Mechanika i Budowa Maszyn II stopień (I stopień / II stopień) Ogólno akademicki (ogólno akademicki / praktyczny)

Podobne dokumenty
Mechanika i Budowa Maszyn II stopień (I stopień / II stopień) Ogólno akademicki (ogólno akademicki / praktyczny)

Stale konstrukcyjne Construktional steels

Stale konstrukcyjne Construktional steels

Ekspertyza materiałowa Materials expertise

Stopy żelaza. Mechanika i Budowa Maszyn I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Stopy żelaza Iron alloys

Logistyka I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Materiałoznawstwo. Wzornictwo Przemysłowe I stopień ogólnoakademicki stacjonarne wszystkie Katedra Technik Komputerowych i Uzbrojenia

Metaloznawstwo II Metal Science II

specjalnościowy obowiązkowy polski semestr pierwszy

Stopy metali nieżelaznych

Metaloznawstwo I Metal Science I

Inżynieria warstwy wierzchniej Engineering of surface layer

Mechanika i Budowa Maszyn II stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Z-LOGN1-021 Materials Science Materiałoznastwo

Konstrukcje spawane. Mechanika i Budowa Maszyn I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Technologia spawalnictwa Welding technology

Obróbka bezubytkowa Chipless forming. Automatyka i Robotyka I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Metalurgia spawania Welding metallurgy

Materiałoznawstwo Materials science. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Materiałoznawstwo Materials science. Automaryka i Robotyka I stopień (I stopień / II stopień) Ogólno akademicki (ogólno akademicki / praktyczny)

Mikroskopia optyczna i elektronowa Optical and electron microscopy

Konstrukcje spawane Welded constructions

Obróbka bezubytkowa Chipless forming. Automatyka i Robotyka I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Obróbki powierzchniowe Surface Treatment

Budowa amunicji i zapalników Construction of ammunition and detonators

Wzornictwo przemysłowe I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny) Stacjonarne (stacjonarne / niestacjonarne)

Mechanika i Budowa Maszyn II stopień (I stopień / II stopień) Ogólno akademicki (ogólno akademicki / praktyczny)

Spawalnictwo. Mechanika i Budowa Maszyn I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Mechanika i Budowa Maszyn I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Defektoskopia Non-destructive testing. Inżynieria Bezpieczeństwa I stopień (I stopień / II stopień) Ogólno akademicki (ogólno akademicki / praktyczny)

Inżynieria Bezpieczeństwa I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny)

Spawalnictwo Welding technology

Mechanika i Budowa Maszyn II stopień (I stopień / II stopień) Ogólno akademicki (ogólno akademicki / praktyczny)

Miernictwo dynamiczne Dynamic Measurement. Elektrotechnika I stopnia (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

MiBM_IMMiS_1/6. Obróbki wykończeniowe. Mechanika i Budowa Maszyn I stopień ogólnoakademicki Niestacjonarne

Etyka inżynierska Engineering Ethics

Z-ZIPN Materiałoznawstwo I Materials Science

Podstawy normalizacji INŻYNIERIA ŚRODOWISKA. I stopień. Ogólno akademicki. Humanistyczny Obowiązkowy Polski Semestr 2.

Mechanika Doświadczalna Experimental Mechanics. Budowa Maszyn II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

System Labview The Labview System. Elektrotechnika II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Obróbka Ubytkowa Metal removal process. MiBM I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Mechanika i Budowa Maszyn. I stopień

Obróbka Ubytkowa Metal removal process. MiBM I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Praktyka zawodowa. Mechanika i Budowa Maszyn I stopień ogólnoakademicki studia stacjonarne wszystkie. Dr inż. Tomasz Miłek

Analiza ryzyka Risk Analysis. Inżynieria bezpieczeństwa I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny)

Specjalnościowy Obowiązkowy Polski Semestr siódmy. Semestr zimowy Techniki wytwarzania I Nie. 15 h

Technologia i organizacja robót. Inżynieria Środowiska I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Metrologia. Inżynieria Bezpieczeństwa I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny)

Inżynieria Bezpieczeństwa I stopień ogólnoakademicki stacjonarne. wspólny obowiązkowy polski czwarty. semestr letni. nie

Semestr zimowy Brak Nie

Mechanika i Budowa Maszyn II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Obróbka bezubytkowa Chipless forming. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Obróbka erozyjna Erosion Machining. Mechanika i Budowa Maszyn II stopień ogólnoakademicki Stacjonarne. Kierunkowy obowiązkowy polski pierwszy

Mechanika i Budowa Maszyn I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Inżynieria Środowiska II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Mechanika i Budowa Maszyn I stopień ogólnoakademicki

specjalnościowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy) polski drugi zimowy (semestr zimowy / letni)

Praktyka zawodowa. Automatyka i Robotyka I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

kierunkowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy) język polski VII semestr zimowy (semestr zimowy / letni)

Inżynieria Jakości. Wzornictwo przemysłowe I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Maszynoznawstwo. Wzornictwo przemysłowe I stopnia (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Z-LOGN Towaroznawstwo Science of commodities. Logistyka I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

E-2IZ s3. Podstawy przedsiębiorczości. Informatyka II stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Mechanika i Budowa Maszyn II stopień ogólnoakademicki Stacjonarne. Kierunkowy obowiązkowy polski drugi

Inżynieria Środowiska II stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny)

specjalnościowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy) polski szósty semestr letni (semestr zimowy / letni)

Podstawy negocjacji Negotiations. Inżynieria Środowiska II stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Metrologia. Wzornictwo Przemysłowe I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Podstawy konstrukcji systemów laserowych i plazmowych Basic of laser and plasma system design

Energia geotermalna geothermal energy. Inżynieria Środowiska II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

ID1F1 FIZYKA. INFORMATYKA I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Napędy elektryczne robotyki Electric Drives in Robotics

Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Podstawy Konstrukcji Maszyn Machine Desing

TRA_PKM_4/2 Podstawy Konstrukcji Maszyn Machine Desing. TRANSPORT I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Fizyka budowli I. Inżynieria Środowiska I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Sieci gazowe Gas networks. Inżynieria Środowiska II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Inżynieria bezpieczeństwa I stopień (I stopień / II stopień) Ogólno-akademicki (ogólno akademicki / praktyczny)

E-IZ1-02-s1 FIZYKA. INFORMATYKA I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Ekonomika Transportu. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Inżynieria Środowiska I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny)

Logistyka I stopień Ogólnoakademicki Stacjonarne Wszystkie Katedra Matematyki i Fizyki dr Medard Makrenek

Miernictwo dynamiczne Dynamic Measurement. Elektrotechnika I stopnia (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Technologia ścieków przemysłowych. Inżynieria środowiska I I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Inżynieria Bezpieczeństwa I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny)

Semestr letni Brak Nie

Podstawy negocjacji Negotiations. Inżynieria Środowiska

Praktyka zawodowa. Geodezja i Kartografia I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Interferometria laserowa w badaniach bezpieczeństwa konstrukcji Laser interferometry in the structure reliability investigations

Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)

Obróbka ubytkowa Material Removal Processes. Automatyka i robotyka I stopień Ogólno akademicki Studia stacjonarne

Zarządzanie środowiskiem Environmental management

Elektrotechnika II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)

Inżynieria bezpieczeństwa I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny)

kierunkowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy) polski semestr VI semestr letni (semestr zimowy / letni)

stacjonarne (stacjonarne / niestacjonarne) Katedra Matematyki dr Dmytro Mierzejewski podstawowy (podstawowy / kierunkowy / inny HES)

Transkrypt:

Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014 Kształtowanie struktury i własności materiałów inżynierskich Properties and microstructure shaping of the engineering materials A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Kierunek studiów Poziom kształcenia Profil studiów Forma i tryb prowadzenia studiów Specjalność Jednostka prowadząca moduł Koordynator modułu Mechanika i Budowa Maszyn II stopień (I stopień / II stopień) Ogólno akademicki (ogólno akademicki / praktyczny) Studia stacjonarne (stacjonarne / niestacjonarne) Inżynieria Materiałów Metalowych i Spawalnictwo Katedra Technik Komputerowych i Uzbrojenia Zakład Metaloznawstwa i Technologii Amunicji Dr inż. Kazimierz Bolanowski Zatwierdził: B. OGÓLNA CHARAKTERYSTYKA PRZEDMIOTU Przynależność do grupy/bloku przedmiotów Status modułu Język prowadzenia zajęć Usytuowanie modułu w planie studiów - semestr Usytuowanie realizacji przedmiotu w roku akademickim Wymagania wstępne Egzamin Liczba punktów ECTS 3 kierunkowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy) polski drugi zimowy (semestr zimowy / letni) Metaloznawstwo I i II (kody modułów / nazwy modułów) nie (tak / nie) Forma prowadzenia zajęć wykład ćwiczenia laboratorium projekt inne w semestrze 15 30

C. EFEKTY KSZTAŁCENIA I METODY SPRAWDZANIA EFEKTÓW KSZTAŁCENIA Cel modułu Celem przedmiotu jest zapoznanie studentów z ważniejszymi materiałami inżynierskimi metalicznymi stosowanymi w technice, wpływem dodatków stopowych i obróbki cieplnej na ich mikrostrukturę i właściwości, w tym na właściwości mechaniczne. Symbol efektu W_03 U_01 U_02 U_03 U_04 U_05 K_01 Efekty kształcenia Student ma poszerzoną wiedzę o materiałach inżynierskich stosowanych w budowie maszyn, w tym stopów żelaza Student ma pogłębioną wiedzę o właściwościach mechanicznych i użytkowych materiałów inżynierskich stosowanych w budowie maszyn i w zakresie sposobów kształtowania tych właściwości Student ma poszerzoną wiedzę o zastosowaniu materiałów inżynierskich oraz o procesach stosowanych do kształtowania właściwości mechanicznych tych materiałów Student potrafi wykorzystać zdobytą wiedzę przy wyborze materiałów inżynierskich w zależności od wymagań konstrukcyjnych lub środowiskowych Na podstawie wykładów oraz wyników uzyskanych na ćwiczeniach laboratoryjnych potrafi przeprowadzić dogłębną analizę wpływu technologii obróbki cieplnej na właściwości materiałów inżynierskich Na podstawie uzyskanych wyników z ćwiczeń laboratoryjnych student potrafi ocenić wpływ parametrów technologicznych na możliwość uzyskiwania wyrobów o oczekiwanych właściwościach mechanicznych i mikrostrukturze Student potrafi wykonać badania materiałów inżynierskich przy użyciu aparatury dostępnej w Student potrafi interpretować wyniki doświadczalne uzyskane w ćwiczeniach laboratoryjnych i wyciągać wnioski Rozumie potrzebę doskonalenia wiedzy przez całe życie w celu podnoszenia kwalifikacji zawodowych w zakresie materiałoznawstwa materiałów Forma prowadzenia zajęć (w/ć/l/p/inne) Odniesienie do efektów kierunkowych K_W02 K_W04 K_W06 K_W02 K_W04 K_W06 KS_W01_I KS_W02_I K_W02 K_W04 K_W06 KS I KS_W02_I K_K01 Odniesienie do efektów obszarowych (także inżynierskich) T2A_W02 T2A_W03 T2A_W04 T2A_W02 T2A_W03 T2A_W04 T2A_W05 T2A_W07 T2A_W02 T2A_W03 T2A_W04 T2A_W05 T2A_W07 T2A_K01 T2A_K03

K_02 inżynierskich Ma świadomość roli absolwenta uczelni technicznej i rozumie potrzebę udziału w przekazywaniu innym osobom wiarygodnych informacji i opinii związanych z kierunkiem studiów K_K07 K_K09 T2A_K05 T2A_K07 Treści kształcenia: 1. Treści kształcenia w zakresie wykładu Nr Treści kształcenia wykładu Wprowadzenie, pojęcia podstawowe. Materiały inżynierskie, dostępność i cena, własności i struktura, zapotrzebowanie na 1 materiały inżynierskie we współczesnym świecie w różnych obszarach działalności ludzkiej. Obróbka cieplna jako podstawowa metoda kształtowanie struktury 2 materiałów. Ważniejsze rodzaje obróbki cieplnej stosowane w celu kształtowania struktury i własności materiałów inżynierskich. Granica sprężystości, wpływ obróbki cieplnej na kształtowanie granicy sprężystości, przykłady wpływu różnych obróbek 3 cieplnych na granicę sprężystości, przykłady projektowania, gdzie ograniczeniem jest granica sprężystości. Wytrzymałość na rozciąganie, granica plastyczności twardość i ciągliwość, defekty sieci krystalicznej i ich wpływ na uplastycznienie materiałów, umacnianie wydzieleniowe, przykłady 4 obróbki cieplnej w celu kształtowania Rm, Re i A materiałów polikrystalicznych, przykłady projektowania uwzględniające odkształcenie plastyczne Pękanie, wiązkość i zmęczenie materiałów, mikromechanizmy nagłego pękania, zniszczenie zmęczeniowe, obróbka cieplna stosowana w celu zmniejszenia wrażliwości materiałów na na 5 pękanie. Przykłady zniszczenia w wyniku nagłego pękania i zmęczenia materiałów. Skutki przerobu materiałów na zimno i metody ich usuwania poprzez obróbkę cieplną Pełzanie i pękanie na skutek pełzania, elementy teorii dyfuzji, mechanizmy pełzania, przykładowe mapy Ashby ego, materiały 6 odporne na pełzanie, przykłady projektowania z uwzględnieniem ograniczeń związanych z pełzaniem materiałów. Utlenianie i korozja, korozja wysokotemperaturowa, przykłady 7 utleniania w suchych gazach, korozja materiałów w środowiskach wilgotnych, przykłady korozji w różnych środowiskach. Tarcie, ścieranie i zużycie pod wpływem tarcia, problemy materiałowe 8 2. Treści kształcenia w zakresie ćwiczeń Nr zajęć Treści kształcenia ćwicz. Odniesienie do efektów kształcenia dla modułu,,,, W_03,, W_03,, W_03,, W_03 Odniesienie do efektów kształcenia dla modułu 3. Treści kształcenia w zakresie zadań laboratoryjnych Nr zajęć Treści kształcenia lab. Metody sprawdzania właściwości mechanicznych materiałów inżynierskich metalowych - próba statyczna rozciągania 1 2 3 Metody sprawdzania właściwości mechanicznych materiałów inżynierskich metalowych - pomiary twardości wybranych metali i stopów Metody sprawdzania właściwości mechanicznych materiałów inżynierskich metalowych - badanie udarności Odniesienie do efektów kształcenia dla modułu U_03 U_04, U_05 U_03 U_04, U_05, U_03

4 5 6 7 8 9 10 11 12 13 14 15 Zmiany właściwości wytrzymałościowych i plastycznych materiałów inżynierskich stalowych pod wpływem zmiany wielkości ziarna Zmiany morfologii mikrostruktury materiałów inżynierskich stalowych pod wpływem wyżarzania normalizującego Zmiany właściwości wytrzymałościowych i plastycznych materiałów inżynierskich stalowych pod wpływem utwardzenia w procesie hartowania Zmiany morfologii mikrostruktury materiałów inżynierskich stalowych pod wpływem zabiegu hartowania Zmiany właściwości plastycznych materiałów inżynierskich stalowych pod wpływem ulepszania cieplnego Zmiany morfologii mikrostruktury materiałów inżynierskich stalowych pod wpływem ulepszania cieplnego Wpływ zgniotu i rekrystalizacji na właściwości mechaniczne wybranych metali i/lub ich stopów Kształtowanie mikrostruktury wybranego gatunku stali stopowej obróbką cieplną wyżarzanie normalizujące Kształtowanie mikrostruktury wybranego gatunku stali stopowej obróbką cieplną hartowania i odpuszczania Dobór parametrów obróbki cieplnej w celu uzyskania dużych właściwości plastycznych stali niestopowej ze średnią zawartością węgla (na przykładzie stali C45) Dobór parametrów obróbki cieplnej w celu uzyskania dużych właściwości wytrzymałościowych stali mikrostopowej (na przykładzie stali P460NL1) Utwardzanie wydzieleniowe materiałów inżynierskich na narzędzia (na przykładzie stali szybkotnącej SW7M) U_04, U_05 Metody sprawdzania efektów kształcenia Symbol efektu Metody sprawdzania efektów kształcenia (sposób sprawdzenia, w tym dla umiejętności odwołanie do konkretnych zadań projektowych, laboratoryjnych, itp.) kolokwium zaliczeniowe Kolokwium zaliczeniowe W_03 Kolokwia cząstkowe. Kolokwia cząstkowe, kolokwium zaliczeniowe U_01 Zaliczenie sprawozdań z praktycznej części ćwiczeń laboratoryjnych. U_02 Kolokwia cząstkowe, kolokwium zaliczeniowe

Zaliczenie sprawozdań z praktycznej części ćwiczeń laboratoryjnych. U_03 Kolokwia cząstkowe, kolokwium zaliczeniowe Zaliczenie sprawozdań z praktycznej części ćwiczeń laboratoryjnych. U_04 Kolokwia cząstkowe, kolokwium zaliczeniowe Zaliczenie sprawozdań z praktycznej części ćwiczeń laboratoryjnych. U_05 Zaliczenie sprawozdań z praktycznej części ćwiczeń laboratoryjnych. K_01 Obserwacja postawy studenta podczas zajęć dydaktycznych. Dyskusja i ocena aktywności studenta w czasie ćwiczeń laboratoryjnych. K_02 Obserwacja postawy studenta podczas zajęć dydaktycznych. Dyskusja i ocena aktywności studenta w czasie ćwiczeń laboratoryjnych. D. NAKŁAD PRACY STUDENTA Rodzaj aktywności Bilans punktów ECTS obciążenie studenta 1 Udział w wykładach 15 godz. 2 Udział w ćwiczeniach - 3 Udział w laboratoriach 30 godz. 4 Udział w konsultacjach 2 godz. 5 Udział w zajęciach projektowych 6 Konsultacje projektowe 7 Udział w egzaminie 8 9 Liczba godzin realizowanych przy bezpośrednim udziale nauczyciela akademickiego 10 Liczba punktów ECTS, którą student uzyskuje na zajęciach wymagających bezpośredniego udziału nauczyciela akademickiego (1 punkt ECTS=25-30 godzin obciążenia studenta) 47 godz. 1,88 ECTS 11 Samodzielne studiowanie tematyki wykładów 10 godz. 12 Samodzielne przygotowanie się do ćwiczeń 13 Samodzielne przygotowanie się do kolokwiów 5 godz. 14 Samodzielne przygotowanie się do laboratoriów 5 godz 15 Wykonanie sprawozdań 5 godz. 15 Przygotowanie do kolokwium końcowego z laboratorium 3 godz. 17 Wykonanie projektu lub dokumentacji 18 Przygotowanie do egzaminu 19 20 Liczba godzin samodzielnej pracy studenta 28 godz. 21 Liczba punktów ECTS, którą student uzyskuje w ramach samodzielnej pracy (1 punkt ECTS=25-30 godzin obciążenia studenta) 1,12 ECTS 22 Sumaryczne obciążenie pracą studenta 75 godz. 23 Punkty ECTS za moduł 1 punkt ECTS=25-30 godzin obciążenia studenta 3,00 ECTS 24 Nakład pracy związany z zajęciami o charakterze praktycznym Suma godzin związanych z zajęciami praktycznymi 25 Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym 1 punkt ECTS=25-30 godzin obciążenia studenta E. LITERATURA 43 godz 1,72 ECTS Wykaz literatury 1. Inżynieria metali i ich stopów. Redakcja Stanisław J. Skrzypek, Karol Przybyłowicz. Wydawnictwa AGH, Kraków, 2012; 2. Przybyłowicz K.: Nowoczesne Metaloznawstwo. Wydawnictwo Naukowe AKAPIT, Kraków, 2012; 3. Blicharski M.: Wstęp do inżynierii materiałowej. Wydanie trzecie zmienione. Wydawnictwa Naukowo-Techniczne, Warszawa, 2006;

Witryna WWW modułu/przedmiotu 4. Blicharski M.: Inżynieria materiałowa stal. Wydawnictwa Naukowo- Techniczne, Warszawa, 2004; 5. Przybyłowicz K.: Inżynieria stopów żelaza. Wydawnictwo Politechniki Świętokrzyskiej, Kielce, 2008; 6. Majta J.: Odkształcanie i Własności. Stale mikrostopowe. Wybrane zagadnienia. Uczelniane Wydawnictwa Naukowo-Dydaktyczne, Kraków, 2008; 7. Przybyłowicz K.: Podstawy teoretyczne metaloznawstwa. Wydawnictwa Naukowo-Techniczne, Warszawa, 1999; 8. Malkiewicz T.: Metaloznawstwo stopów żelaza. Państwowe Wydawnictwo Naukowe. Warszawa-Kraków, 1978; 9. Colombier L., Hochmann J.: Stale odporne na korozję i stale żaroodporne. Wydawnictwo Śląsk. Katowice 1964; 10. Benesch R., Janowski J., Mamro K.: Metalurgia żelaza. Podstawy fizykochemiczne procesów. Wydawnictwo Śląsk 1979; 11. Encyklopedia Techniki. Metalurgia. Wydawnictwo Śląsk Katowice 1978; 12. Encyklopedia Techniki. Materiałoznawstwo. Wydawnictwa Naukowo- Techniczne, Warszawa, 1975; 13. Błażewski S., Mikoszewski J.: Pomiary twardości metali. Wydawnictwa Naukowo-Techniczne, Warszawa, 1981; 14. Inżynieria materiałowa, Przegląd spawalnictwa, inne. Wybrane artykuły; 15. Wybrane normy PN-EN