Część 4. Sterowanie i bezpieczna praca przyrządów półprzewodnikowych mocy

Podobne dokumenty
Przegląd przyrządów półprzewodnikowych mocy (1) Łukasz Starzak, Przyrządy półprzewodnikowe mocy, zima 2015/16

Parametry przyrządów półprzewodnikowych

Właściwości tranzystora MOSFET jako przyrządu (klucza) mocy

Część 3. Przegląd przyrządów półprzewodnikowych mocy. Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 51

Szacowanie mocy czynnej straty dynamiczne w tranzystorach MOSFET (obwód mocy)

Polaryzacja wsteczna BJT IGBT MOSFET

7. Tyrystory. Tyrystor SCR (Silicon Controlled Rectifier)

ELEMENTY UKŁADÓW ENERGOELEKTRONICZNYCH

Złożone struktury diod Schottky ego mocy

Elementy półprzewodnikowe. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego.

SYMBOLE GRAFICZNE. Tyrystory. Struktura Charakterystyka Opis

Część 2. Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych

Część 1. Bezpieczeństwo przyrządów półprzewodnikowych mocy

Przegląd półprzewodnikowych przyrządów mocy

7. TYRYSTORY 7.1. WSTĘP

IV. TRANZYSTOR POLOWY

Rozmaite dziwne i specjalne

Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska

Budowa. Metoda wytwarzania

Wykład VIII TRANZYSTOR BIPOLARNY

Część 2. Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych

Część 2. Sterowanie fazowe

Wykład X TRANZYSTOR BIPOLARNY

Rozmaite dziwne i specjalne

Tranzystory. 1. Tranzystory bipolarne 2. Tranzystory unipolarne. unipolarne. bipolarny

Ćwiczenie - 3. Parametry i charakterystyki tranzystorów

Elementy przełącznikowe

Elementy elektroniczne Wykład 9: Elementy przełączające

Półprzewodnikowe przyrządy mocy

1. Zarys właściwości półprzewodników 2. Zjawiska kontaktowe 3. Diody 4. Tranzystory bipolarne

Temat: Tyrystor i triak.

Przyrządy półprzewodnikowe część 5 FET

Część 3. Układy scalone mocy

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych

LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH

Dobór współczynnika modulacji częstotliwości

BADANIE TRANZYSTORA BIPOLARNEGO Z IZOLOWANĄ BRAMKĄ (IGBT)

Ćwiczenie 4. Parametry statyczne tranzystorów polowych JFET i MOSFET

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI

Politechnika Białostocka

Diody półprzewodnikowe

Diody półprzewodnikowe

III. TRANZYSTOR BIPOLARNY

Działanie przetwornicy synchronicznej

Badanie charakterystyk elementów półprzewodnikowych

Elementy i Układy Sterowania Mocą

Przykładowe pytania do przygotowania się do zaliczenia poszczególnych ćwiczeń z laboratorium Energoelektroniki I. Seria 1

płytka montażowa z tranzystorami i rezystorami, pokazana na rysunku 1. płytka montażowa do badania przerzutnika astabilnego U CC T 2 masa

SDD287 - wysokoprądowy, podwójny driver silnika DC

W2. Wiadomości nt. doboru termicznego (część 1)

EL08s_w03: Diody półprzewodnikowe

DANE: wartość skuteczna międzyprzewodowego napięcia zasilającego E S = 230 V; rezystancja odbiornika R d = 2,7 Ω; indukcyjność odbiornika.

Politechnika Białostocka

Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE. Badanie tranzystorów unipolarnych typu JFET i MOSFET

Zasada działania tranzystora bipolarnego

Diody półprzewodnikowe

Liniowe układy scalone w technice cyfrowej

Modelowanie diod półprzewodnikowych

ELEKTRONIKA ELM001551W

Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych Laboratorium Przyrządów Półprzewodnikowych. Ćwiczenie 4

Podzespoły i układy scalone mocy część II

Część 3. Układy scalone mocy

Przetwornica mostkowa (full-bridge)

Przekaźniki w automatyce przemysłowej

Tranzystory bipolarne elementarne układy pracy i polaryzacji

Zadania z podstaw elektroniki. Zadanie 1. Wyznaczyć pojemność wypadkową układu (C1=1nF, C2=2nF, C3=3nF):

Ćwiczenie 24 Temat: Układy bramek logicznych pomiar napięcia i prądu. Cel ćwiczenia

Tranzystory polowe FET(JFET), MOSFET

12. Zasilacze. standardy sieci niskiego napięcia tj. sieci dostarczającej energię do odbiorców indywidualnych

Pytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych

Tranzystory polowe. Podział. Tranzystor PNFET (JFET) Kanał N. Kanał P. Drain. Gate. Gate. Source. Tranzystor polowy (FET) Z izolowaną bramką (IGFET)

Lekcja 19. Temat: Wzmacniacze pośrednich częstotliwości.

Laboratorium Przyrządów Półprzewodnikowych test kompetencji zagadnienia

Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych pokój:

Spis treści 3. Spis treści

Temat i cel wykładu. Tranzystory

Właściwości przetwornicy zaporowej

Elektronika. Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej.

Elektronika: Polaryzację złącza w kierunku zaporowym i w kierunku przewodzenia (pod rozdz. 6.3). Charakterystykę diody (rozdz. 7).

Włączanie i wyłączanie tyrystora. Włączanie tyrystora przy pomocy kondensatora Cel ćwiczenia;

Prostowniki. Prostownik jednopołówkowy

Ćwiczenie 5. Zastosowanie tranzystorów bipolarnych cd. Wzmacniacze MOSFET

Elementy optoelektroniczne. Przygotował: Witold Skowroński

Pytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych

SDD287 - wysokoprądowy, podwójny driver silnika DC

Ćwiczenie 1 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH

Politechnika Białostocka

Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych Laboratorium Przyrządów Półprzewodnikowych. Ćwiczenie 2

Politechnika Białostocka

Diody, tranzystory, tyrystory. Materiały pomocnicze do zajęć.

Część 2. Sterowanie fazowe

Elementy elektroniczne Wykłady 7: Tranzystory polowe

Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Katedra Elektroniki

TRANZYSTORY BIPOLARNE ZŁĄCZOWE

Natężenie prądu elektrycznego

Ćwiczenie nr 4 Tranzystor bipolarny (npn i pnp)

Elementy i Układy Sterowania Mocą

6. TRANZYSTORY UNIPOLARNE

WSTĘP DO ELEKTRONIKI

Tranzystory i ich zastosowania

Transkrypt:

Część 4 Sterowanie i bezpieczna praca przyrządów półprzewodnikowych mocy 73

Sterowanie napięciowo-ładunkowe Główny warunek załączenia Pojemności pasożytnicze (~10 1000 pf): liniowe: CGN, CGO, CCP, CGD(ox) ε ox C ox =A =const t ox nieliniowe, zależne od napięcia (złączowe): CDS, CGD(sc) Dodatkowy warunek załączenia Q C= U UGS(on) > UGS(th) napięcie progowe bramka-źródło (1 5 V) QG > QG(on) załączający ładunek bramki (~1 100 nc) doprowadzenie ładunku wymaga przepływu określonego prądu przez określony czas 74

Dodatkowe wymagania związane z przełączaniem Charakterystyka przejściowa ID = f(ugs) UGS(on) > UGS(ID(on)) Charakterystyka wyjściowa zakres, UDS(on) = f(id, UGS) UGS(on) UGS(opt)(ID(on)) Wytrzymałość napięciowa układu bramka-podłoże UGS UGS(max,rat) Wyłączanie: UGS(of) drugorzędne, ale ma wpływ na: pewność wyłączenia szybkość wyłączania 75

Rezystancja w obwodzie bramki Wpływ na przełączanie zmiana czasu załączania i czasu wyłączania dwie drogi do tego samego wniosku: stała czasowa obwodu bramki t /τ ( ) u GS =U GS(on) 1 e Argumenty za skróceniem czasów przełączania G τ G =R G C in prąd bramki Q G= i G d t u g u GS i G= RG Rezystancja wewnętrzna bramki rzędu kilku Ω może wystarczyć, ale duży rozrzut zmniejszenie energii wydzielanej podczas przełączania możliwość zwiększenia częstotliwości przełączania zmniejszenie wymiarów elementów biernych Kontrargumenty indukcja zaburzeń na indukcyjnościach pasożytniczych di u ind=ls dt ograniczenie prądu sterownika większa kontrola nad czasem przełączania, szczególnie przy szeregowych połączeniach tranzystorów 76

Wykorzystanie charakterystyki ładunku bramki Ładunki bramki załączający QG(on) (punkt D) całkowity QG(tot) (punkt E) pewność załączenia moc strat dynamicznych (zał. QGD + QGS2 QG(on)) pobór prądu/mocy na sterowanie Zależność od warunków pracy QGS2 rośnie z ID(on) QGD rośnie z UDS(of) QG(on) jest niezależny od parametrów obwodu bramki RG, UGS(on), UGS(of) 77

Rzeczywisty generator impulsów bramkowych Najczęstsze rozwiązania tranzystor lub para wzmacniacz operacyjny mikrokontroler / sterownik logiczny (controller) dedykowany sterownik bramki (gate driver) Czasem dodatkowo izolacja optyczna może być scalona wymaga osobnego zasilania strony tranzystora transformator impulsowy Rola poziom(y) napięcia logika tranzystor amplituda podstawa wydajność/obciążalność prądowa pozwalająca na przełączenie tranzystora w pożądanym czasie 78

Sterownik bramki tranzystorów polowych mocy (MOSFET, IGBT) IR2117 prosty sterownik bramki Wyjście VHO = VS VHO = VB = VS+Ub Łącznik dolny VS = 0, Ub = UGG 79

Droga prądu bramki Przepływ ładunku = prąd prąd płynie w obwodzie zamkniętym, który należy dobrze zaplanować w przeciwnym razie duży prąd popłynie nieprzewidywalnie może uszkodzić elementy w obwodzie mogą występować zaburzenia Jak najmniejsza długość i powierzchnia VHO = VB ; ugs Ub VHO = VS ; ugs 0 szybkość propagacji generacja zaburzeń przechwytywanie zaburzeń Brak odcinków wspólnych z obwodem mocy inaczej przeniosą się zaburzenia 80

Sterownik łącznika górnego samoładujące się zasilanie obwodu bramki (układ bootstrap) Zadanie konieczna generacja sygnału bramkowego względem źródła tranzystora (VS) źródło T nie przyłączone do masy źródła zasilania sterownika UGG kondensator Cb jest niezbędny jako źródło napięcia Ub Działanie kondensator doładowuje się do UBS = UGG VS musi być czasowo równe 0 dzieje się to samoczynnie kiedy ug = 0, gdyż wtedy url 0 sterowniki (pół)mostka dolny tranzystor zamiast odbiornika Łącznik górny VS = url = var, Ub = UGG UF,Db Wymagania układ cały czas przełączany wykluczone D = 1 (i bliskie) połączone masy obu obwodów przez odbiornik mała RL (ZL, Ron dolnego T) 81

Sterowanie tranzystorów BJT w układach impulsowych Wzmocnienie prądowe I C =β f I B βf statyczne wzmocnienie prądowe przy pracy normalnej w układzie wspólnego emitera Praca w roli łącznika celem jest możliwość przewodzenia prądu obciążenia przy niskim spadku potencjału (UCE) jak największe IB nie uzyskanie konkretnego stosunku IC do IB wartość IC jest narzucona z zewnątrz (np. przez odbiornik) stąd częsta praca ze wzmocnieniem wymuszonym, tj. będącym konsekwencją IC i IB 82

Punkt pracy w stanie przewodzenia Zależność wzmocnienia od prądu kolektora BU1508DX: IC(rat) = 8 A, βf(nom) = 13 silna, nieliniowa, niemonotoniczna charakterystyka podawana dla UCE = const, w zakresie aktywnym stosunkowo duże UCE wartość znamionowa to wartość maksymalna, a nie występująca dla prądu znamionowego Zakres nasycenia duża liczba nośników nadmiarowych niski spadek napięcia niska statyczna moc strat powolne wyłączanie wysoka dynamiczna moc strat lepszy zakres quasi-nasycenia 83

Układy sterowania Zasilanie dwubiegunowe Zasilanie jednobiegunowe Przyspieszenie wyłączania Realizacja źródła prądowego 84

Załączanie bramkowe i wyłączanie tyrystora Załączanie Wyłączanie kontrolowane przez moment podania impulsu bramkowego prąd zatrzasku IL prąd podtrzymania IH Ograniczenie zakresu sterowania fazowego Przebicie cieplne przy załączaniu krytyczna stromość narastania prądu przewodzenia dit/dt ryzyko spada ze wzrostem ig 85

Wyłączanie tyrystorów Przebieg procesu układ pracy zapewnia ujemne napięcie na tyrystorze usuwanie ładunku prądem wstecznym czas odzyskiwania zdolności zaworowej trr Niebezpieczeństwo załączenia (niepożądanego) obecność nośników w głębi tyrystora nawet po upływie trr dalszy zanik w drodze rekombinacji powolny, do tego czasu wewnętrzne złącze nadal przewodzi czas wyłączania tq Załączanie stromościowe nośniki mogą również napłynąć w wyniku przepływu tzw. prądu przesunięcia krytyczna stromość narastania napięcia blokowania (dud/dt)crit 86

Impulsy bramkowe Warunki załączenia proste sterowanie przesunięte i przeskalowane napięcie sieci przekroczenie (w praktyce 3 5x) przełączającego prądu bramki IGT lub napięcia przełączającego UGT gwarantuje odpowiedni IGT dostateczna długość impulsu optymalny kształt impulsu prądu bramki z użyciem generatora impulsów (najprostszy: kondensator + diak) sterowanie ciągłe obciążenie indukcyjne ciąg impulsów jak wyżej, ale mniejsza moc sterowania 87

Generacja impulsów prądu bramki Serie o różnym IGT Prosty układ sterowania (G ) IGT di/dt, du/dt przyrządy logic-level, sensitive gate możliwe sterowanie bezpośrednio z wyjścia mikrokontrolera (IGT 5 ma) Tyrystory dwukierunkowe (traki) niesymetryczna budowa powoduje różne wartości IGT dla różnych polaryzacji obwodu głównego i prądu bramki najbardziej korzystna: MT2+ G+ niekorzystna: MT2 G+ jeżeli jedna polaryzacja ig, to Sterownik scalony z izolacją galwaniczną przełączanie przy zerowym napięciu minimalizuje di/dt przyrządy 3-ćwiartkowe brak wyzwalania dla MT2 G+, ale zwiększona niezawodność 88

Autonomiczny obwód sterowania bramki Źródłem prądu impulsowego jest kondensator szybkość narastania napięcia zależy od potencjometru Diak załącza się przy 20 40 V Układ ulepszony dezaktywacja obwodu sterowania po załączeniu triaka mniejsza moc sterowania Rd 89

Obszar bezpiecznej pracy Definicja obszar na płaszczyźnie charakterystyk statycznych obwodu głównego, w którego dowolnym miejscu może się bezpiecznie znajdować punkt pracy przyrządu, w określonych warunkach cieplnych Granice mogą wynikać z: Tranzystor VDMOS, kierunek przewodzenia bezpieczeństwa napięciowego obwodu głównego bezpieczeństwa cieplnego obwodu głównego ale także: ograniczeń obwodu sterowania ograniczeń obudowy 1 2 3a 3 3b 4 5 rezystancja w stanie załączenia maksymalny dopuszczalny prąd impulsowy maksymalny dopuszczalny prąd ciągły maks. dopuszczalna moc strat dla pracy ciągłej maks. dopuszczalna moc strat dla pracy impulsowej przebicie cieplne przebicie lawinowe 90

Przebicie cieplne Prąd nośników generowanych cieplnie w obszarze ładunku przestrzennego złącza Moc odprowadzana do otoczenia Moc wydzielana w przyrządzie 91

Mikroskopowe mechanizmy i skutki przebicia cieplnego Przebicie cieplne zachodzi, gdy wystąpi niestabilność cieplna dodatnie sprzężenie zwrotne powodujące samorzutne narastanie temperatury W obszarze ładunku przestrzennego generowane są termicznie pary h-e Niestabilność cieplna ma charakter lokalny wywołuje ją nadmierna lokalna Tj gęstość objętościowa mocy pv gęstość prądu J przeciwdziałanie: zwiększenie przekroju, równomierny rozpływ prądu zwiększone niebezpieczeństwo w stanach dynamicznych Przy pewnej Tj: ni N (ND albo NA) n p ni (a nie N i ni2/n) krytyczne są gorące punkty w których T jest najwyższa σ jest wyższa, a więc ρ niższa ściąganie prądu J p T ni półprzewodnik staje się samoistnym o dużej przewodności (mezoplazma) zlanie obszarów N/P uniemożliwia działanie przyrządów zanikają złącza Ostatecznie uszkodzenie mechaniczne np. pęknięcie, stopienie 92

Inicjacja przebicia cieplnego w przyrządach półprzewodnikowych mocy Tranzystor BJT z temperaturą rośnie prąd nasycenia, prąd dyfuzyjny, czas życia nośników, wzmocnienie prądowe pojedyncza struktura na całej pastylce krzemu łatwo o nierównomierny rozpływ prądu długie przełączanie łatwo osiągnąć Tcrit Tranzystor MOSFET zalety: T ρ ; struktura komórkowa; krótkie przełączanie występuje pasożytniczy BJT rozrzut UGS(th) komórek nierównomierny rozpływ prądu T UGS(th) J przebicie lawinowe nadmierne wydzielanie mocy 93

Prawo Fouriera przewodnictwa cieplnego W elektronice mocy konieczna jest analiza zjawisk cieplnych we wszystkich 4 stanach łącznika półprzewodnikowego wydzielana jest moc zbyt duża moc prowadzi do uszkodzenia przyrządu Postać ogólna i całkowa Materiał jednorodny q gęstość strumienia cieplnego [W/m2] T temperatura k przewodność cieplna [W/(m K)] Q ciepło [J] A pole przekroju U konduktancja cieplna [W/K] Rezystancja cieplna podstawowy parametr wykorzystywany w projektowaniu układów Rth rezystancja cieplna [K/W] 94

Cieplny układ pracy i elektryczny obwód równoważny Po uwzględnieniu P = dq/dt praktyczna postać prawa Fouriera: analog prawa Ohma analog napięciowego prawa Kirchhoffa: analog potencjału analog natężenia prądu analog rezystancji elektrycznej 95

Cieplny układ pracy z radiatorem Przy poprawnie dobranym radiatorze Rth(s-a) Rth(c-a) 96

Zastosowanie radiatorów Mechanizmy chłodzenia (oddawania ciepła) Montaż radiacja promieniowanie podczerwone konwekcja makroskopowy ruch czynnika chłodzącego naturalna grawitacyjna wymuszona wentylatory, pompy przewodności cieplnej materiału powierzchni i jej stosunku do objętości emisyjności powierzchni rodzaju i prędkości przepływu czynnika chłodzącego podkładki elektroizolacyjne zwiększają Rth(c-s) Rezystancja cieplna zależy od: pasty termoprzewodzące zmniejszają Rth(c-s) ale konieczne, gdy radiator wspólny dla kilku przyrządów chyba że posiadają izolowane obudowy Chłodzenie przy montażu powierzchniowym ścieżki drukowane dedykowane pole miedzi o dużej powierzchni, do którego lutowane jest odpowiednie wyprowadzenie przyrządu 97

Powierzchnia chłodząca np.: TO-3, 204 TO-220, 247, 262 TO-92 DO-204 (DO-35, 41) DIP Thermal Pad DIP Montaż przewlekany * * * * wyszczególnione wyprowadzenia dalej przez radiator Montaż powierzchniowy S Rth(j-a) TO-252, 263 np.: (DPAK, D2PAK) DO-214, SOD, SOT dalej przez miedź na płytce 1206, 1812 SOIC, (T)(S)SOP, QFP, DFN, QFN * * * * * Metalowe powierzchnie kontaktu standardowo nie są izolowane elektrycznie można je łączyć tylko ze ściśle określonym potencjałem obwodu dotyczy również radiatorów wspólnych dla kilku przyrządów 98

Wytrzymałość napięciowa W praktycznych przyrządach o wytrzymałości w zasadniczym kierunku blokowania decyduje przebicie lawinowe przebicie skrośne może występować jednocześnie (PT PIN, PT IGBT) zmniejsza napięcie przebicia lawinowego W kierunku zaporowym tranzystorów może decydować przebicie skrośne zależnie od typu tranzystora (budowy wewnętrznej) Przebicie lawinowe/skrośne nie jest niszczące samo z siebie, ale: przyrząd przestaje blokować płynie duży prąd (ograniczony impedancją obwodu) duża gęstość prądu aktywacja sprzężenia elektrotermicznego przebicie cieplne uszkodzenie połączeń wewnątrz obudowy duży prąd przy wysokim U=Ubr duża moc wydzielana wysoka Tj Tj > Tj(max) przyrząd poza SOA Tj > Tj(crit) przebicie cieplne 99

Napięcie przebicia Przyrządy bez wzmocnienia prądowego U br =U J(br) Przyrządy z mechanizmem tranzystora bipolarnego U br =U J(br) (1 α F )1/κ ; κ 5 mniejsza wytrzymałość napięciowa większy prąd upływu Napięcia przebicia BJT UCES(br) = UCBO(br) = UJ(br) UCEO(br) < UJ(br) stosowane częściowe zwarcie B-E opornikiem zwiększenie U br UCEO(br) < UCER(br) < UCES(br) kosztem spadku βf Wpływ temperatury na przebicie lawinowe T Ubr niekorzystna jest praca w niskich temperaturach 100

Polaryzacja wsteczna BJT CEO: przebicie skrośne bazy (BE) CES: przewodzenie dla UCE > UTO złącza PN (CB) przewodzenie dla U > UTO złącza PN (diody podłożowej) 1E-3 BJT CEO BJT CES MOSFET DSS IGBT-PT CES BJT+D CEO IGBT-PT+D CES 1E-4 1E-5 IR [A] MOSFET IGBT NPT: blokuje napięcie porównywalne z kierunkiem przewodzenia PT: niższe napięcie przebicia z powodu silnego domieszkowania warstwy buforowej B E N+ P N N+ C N N+ D N P+ C N+ P + C G S N+ P G 1E-6 E N+ P 1E-7 G 1E-8 0 5 10 15 20 25 E N+ P N UR [V] 101

Wykorzystanie parametrów znamionowych w doborze przyrządu Napięcie znamionowe Prąd znamionowy (ciągły) P d(rat) = stosowalne bezpośrednio zapas +50 100% na przepięcia zależy od warunków chłodzenia jest pochodną mocy dopuszczalnej zwykle Tc(nom) = 25 warunki nierealistyczne (idealne chłodzenie obudowy, Rth(c-a)=0) może służyć wyłącznie do zgrubnego doboru oraz porównywania przyrządów między sobą I D(rat) = ograniczony przez sterowanie lub doprowadzenia R th(j-c) P D(rat) U DS(on) (I D(rat) ) Wzór prawdziwy zawsze P d(max)= Prąd znamionowy szczytowy T j(max) T c(nom) T j(max) T a R th(j-a) Ta typowo 25, rozsądniej 40 uproszczenie na czas wstępnego poszukiwania przyrządu T j(max) 100 P d(max)= R th(j-c) dla krótkich impulsów, niskich częstotliwości Rth Zth 102