPISUJE ZDAJĄCY

Zadanie 1. Potęgi (14 pkt)

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

Zadanie 1. Test (6 pkt) Zaznacz znakiem X w odpowiedniej kolumnie P lub F, która odpowiedź jest prawdziwa, a która fałszywa.

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY 9 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

Czas pracy: 60 minut

MAJ Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby. cyrkla.

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę

EGZAMIN MATURALNY Z INFORMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY

EGZAMIN MATURALNY Z MATEMATYKI 8 MAJA 2015 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI 8 MAJA 2015 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50

Transkrypt:

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MIN 2019 KOD UZUEŁNIA ZDAJĄCY ESEL miejsce na naklejkę EGZAMIN MATURALNY Z INORMATYKI OZIOM ROZSZERZONY CZĘŚĆ I DATA: 13 maja 2019 r. GODZINA ROZOCZĘCIA: 14:00 CZAS RACY: 60 minut LICZBA UNKTÓW DO UZYSKANIA: 15 UZUEŁNIA ZDAJĄCY Instrukcja dla zdającego Układ graficzny CKE 2015 WYBRANE:... (system operacyjny)... (program użytkowy)... (środowisko programistyczne) MIN-R1_1-192 1. Sprawdź, czy arkusz egzaminacyjny zawiera 8 stron. Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin. 2. Rozwiązania i odpowiedzi zamieść w miejscu na to przeznaczonym. 3. isz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem. 4. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl. 5. amiętaj, że zapisy w brudnopisie nie podlegają ocenie. 6. Wpisz zadeklarowane (wybrane) przez Ciebie na egzamin system operacyjny, program użytkowy oraz środowisko programistyczne. 7. Jeżeli rozwiązaniem zadania lub jego części jest algorytm, to zapisz go w notacji wybranej przez siebie: listy kroków, pseudokodu lub języka programowania, który wybierasz na egzamin. 8. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer ESEL i przyklej naklejkę z kodem. 9. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora. NOWA ORMUŁA NOWA ORMUŁA MIN 2019

Zadanie 1. Ulubione liczby Małgosia i Jaś lubią liczby. Małgosia lubi liczby nieparzyste, a Jaś lubi liczby parzyste. Każde z dzieci zapisało po kilka spośród swoich ulubionych liczb na jednej wspólnej kartce. Najpierw Małgosia zapisała wszystkie swoje liczby, a potem Jaś dopisał swoje. Zadanie 1.1. (0 5) Napisz algorytm (w postaci listy kroków, w pseudokodzie lub w wybranym języku programowania), który dla danego ciągu liczb zapisanych przez dzieci znajdzie pierwszą liczbę zapisaną przez Jasia. Zakładamy, że każde z dzieci zapisało co najmniej jedną liczbę. rzy ocenie będzie brana pod uwagę złożoność czasowa Twojego algorytmu. Maksymalną liczbę punktów uzyskasz za algorytm o złożoności lepszej niż liniowa. Uwaga: W zapisie algorytmu możesz wykorzystać tylko operacje arytmetyczne (dodawanie, odejmowanie, mnożenie, dzielenie, dzielenie całkowite, reszta z dzielenia), instrukcje porównania, instrukcje sterujące i przypisania do zmiennych lub samodzielnie napisane funkcje, wykorzystujące wyżej wymienione operacje. Specyfikacja: Dane: Wynik: w n liczba całkowita większa od 1 A[1..n] tablica zawierająca ciąg n liczb zapisanych przez dzieci (najpierw wszystkie liczby nieparzyste, a potem wszystkie liczby parzyste) pierwsza od lewej parzysta liczba w tablicy A rzykład: Dane: n = 10 A[1..n] = 5, 99, 3, 7, 111, 13, 4, 24, 4, 8 Wynik: w = 4 Strona 2 z 8

Zadanie 1.2. (0 1) odaj, jaką złożoność czasową kwadratową, liniową, logarytmiczną lub inną (napisz jaką) ma Twój algorytm... Wypełnia egzaminator Nr zadania 1.1. 1.2. Maks. liczba pkt. 5 1 Uzyskana liczba pkt. Strona 3 z 8

Zadanie 2. Analiza algorytmu rzeanalizuj podaną funkcję pisz. Specyfikacja: Dane: s napis n liczba całkowita dodatnia, nie mniejsza niż długość napisu s k liczba całkowita z zakresu [2..10] funkcja pisz(s,n,k) jeżeli dł(s) = n wypisz s w przeciwnym razie dla i=0,1 k-1 wykonuj pisz(s + napis(i), n, k) Uwaga: dł(x) s1 + s2 napis(p) daje w wyniku długość napisu x daje w wyniku złączenie napisów s1 i s2 daje w wyniku napis będący zapisem dziesiętnym liczby całkowitej p Zadanie 2.1. (0 2) a) Uzupełnij miejsca oznaczone kropkami w drzewie wywołań funkcji pisz otrzymanym w wyniku wywołania pisz("",2,2). b) W kwadratowych polach, przy węzłach drzewa, podaj odpowiednią kolejność wywołań funkcji pisz, tzn. przy pierwszym wywołaniu 1, przy kolejnym 2 itd. 1 pisz("",2,2) pisz("0",2,2) pisz("1",2,2) pisz("00",2,2) pisz("01",2,2).... Strona 4 z 8

Zadanie 2.2. (0 2) Uzupełnij poniższą tabelę przeanalizuj podane w niej wywołania funkcji pisz. odaj napisy wypisywane w wyniku wywołania funkcji pisz z zadanymi parametrami oraz łączną liczbę wywołań tej funkcji. ierwsze wywołanie funkcji pisz pisz("", 3, 2) Napisy wypisane w wyniku wywołania funkcji pisz Łączna liczba wywołań funkcji pisz pisz("", 2, 3) Zadanie 2.3. (0 2) odaj wzór na łączną liczbę wywołań funkcji pisz w wyniku wywołania pisz("", n, k)... Wypełnia egzaminator Nr zadania 2.1. 2.2. 2.3. Maks. liczba pkt. 2 2 2 Uzyskana liczba pkt. Strona 5 z 8

Zadanie 3. Test Oceń prawdziwość podanych zdań. Zaznacz, jeśli zdanie jest prawdziwe, albo jeśli jest fałszywe. W każdym zadaniu punkt uzyskasz tylko za komplet poprawnych odpowiedzi. Zadanie 3.1. (0 1) Dana jest tabela RACOWNICY. Nr_ Nazwisko Imię Stanowisko Nr_działu 736 Smitko Alan urzędnik 20 7499 Nowak Kazimierz sprzedawca 30 7521 Więcek Mariusz sprzedawca 30 7566 Jonas Kamil kierownik 20 7654 Martin Leon sprzedawca 30 7698 Bracki Bartosz kierownik 30 7782 Celerek Agnieszka kierownik 10 7788 Skotnik Natalia analityk 20 7839 King Mirosława prezes 10 1. 2. 3. 4. Wynikiem zapytania SELECT COUNT(Stanowisko) ROM RACOWNICY; jest Stanowisko 5 Wynikiem zapytania SELECT COUNT(Stanowisko) ROM RACOWNICY WHERE Stanowisko <> "kierownik"; jest 6 Wynikiem zapytania SELECT Stanowisko, COUNT(*) ROM RACOWNICY GROU BY Stanowisko; jest urzędnik 1 sprzedawca 3 kierownik 3 analityk 1 prezes 1 Wynikiem zapytania SELECT COUNT(Stanowisko) ROM RACOWNICY WHERE Stanowisko LIKE "*nik"; jest 2 Strona 6 z 8

Zadanie 3.2. (0 1) o pomnożeniu dwóch liczb 11111102 oraz 1012 zapisanych w systemie dwójkowym otrzymamy: 1. 213124 2. 10010101102 3. 11668 4. 27616 Miejsce na obliczenia Zadanie 3.3. (0 1) 1. DNS to skrót od Domain Name System. 2. Do danego adresu I może być przypisanych wiele różnych nazw. 3. rzy zmianie adresu I komputera pełniącego funkcję serwera WWW jest konieczna zmiana nazwy domeny internetowej. 4. System DNS ma jedną centralną bazę danych adresów I i nazw. Wypełnia egzaminator Nr zadania 3.1. 3.2. 3.3. Maks. liczba pkt. 1 1 1 Uzyskana liczba pkt. Strona 7 z 8

BRUDNOIS (nie podlega ocenie) Strona 8 z 8