Construction of a rating based on a bankruptcy prediction model

Podobne dokumenty
SUPPLEMENTARY INFORMATION FOR THE LEASE LIMIT APPLICATION

System opieki zdrowotnej na tle innych krajów

OBWIESZCZENIE MINISTRA INFRASTRUKTURY. z dnia 18 kwietnia 2005 r.

Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards

Economic Survey 2018 Poland in the eyes of foreign investors

Economic Survey 2018 Poland in the eyes of foreign investors

Raport bieżący nr 24/2018 z dnia 28 sierpnia 2018 r. Wstępne wyniki finansowe za I półrocze 2018 r.

MŚP w 7. Programie Ramowym UE. Badania na Rzecz Małych i Średnich Przedsiębiorstw specjalny program dedykowany MŚP

SUPPLEMENTARY INFORMATION FOR THE LEASE LIMIT APPLICATION

Struktura sektora energetycznego w Europie


Presentation of results for GETIN Holding Group Q Presentation for investors and analyst of audited financial results

Warszawa, dnia 4 marca 2019 r. Warsaw, March 4 th, Oświadczenie Rady Nadzorczej. Statement of the Supervisory Board

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Tłumaczenie tytułu kolumny w języku polskim

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2

An employer s statement on the posting of a worker to the territory of the Republic of Poland

Tychy, plan miasta: Skala 1: (Polish Edition)

tum.de/fall2018/ in2357

Raport kwartalny AerFinance PLC za okres do roku Quarterly Report of AerFinance PLC

Luka płci w emeryturach w przyszłości

WYZWANIA RAPORTOWANIA ZINTEGROWANEGO RAPORTOWANIE NIEFINANSOWE W POLSCE

Raport bieżący nr 13/2016 Uchwały Zwyczajnego Walnego Zgromadzenia Akcjonariuszy z dnia 30 czerwca 2016 r.

POLSKI HOLDING NIERUCHOMOŚCI SPÓŁKA AKCYJNA FINANCIAL STATEMENTS FOR THE YEAR ENDED 31 DECEMBER 2012

Pruszków, 15 marca 2019 r. / Pruszków, March 15, 2019

Tłumaczenie tytułu kolumny w języku polskim

BALANCE SHEET/Bilans. Total Assets/Suma aktywów

Zrównoważona ochrona zdrowia wyzwania dla systemów ochrony zdrowia w obliczu starzejącego się społeczeństwa

Prices and Volumes on the Stock Market

Statystyki zachorowan na raka. Polska


Wykład: Przestępstwa podatkowe

PRZEDMIOT ZAINTERESOWANIA / SUBJECT OF INTEREST

Polska na tle świata i Europy w latach (w liczbach) Poland in the World s and Europe s background in (in figures)

Institutional Determinants of IncomeLevel Convergence in the European. Union: Are Institutions Responsible for Divergence Tendencies of Some

Business survey2016 Poland in the eyes of foreign investors

Przedsięwzięcia w fazie Start-UP oraz nakłady na badania i rozwój (R&D) sytuacja w Polsce oraz na świecie.

Monitorowanie zagrożenia pożarowego lasów w Polsce

Financial results of Apator Capital Group in 1Q2014

Sedo. MeetDomainers 2008 Domain Secondary Market News. Kamila Sękiewicz Sedo Europe

Current Report no. 35/2019

IP/08/618. Bruksela, dnia 22 kwietnia 2008 r.

WYKLUCZENIE SPOŁECZNE MŁODZIEŻY W EUROPIE

FINANCIAL REPORT 1H 2012 covering the period from to obejmuj cy okres od do

Akademia Młodego Ekonomisty. Mierniki dobrobytu gospodarczego. Jak mierzyć dobrobyt?

Raport bieżący: 44/2018 Data: g. 21:03 Skrócona nazwa emitenta: SERINUS ENERGY plc

Probabilistic Methods and Statistics. Computer Science 1 st degree (1st degree / 2nd degree) General (general / practical)

Bezpieczeństwo emerytalne kobiet w Europie. dr Agnieszka Chłoń-Domińczak Instytut Statystyki i Demografii SGH Instytut Badań Edukacyjnych

Wspieranie Inwestycji w Infrastrukturę szerokopasmową. Nie tylko Fundusze Strukturalne

Plac Powstańców Warszawy Warszawa Polska Warsaw Poland

statement of changes in equity for the reporting year from 1 January 2016 to 31 December 2016, reflecting equity increase by PLN 1,794,000;

Oznaczenia odzieży i produktów tekstylnych na świecie (obowiązkowe i dobrowolne)

Krytyczne czynniki sukcesu w zarządzaniu projektami

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.

PROJECT. Syllabus for course Global Marketing. on the study program: Management

Wyniki finansowe 1Q Financial results 1Q2019

Polska na tle Świata i Europy w latach (w liczbach) Poland in World and Europe (in figures)

Lasy i gospodarka leśna w Polsce w świetle raportu Stan lasów Europy 2011; wskaźniki ilościowe

Alkohol i prowadzenie pojazdu skala problemu w Polsce

17-18 września 2016 Spółka Limited w UK. Jako Wehikuł Inwestycyjny. Marek Niedźwiedź. InvestCamp 2016 PL

Country fact sheet. Noise in Europe overview of policy-related data. Poland

Hard-Margin Support Vector Machines

Holandia the Netherlands. Słowacja Slovakia. Niemcy Germany. usługa bezpłatna/ free of charge. usługa niedostępna/ not available

Standard pre-qualification form for contractors & suppliers. Formularz wstępny dla Wykonawców i Dostawców

Wyniki finansowe 3Q Financial results 3Q2018

1. PBG GROUP: CONTACT DETAILS

Innowacyjna technologia instalacji turbin wiatrowych z zastosowaniem

Wprowadzenie do programu RapidMiner, część 2 Michał Bereta 1. Wykorzystanie wykresu ROC do porównania modeli klasyfikatorów

Steps to build a business Examples: Qualix Comergent

Effective Governance of Education at the Local Level

Warsaw, August 25th, 2011

PLAN POŁĄCZENIA. INGRAM MICRO SPÓŁKA Z O.O. oraz INGRAM MICRO POLAND SPÓŁKA Z O.O. *** MERGER PLAN OF

B IURO B ADAWCZE DS. J AKOŚCI

Latent Dirichlet Allocation Models and their Evaluation IT for Practice 2016

Ferratum Group Śródroczny Skondensowany Skonsolidowany Raport Finansowy za Q zakończony QUARTERLY REPORT

Wypadek: dzwoń na 112 zdaniem Komisji wspólny europejski numer alarmowy wymaga wielojęzycznej obsługi

Pomiar dobrobytu gospodarczego

IP/09/1064. Bruksela, dnia 1 lipca 2009 r.

Forested areas in Cracow ( ) evaluation of changes based on satellite images 1 / 31 O

Melania Bąk Wartość firmy jako składnik majątku ujawnianego i nieujawnianego rozważania o istocie, klasyfikacji i znaczeniu... 20

Zarządzanie sieciami telekomunikacyjnymi

PROGRAM STAŻU. Nazwa podmiotu oferującego staż / Company name IBM Global Services Delivery Centre Sp z o.o.

9.4 External Debt by Country

for me to the learn. See you later. Wolontariusze EVS w roku 2015/2016

OpenPoland.net API Documentation

PORTS AS LOGISTICS CENTERS FOR CONSTRUCTION AND OPERATION OF THE OFFSHORE WIND FARMS - CASE OF SASSNITZ

Badania na Rzecz Małych i Średnich Przedsiębiorstw ę specjalny program dedykowany MŚP

Transport drogowy w Polsce wybrane dane

Jak przeciwdziałać nadużywaniu zwolnień lekarskich w branży produkcyjnej? adw. Paweł Sobol

Sweden. Beskidzkie Fabryki Mebli to firma z ponad 40-letnią tradycją osadzona w przemysłowych tradycjach Bielska-Białej.

Cracow University of Economics Poland

Trend in drug use in Poland

Zatrudnianie cudzoziemców

Equipment for ultrasound disintegration of sewage sludge disseminated within the Record Biomap project (Horizon 2020)

ABOUT NEW EASTERN EUROPE BESTmQUARTERLYmJOURNAL

Demand Analysis L E C T U R E R : E W A K U S I D E Ł, PH. D.,

Program szkolenia: Fundamenty testowania

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

Transkrypt:

Construction of a rating based on a bankruptcy prediction model Małgorzata Wrzosek, Arkadiusz Ziemba StatConsulting Sp. z o.o.

Agenda Introduction Project description Data preparation Model building Additional analysis Altman s model effectiveness verification (Polish market) Rating construction

Introduction Aim of the project Construction of bankruptcy prediction model concerning companies Motivation Model building for companies reliability assessment basing on data of sufficient volume and adequate quality Significance verification of the previously used ratios Comparison of models effectiveness Comparison of analytical methods effectiveness Data Companies registered in the National Court Register Financial ratios Tools Logistic regression, Random forests

Insolvency in Poland Relatively low insolvency ratio (insolvencies per 10 000 companies) in Europe Reversed insolvency trend since 2009 Actual number of bankruptcies higher than the number of bankruptcies announced Sources: [1] Report Raport nt. upadłości firm w Polsce w 2008r., Coface, 12th January 2009 [2] Report Insolvencies in Europe 2008/09, CreditReform, 10th February 2009 Countries Insolvency ratio Austria 224 Belgium 115 Czech Republic 50 Denmark 149 Estonia 108 Finland 107 France 215 Germany 96 Great Britain 76 Greece 6 Hungary 92 Ireland 82 Italy 18 Latvia 99 Lithuania 115 Luxembourg 233 Netherlands 103 Norway 142 Poland 3 Portugal 40 Slovakia 83 Slovenia 72 Spain 7 Sweden 108 Switzerland 113

DATA PREPARATION

Data description constraints 11 505 companies Legal form including: joint stock company, limited liability company, registered partnership and cooperative Turnover reported Financial statements for accounting years 2003-2006 provided The same level of bankruptcy in subsequent years No repetition of the same company in subsequent years the final data set

The final data set Information about ~5 000 companies Data divided into training and test samples in proportion 7:3 Prior probability of bankruptcy in the population 0.16% Year Count Count % Target Target % 2003 1292 27.0 258 20.0 2004 1584 33.1 264 16.7 2005 1248 26.1 208 16.7 2006 660 13.8 110 16.7

MODEL CONSTRUCTION

Target definition Bankrupt company a company for which bankruptcy procedure was started by the court in accordance with Polish bankruptcy legislation (despite whether the company finally went bankrupt or not) Minimum 6 months forecasting horizon year year year Financial statement Bankruptcy procedure year year year Financial statement Bankruptcy procedure

Prediction variables selection financial statement

The base model ID Variable Name Variable definition Standard coefficient CA Current Assets (logarithm) = logarithm of Current Assets 0.510 POS Profit on sale = Profit (Losses) on Sale 0.366 CL Current Liquidity = Current assets/current Liabilities 0.700 E/A Equity/Assets Ratio = Equity/Total Assets 0.266 ROE Return on Equity = Net Profit (Loss)/Equity 0.138 Gross Return on = Gross Profit (Losses)/Total GROA Assets Assets 0.185 NRFS Net Revenue from = Net Revenue from Sales and Sales Equivalent 0.360

The base model quality assessment Model ROC Area Test 0.868 Train 0.891 ROC curve and ROC area values Lift chart

Random forests Relatively novel approach (Breinman 2001) Characteristic Very robust in aspects of i.a. data preparation Very good prediction performance Incomprehensible structure Method description Training of many (e.g. 100, 1000) classification trees (bootstrap sample) Using random subset of m=sqrt(m) from M variables at each node Making a prediction by each tree to create a score The score as a proportion of votes Data set Sample 1 Sample 2 Sample 3 Tree 1 Tree 2 Tree 3 Score Sample Tree

Random forests quality assessment Model ROC Area Base 0.868 Randforest 0.886 ROC curve and ROC area values Lift chart

Forests Importance Fixed Assets Sales/Total Assets Cash/Total Assets Interest Coverage Assets Productivity Receivables Turnover Fixed Assets Productivity Inventory Turnover Cash/Assets Turnover Liabilities to Banks/Equity Liabilities to Banks/Liabilities Receivables from other Entities/Current Assets Short-term Receivables/Liabilities and Provisions for Liabilities

ADDITIONAL ANALYSIS

The influence of the company size on bankruptcy indicators Tasks Estimation of separate models for every segment with the set of variables from the base model Verification of the base model fitness in subsequent segments ROC curve Identified 4 segments No fixed assets - companies with no current assets Small, Middle, Large - companies with fixed assets not equal zero divided into three quantiles (terciles) according to their Total Assets Segments CA CL E/A NRFS ROE GROA POS No-fix assets 0.67-1.45-0.20-0.37 0.13-0.04-0.30 Small 0.57-0.72-0.40 0.06 0.09-0.18-0.41 Middle 0.34-0.78-0.15-0.25 0.13-0.36-0.30 Large 0.17-0.32-0.33-0.40 0.17-0.41-0.23

The influence of prediction horizon on predictive power of the model Tasks Estimation of additional model basing on the financial statements from 2 years prior to bankruptcy Comparison of this model against the base model (1 year horizon) Model ROC Area Base lag (-1) 0.798 Base 0.868 ROC curve and ROC area values

ALTMAN S MODEL

Altman's Z-score model Variable Name Coefficient WC/TA Working Capital*/Total Assets 0.717 RE/TA Retain Earnings/Total Assets 0.847 EBIT/TA MVE/TL Earnings Before Interest and Taxes/Total Assets Book Value of Equity/Book Value of Total Liabilities 3.10 0.420 S/TA Sales/Total Assets 0.998 *Working Capital = (Current Assets-Current Liabilities)

Tasks * Altman s model effectiveness verification (Polish market) Assessment of the Altman s Z-score discriminant function effectiveness Construction and assessment of the effectiveness of logistic regression model (with 5 variables used in Altman's model) Effectiveness comparison of the models with the base model * The verification didn t consider legal form

Logistic regression model Variable Name Standard Coeff Intercept - - WC/TA Working capital*/ Total assets -0.265 RE/TA Retain Earnings/Total Assets 0.251 EBIT/TA MVE/TL Earnings Before Interest and Taxes/Total Assets Book value of Equity/Book Value of Total Liabilities -0.398-0.461 S/TA Sales/Total Assets -0.197 *Working Capital = (Current Assets-Current Liabilities)

Models quality assessment Model ROC Area Base 0.868 Altman 0.764 Altman reest 0.847 ROC curve and ROC area values Lift chart

Further analysis Conclusions Altman's Z-score model should not be used for companies which are not listed on the stock exchange Further analysis Data set division according to the legal form Identification of 4 categories o Joint stock company, registered partnership, limited liability company and cooperative Models evaluation and assessment o Altman's Z-score model o Logistic regression model (with 5 variables used in Altman's model) o The base Model (re-estimated) o Random forests model (with 60 variables, 10 and 20 most relevant variables)

ROC Area values ROCA Joint stock Partnership Coop LLC ROCA JOIN Total Cases 106 147 136 1103 Bankruptcy 29 9 6 219 Altman s Z-score model 0.85 0.88 0.87 0.74 0.76 Regression model containing Altman's indicators The base model re-estimated for a given category of legal form Random forests (~60 variables) Random forests (best 10 variables) Random forests (best 20 variables) 0.89 0.89 0.88 0.82 0.85 0.88 0.88 0.99 0.86 0.88 0.92 0.92 0.99 0.88 0.90 0.90 0.84 0.98 0.85 0.87 0.91 0.90 0.98 0.87 0.89

RATING

Rating construction (1) DATA model building model testing score _fail_ 0,98 Y 0,97 Y 0,93 Y 0,9 Y 0,89 Y 0,83 N 0,81 Y 0,8 Y 0,79 Y 0,74 Y 0,74 N 0,72 N 0,72 Y 0,66 Y 0,65 Y 0,64 Y 0,63 N 0,58 Y 0,58 N 0,56 N 0,55 Y 0,54 Y 0,54 N 0,54 N 0,53 N 0,52 N 0,52 N 0,52 N 6 5 4 3 2 1

Rating construction (2) 6 5 4 3 2 1 Risk Category 0.000 0.059 0.164 0.373 0.485 0.808 1.000 Risk Rate Risk classes before re-weighting LIFT Cut off Population % 1 0.01% 0.0762 0.00% 50.05% 2 0.08% 0.472 0.05% 30.84% 3 0.32% 1.993 0.15% 13.65% 4 0.87% 5.361 0.57% 2.26% 5 1.80% 11.037 0.96% 2.92% 6 5.98% 36.714 5.61% 0.27% Risk classes after re-weighting to apriori = 0.16 %

Final Conclusions Good predictive power of the models based on financial ratios Surprisingly good results of Altman s indicators of bankruptcy Extending prediction horizon does not drastically constrain model efficiency Company size and legal form influence the set of bankruptcy indicators Choosing different modeling technique can improve predictive power of the model but only in a very limited extend Looking for new sources of information and combining different sources of information as the most promising path to improve model predictive power

Thank you Malgorzata.Wrzosek@statconsulting.com.pl Arkadiusz.Ziemba@statconsulting.com.pl