MICROSTRUCTURE AND MECHANICAL PROPERTIES OF A SIMILAR T24 STEEL WELDED JOINT AFTER SERVICE

Podobne dokumenty
Tytuł pracy w języku angielskim: Microstructural characterization of Ag/X/Ag (X = Sn, In) joints obtained as the effect of diffusion soledering.

Charakterystyka bainitycznej stali 7CrMoVTiB10-10 (T24)

Pękanie spawanych ścian szczelnych podczas eksploatacji

TECHNICAL CATALOGUE WHITEHEART MALLEABLE CAST IRON FITTINGS EE

WPŁYW PARAMETRÓW OBRÓBKI CIEPLNEJ TAŚM ZE STALI X6CR17 NA ICH WŁAŚCIWOŚCI MECHANICZNE I STRUKTURĘ

ANALIZA WPŁYWU SZYBKOŚCI CHŁODZENIA NA STRUKTURĘ I WŁASNOŚCI STALIWA L21HMF PO REGENERUJĄCEJ OBRÓBCE CIEPLNEJ

Mikrostruktura i właściwości mechaniczne złącza spawanego stali 12HMF po długotrwałej eksploatacji

THE INFLUENCE OF THE STEEL CHEMICAL COMPOSITION ONTO THE POSSIBILITIES OF USING IT IN THE PROCESS OF COLD SHAPING

Aspekty strukturalne różnorodnych złączy spawanych ze stali Super 304H i T91

Mikrostruktura i właściwości mechaniczne złączy stali t24 spawanych metodami konwencjonalnymi i wysokoenergetycznymi

AFTER LONG-TERM OPERATION IN CREEP CONDITIONS FOR THE POWER INDUSTRY

Właściwości mechaniczne niejednorodnego złącza spawanego stali VM12/X20 po wyżarzaniu

Struktura i właściwości mechaniczne złącza ze stali T91 z niskostopową warstwą graniową

Dr inż. Łukasz Rogal zatrudniony jest w Instytucie Metalurgii i Inżynierii Materiałowej Polskiej Akademii Nauk na stanowisku adiunkta

Streszczenia / Abstracts 7/ 2012

NOWE NISKOSTOPOWE STALE NA ELEMENTY KOMÓR PAROWNIKA KOTŁÓW ENERGETYCZNYCH O NADKRYTYCZNYCH PARAMETRACH PRACY

Adres do korespondencji: Instytut Metalurgii i Inżynierii Materiałowej PAN, Kraków, ul. Reymonta 25

BADANIA STRUKTURY POŁĄCZEŃ SPAWANYCH PRZY WYKORZYSTANIU TRANSMISYJNEGO MIKROSKOPU ELEKTRONOWEGO (TEM)

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 2 DOI: /v x

Spawanie stali konstrukcyjnej Weldox 700

PROCEEDINGS OF THE INSTITUTE OF VEHICLES 2(106)/2016 (12 pt)

Hotel Wodnik, Słok koło Bełchatowa 5-8 październik Pana Mieczysława Borowskiego. Pana Henryka Warkocza

INSPECTION METHODS FOR QUALITY CONTROL OF FIBRE METAL LAMINATES IN AEROSPACE COMPONENTS

OBRÓBKA CIEPLNA STALIWA Cr Mo V PO DŁUGOTRWAŁEJ EKSPLOATACJI

Rok akademicki: 2015/2016 Kod: MIM s Punkty ECTS: 5. Poziom studiów: Studia I stopnia Forma i tryb studiów: -

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

Pękanie spoin w stali 7crMoVtiB10-10 (t24) w czasie spawania, uruchamiania i eksploatacji bloków energetycznych

trwałości stali dla energetyki

BADANIA STRUKTURALNE MECHANIZMU ODKSZTAŁCENIA NA ZIMNO STALI PRZEZ ZGNIATANIE OBROTOWE

WPŁYW SPAWANIA NA ROZKŁAD TWARDOŚCI W ZŁĄCZU SPAWANYM NA PRZYKŁADZIE STOPU AW-7020

Badanie właściwości i struktury połączeń spawanych nowej i eksploatowanej stali 14 MoV6-3 (13HMF)

WPŁYW OBRÓBKI CIEPLNEJ NA WŁAŚCIWOŚCI STALI TYPU MARAGING

Krytyczne czynniki sukcesu w zarządzaniu projektami

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 4

Mikrostruktura połączeń różnorodnych stali 17-4PH ze stopami niklu

Własności mechaniczne kompozytów odlewanych na osnowie stopu Al-Si zbrojonych fazami międzymetalicznymi

NIESTANDARDOWA REGENERACYJNA OBRÓBKA CIEPLNA NISKOSTOPOWEGO STALIWA Cr Mo V PO DŁUGOTRWAŁEJ EKSPLOATACJI

Wpływ powłoki Al Si na proces wytwarzania i jakość zgrzewanych aluminiowanych rur stalowych

Wpływ obróbki cieplnej po spawaniu na własności i strukturę złączy ze stali 4330V

Mikrostruktura, struktura magnetyczna oraz właściwości magnetyczne amorficznych i częściowo skrystalizowanych stopów Fe, Co i Ni

Wpływ kierunku walcowania blach ze stali obrobionej termomechanicznie na jakość złączy spawanych

W trzech niezależnych testach frezy z powłoką X tremeblue typu V803 był w każdym przypadku prawie 2 razy bardziej wydajne niż wersja niepowlekana.

WPŁYW WANADU I MOLIBDENU ORAZ OBRÓBKI CIEPLNEJ STALIWA Mn-Ni DLA UZYSKANIA GRANICY PLASTYCZNOŚCI POWYŻEJ 850 MPa

Streszczenie rozprawy doktorskiej

złączy spawanych pracujących w warunkach pełzania

ROZPRAWY NR 128. Stanis³aw Mroziñski

STABILNOŚĆ STRUKTURALNA STALI P92 W KSZTAŁTOWANYCH PLASTYCZNIE ELEMENTACH RUROCIĄGÓW KOTŁÓW ENERGETYCZNYCH ANDRZEJ TOKARZ, WŁADYSŁAW ZALECKI

Spawanie hybrydowe (laser + MAg) paneli ścian szczelnych kotłów energetycznych ze stali 7CrMoVtiB10-10

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

Streszczenia / Abstracts 4 / 2014

Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application

Badanie właściwości mechanicznych złączy z niskowęglowych stali Cr-Mo spawanych laserowo

Ocena możliwości spawania stali wysokowytrzymałych ulepszanych cieplnie

Typ MFPCR FOR THE MOST DEMANDING REQUIREMENTS ON THE PURITY OF INDOOR AIR, WORKSTATIONS, AND DEVICES

PRACE INSTYTUTU ODLEWNICTWA TRANSACTIONS OF FOUNDRY RESEARCH INSTITUTE

WSKAŹNIK JAKOŚCI ODLEWÓW ZE STOPU Al-Si

Akademia Morska w Szczecinie. Wydział Mechaniczny

STRUKTURA I WŁAŚCIWOŚCI MECHANICZNE SUPER CIENKICH TAŚM ZE STALI ODPORNYCH NA KOROZJĘ WYTWARZANYCH W PROCESIE WALCOWANIA NA ZIMNO

katalog / catalogue DIAMOS

WŁAŚCIWOŚCI TRIBOLOGICZNE POWŁOK ELEKTROLITYCZNYCH ZE STOPÓW NIKLU PO OBRÓBCE CIEPLNEJ

PARAMETRY TECHNICZNE DEKLAROWANE PRZEZ PRODUCENTA POTWIERDZONE BADANIAMI / RATINGS ASSIGNED BY THE MANUFACTURER AND PROVED BY TESTS 393 V LOVOS-10/280

BARIERA ANTYKONDENSACYJNA

TYRE PYROLYSIS. REDUXCO GENERAL DISTRIBUTOR :: ::

Janusz Dobrzański, Adam Zieliński. Trwałość resztkowa i resztkowa rozporządzalna. Instytut Metalurgii Żelaza, Gliwice. /t r

Obliczeniowa trwałość rozporządzalna w praktyce jest

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

Streszczenia / Abstracts 7 / 2014

TRANSPORT W RODZINNYCH GOSPODARSTWACH ROLNYCH

ROZPRAWA DOKTORSKA. Model obliczeniowy ogrzewań mikroprzewodowych

Właściwości połączeń spawanych stali bainitycznej 7CrMoVTiB10-10

T R I B O L O G I A 93

Typ TFP FOR CRITICAL AIR CLEANLINESS AND VERY CRITICAL HYGIENE REQUIREMENTS, SUITABLE FOR CEILING INSTALLATION

Streszczenia / Abstracts 3/ 2013

The influence of the chosen welding technology on the microstructure and selected mechanical properties of welded magnesium alloy AZ91

Streszczenia / Abstracts 5/ 2012

spawanie złączy doczołowych jednoi różnoimiennych ze stali tempaloy a-3

EFFECT OF METALLURGIC PURITY OF THE 15CRMOV (15HGMV) STEEL ON TECHNOLOGICAL AND MECHANICAL PROPERTIES OF COLD-DEFORMED PRODUCTS

WPŁYW ALUMINIUM NA NIEKTÓRE WŁAŚCIWOŚCI I STRUKTURĘ STALIWA

QUANTITATIVE AND QUALITATIVE CHARACTERISTICS OF FINGERPRINT BIOMETRIC TEMPLATES

Dr inż. Paulina Indyka

OBRÓBKA CIEPLNA SILUMINU AK132

OTRZYMYWANIE KOMPOZYTÓW METALOWO-CERAMICZNYCH METODAMI PLAZMOWYMI

Stainless steel long products

STRUCTURE OF PHOSPHOR TIN BRONZE CuSn10P MODIFIED WITH MIXTURE OF MICROADDITIVES

Maria DZIUBA-KAŁUŻA, Janusz DOBRZAŃSKI, Hanna PURZYŃSKA, Zofia KANIA-PIFCZYK, Radosław ROZMUS

Streszczenia / Abstracts 4/ 2013

Międzynarodowa aktywność naukowa młodej kadry Wydziału Metali Nieżelaznych AGH na przykładzie współpracy z McMaster University w Kanadzie

DM-ML, DM-FL. Auxiliary Equipment and Accessories. Damper Drives. Dimensions. Descritpion

NAPAWANIE WARSTW TRUDNOŚCIERALNYCH NA STALI HARDOX METODAMI OAW I MMA

1. Miejsce pracy: Uniwersytet Technologiczno-Przyrodniczy, Wydział Inżynierii Mechanicznej

Patients price acceptance SELECTED FINDINGS

G14L LPG toroidal tank

Odporność na zimne pękanie złączy spawanych ze stali P460NL1

FREZY PM; END MILLS PM

RESISTANCE TO WEAR AS A FUNCTION OF THE MICROSTRUCTURE AND SELECTED MECHANICAL PROPERTIES OF MICROALLOYED STEEL WITH BORON

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

ZMIANA SKŁADU CHEMICZNEGO, TWARDOŚCI I MIKROSTRUKTURY NA PRZEKROJU POPRZECZNYM BIMETALOWYCH, ŻELIWNYCH WALCÓW HUTNICZYCH

napawanie w regeneracji głowic cylindrowych silników okrętowych

Streszczenia / Abstracts 4 / 2011

Odporność złączy spawanych stali 304 i 304H na korozję międzykrystaliczną

Transkrypt:

Prace Instytutu Metalurgii Żelaza 2018, 70 (2), s. 37 41 37 Agata MERDA, Grzegorz GOLAŃSKI, Paweł URBAŃCZYK, Klaudia KLIMASZEWSKA DOI: 10.32730/imz.0137-9941.18.2.04 MICROSTRUCTURE AND MECHANICAL PROPERTIES OF A SIMILAR T24 STEEL WELDED JOINT AFTER SERVICE The material under investigation was a welded joint made of 7CrMoVTiB10-10 (T24) steel after 36,000 hours of use at the temperature of 540 C and pressure of 27 MPa. The test samples for the study were taken from a membrane wall of a USC steam boiler. The research scope included: analysis of chemical composition of the original and the additional material (weld pass), investigation of the microstructure using optical microscopy and scanning electron microscopy, as well as tests of mechanical properties of the joint hardness measurement. It was proved that the investigated joint was characterised by a regular structure, without any welding defects, which probably resulted from the application of the additional material based on the CrMo steel from the weld root side. The observation showed that the microstructure of the original material consisted of granular bainite with numerous precipitates. In the heat affected zone and in the weld, the microstructure of lath bainite (bainitic-martensitic microstructure) was observed, also with numerous precipitates. The hardness of the analysed joint was lower than the limiting value of 350HV. Keywords: T24 bainitic steel, welded joint, microstructure, mechanical properties MIKROSTRUKTURA I WŁAŚCIWOŚCI MECHANICZNE JEDNOIMIENNEGO ZŁĄCZA SPAWANEGO STALI T24 PO EKSPLOATACJI Badaniu poddano jednoimienne złącze spawane stali 7CrMoVTiB10-10 (T24) po ok. 36 000 godzinach eksploatacji w temperaturze 540 C i ciśnieniu 27 MPa. Próbki do badań pobrano z wycinka ściany szczelnej kotła energetycznego na parametry nadkrytyczne. Zakres przeprowadzonych badań obejmował: analizę składu chemicznego materiału rodzimego oraz materiału dodatkowego, badania mikrostrukturalne za pomocą mikroskopii świetlnej i skaningowej mikroskopii elektronowej oraz badania właściwości mechanicznych złącza pomiar twardości. Wykazano, że badane złącze charakteryzuje się prawidłową budową, bez niezgodności spawalniczych, co zapewne wynika z zastosowania od strony grani materiału dodatkowego na bazie stali CrMo. Przeprowadzone obserwacje wykazały, że mikrostruktura materiału rodzimego składa się z bainitu ziarnistego z licznymi wydzieleniami. W strefie wpływu ciepła i spoinie obserwowano mikrostrukturę bainitu listwowego (bainityczno-martenzytyczną) również z licznymi wydzieleniami. Twardość analizowanego złącza była niższa od wartości granicznej wynoszącej 350HV. Słowa kluczowe: bainityczna stal T24, jednoimienne złącze spawane, mikrostruktura, właściwości mechaniczne 1. INTRODUCTION Increasing the efficiency of power units resulting from the desire to reduce emissions of pollutants into the atmosphere is related to the use of appropriate construction materials, mainly steels and heat-resistant steels, which could endure super and super-critical conditions. The response to the demand of the power industry, in addition to high-chromium steels like T/P91, T/P92 and VM12, was, among others, low-alloy bainitic steel 7CrMoVTiB10-10 (T/P24). The T24 steel has been developed in Europe as a competitive product for the Japanese T23 bainitic steel. Steel T24 was created as a result of modification and optimisation of the chemical composition of the 10CrMo9-10 (T22) steel and consisted in the introduction of additives and micro-additives such as: vanadium, titanium, boron and nitrogen [1 3] into its composition. The introduction of vanadium and titanium micro-additives to the T24 steel results in the precipitation of MX (MC) particles. Boron micro-additive increases the hardenability of steel, and also, substituting carbon atoms, it forms M 23 (C,B) 6 carboborides. Nitrogen, in turn, is introduced to reduce the carbon content [3, 4]. Steel T24 was to be, according to the manufacturer s data, a steel that was well weldable; with a wall thickness of less than 10 mm, it was not to require heat treatment after welding. This steel is mainly intended for building walls of tight power units with supercritical operation parameters. The manufacturer s optimistic assumptions regarding the weldability of the T24 steel were quickly verified by industrial practice, which revealed significant problems during welding, assembly and use of this steel. These problems were mainly Agata Merda, MSc, Eng., Prof. Grzegorz Golański, PhD, Eng. (golanski.grzegorz@wip.pcz.pl), Klaudia Klimaszewska, MSc, Eng. Czestochowa University of Technology, Institute of Materials Engineering, Al. Armii Krajowej 19, 42-201 Częstochowa Paweł Urbańczyk, PhD, Eng. Office of Technical Inspection Regional Branch in Katowice, Office in Dąbrowa Górnicza, ul. Przybylaka 8, 41-300 Dąbrowa Górnicza

38 Prace Instytutu Metalurgii Żelaza 2018, 70 (2), s. 37 41 related to the cracking of welded joints in power units, which involved high costs of repairs of these units and financial losses caused by their stoppage [1, 5, 6]. The main cause of the failure were transverse cracks in welded joints in tight walls, as welds connecting a flat bar with a tube, forming radiant tubes. The main mechanism causing the formation of cracks were hot cracks, and their further development occurred in the form of cold delayed cracks [1 3, 5 10]. The hot cracking of the T24 steel joints was related to its very high strength properties in the state without heat treatment as compared to the properties of the tube and flat bar. The high yield strength of the weld material prevents the relaxation of tensile stress resulting from shrinkage of the weld during its cooling, which resulted in the formation of hot cracks in the above case [8]. According to [5 10], the formation of hot cracks is also influenced by the welding speed being too high (above 0.7 m/min). One of the solutions reducing the risk of this type of damage, in addition to heat treatment after welding, is the use of additional material with higher plastic properties (e.g. with a chemical composition similar to the 10CrMo9-10 steel). Also, the use of hybrid welding (combination of laser welding and MAG welding) allows the production of T24 steel sheet panels without cracks [11]. The article presents the results of metallurgical studies on a 7CrMoVTiB10-10 (T24) steel welded joint after use. 2. MATERIAL AND METHODOLOGY The test material was a similar welded joint made on a 38x8 mm tube taken from a tight wall of a supercritical steam boiler. The tube material was the T24 steel. The analysed joint was used for about 36,014 hours at 540 C and the pressure of 26.8 MPa. The tested joint, according to the operator s data, was not subjected to heat treatment after welding. The analysis of chemical composition of the T24 steel original material was carried out using a SPECTROLAB K2 spark spectrometer, while the analysis of chemical composition of the additive material was carried out using a JOEL JSM- 6610 LV scanning electron microscope coupled with an Oxford Instruments X-Max EDS microanalyser. The macroscopic examinations were carried out using a photographic camera with a CCD 1/2.5 matrix on a metallographic microsection etched with a reagent nital. The observation and recording of microstructure images were made using an Axiovert 25 light microscope (LM) and a JOEL JSM-6610 LV scanning electron microscope (SEM). The measurement of the hardness of the tested T24 steel welded joint was carried out using the Vickers method according to the standard [12] with an indenter load of 10 kg (98.1 N). The measurement of joint hardness was carried out using a Future Tech FV-700 hardness meter. The measurement was carried out from the face side and from the root side in accordance with the requirements of the standard [13]. 3. TEST RESULTS 3.1. ANALYSIS OF THE CHEMICAL COMPOSITION OF THE ORIGINAL MATERIAL AND ADDITIVE MATERIAL IN THE TESTED T24 STEEL JOINT The chemical composition of the tested original material is presented in Table 1. The analysis of the chemical composition of the weld was carried out in three areas: in the root pass, in the filling and in the face pass of the weld. The chemical composition of the weld material is presented in Table 2. 3.2. MACROSCOPIC TESTS OF THE T24 STEEL WELDED JOINT The macroscopic image of the tested welded joint is shown in Figure 1. Fig. 1. Macrostructure of the T24 steel welded joint Rys. 1. Makroskopowy obraz wycinka złącza spawanego stali T24 Table 1. Chemical composition of T24 steel, weight % Tabela 1. Skład chemiczny materiału rodzimego, % masy Element concentration, weight % C Si Mn F S Cr Mo Ti V B N 0.07 0.30 0.43 0.015 0.004 2.35 0.97 0.071 0.22 0.005 0.017 Table 2. Chemical composition of the weld, weight % Tabela 2. Skład chemiczny spoiny, % masy Element concentration, weight % Si Mn Cr Mo V Fe Face pass 0.17 0.42 2.84 1.71 0.37 94.91 Filling 0.21 0.46 2.50 1.61 0.14 95.54 Root pass 0.18 0.52 2.91 1.61 95.07

Prace Instytutu Metalurgii Żelaza 2018, 70 (2), s. 37 41 39 3.3. MICROSTRUCTURE OF THE T24 STEEL WELDED JOINT 3.4. HARDNESS MEASUREMENT FOR THE T24 STEEL JOINT USING THE VICKERS METHOD Sample microstructures of the tested welded joint obtained by means of light microscopy and scanning electron microscopy are shown in Figures 2 4. The measurement of the hardness of the tested joint was carried out in accordance with the diagram shown in Figure 5, while the obtained results are shown graphically in Figure 6. Fig. 2. Microstructure of the T24 steel: a) OM, b) SEM Rys. 2. Mikrostruktura materiału rodzimego złącza stali T24: a) OM, b) SEM Fig. 3. Microstructure of heat affected zone (HAZ) of the T24 steel welded joint: a) OM, b) SEM Rys. 3. Mikrostruktura strefy wpływu ciepła złącza stali T24: a) OM, b) SEM Fig. 4. Microstructure of the weld: a) OM, b) SEM Rys. 4. Mikrostruktura spoiny: a) OM, b) SEM

40 Prace Instytutu Metalurgii Żelaza 2018, 70 (2), s. 37 41 HAZ2 WELD HAZ1 BM Fig. 5. Distribution of hardness points Rys. 5. Schemat rozkładu punktów pomiarowych Fig. 6. Hardness distribution of the welded joint Rys. 6. Rozkład twardości w złączu spawanym 4. ANALYSIS AND DISCUSSION OF TEST RESULTS The analysis of chemical composition of the original material (Table 1) showed that the tested material was the low-alloy bainitic T24 steel, with a composition corresponding to the requirements of the standard [14]. In the case of the analysis of the weld material (Tab. 2), it was shown that the additional material used in the root weld was probably a material with a chemical composition similar to that of CrMo steel, e.g. 10CrMo9-10. However, an additional CrMoV(Nb)-type material for welding the T24 steel was used as a face pass and filling. The use of a welding wire with a chemical composition similar to that of CrMo steel as a root filling in the analysed welded joint was probably supposed to prevent the formation of cracks in this joint. The additional material with a chemical composition similar to CrMo steel probably has better ductility as compared to the additional material for T24 steel welding. This limits the tendency to hot cracking in T24 steel welded joints [1, 6, 10, 15]. However, this material has a lower creep resistance as compared to the T24 steel [1, 10]. The macroscopic examination on the cross-section of the T24 steel similar welded joint showed its correct structure and did not reveal the presence of welding incompatibilities that exceed quality level B in the analysed cross-section (Fig. 1). This indicates that with a properly selected welding method, proper welding (selection of the appropriate welding parameters) and the use of additional material with high plasticity in the root pass an inconsistency-free T24 welded joint can be obtained. The original material (OM) of the T24 steel was characterised by the microstructure of the so-called granular bainite with numerous carbides on the grain boundaries of the former austenite and the boundaries of bainite grains (Fig. 2). In the microstructure with the dominant content of granular bainite, low-angle boundaries prevail. The ratio of low- to wide-angle boundaries is an important factor affecting the mechanical properties of steel. The dominance of low-angle boundaries with a misorientation angle of less than 5 in the steel microstructure ensures better creep resistance and slower degradation during use [15, 16]. Characteristic large, original titanium carbide (TiC) precipitates were observed in the OM microstructure (Fig. 2a). In the T24 steel at the initial state on grain boundaries, carbides rich in M 23 C 6 chromium are observed, while inside the laths/grains, fine dispersed MX carbides/nitrides rich in vanadium precipitate [17, 18]. M 23 C 6 carbides and fine dispersed vanadium-rich MX precipitates strengthen the precipitation mechanism of the T24 steel. A long-term use of the bainitic T24 steel leads mainly to the precipitation of molybdenum-rich M 2 C and M 6 C carbides inside grains. The type of the dominant molybdenum-rich carbide depends on the operating temperature [18, 19]. In places, the number of precipitated particles on the borders was so numerous that they formed the so-called continuous network of precipitates. During the use of the T24 steel at an elevated temperature, processes of coagulation and spheroidisation of M 23 C 6 carbides are also observed. MX precipitates as thermodynamically phases stable during long-term use practically do not increase [21, 22]. The grain size in the native material estimated with a comparative method was 10 according to the ASTM standard scale [23]. This size corresponds to an average grain diameter of 11 µm. In the heat affected zone (HAZ), the microstructure of lath bainite or bainitic and martensitic microstructure with a large number of precipitates on grain boundaries of former austenite, bainite (martensite) laths and inside bainite laths/grains were observed (Fig. 3). Within the area of HAZ of T24, two main areas were observed: I near the fusion line coarse-grain zone and II fine grain zone. The formation of the above areas is related to the influence of temperature in a given joint zone. Within area I, the grain size was 7 (31 μm), while in area II 11 (7.81 μm). Within the HAZ area, as in OM, the number of precipitates was so large that they formed the so-called continuous network of precipitates. The weld was characterised by a microstructure similar to HAZ, i.e. the lath bainite microstructures (bainitic and martensitic microstructure) were visible, with numerous carbide precipitates on grain boundaries of former austenite, boundaries of bainite laths and inside bainite laths/grains. In the weld, as compared to HAZ, a coarse grain structure was observed (Fig. 4). The examination of the mechanical properties of the analysed joint included, due to the amount of available test material, hardness measurement (Fig. 6). The distribution of hardness on the cross-section from the face and from the root was similar (Fig. 6). The measurement showed that the highest hardness was characteristic for HAZ from the front, the hardness

Prace Instytutu Metalurgii Żelaza 2018, 70 (2), s. 37 41 was 297 HV10, while from the side of the root, it was 286 HV10. OM was characterised by the lowest hardness 185 HV10 from the face, and 188 HV10 from the root (Fig. 6). The obtained hardness results were lower than the value of 350 HV, which is assumed as a limit value, which allows to protect the welded joint against cold cracking. 5. CONCLUSIONS The following conclusions were made on the basis of the conducted studies: 41 the tested joint was of proper construction and did not have welding incompatibilities, which may indicate a suitably chosen welding method and its proper execution, the lack of visible cracks in the analysed joint probably results from the use of a welding wire with a composition corresponding to the CrMo steel as an additional material a material with higher plastic properties as compared to additional material suitable for welding for the T24 steel, the hardness of the studied joint did not exceed the permissible maximum value of 350 HV. REFERENCES [1] G. Golański, J. Jasiak, J. Słania, C. Kolan. Charakterystyka bainitycznej stali 7CrMoVTiB10-10 (T24). Inżynieria Materiałowa, 2015 (4), p. 183 189. [2] W. Bendrick, J. Gabrel, B. Hahn, B. Vandenberghe. New low alloy heat resistant ferritic steels T/P23 and T/P24 for power plant application. International Journal of Pressure Vessels and Piping, 2012, 84, p. 13 20. [3] G. Golański, S. Stachura. Charakterystyka nowych niskostopowych stali dla energetyki. Hutnik Wiadomości Hutnicze, 2009 (9), p. 679 683. [4] F.B. Pickering. Historical development and microstructure of high chromium ferritic steels for high temperature applications. Microstructural development and stability in high chromium ferritic power plant steels. In: Strang A., Gooch D.J. (Ed.), The Institute of Materials, London: 1997, p. 1 29. [5] A. Ziewiec, K. Pańcikiewicz, E. Tasak. Pękanie spoin w stali 7CrMoVTiB10-10 (T24) w czasie spawania, uruchamiania i eksploatacji bloków energetycznych. Przegląd Spawalnictwa, 2012 (5), p. 2 7. [6] G. Golański, J. Jasak, J. Słania. Microstructure, properties and welding of T24 steel critical review. Kovove Mater., 2014, 52, p. 1 8. [7] K. Pańcikiewicz, S. Kwiecień, E. Tasak. Właściwości połączeń spawanych stali 7CrMoVTiB10-10 (T24) po obróbce cieplnej. Przegląd Spawalnictwa, 2012 (1), p. 15 17. [8] A. Ziewiec, S. Parzych, E. Tasak. Skłonność do pęknięć zimnych stali bainitycznej stosowanej w podwyższonych temperaturach. Hutnik Wiadomości Hutnicze, 2011 (12), p. 978 981. [9] E. Tasak, A. Ziewiec, K. Pańcikiewicz. Problemy materiałowe przy wytwarzaniu ścian szczelnych kotłów energetycznych na parametry nadkrytyczne. Hutnik Wiadomości Hutnicze, 2012 (4), p. 247 253. [10] M. Łomozik, M. Zeman, S. Fudali, J. Hajda. Przyczyny pękania złączy spawanych w ścianach szczelnych ze stali 7CrMoVTiB10-10 (T24). Energetyka XXI, 2010, p. 87 91. [11] W. Gawrysiuk. Spawanie hybrydowe (laser + MAG) paneli ścian szczelnych kotłów energetycznych stali 7CrMoVTiB10-10. Przegląd Spawalnictwa, 2014, 86 (5), p. 43 48. [12] Polski Komitet Normalizacyjny. PN-EN ISO 6507-1:2018-05: Metale Pomiar twardości sposobem Vickersa Część 1: Metoda badań. 2018. [13] Polski Komitet Normalizacyjny. PN-EN ISO 9015-1:2011: Badania niszczące złączy spawanych metali Badanie twardości Część 1: Badanie twardości złączy spawanych łukowo. 2011. [14] Polski Komitet Normalizacyjny. PN-EN 10216-2:2014-02: Rury stalowe bez szwu do zastosowań ciśnieniowych Warunki techniczne dostawy Część 2: Rury ze stali niestopowych i stopowych z określonymi właściwościami w temperaturze podwyższonej. 2014. [15] J. Dobrzański. Reason of analysis of welded joint cracking in membrane wall elements as a basis for manufacturing technology selection of the evaporator collector with new generation low-alloy bainitic steel for boilers with supercritical working parameters. Archives of Materials Science and Engineering, 2013, 64 (1), p. 5 14. [16] A. Aghajani, Ch. Somsen, J. Pesicka, W. Bendick, B. Hahn, G. Eggeler. Microstructural evolution in T24, a modified 2(1/4)Cr 1Mo steel during creep after different heat treatments. Materials Science and Engineering A, 2009, 510 511, p. 130 135. [17] G. Golański, P. Wieczorek, K. Prusik, C. Kolan. Changes of microstructure and mechanical properties of 7CrMoVTiB 10-10 (T24) steel after long term ageing at the temperature of 580 o C. Inżynieria Materiałowa, 2011 (1), pp. 50 54. [18] A. Kroupa, A. Vyrostkova, M. Svoboda, J. Janovec. Carbide reactions and phase equilibria in low-alloy Cr-Mo-V steels tempered at 773 993 K. Part II: theoretical calculations. Acta Materialia, 1998, 46, p. 39 49. [19] A. Zieliński, G. Golański, M. Sroka. Inf luence of long-term ageing on the microstructure and mechanical properties of T24 steel. Materials Science and Engineering, 2017, A 682, p. 664 672. [20] F. Abe. Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plants. Sci. Technol. Adv. Mater., 2008 (9), p. 1 15. [21] J. Hald, Microstructure and long-term creep properties of 9 12% Cr steels. International Journal of Pressure Vessels and Piping, 2008, 85, p. 30 37. [22] Polski Komitet Normalizacyjny. PN-EN ISO 643:2013-06: Stal Mikrograficzne określanie wielkości ziarna. 2013.