Department of Electrical- and Information Technology. Dealing with stochastic processes

Podobne dokumenty
Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

Revenue Maximization. Sept. 25, 2018

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Hard-Margin Support Vector Machines

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

Helena Boguta, klasa 8W, rok szkolny 2018/2019

Tychy, plan miasta: Skala 1: (Polish Edition)

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

tum.de/fall2018/ in2357

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

MaPlan Sp. z O.O. Click here if your download doesn"t start automatically

OpenPoland.net API Documentation

Stargard Szczecinski i okolice (Polish Edition)

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

Machine Learning for Data Science (CS4786) Lecture 24. Differential Privacy and Re-useable Holdout

Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition)

Linear Classification and Logistic Regression. Pascal Fua IC-CVLab

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Prices and Volumes on the Stock Market

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction

Pielgrzymka do Ojczyzny: Przemowienia i homilie Ojca Swietego Jana Pawla II (Jan Pawel II-- pierwszy Polak na Stolicy Piotrowej) (Polish Edition)

Egzamin maturalny z języka angielskiego na poziomie dwujęzycznym Rozmowa wstępna (wyłącznie dla egzaminującego)

Emilka szuka swojej gwiazdy / Emily Climbs (Emily, #2)

deep learning for NLP (5 lectures)

Few-fermion thermometry

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.

Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition)

Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application

Gradient Coding using the Stochastic Block Model

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Previously on CSCI 4622

Jak zasada Pareto może pomóc Ci w nauce języków obcych?

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

DODATKOWE ĆWICZENIA EGZAMINACYJNE


STATISTICAL METHODS IN BIOLOGY

Dolny Slask 1: , mapa turystycznosamochodowa: Plan Wroclawia (Polish Edition)

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL

Relaxation of the Cosmological Constant

Camspot 4.4 Camspot 4.5

Dolny Slask 1: , mapa turystycznosamochodowa: Plan Wroclawia (Polish Edition)

Realizacja systemów wbudowanych (embeded systems) w strukturach PSoC (Programmable System on Chip)

Wprowadzenie do programu RapidMiner, część 5 Michał Bereta

Blow-Up: Photographs in the Time of Tumult; Black and White Photography Festival Zakopane Warszawa 2002 / Powiekszenie: Fotografie w czasach zgielku

Working Tax Credit Child Tax Credit Jobseeker s Allowance

Agnostic Learning and VC dimension

y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.

18. Przydatne zwroty podczas egzaminu ustnego. 19. Mo liwe pytania egzaminatora i przyk³adowe odpowiedzi egzaminowanego

Wprowadzenie do programu RapidMiner, część 2 Michał Bereta 1. Wykorzystanie wykresu ROC do porównania modeli klasyfikatorów

MoA-Net: Self-supervised Motion Segmentation. Pia Bideau, Rakesh R Menon, Erik Learned-Miller

Warsztaty Ocena wiarygodności badania z randomizacją

Zdecyduj: Czy to jest rzeczywiście prześladowanie? Czasem coś WYDAJE SIĘ złośliwe, ale wcale takie nie jest.

Instrukcja konfiguracji usługi Wirtualnej Sieci Prywatnej w systemie Mac OSX

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

Maximum A Posteriori Chris Piech CS109, Stanford University

Testy jednostkowe - zastosowanie oprogramowania JUNIT 4.0 Zofia Kruczkiewicz

Convolution semigroups with linear Jacobi parameters

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Rachunek lambda, zima

Poland) Wydawnictwo "Gea" (Warsaw. Click here if your download doesn"t start automatically

SubVersion. Piotr Mikulski. SubVersion. P. Mikulski. Co to jest subversion? Zalety SubVersion. Wady SubVersion. Inne różnice SubVersion i CVS

HOW MASSIVE ARE PROTOPLANETARY/ PLANET HOSTING/PLANET FORMING DISCS?

Steeple #3: Gödel s Silver Blaze Theorem. Selmer Bringsjord Are Humans Rational? Dec RPI Troy NY USA

Wybrzeze Baltyku, mapa turystyczna 1: (Polish Edition)

New Roads to Cryptopia. Amit Sahai. An NSF Frontier Center

Financial support for start-uppres. Where to get money? - Equity. - Credit. - Local Labor Office - Six times the national average wage (22000 zł)

Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI

Estimation and planing. Marek Majchrzak, Andrzej Bednarz Wroclaw,

PSB dla masazystow. Praca Zbiorowa. Click here if your download doesn"t start automatically

A n g i e l s k i. Phrasal Verbs in Situations. Podręcznik z ćwiczeniami. Dorota Guzik Joanna Bruska FRAGMENT

USB firmware changing guide. Zmiana oprogramowania za przy użyciu połączenia USB. Changelog / Lista Zmian

USB firmware changing guide. Zmiana oprogramowania za przy użyciu połączenia USB. Changelog / Lista Zmian

Ankiety Nowe funkcje! Pomoc Twoje konto Wyloguj. BIODIVERSITY OF RIVERS: Survey to teachers

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

Marzec: food, advertising, shopping and services, verb patterns, adjectives and prepositions, complaints - writing

Installation of EuroCert software for qualified electronic signature

Nonlinear data assimilation for ocean applications

Latent Dirichlet Allocation Models and their Evaluation IT for Practice 2016

Probabilistic Methods and Statistics. Computer Science 1 st degree (1st degree / 2nd degree) General (general / practical)

Patients price acceptance SELECTED FINDINGS

Ankiety Nowe funkcje! Pomoc Twoje konto Wyloguj. BIODIVERSITY OF RIVERS: Survey to students

Nazwa projektu: Kreatywni i innowacyjni uczniowie konkurencyjni na rynku pracy

ANKIETA ŚWIAT BAJEK MOJEGO DZIECKA

Instrukcja obsługi User s manual


Presented by. Dr. Morten Middelfart, CTO

Extraclass. Football Men. Season 2009/10 - Autumn round

PRZYKŁAD ZASTOSOWANIA DOKŁADNEGO NIEPARAMETRYCZNEGO PRZEDZIAŁU UFNOŚCI DLA VaR. Wojciech Zieliński

Ogólnopolski Próbny Egzamin Ósmoklasisty z OPERONEM. Język angielski Kartoteka testu. Wymagania szczegółowe Uczeń: Poprawna odpowiedź 1.1.

Website review pureorganic.pl

EGZAMIN MATURALNY Z JĘZYKA ANGIELSKIEGO POZIOM ROZSZERZONY MAJ 2010 CZĘŚĆ I. Czas pracy: 120 minut. Liczba punktów do uzyskania: 23 WPISUJE ZDAJĄCY

European Crime Prevention Award (ECPA) Annex I - new version 2014

Institutional Determinants of IncomeLevel Convergence in the European. Union: Are Institutions Responsible for Divergence Tendencies of Some

Transkrypt:

Dealing with stochastic processes

The stochastic process (SP) Definition (in the following material): A stochastic process is random process that happens over time, i.e. the process is dynamic and changes over time. An SP can be continuous- or discrete-time If discrete-time, the events in the process are countable

Sampling refresher Let X1..Xn be independent random variables with same distribution function. Let Θ denote the mean and σ 2 denote the variance. Θ = E [Xi] and σ 2 = Var(Xi) Let X be the arithmetic average of X i,then: X = E[X] =E = nx i=1 X i n " n X i=1 nx i=1 X i n # E[X i ] n = n n = this shows that X is an unbiased estimator of

Sampling refresher How good an estimator is X of? Var X = E[(X! ) 2 ] 1 nx = Var X i n 1 = 1 X n n 2 Var(X i ) = 2 n 1 Therefore, X is a good estimator of when p n is small

Confidence Intervals We first need to revisit the Normal distribution. Consider N(0,1) P (Z apple w) = 1 p 2 Z w 1 e ( x µ ) 2 dx For example: P (Z apple 1) = 1 p 2 Z w 1 e ( x µ ) 2 dx =0.8413

Confidence Intervals We use this to calculate w for different values of P such as: P (Z apple w) =0.95 ) w =1.96 P (Z apple w) =0.99 ) w =2.58 P (Z apple w) =0.999 ) w =3.29

Confidence Intervals If X is the mean of a random sample of size n from N (µ, ) then the sampling distribution of X is N (µ, p n ) If X 1,X 2,...X n constitute random samples from an infinite population with mean µ and standard deviation then the sampling distribution of Z = X µ / p as n!1is N (0, 1) n This result is known as the Central Limit Theorem

Confidence Intervals What does this mean? If we sample a random process with finite variance, our samples tend to follow a gaussian distribution and we can estimate the probability that our true value is within a range from the sample with a certain confidence We often want to find some mean value from a process e.g. the mean number of people in a queue with arrival rate λ and mean service time μ Working with means we need one more piece of information:

Confidence Intervals The standard deviation of the mean is calculated as follows: Var(X) = Var(cX) =c 2 Var(X) 2 x Var(mean) =Var = 1 N 2 1 N! NX X i i=1 = 1 N 2 Var N X i=1 X i! NX Var(X i )= N N 2 Var(X) = 1 N Var(X) i=1 mean = p N

Confidence Intervals We can now set the intervals that give us the desired confidence in our results for mean values. For example, if we want to find the mean average queue length with a confidence of 95% we set: ConfidenceInterval = z ± 1.96 mean

Confidence Intervals Process for the example with the queue 1. Run the simulation to get mean q length 2. Calculate mean of the means sampled 3. Calculate stddev 4. Calculate confidence (in this case based on σmean) 5. Change random seed 6. Run again 7. until confidence interval small enough Can also run as a single longer experiment

Confidence Intervals Plotting confidence intervals in graphs make interpretation easier Think about overlapping confidence intervals

Stopping condition Question: How long should the simulation run for? I simulated for 10 minutes, not a good answer. Better idea is to use variance measurements Stopping condition: Variance < x

Warmup time Take as example a simulation of a M/M/1 queue Say λ = 9, μ = 10 This system has a queue that will grow to large sizes over time There is a lag before the system reaches steady state Consider carefully when to start collecting statistics

Warmup time 100 X = 1 100 Z 100 0 f(x)dx = 90 75 X = 1 40 Z 100 60 f(x)dx = 99.95 50 25 0 10 20 30 40 50 60 70 80 90 10

<latexit sha1_base64="g0wbpmy28dna82l2a7tfinzjtnw=">aaacmxicbvblswmxgmz6rpvv9eglwiswstldcnorir30wme+ylss2ttbhmyfjnlcwfyvefgfijcefphqnzdb7kfbbwktmflivnejroxu9yw2tb2zu7dfocgehh2fnjboznsijdkmxryyka9cjaijaelkkhkzrjwg32wk705bmd+fes5ogdzjeursh40d6lgmpjkcuruhokwmpy5wmnamwimdx0wtm63ce7isjtrppjbkvvsgwlsrs1ozw+esk26ym+2uynpdxwjueimnzzcj45reh6mqxz4jjgzicmvqi2knieukgumlw1iqcoepghnl0qd5rnjjcumuxitlbl2qqxniufr/tytif2luuyrpizkr614m/udzsftu7iqgusxjgfcpetgdmorzfxbeocgszrvbmfp1v4gnsnukvclfvykxvvim6zl1q68bj41y8ygvowauwrwoaapcgizogw7oagyewrt4bx/ai7bqprwvvxrly2cuwb9o3z/upkww</latexit> <latexit sha1_base64="g0wbpmy28dna82l2a7tfinzjtnw=">aaacmxicbvblswmxgmz6rpvv9eglwiswstldcnorir30wme+ylss2ttbhmyfjnlcwfyvefgfijcefphqnzdb7kfbbwktmflivnejroxu9yw2tb2zu7dfocgehh2fnjboznsijdkmxryyka9cjaijaelkkhkzrjwg32wk705bmd+fes5ogdzjeursh40d6lgmpjkcuruhokwmpy5wmnamwimdx0wtm63ce7isjtrppjbkvvsgwlsrs1ozw+esk26ym+2uynpdxwjueimnzzcj45reh6mqxz4jjgzicmvqi2knieukgumlw1iqcoepghnl0qd5rnjjcumuxitlbl2qqxniufr/tytif2luuyrpizkr614m/udzsftu7iqgusxjgfcpetgdmorzfxbeocgszrvbmfp1v4gnsnukvclfvykxvvim6zl1q68bj41y8ygvowauwrwoaapcgizogw7oagyewrt4bx/ai7bqprwvvxrly2cuwb9o3z/upkww</latexit> <latexit sha1_base64="g0wbpmy28dna82l2a7tfinzjtnw=">aaacmxicbvblswmxgmz6rpvv9eglwiswstldcnorir30wme+ylss2ttbhmyfjnlcwfyvefgfijcefphqnzdb7kfbbwktmflivnejroxu9yw2tb2zu7dfocgehh2fnjboznsijdkmxryyka9cjaijaelkkhkzrjwg32wk705bmd+fes5ogdzjeursh40d6lgmpjkcuruhokwmpy5wmnamwimdx0wtm63ce7isjtrppjbkvvsgwlsrs1ozw+esk26ym+2uynpdxwjueimnzzcj45reh6mqxz4jjgzicmvqi2knieukgumlw1iqcoepghnl0qd5rnjjcumuxitlbl2qqxniufr/tytif2luuyrpizkr614m/udzsftu7iqgusxjgfcpetgdmorzfxbeocgszrvbmfp1v4gnsnukvclfvykxvvim6zl1q68bj41y8ygvowauwrwoaapcgizogw7oagyewrt4bx/ai7bqprwvvxrly2cuwb9o3z/upkww</latexit> <latexit sha1_base64="g0wbpmy28dna82l2a7tfinzjtnw=">aaacmxicbvblswmxgmz6rpvv9eglwiswstldcnorir30wme+ylss2ttbhmyfjnlcwfyvefgfijcefphqnzdb7kfbbwktmflivnejroxu9yw2tb2zu7dfocgehh2fnjboznsijdkmxryyka9cjaijaelkkhkzrjwg32wk705bmd+fes5ogdzjeursh40d6lgmpjkcuruhokwmpy5wmnamwimdx0wtm63ce7isjtrppjbkvvsgwlsrs1ozw+esk26ym+2uynpdxwjueimnzzcj45reh6mqxz4jjgzicmvqi2knieukgumlw1iqcoepghnl0qd5rnjjcumuxitlbl2qqxniufr/tytif2luuyrpizkr614m/udzsftu7iqgusxjgfcpetgdmorzfxbeocgszrvbmfp1v4gnsnukvclfvykxvvim6zl1q68bj41y8ygvowauwrwoaapcgizogw7oagyewrt4bx/ai7bqprwvvxrly2cuwb9o3z/upkww</latexit> Variance reduction techniques There are ways of reducing variance to speed up convergence of confidence intervals from several runs One common approach is the use of Antithetic variates Consider the following. We have generated two identically distributed variables X1 and X2 with mean θ. Then: Var( X 1 + X 2 2 )= 1 4 [Var(X 1)+Var(X 2 )+2Cov(X 1,X 2 )]

Antithetic variables Variance will be reduced if X1,X2 negatively correlated (covariance negative) Consider X1 = f(u1,u2,u3 Um) where U are m independent random numbers. Then so are 1-Um Therefore, X2 = f(1-u1,1-u2,1-u3 1-Um) has the same distribution as X1 Good chance that X1 and X2 are negatively correlated when using Um and 1-Um for generation

Discussion For each seed, the two antithetic runs combined produce results closer to real mean with high probability. Not to be confused with correlation between samples in a series

Sample Correlation Calculating confidence intervals assumes uncorrelated samples If this is not the case, there is a problem Covariance again Let the sampled mean from a simulation run be â Then, cov(â, â) =cov 0 @ 1 n nx x i, 1 n nx x j 1 A should be close to 0 i=1 j=1

Sample Correlation If the samples are not uncorrelated, the variance will be underestimated since: V (â) =cov 0 @ 1 n nx x i, 1 n i=1 nx j=1 x j 1 A = 1 X X n 2 cov(x i,x j ) i j cov(â i, â j ) should be 0 when i 6= j When i = j, this reduces to the variance

Reducing covariance (1) Reducing covariance simplest way: sample less frequently Instead of sampling all events, generate a random variable for inter-sample times i.e. next sample = getsampletime( 1 e t ) This will also lower the data volume for a simulation run. could be useful Reduces risk of correlation because of cyclic phenomena

Reducing covariance (2) Batch means ˆbi ˆbi ˆbi ˆbi ˆbi ˆbi ˆbi Another fast way of lowering correlation between successive samples, use method of batch means. Take average from a sequence of samples and use as a sample Selecting current batch size a problem. Too large, confidence intervals become too large; too small, variance underestimated. From literature, 10 < size < 20 common

<latexit sha1_base64="exvxqvl4wrddpkuw5f11t6lvbhc=">aaacgnicbvdlsgmxfm34rpvvdekmwiqp2dipgi6l3bgqfewdompjpjk2npmgyyhlmo9w46+4cagio3hj35i2s9dwaxco59zlvfe4ewdswda3sbk6tr6xmdvkb+/s7u0xdg7bmowfos0s8lb0xswpzwftkay47uacyt/ltooo61o/c0+fzgfwqyyrdxw8djjhcfza6heq7qlmknqami1ytwq27qplveqhjaniha/q9reaecytrgpn6wyiur9qtcrwdhczoiwuqyzmv/bpd0is+zrqhgmpe8ikljngorjhnm3bsaqrjmm8pd1na+xt6ssz11j4qpub9ekhk1bwpv6eslav5cr3def0urnotcx/vf6svesnyueukxqq+siv5lcfcjothdbbieitttartn8kyqjrrjrom69dqisvl5n2tykscro5l9ausjhy4bicabmgcafq4bo0qqsq8aiewst4m56mf+pd+ji3rhjzzbh4a+prb6t4nhs=</latexit> <latexit sha1_base64="exvxqvl4wrddpkuw5f11t6lvbhc=">aaacgnicbvdlsgmxfm34rpvvdekmwiqp2dipgi6l3bgqfewdompjpjk2npmgyyhlmo9w46+4cagio3hj35i2s9dwaxco59zlvfe4ewdswda3sbk6tr6xmdvkb+/s7u0xdg7bmowfos0s8lb0xswpzwftkay47uacyt/ltooo61o/c0+fzgfwqyyrdxw8djjhcfza6heq7qlmknqami1ytwq27qplveqhjaniha/q9reaecytrgpn6wyiur9qtcrwdhczoiwuqyzmv/bpd0is+zrqhgmpe8ikljngorjhnm3bsaqrjmm8pd1na+xt6ssz11j4qpub9ekhk1bwpv6eslav5cr3def0urnotcx/vf6svesnyueukxqq+siv5lcfcjothdbbieitttartn8kyqjrrjrom69dqisvl5n2tykscro5l9ausjhy4bicabmgcafq4bo0qqsq8aiewst4m56mf+pd+ji3rhjzzbh4a+prb6t4nhs=</latexit> <latexit sha1_base64="exvxqvl4wrddpkuw5f11t6lvbhc=">aaacgnicbvdlsgmxfm34rpvvdekmwiqp2dipgi6l3bgqfewdompjpjk2npmgyyhlmo9w46+4cagio3hj35i2s9dwaxco59zlvfe4ewdswda3sbk6tr6xmdvkb+/s7u0xdg7bmowfos0s8lb0xswpzwftkay47uacyt/ltooo61o/c0+fzgfwqyyrdxw8djjhcfza6heq7qlmknqami1ytwq27qplveqhjaniha/q9reaecytrgpn6wyiur9qtcrwdhczoiwuqyzmv/bpd0is+zrqhgmpe8ikljngorjhnm3bsaqrjmm8pd1na+xt6ssz11j4qpub9ekhk1bwpv6eslav5cr3def0urnotcx/vf6svesnyueukxqq+siv5lcfcjothdbbieitttartn8kyqjrrjrom69dqisvl5n2tykscro5l9ausjhy4bicabmgcafq4bo0qqsq8aiewst4m56mf+pd+ji3rhjzzbh4a+prb6t4nhs=</latexit> <latexit sha1_base64="exvxqvl4wrddpkuw5f11t6lvbhc=">aaacgnicbvdlsgmxfm34rpvvdekmwiqp2dipgi6l3bgqfewdompjpjk2npmgyyhlmo9w46+4cagio3hj35i2s9dwaxco59zlvfe4ewdswda3sbk6tr6xmdvkb+/s7u0xdg7bmowfos0s8lb0xswpzwftkay47uacyt/ltooo61o/c0+fzgfwqyyrdxw8djjhcfza6heq7qlmknqami1ytwq27qplveqhjaniha/q9reaecytrgpn6wyiur9qtcrwdhczoiwuqyzmv/bpd0is+zrqhgmpe8ikljngorjhnm3bsaqrjmm8pd1na+xt6ssz11j4qpub9ekhk1bwpv6eslav5cr3def0urnotcx/vf6svesnyueukxqq+siv5lcfcjothdbbieitttartn8kyqjrrjrom69dqisvl5n2tykscro5l9ausjhy4bicabmgcafq4bo0qqsq8aiewst4m56mf+pd+ji3rhjzzbh4a+prb6t4nhs=</latexit> <latexit sha1_base64="bnkgry8xf3qnskhlgpuq5uh08ym=">aaacuxichvflswmxgpy6vmp9vt16crahii0befqifl14egvbhw5dsmnwhmyfjfmhhp2lhvtk//diqthd9qbwccbhmjmpjjmgfvxp130toxpzc4tl5exkyura+kz1c6ujkkxs1qajsordqbqtpgztzbvgd6lkjaoeuw2g52p/9pfjxzp4ro9s1oviq8xdtom2kl8dnknthfedeaek1hgqi3zdt3f+by4bok97azeo8pk4maggh+b8//4w/zdsii3ii7rfrblntwcajxhkajdflv999vojzsiwayqiul3sprpninsccpzxveyxlnahewbds2msmduzrsm52rnkh4wjtcvwqfc/txgsktwkapumib6o395y/mvrzjo86rkep5lmmz0cfgyc6qsn60v9lhnvymqjozlbuyi6ilzabt+hykvav588szqhtew28fvrrxu2rammo7aldcbwdc24gctoa4uneimp+cy9ln4dcjxj1clnz7bhb5yvl0dqsls=</latexit> <latexit sha1_base64="bnkgry8xf3qnskhlgpuq5uh08ym=">aaacuxichvflswmxgpy6vmp9vt16crahii0befqifl14egvbhw5dsmnwhmyfjfmhhp2lhvtk//diqthd9qbwccbhmjmpjjmgfvxp130toxpzc4tl5exkyura+kz1c6ujkkxs1qajsordqbqtpgztzbvgd6lkjaoeuw2g52p/9pfjxzp4ro9s1oviq8xdtom2kl8dnknthfedeaek1hgqi3zdt3f+by4bok97azeo8pk4maggh+b8//4w/zdsii3ii7rfrblntwcajxhkajdflv999vojzsiwayqiul3sprpninsccpzxveyxlnahewbds2msmduzrsm52rnkh4wjtcvwqfc/txgsktwkapumib6o395y/mvrzjo86rkep5lmmz0cfgyc6qsn60v9lhnvymqjozlbuyi6ilzabt+hykvav588szqhtew28fvrrxu2rammo7aldcbwdc24gctoa4uneimp+cy9ln4dcjxj1clnz7bhb5yvl0dqsls=</latexit> <latexit sha1_base64="bnkgry8xf3qnskhlgpuq5uh08ym=">aaacuxichvflswmxgpy6vmp9vt16crahii0befqifl14egvbhw5dsmnwhmyfjfmhhp2lhvtk//diqthd9qbwccbhmjmpjjmgfvxp130toxpzc4tl5exkyura+kz1c6ujkkxs1qajsordqbqtpgztzbvgd6lkjaoeuw2g52p/9pfjxzp4ro9s1oviq8xdtom2kl8dnknthfedeaek1hgqi3zdt3f+by4bok97azeo8pk4maggh+b8//4w/zdsii3ii7rfrblntwcajxhkajdflv999vojzsiwayqiul3sprpninsccpzxveyxlnahewbds2msmduzrsm52rnkh4wjtcvwqfc/txgsktwkapumib6o395y/mvrzjo86rkep5lmmz0cfgyc6qsn60v9lhnvymqjozlbuyi6ilzabt+hykvav588szqhtew28fvrrxu2rammo7aldcbwdc24gctoa4uneimp+cy9ln4dcjxj1clnz7bhb5yvl0dqsls=</latexit> <latexit sha1_base64="bnkgry8xf3qnskhlgpuq5uh08ym=">aaacuxichvflswmxgpy6vmp9vt16crahii0befqifl14egvbhw5dsmnwhmyfjfmhhp2lhvtk//diqthd9qbwccbhmjmpjjmgfvxp130toxpzc4tl5exkyura+kz1c6ujkkxs1qajsordqbqtpgztzbvgd6lkjaoeuw2g52p/9pfjxzp4ro9s1oviq8xdtom2kl8dnknthfedeaek1hgqi3zdt3f+by4bok97azeo8pk4maggh+b8//4w/zdsii3ii7rfrblntwcajxhkajdflv999vojzsiwayqiul3sprpninsccpzxveyxlnahewbds2msmduzrsm52rnkh4wjtcvwqfc/txgsktwkapumib6o395y/mvrzjo86rkep5lmmz0cfgyc6qsn60v9lhnvymqjozlbuyi6ilzabt+hykvav588szqhtew28fvrrxu2rammo7aldcbwdc24gctoa4uneimp+cy9ln4dcjxj1clnz7bhb5yvl0dqsls=</latexit> <latexit sha1_base64="wild/kefyipygzdfigzipqwzsa4=">aaab8hicbvdlsgnbeoynrxhfuy9ebopgkeykomegf48rzeosjcxoosmqmdllzlyis77ciwdfvpo53vwbj8kenlggoajqprsrsgq31ve/vcla+sbmvng7tlo7t39qpjxqmjjvdbssfrfur9sg4aobllub7uqjlzhavjs+nfmtj9sgx+rbthimjr0qpucmwic9dioqs6jhp71yxa/6c5bveuskajnqvfjxtx+zvkkytfbjoogf2dcj2nimcfrqpgytysz0ib1hfzvowmx+8jscoavpbrf2psyzq78nmiqnmcjidupqr2bzm4n/ez3udq7djksktajyytegfctgzpy96xonziqji5rp7m4lbeq1zdzlvhihbmsvr5lmrtxwq8h9zav2k8drhbm4hxmi4apqcad1aaadcc/wcm+e9l68d+9j0vrw8plj+apv8wcbrzch</latexit> <latexit sha1_base64="wild/kefyipygzdfigzipqwzsa4=">aaab8hicbvdlsgnbeoynrxhfuy9ebopgkeykomegf48rzeosjcxoosmqmdllzlyis77ciwdfvpo53vwbj8kenlggoajqprsrsgq31ve/vcla+sbmvng7tlo7t39qpjxqmjjvdbssfrfur9sg4aobllub7uqjlzhavjs+nfmtj9sgx+rbthimjr0qpucmwic9dioqs6jhp71yxa/6c5bveuskajnqvfjxtx+zvkkytfbjoogf2dcj2nimcfrqpgytysz0ib1hfzvowmx+8jscoavpbrf2psyzq78nmiqnmcjidupqr2bzm4n/ez3udq7djksktajyytegfctgzpy96xonziqji5rp7m4lbeq1zdzlvhihbmsvr5lmrtxwq8h9zav2k8drhbm4hxmi4apqcad1aaadcc/wcm+e9l68d+9j0vrw8plj+apv8wcbrzch</latexit> <latexit sha1_base64="wild/kefyipygzdfigzipqwzsa4=">aaab8hicbvdlsgnbeoynrxhfuy9ebopgkeykomegf48rzeosjcxoosmqmdllzlyis77ciwdfvpo53vwbj8kenlggoajqprsrsgq31ve/vcla+sbmvng7tlo7t39qpjxqmjjvdbssfrfur9sg4aobllub7uqjlzhavjs+nfmtj9sgx+rbthimjr0qpucmwic9dioqs6jhp71yxa/6c5bveuskajnqvfjxtx+zvkkytfbjoogf2dcj2nimcfrqpgytysz0ib1hfzvowmx+8jscoavpbrf2psyzq78nmiqnmcjidupqr2bzm4n/ez3udq7djksktajyytegfctgzpy96xonziqji5rp7m4lbeq1zdzlvhihbmsvr5lmrtxwq8h9zav2k8drhbm4hxmi4apqcad1aaadcc/wcm+e9l68d+9j0vrw8plj+apv8wcbrzch</latexit> <latexit sha1_base64="hp+6lruf2d3tzaldqaqqvekmxyw=">aaab2xicbzdnsgmxfixv1l86vq1rn8eiucozbnqpuhfzwbzco5rm5k4bmskmyr2hdh0bf25efc93vo3pz0jbdwq+zknivscullqubn9ebwd3b/+gfugfnfzjk9nmo2fz0gjsilzl5jnmfpxu2cvjcp8lgzylffbj6f0i77+gstlxtzqrmmr4wmtuck7o6oyaraadlmw2ivxdc9yanb+gss7kddujxa0dhefbucunsafw7g9liwuxuz7ggupnm7rrtrxzzi6dk7a0n+5oykv394ukz9bostjdzdhn7ga2mp/lbiwlt1eldvesarh6kc0vo5wtdmajnchizrxwyasblykjn1yqa8z3hysbg29d77odbu3wmya6nmmfxeein3ahd9cblghi4bxevyn35n2suqp569lo4i+8zx84xio4</latexit> <latexit sha1_base64="uciiiudv5d8ytfqpgzlqyekdb3o=">aaab5xicbzblswmxfixv1fetvatbn8eiucozn7ou3lisyb/sduvommldk8yqziqy9fe4cagif8md/8b0sddwa4gpcxjy74kzkayj9dsobw3v7o6v9ysh1coj49pjtw3t3ddeyqlmttdgy6xqvowek7ybgy4qlrwtt+7meeezgyts/eimgy8ujrribepnrad+jkaib2i2qnvpgy5enifcqr1wag5qx/1hynlftwmsre2fnhnrgcyjjvms0s8tz5bncmr7hjuqbqnimfcmxhhnsjlu+kmdwbi/xxsorj2q2n9u6mz2pzub/2w93cu3usf0ljuu2fkjjjfepws+prkkw5mtuw/ijpczejzgg8z5jiq+hhb95u1oxzvc2ggfkjthdm7hekk4hlu4hya0gigcf3id98aer8hhsq5ssortfp4o+pwbx2+pla==</latexit> <latexit sha1_base64="uciiiudv5d8ytfqpgzlqyekdb3o=">aaab5xicbzblswmxfixv1fetvatbn8eiucozn7ou3lisyb/sduvommldk8yqziqy9fe4cagif8md/8b0sddwa4gpcxjy74kzkayj9dsobw3v7o6v9ysh1coj49pjtw3t3ddeyqlmttdgy6xqvowek7ybgy4qlrwtt+7meeezgyts/eimgy8ujrribepnrad+jkaib2i2qnvpgy5enifcqr1wag5qx/1hynlftwmsre2fnhnrgcyjjvms0s8tz5bncmr7hjuqbqnimfcmxhhnsjlu+kmdwbi/xxsorj2q2n9u6mz2pzub/2w93cu3usf0ljuu2fkjjjfepws+prkkw5mtuw/ijpczejzgg8z5jiq+hhb95u1oxzvc2ggfkjthdm7hekk4hlu4hya0gigcf3id98aer8hhsq5ssortfp4o+pwbx2+pla==</latexit> <latexit sha1_base64="zamoonmujirkwjavtm3albkysdk=">aaab8hicbva9twjbej3dl8qv1njmizgxinc2whjtlder0mcfzc17sgf377k7z0iu/aobc42x9efy+w9c4aofxzljy3szmzkxpyib6/vfxmltfwnzq7xd2dnd2z+ohh61tzjpylo0eyl+inawwrvrww4fe0g1qxkj1ongnzo/88s04ym6t5ouhrkhiseconxsyy9cnud9pu1xa37dn4oskqagnsjq7fe/eooezpipswua0w381iy5asupynnklzmsrtrgies6qlaye+bzg6fkzckdeifalbjkrv6eyfeam5gr65ror2bzm4n/ed3mxldhzlwawaboylgccwitmvuedlhm1iqji0g1d7csokkn1lqmki6eypnlvdk+qad+pbjza43rio4ynmapnemal9caw2hccyhieizxepo09+k9ex+l1pjxzbzdh3ifpwbtkim=</latexit> <latexit sha1_base64="wild/kefyipygzdfigzipqwzsa4=">aaab8hicbvdlsgnbeoynrxhfuy9ebopgkeykomegf48rzeosjcxoosmqmdllzlyis77ciwdfvpo53vwbj8kenlggoajqprsrsgq31ve/vcla+sbmvng7tlo7t39qpjxqmjjvdbssfrfur9sg4aobllub7uqjlzhavjs+nfmtj9sgx+rbthimjr0qpucmwic9dioqs6jhp71yxa/6c5bveuskajnqvfjxtx+zvkkytfbjoogf2dcj2nimcfrqpgytysz0ib1hfzvowmx+8jscoavpbrf2psyzq78nmiqnmcjidupqr2bzm4n/ez3udq7djksktajyytegfctgzpy96xonziqji5rp7m4lbeq1zdzlvhihbmsvr5lmrtxwq8h9zav2k8drhbm4hxmi4apqcad1aaadcc/wcm+e9l68d+9j0vrw8plj+apv8wcbrzch</latexit> <latexit sha1_base64="wild/kefyipygzdfigzipqwzsa4=">aaab8hicbvdlsgnbeoynrxhfuy9ebopgkeykomegf48rzeosjcxoosmqmdllzlyis77ciwdfvpo53vwbj8kenlggoajqprsrsgq31ve/vcla+sbmvng7tlo7t39qpjxqmjjvdbssfrfur9sg4aobllub7uqjlzhavjs+nfmtj9sgx+rbthimjr0qpucmwic9dioqs6jhp71yxa/6c5bveuskajnqvfjxtx+zvkkytfbjoogf2dcj2nimcfrqpgytysz0ib1hfzvowmx+8jscoavpbrf2psyzq78nmiqnmcjidupqr2bzm4n/ez3udq7djksktajyytegfctgzpy96xonziqji5rp7m4lbeq1zdzlvhihbmsvr5lmrtxwq8h9zav2k8drhbm4hxmi4apqcad1aaadcc/wcm+e9l68d+9j0vrw8plj+apv8wcbrzch</latexit> <latexit sha1_base64="wild/kefyipygzdfigzipqwzsa4=">aaab8hicbvdlsgnbeoynrxhfuy9ebopgkeykomegf48rzeosjcxoosmqmdllzlyis77ciwdfvpo53vwbj8kenlggoajqprsrsgq31ve/vcla+sbmvng7tlo7t39qpjxqmjjvdbssfrfur9sg4aobllub7uqjlzhavjs+nfmtj9sgx+rbthimjr0qpucmwic9dioqs6jhp71yxa/6c5bveuskajnqvfjxtx+zvkkytfbjoogf2dcj2nimcfrqpgytysz0ib1hfzvowmx+8jscoavpbrf2psyzq78nmiqnmcjidupqr2bzm4n/ez3udq7djksktajyytegfctgzpy96xonziqji5rp7m4lbeq1zdzlvhihbmsvr5lmrtxwq8h9zav2k8drhbm4hxmi4apqcad1aaadcc/wcm+e9l68d+9j0vrw8plj+apv8wcbrzch</latexit> <latexit sha1_base64="wild/kefyipygzdfigzipqwzsa4=">aaab8hicbvdlsgnbeoynrxhfuy9ebopgkeykomegf48rzeosjcxoosmqmdllzlyis77ciwdfvpo53vwbj8kenlggoajqprsrsgq31ve/vcla+sbmvng7tlo7t39qpjxqmjjvdbssfrfur9sg4aobllub7uqjlzhavjs+nfmtj9sgx+rbthimjr0qpucmwic9dioqs6jhp71yxa/6c5bveuskajnqvfjxtx+zvkkytfbjoogf2dcj2nimcfrqpgytysz0ib1hfzvowmx+8jscoavpbrf2psyzq78nmiqnmcjidupqr2bzm4n/ez3udq7djksktajyytegfctgzpy96xonziqji5rp7m4lbeq1zdzlvhihbmsvr5lmrtxwq8h9zav2k8drhbm4hxmi4apqcad1aaadcc/wcm+e9l68d+9j0vrw8plj+apv8wcbrzch</latexit> <latexit sha1_base64="wild/kefyipygzdfigzipqwzsa4=">aaab8hicbvdlsgnbeoynrxhfuy9ebopgkeykomegf48rzeosjcxoosmqmdllzlyis77ciwdfvpo53vwbj8kenlggoajqprsrsgq31ve/vcla+sbmvng7tlo7t39qpjxqmjjvdbssfrfur9sg4aobllub7uqjlzhavjs+nfmtj9sgx+rbthimjr0qpucmwic9dioqs6jhp71yxa/6c5bveuskajnqvfjxtx+zvkkytfbjoogf2dcj2nimcfrqpgytysz0ib1hfzvowmx+8jscoavpbrf2psyzq78nmiqnmcjidupqr2bzm4n/ez3udq7djksktajyytegfctgzpy96xonziqji5rp7m4lbeq1zdzlvhihbmsvr5lmrtxwq8h9zav2k8drhbm4hxmi4apqcad1aaadcc/wcm+e9l68d+9j0vrw8plj+apv8wcbrzch</latexit> <latexit sha1_base64="wild/kefyipygzdfigzipqwzsa4=">aaab8hicbvdlsgnbeoynrxhfuy9ebopgkeykomegf48rzeosjcxoosmqmdllzlyis77ciwdfvpo53vwbj8kenlggoajqprsrsgq31ve/vcla+sbmvng7tlo7t39qpjxqmjjvdbssfrfur9sg4aobllub7uqjlzhavjs+nfmtj9sgx+rbthimjr0qpucmwic9dioqs6jhp71yxa/6c5bveuskajnqvfjxtx+zvkkytfbjoogf2dcj2nimcfrqpgytysz0ib1hfzvowmx+8jscoavpbrf2psyzq78nmiqnmcjidupqr2bzm4n/ez3udq7djksktajyytegfctgzpy96xonziqji5rp7m4lbeq1zdzlvhihbmsvr5lmrtxwq8h9zav2k8drhbm4hxmi4apqcad1aaadcc/wcm+e9l68d+9j0vrw8plj+apv8wcbrzch</latexit> <latexit sha1_base64="diefvaexeqmv+9i5o9irqxxbt6s=">aaab9hicbvbns8naej34wetx1aoxxsj4kokieix68vjbfkabyma7azdunnf3uighv8olb0w8+mo8+w/ctjlo64mzhu/nslmvskqw6lrfztr6xubwdmmnvlu3f3byotpumtjvjddzlgpdcajhuijerigsdxlnarri3g7gdzo/pehaifg94jthfkshsoscubss3wuozuytypn+perw3dnikvekuoucjx7lqzeiwrpxhuxsy7qem6cfuy2csz6xe6nhcwvjourdsxwnupgz+de5obfkgisxtqwqznxfgxmnjjlggz2mki7msjct//o6kyy3fizukijxbpfqmeqcmzklqazcc4zyagllwthbcrtrtrnanmo2bg/5y6ukdvnz3jr3cfwt3xzxloauzuacpligotxda5ra4ame4rxeninz4rw7h4vrnafyoye/cd5/ae9mkna=</latexit> <latexit sha1_base64="diefvaexeqmv+9i5o9irqxxbt6s=">aaab9hicbvbns8naej34wetx1aoxxsj4kokieix68vjbfkabyma7azdunnf3uighv8olb0w8+mo8+w/ctjlo64mzhu/nslmvskqw6lrfztr6xubwdmmnvlu3f3byotpumtjvjddzlgpdcajhuijerigsdxlnarri3g7gdzo/pehaifg94jthfkshsoscubss3wuozuytypn+perw3dnikvekuoucjx7lqzeiwrpxhuxsy7qem6cfuy2csz6xe6nhcwvjourdsxwnupgz+de5obfkgisxtqwqznxfgxmnjjlggz2mki7msjct//o6kyy3fizukijxbpfqmeqcmzklqazcc4zyagllwthbcrtrtrnanmo2bg/5y6ukdvnz3jr3cfwt3xzxloauzuacpligotxda5ra4ame4rxeninz4rw7h4vrnafyoye/cd5/ae9mkna=</latexit> <latexit sha1_base64="diefvaexeqmv+9i5o9irqxxbt6s=">aaab9hicbvbns8naej34wetx1aoxxsj4kokieix68vjbfkabyma7azdunnf3uighv8olb0w8+mo8+w/ctjlo64mzhu/nslmvskqw6lrfztr6xubwdmmnvlu3f3byotpumtjvjddzlgpdcajhuijerigsdxlnarri3g7gdzo/pehaifg94jthfkshsoscubss3wuozuytypn+perw3dnikvekuoucjx7lqzeiwrpxhuxsy7qem6cfuy2csz6xe6nhcwvjourdsxwnupgz+de5obfkgisxtqwqznxfgxmnjjlggz2mki7msjct//o6kyy3fizukijxbpfqmeqcmzklqazcc4zyagllwthbcrtrtrnanmo2bg/5y6ukdvnz3jr3cfwt3xzxloauzuacpligotxda5ra4ame4rxeninz4rw7h4vrnafyoye/cd5/ae9mkna=</latexit> Testing correlation, deciding on batch size Mean of a batch = mean of all batches = batch size = N Test for correlation magnitude as follows: b i b<latexit sha1_base64="diefvaexeqmv+9i5o9irqxxbt6s=">aaab9hicbvbns8naej34wetx1aoxxsj4kokieix68vjbfkabyma7azdunnf3uighv8olb0w8+mo8+w/ctjlo64mzhu/nslmvskqw6lrfztr6xubwdmmnvlu3f3byotpumtjvjddzlgpdcajhuijerigsdxlnarri3g7gdzo/pehaifg94jthfkshsoscubss3wuozuytypn+perw3dnikvekuoucjx7lqzeiwrpxhuxsy7qem6cfuy2csz6xe6nhcwvjourdsxwnupgz+de5obfkgisxtqwqznxfgxmnjjlggz2mki7msjct//o6kyy3fizukijxbpfqmeqcmzklqazcc4zyagllwthbcrtrtrnanmo2bg/5y6ukdvnz3jr3cfwt3xzxloauzuacpligotxda5ra4ame4rxeninz4rw7h4vrnafyoye/cd5/ae9mkna=</latexit> Then, if: P N 1 i=1 C =1 ( b i bi+1 ) 2 P N 1 i=1 ( b i b) 2 C (N 2)(N 2 N (0, 1) 1) then batch size well chosen

<latexit sha1_base64="wu1+jfnzicoaq80d+wypnpzl8ek=">aaacfxicbvdlssnafj34rpuvdelmsagupgre0e2h6mznoyj9qbpdzdpph84kywzikse/4czfcencebeco//g6wohrqcuhm65l3vvcrlolhacb2tpewv1bb2wudzc2t7ztff2mypojaenevnytgoskgcrbwimow0nkmircnokbtdjv/vapwjxdkdhcfue7kuszarri/n2qrtgcyewat1qypkhpkvl0nvmuavdlqo/yxwu39fg0ge+xxlkzgrwkaazkyez6r795xzjkgoaackxuh3kjnrlsnsmcjox3vtrbjmb7tgoore2w71s8luoj43shwestuuatttfexkwso1eydof1n01743f/7xoqsnll2nrkmoakemimovqx3aceewysynmi0mwkczcckkfm3s0cbjoqkdzly+s5lkzowv0e16qxs3ikibdcaroaaixoapuqb00aagp4bm8gjfryxqx3q2paeusnzs5ah9gff4a/daefq==</latexit> <latexit sha1_base64="wu1+jfnzicoaq80d+wypnpzl8ek=">aaacfxicbvdlssnafj34rpuvdelmsagupgre0e2h6mznoyj9qbpdzdpph84kywzikse/4czfcencebeco//g6wohrqcuhm65l3vvcrlolhacb2tpewv1bb2wudzc2t7ztff2mypojaenevnytgoskgcrbwimow0nkmircnokbtdjv/vapwjxdkdhcfue7kuszarri/n2qrtgcyewat1qypkhpkvl0nvmuavdlqo/yxwu39fg0ge+xxlkzgrwkaazkyez6r795xzjkgoaackxuh3kjnrlsnsmcjox3vtrbjmb7tgoore2w71s8luoj43shwestuuatttfexkwso1eydof1n01743f/7xoqsnll2nrkmoakemimovqx3aceewysynmi0mwkczcckkfm3s0cbjoqkdzly+s5lkzowv0e16qxs3ikibdcaroaaixoapuqb00aagp4bm8gjfryxqx3q2paeusnzs5ah9gff4a/daefq==</latexit> <latexit sha1_base64="wu1+jfnzicoaq80d+wypnpzl8ek=">aaacfxicbvdlssnafj34rpuvdelmsagupgre0e2h6mznoyj9qbpdzdpph84kywzikse/4czfcencebeco//g6wohrqcuhm65l3vvcrlolhacb2tpewv1bb2wudzc2t7ztff2mypojaenevnytgoskgcrbwimow0nkmircnokbtdjv/vapwjxdkdhcfue7kuszarri/n2qrtgcyewat1qypkhpkvl0nvmuavdlqo/yxwu39fg0ge+xxlkzgrwkaazkyez6r795xzjkgoaackxuh3kjnrlsnsmcjox3vtrbjmb7tgoore2w71s8luoj43shwestuuatttfexkwso1eydof1n01743f/7xoqsnll2nrkmoakemimovqx3aceewysynmi0mwkczcckkfm3s0cbjoqkdzly+s5lkzowv0e16qxs3ikibdcaroaaixoapuqb00aagp4bm8gjfryxqx3q2paeusnzs5ah9gff4a/daefq==</latexit> <latexit sha1_base64="wu1+jfnzicoaq80d+wypnpzl8ek=">aaacfxicbvdlssnafj34rpuvdelmsagupgre0e2h6mznoyj9qbpdzdpph84kywzikse/4czfcencebeco//g6wohrqcuhm65l3vvcrlolhacb2tpewv1bb2wudzc2t7ztff2mypojaenevnytgoskgcrbwimow0nkmircnokbtdjv/vapwjxdkdhcfue7kuszarri/n2qrtgcyewat1qypkhpkvl0nvmuavdlqo/yxwu39fg0ge+xxlkzgrwkaazkyez6r795xzjkgoaackxuh3kjnrlsnsmcjox3vtrbjmb7tgoore2w71s8luoj43shwestuuatttfexkwso1eydof1n01743f/7xoqsnll2nrkmoakemimovqx3aceewysynmi0mwkczcckkfm3s0cbjoqkdzly+s5lkzowv0e16qxs3ikibdcaroaaixoapuqb00aagp4bm8gjfryxqx3q2paeusnzs5ah9gff4a/daefq==</latexit> Compensate for covariance contribution The below is typically more difficult but a possibility! There are statistical methods in literature e.g. 2 x = nx i=1 2 1 var(x i )+2 n nx j=i+1 2 1 cov(x i,x j ) n If the process is stationary in regards to covariance and k-dependent, loosely, if a sample is dependent on k previous samples this becomes: 2 x = 1 n ( var(x i )+2 ) kx cov(x i,x i+1 ) i=1 We use the following estimate of the covariance from the literature: cov(w i,w i+s )= 1 n s P n 1 i=1 (w i w)(w i+s w) w = 1 M M X i=1 w i

<latexit sha1_base64="wu1+jfnzicoaq80d+wypnpzl8ek=">aaacfxicbvdlssnafj34rpuvdelmsagupgre0e2h6mznoyj9qbpdzdpph84kywzikse/4czfcencebeco//g6wohrqcuhm65l3vvcrlolhacb2tpewv1bb2wudzc2t7ztff2mypojaenevnytgoskgcrbwimow0nkmircnokbtdjv/vapwjxdkdhcfue7kuszarri/n2qrtgcyewat1qypkhpkvl0nvmuavdlqo/yxwu39fg0ge+xxlkzgrwkaazkyez6r795xzjkgoaackxuh3kjnrlsnsmcjox3vtrbjmb7tgoore2w71s8luoj43shwestuuatttfexkwso1eydof1n01743f/7xoqsnll2nrkmoakemimovqx3aceewysynmi0mwkczcckkfm3s0cbjoqkdzly+s5lkzowv0e16qxs3ikibdcaroaaixoapuqb00aagp4bm8gjfryxqx3q2paeusnzs5ah9gff4a/daefq==</latexit> <latexit sha1_base64="wu1+jfnzicoaq80d+wypnpzl8ek=">aaacfxicbvdlssnafj34rpuvdelmsagupgre0e2h6mznoyj9qbpdzdpph84kywzikse/4czfcencebeco//g6wohrqcuhm65l3vvcrlolhacb2tpewv1bb2wudzc2t7ztff2mypojaenevnytgoskgcrbwimow0nkmircnokbtdjv/vapwjxdkdhcfue7kuszarri/n2qrtgcyewat1qypkhpkvl0nvmuavdlqo/yxwu39fg0ge+xxlkzgrwkaazkyez6r795xzjkgoaackxuh3kjnrlsnsmcjox3vtrbjmb7tgoore2w71s8luoj43shwestuuatttfexkwso1eydof1n01743f/7xoqsnll2nrkmoakemimovqx3aceewysynmi0mwkczcckkfm3s0cbjoqkdzly+s5lkzowv0e16qxs3ikibdcaroaaixoapuqb00aagp4bm8gjfryxqx3q2paeusnzs5ah9gff4a/daefq==</latexit> <latexit sha1_base64="wu1+jfnzicoaq80d+wypnpzl8ek=">aaacfxicbvdlssnafj34rpuvdelmsagupgre0e2h6mznoyj9qbpdzdpph84kywzikse/4czfcencebeco//g6wohrqcuhm65l3vvcrlolhacb2tpewv1bb2wudzc2t7ztff2mypojaenevnytgoskgcrbwimow0nkmircnokbtdjv/vapwjxdkdhcfue7kuszarri/n2qrtgcyewat1qypkhpkvl0nvmuavdlqo/yxwu39fg0ge+xxlkzgrwkaazkyez6r795xzjkgoaackxuh3kjnrlsnsmcjox3vtrbjmb7tgoore2w71s8luoj43shwestuuatttfexkwso1eydof1n01743f/7xoqsnll2nrkmoakemimovqx3aceewysynmi0mwkczcckkfm3s0cbjoqkdzly+s5lkzowv0e16qxs3ikibdcaroaaixoapuqb00aagp4bm8gjfryxqx3q2paeusnzs5ah9gff4a/daefq==</latexit> <latexit sha1_base64="wu1+jfnzicoaq80d+wypnpzl8ek=">aaacfxicbvdlssnafj34rpuvdelmsagupgre0e2h6mznoyj9qbpdzdpph84kywzikse/4czfcencebeco//g6wohrqcuhm65l3vvcrlolhacb2tpewv1bb2wudzc2t7ztff2mypojaenevnytgoskgcrbwimow0nkmircnokbtdjv/vapwjxdkdhcfue7kuszarri/n2qrtgcyewat1qypkhpkvl0nvmuavdlqo/yxwu39fg0ge+xxlkzgrwkaazkyez6r795xzjkgoaackxuh3kjnrlsnsmcjox3vtrbjmb7tgoore2w71s8luoj43shwestuuatttfexkwso1eydof1n01743f/7xoqsnll2nrkmoakemimovqx3aceewysynmi0mwkczcckkfm3s0cbjoqkdzly+s5lkzowv0e16qxs3ikibdcaroaaixoapuqb00aagp4bm8gjfryxqx3q2paeusnzs5ah9gff4a/daefq==</latexit> <latexit sha1_base64="p2uvtdwtyfoqeesyusxy8hsur40=">aaachxicbvdlssnafj34rpvvdelmsaiualikuiy6cvnbpqaj4wyybyfojgfmoptqh3hjr7hxoygln+lfoe2z0nyda4dzzuxopuhcmdk2/w2trk6tb2ywtsrbo7t7+5wdw46ku0lom8q8lr0afousom3nnke9rfiqaafdyhw987v3vcowr3d6klbpwdbia0zag8mvnnwajh7abikwy81cch7mak9ggm/ru+ysmnbyvwwozkyenvqvql2zc+bl4hskigq0/mqng8ykfttshinsfcdotjeb1ixwoi27qaijkdemad/qcarvxpzfn8wnrgnxijbmrrrn6u+jdirsexgypaa9uovetpzp66d6colllepstsmyxzriodyxnlwfqyyp0xxicbdjzf8xgyeeok2hzvocs3jymunua45dc24b1ezvuucjhamtdiycdiga6aa1ubsr9iie0st6s56sf+vd+phhv6xi5gj9gfx1a2jjox0=</latexit> <latexit sha1_base64="p2uvtdwtyfoqeesyusxy8hsur40=">aaachxicbvdlssnafj34rpvvdelmsaiualikuiy6cvnbpqaj4wyybyfojgfmoptqh3hjr7hxoygln+lfoe2z0nyda4dzzuxopuhcmdk2/w2trk6tb2ywtsrbo7t7+5wdw46ku0lom8q8lr0afousom3nnke9rfiqaafdyhw987v3vcowr3d6klbpwdbia0zag8mvnnwajh7abikwy81cch7mak9ggm/ru+ysmnbyvwwozkyenvqvql2zc+bl4hskigq0/mqng8ykfttshinsfcdotjeb1ixwoi27qaijkdemad/qcarvxpzfn8wnrgnxijbmrrrn6u+jdirsexgypaa9uovetpzp66d6colllepstsmyxzriodyxnlwfqyyp0xxicbdjzf8xgyeeok2hzvocs3jymunua45dc24b1ezvuucjhamtdiycdiga6aa1ubsr9iie0st6s56sf+vd+phhv6xi5gj9gfx1a2jjox0=</latexit> <latexit sha1_base64="p2uvtdwtyfoqeesyusxy8hsur40=">aaachxicbvdlssnafj34rpvvdelmsaiualikuiy6cvnbpqaj4wyybyfojgfmoptqh3hjr7hxoygln+lfoe2z0nyda4dzzuxopuhcmdk2/w2trk6tb2ywtsrbo7t7+5wdw46ku0lom8q8lr0afousom3nnke9rfiqaafdyhw987v3vcowr3d6klbpwdbia0zag8mvnnwajh7abikwy81cch7mak9ggm/ru+ysmnbyvwwozkyenvqvql2zc+bl4hskigq0/mqng8ykfttshinsfcdotjeb1ixwoi27qaijkdemad/qcarvxpzfn8wnrgnxijbmrrrn6u+jdirsexgypaa9uovetpzp66d6colllepstsmyxzriodyxnlwfqyyp0xxicbdjzf8xgyeeok2hzvocs3jymunua45dc24b1ezvuucjhamtdiycdiga6aa1ubsr9iie0st6s56sf+vd+phhv6xi5gj9gfx1a2jjox0=</latexit> <latexit sha1_base64="p2uvtdwtyfoqeesyusxy8hsur40=">aaachxicbvdlssnafj34rpvvdelmsaiualikuiy6cvnbpqaj4wyybyfojgfmoptqh3hjr7hxoygln+lfoe2z0nyda4dzzuxopuhcmdk2/w2trk6tb2ywtsrbo7t7+5wdw46ku0lom8q8lr0afousom3nnke9rfiqaafdyhw987v3vcowr3d6klbpwdbia0zag8mvnnwajh7abikwy81cch7mak9ggm/ru+ysmnbyvwwozkyenvqvql2zc+bl4hskigq0/mqng8ykfttshinsfcdotjeb1ixwoi27qaijkdemad/qcarvxpzfn8wnrgnxijbmrrrn6u+jdirsexgypaa9uovetpzp66d6colllepstsmyxzriodyxnlwfqyyp0xxicbdjzf8xgyeeok2hzvocs3jymunua45dc24b1ezvuucjhamtdiycdiga6aa1ubsr9iie0st6s56sf+vd+phhv6xi5gj9gfx1a2jjox0=</latexit> In plain text, estimate mean from long run Sample mean values wi and calculate sampled average taking into account dependency Using adjusted σ 2. w = 1 M M X i=1 w i, estimate covariance and calculate Use this to estimate confidence interval with significance 1-α as: w ± /2 w

<latexit sha1_base64="ne/pbzx9gskdgu3axpfnoctgurs=">aaaccxicbvhlahsxfnvmm8r1xpo2m1iahe0gedazizasq7vpmoxacdjg3jhv2ciaazdubmzgfb4vu/xenvmbyo9fmu4fwdg5j6n7lbzkoorj5yd88hfre6fxqbm7t39wgb197jltwofdyzsxdyk4vfjjlyqpvcssqp4qve3vfy3ytw9ontt6l80khoyw0tktashto+gr9jgppq4agvxcsuq+91cgno5cnqeldqodyrwin2yig5lxkahpy47j6owxg0xtubmvg2+cza3abb03o+hpmdaizl2cuobcp4klglzgsqqf8+agdog17mgcfq815oig1dkxot/xzjhnxvqjis/ztx0v5m7n8trx+vwmrp5bkp/l9uvkroav1evjqmvkkcsvj8mx9voxtchiztwayav/kxdtscdif1ltm5duv94evfno4o37c9g+/rm2o8g+sxy7zqm7znfsn7thxsbys/a1+becb6/ht5chrvvpgkx7vrb3ez79a8s6u38=</latexit> <latexit sha1_base64="ne/pbzx9gskdgu3axpfnoctgurs=">aaaccxicbvhlahsxfnvmm8r1xpo2m1iahe0gedazizasq7vpmoxacdjg3jhv2ciaazdubmzgfb4vu/xenvmbyo9fmu4fwdg5j6n7lbzkoorj5yd88hfre6fxqbm7t39wgb197jltwofdyzsxdyk4vfjjlyqpvcssqp4qve3vfy3ytw9ontt6l80khoyw0tktashto+gr9jgppq4agvxcsuq+91cgno5cnqeldqodyrwin2yig5lxkahpy47j6owxg0xtubmvg2+cza3abb03o+hpmdaizl2cuobcp4klglzgsqqf8+agdog17mgcfq815oig1dkxot/xzjhnxvqjis/ztx0v5m7n8trx+vwmrp5bkp/l9uvkroav1evjqmvkkcsvj8mx9voxtchiztwayav/kxdtscdif1ltm5duv94evfno4o37c9g+/rm2o8g+sxy7zqm7znfsn7thxsbys/a1+becb6/ht5chrvvpgkx7vrb3ez79a8s6u38=</latexit> <latexit sha1_base64="ne/pbzx9gskdgu3axpfnoctgurs=">aaaccxicbvhlahsxfnvmm8r1xpo2m1iahe0gedazizasq7vpmoxacdjg3jhv2ciaazdubmzgfb4vu/xenvmbyo9fmu4fwdg5j6n7lbzkoorj5yd88hfre6fxqbm7t39wgb197jltwofdyzsxdyk4vfjjlyqpvcssqp4qve3vfy3ytw9ontt6l80khoyw0tktashto+gr9jgppq4agvxcsuq+91cgno5cnqeldqodyrwin2yig5lxkahpy47j6owxg0xtubmvg2+cza3abb03o+hpmdaizl2cuobcp4klglzgsqqf8+agdog17mgcfq815oig1dkxot/xzjhnxvqjis/ztx0v5m7n8trx+vwmrp5bkp/l9uvkroav1evjqmvkkcsvj8mx9voxtchiztwayav/kxdtscdif1ltm5duv94evfno4o37c9g+/rm2o8g+sxy7zqm7znfsn7thxsbys/a1+becb6/ht5chrvvpgkx7vrb3ez79a8s6u38=</latexit> <latexit sha1_base64="ne/pbzx9gskdgu3axpfnoctgurs=">aaaccxicbvhlahsxfnvmm8r1xpo2m1iahe0gedazizasq7vpmoxacdjg3jhv2ciaazdubmzgfb4vu/xenvmbyo9fmu4fwdg5j6n7lbzkoorj5yd88hfre6fxqbm7t39wgb197jltwofdyzsxdyk4vfjjlyqpvcssqp4qve3vfy3ytw9ontt6l80khoyw0tktashto+gr9jgppq4agvxcsuq+91cgno5cnqeldqodyrwin2yig5lxkahpy47j6owxg0xtubmvg2+cza3abb03o+hpmdaizl2cuobcp4klglzgsqqf8+agdog17mgcfq815oig1dkxot/xzjhnxvqjis/ztx0v5m7n8trx+vwmrp5bkp/l9uvkroav1evjqmvkkcsvj8mx9voxtchiztwayav/kxdtscdif1ltm5duv94evfno4o37c9g+/rm2o8g+sxy7zqm7znfsn7thxsbys/a1+becb6/ht5chrvvpgkx7vrb3ez79a8s6u38=</latexit> Compensate for covariance contribution Problem, estimate k. Can be done using the autoregressive approach. Translate {w} to a set {u} of independent variables u i = kx b s (w i s w), i = k +1,...,n i=0 We estimate ˆb s from a set of linear equations: kx ˆbs ˆRr s = ˆRr r =1,...,k s=1 Where ˆR s is the estimated covariance cov(w t,w t+s ) and ˆb s are estimated coefficients of b s

Compensate for covariance contribution The variance at the k th order is estimated to be: ˆ2u,k = kx ˆbs ˆRs ˆb0 1 s=0 pick k max = K and calculate ˆ2u,k for k =1,...,K formulate a 2 test where the density Q is Q = n 1 ˆu,K ˆu,k The hypothesis sequence w 1,...,w n is of order k is discarded with significance if Q> 2 (f) wheref = K k signifies degree of freedom After k is found: 2 w = 2 kx u,k nb 2 where b = s=0 ˆbs We have to use a t-distribution instead of the normal distribution for confidence limits where: w ± t a/2 (f) w and f = nb 2 Pk s=0 (k 2s)ˆb s

Sample Correlation Important! your aim is to capture the correlation between different tests on the process you do not want to capture correlation from dependencies between successive samples often, it is therefore useful to run many simulation runs with varying seeds rather than few long simulation runs not always though, depends on the nature of the simulation

Tradeoff Each simulation run brings warmup time (wasted time) Many shorter simulations are more costly in time Estimating and compensating for covariance possible but takes time can be tedious work to do the stats. However, if statistical analysis not carried out, results don t have meaning.

More information Very good resource is Sheldon Ross, Simulation 4th ed. academic press 2006 Books on time series analysis, especially sections on auto regression for methods on estimating and compensating for covariance